Properties

Label 175.4.x.a.103.17
Level $175$
Weight $4$
Character 175.103
Analytic conductor $10.325$
Analytic rank $0$
Dimension $928$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(3,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([21, 10]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.3");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.x (of order \(60\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(928\)
Relative dimension: \(58\) over \(\Q(\zeta_{60})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 103.17
Character \(\chi\) \(=\) 175.103
Dual form 175.4.x.a.17.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.70791 - 0.141916i) q^{2} +(-2.31104 - 2.85390i) q^{3} +(-0.643524 - 0.0676371i) q^{4} +(8.55160 + 7.20209i) q^{5} +(5.85308 + 8.05607i) q^{6} +(-16.6592 - 8.09134i) q^{7} +(23.1590 + 3.66802i) q^{8} +(2.80980 - 13.2191i) q^{9} +O(q^{10})\) \(q+(-2.70791 - 0.141916i) q^{2} +(-2.31104 - 2.85390i) q^{3} +(-0.643524 - 0.0676371i) q^{4} +(8.55160 + 7.20209i) q^{5} +(5.85308 + 8.05607i) q^{6} +(-16.6592 - 8.09134i) q^{7} +(23.1590 + 3.66802i) q^{8} +(2.80980 - 13.2191i) q^{9} +(-22.1349 - 20.7162i) q^{10} +(30.3217 - 6.44509i) q^{11} +(1.29418 + 1.99286i) q^{12} +(-54.8773 - 27.9614i) q^{13} +(43.9635 + 24.2749i) q^{14} +(0.790916 - 41.0497i) q^{15} +(-57.1285 - 12.1430i) q^{16} +(20.8135 + 54.2210i) q^{17} +(-9.48467 + 35.3973i) q^{18} +(-12.2739 - 116.778i) q^{19} +(-5.01603 - 5.21312i) q^{20} +(15.4083 + 66.2431i) q^{21} +(-83.0233 + 13.1496i) q^{22} +(-7.28080 + 138.926i) q^{23} +(-43.0531 - 74.5702i) q^{24} +(21.2599 + 123.179i) q^{25} +(144.635 + 83.5049i) q^{26} +(-132.564 + 67.5447i) q^{27} +(10.1733 + 6.33375i) q^{28} +(-38.9574 + 53.6202i) q^{29} +(-7.96733 + 111.047i) q^{30} +(-95.5571 + 214.625i) q^{31} +(-28.2138 - 7.55987i) q^{32} +(-88.4684 - 71.6403i) q^{33} +(-48.6663 - 149.779i) q^{34} +(-84.1886 - 189.175i) q^{35} +(-2.70227 + 8.31673i) q^{36} +(-158.913 + 103.199i) q^{37} +(16.6639 + 317.967i) q^{38} +(47.0247 + 221.234i) q^{39} +(171.629 + 198.160i) q^{40} +(-184.619 + 59.9863i) q^{41} +(-32.3234 - 181.567i) q^{42} +(-361.069 - 361.069i) q^{43} +(-19.9487 + 2.09669i) q^{44} +(119.233 - 92.8077i) q^{45} +(39.4315 - 375.166i) q^{46} +(-142.507 - 54.7034i) q^{47} +(97.3712 + 191.102i) q^{48} +(212.060 + 269.591i) q^{49} +(-40.0888 - 336.575i) q^{50} +(106.640 - 184.706i) q^{51} +(33.4236 + 21.7055i) q^{52} +(-139.007 + 112.566i) q^{53} +(368.557 - 164.092i) q^{54} +(305.718 + 163.264i) q^{55} +(-356.131 - 248.494i) q^{56} +(-304.907 + 304.907i) q^{57} +(113.103 - 139.670i) q^{58} +(224.430 - 249.255i) q^{59} +(-3.28545 + 26.3630i) q^{60} +(21.6790 - 19.5199i) q^{61} +(289.219 - 567.624i) q^{62} +(-153.769 + 197.484i) q^{63} +(519.698 + 168.860i) q^{64} +(-267.909 - 634.346i) q^{65} +(229.398 + 206.551i) q^{66} +(-152.203 + 58.4251i) q^{67} +(-9.72663 - 36.3003i) q^{68} +(413.306 - 300.285i) q^{69} +(201.129 + 524.218i) q^{70} +(814.332 + 591.647i) q^{71} +(113.560 - 295.833i) q^{72} +(-662.166 + 1019.65i) q^{73} +(444.968 - 256.903i) q^{74} +(302.407 - 345.345i) q^{75} +75.9796i q^{76} +(-557.287 - 137.973i) q^{77} +(-95.9423 - 605.756i) q^{78} +(-360.619 - 809.963i) q^{79} +(-401.085 - 515.287i) q^{80} +(165.784 + 73.8120i) q^{81} +(508.445 - 136.237i) q^{82} +(24.2715 - 153.244i) q^{83} +(-5.43511 - 43.6712i) q^{84} +(-212.516 + 613.577i) q^{85} +(926.503 + 1028.99i) q^{86} +(243.059 - 12.7382i) q^{87} +(725.861 - 38.0408i) q^{88} +(-453.316 - 503.458i) q^{89} +(-336.044 + 234.394i) q^{90} +(687.969 + 909.846i) q^{91} +(14.0819 - 88.9097i) q^{92} +(833.353 - 223.296i) q^{93} +(378.134 + 168.356i) q^{94} +(736.085 - 1087.04i) q^{95} +(43.6282 + 97.9905i) q^{96} +(-145.119 - 916.247i) q^{97} +(-535.982 - 760.124i) q^{98} -418.934i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 928 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 24 q^{7} + 84 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 928 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 24 q^{7} + 84 q^{8} - 10 q^{9} - 96 q^{10} - 6 q^{11} - 72 q^{12} - 20 q^{14} - 368 q^{15} - 1670 q^{16} + 120 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} - 880 q^{22} + 296 q^{23} + 32 q^{25} - 48 q^{26} + 226 q^{28} - 200 q^{29} - 38 q^{30} - 18 q^{31} - 964 q^{32} - 1092 q^{33} + 288 q^{35} + 7400 q^{36} - 392 q^{37} + 5424 q^{38} + 2430 q^{39} + 2172 q^{40} - 2098 q^{42} + 1560 q^{43} - 10 q^{44} - 4224 q^{45} - 6 q^{46} + 96 q^{47} + 6232 q^{50} - 16 q^{51} - 8928 q^{52} - 2384 q^{53} - 30 q^{54} + 244 q^{56} + 1556 q^{57} + 640 q^{58} + 4890 q^{59} + 3676 q^{60} - 18 q^{61} + 224 q^{63} - 9700 q^{64} - 1116 q^{65} - 2610 q^{66} - 2404 q^{67} - 13614 q^{68} - 1700 q^{70} - 24 q^{71} - 518 q^{72} - 4200 q^{73} - 16104 q^{75} - 722 q^{77} - 356 q^{78} - 10 q^{79} + 6414 q^{80} - 6810 q^{81} + 1692 q^{82} + 20620 q^{84} + 2712 q^{85} - 6 q^{86} + 9102 q^{87} + 1650 q^{88} + 20370 q^{89} - 12 q^{91} + 1612 q^{92} - 4604 q^{93} - 30 q^{94} + 1652 q^{95} - 2610 q^{96} - 19478 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.70791 0.141916i −0.957392 0.0501748i −0.432765 0.901507i \(-0.642462\pi\)
−0.524627 + 0.851332i \(0.675795\pi\)
\(3\) −2.31104 2.85390i −0.444760 0.549233i 0.504629 0.863336i \(-0.331629\pi\)
−0.949389 + 0.314104i \(0.898296\pi\)
\(4\) −0.643524 0.0676371i −0.0804405 0.00845463i
\(5\) 8.55160 + 7.20209i 0.764879 + 0.644174i
\(6\) 5.85308 + 8.05607i 0.398252 + 0.548146i
\(7\) −16.6592 8.09134i −0.899514 0.436891i
\(8\) 23.1590 + 3.66802i 1.02349 + 0.162105i
\(9\) 2.80980 13.2191i 0.104067 0.489595i
\(10\) −22.1349 20.7162i −0.699967 0.655105i
\(11\) 30.3217 6.44509i 0.831123 0.176661i 0.227346 0.973814i \(-0.426995\pi\)
0.603777 + 0.797153i \(0.293662\pi\)
\(12\) 1.29418 + 1.99286i 0.0311331 + 0.0479408i
\(13\) −54.8773 27.9614i −1.17079 0.596545i −0.243135 0.969993i \(-0.578176\pi\)
−0.927651 + 0.373447i \(0.878176\pi\)
\(14\) 43.9635 + 24.2749i 0.839267 + 0.463409i
\(15\) 0.790916 41.0497i 0.0136142 0.706599i
\(16\) −57.1285 12.1430i −0.892632 0.189735i
\(17\) 20.8135 + 54.2210i 0.296942 + 0.773560i 0.998161 + 0.0606146i \(0.0193060\pi\)
−0.701219 + 0.712946i \(0.747361\pi\)
\(18\) −9.48467 + 35.3973i −0.124198 + 0.463512i
\(19\) −12.2739 116.778i −0.148201 1.41004i −0.775543 0.631295i \(-0.782524\pi\)
0.627342 0.778744i \(-0.284143\pi\)
\(20\) −5.01603 5.21312i −0.0560809 0.0582845i
\(21\) 15.4083 + 66.2431i 0.160113 + 0.688354i
\(22\) −83.0233 + 13.1496i −0.804574 + 0.127432i
\(23\) −7.28080 + 138.926i −0.0660066 + 1.25948i 0.742037 + 0.670359i \(0.233860\pi\)
−0.808044 + 0.589122i \(0.799474\pi\)
\(24\) −43.0531 74.5702i −0.366174 0.634232i
\(25\) 21.2599 + 123.179i 0.170079 + 0.985430i
\(26\) 144.635 + 83.5049i 1.09097 + 0.629872i
\(27\) −132.564 + 67.5447i −0.944887 + 0.481444i
\(28\) 10.1733 + 6.33375i 0.0686636 + 0.0427488i
\(29\) −38.9574 + 53.6202i −0.249455 + 0.343346i −0.915320 0.402726i \(-0.868063\pi\)
0.665865 + 0.746072i \(0.268063\pi\)
\(30\) −7.96733 + 111.047i −0.0484876 + 0.675809i
\(31\) −95.5571 + 214.625i −0.553631 + 1.24348i 0.392518 + 0.919744i \(0.371604\pi\)
−0.946149 + 0.323731i \(0.895063\pi\)
\(32\) −28.2138 7.55987i −0.155861 0.0417628i
\(33\) −88.4684 71.6403i −0.466678 0.377908i
\(34\) −48.6663 149.779i −0.245477 0.755499i
\(35\) −84.1886 189.175i −0.406585 0.913613i
\(36\) −2.70227 + 8.31673i −0.0125105 + 0.0385034i
\(37\) −158.913 + 103.199i −0.706085 + 0.458537i −0.847075 0.531474i \(-0.821638\pi\)
0.140989 + 0.990011i \(0.454972\pi\)
\(38\) 16.6639 + 317.967i 0.0711381 + 1.35739i
\(39\) 47.0247 + 221.234i 0.193076 + 0.908353i
\(40\) 171.629 + 198.160i 0.678423 + 0.783297i
\(41\) −184.619 + 59.9863i −0.703235 + 0.228495i −0.638739 0.769423i \(-0.720544\pi\)
−0.0644954 + 0.997918i \(0.520544\pi\)
\(42\) −32.3234 181.567i −0.118753 0.667058i
\(43\) −361.069 361.069i −1.28052 1.28052i −0.940369 0.340156i \(-0.889520\pi\)
−0.340156 0.940369i \(-0.610480\pi\)
\(44\) −19.9487 + 2.09669i −0.0683495 + 0.00718382i
\(45\) 119.233 92.8077i 0.394983 0.307443i
\(46\) 39.4315 375.166i 0.126388 1.20250i
\(47\) −142.507 54.7034i −0.442273 0.169773i 0.127033 0.991898i \(-0.459455\pi\)
−0.569306 + 0.822126i \(0.692788\pi\)
\(48\) 97.3712 + 191.102i 0.292798 + 0.574649i
\(49\) 212.060 + 269.591i 0.618252 + 0.785980i
\(50\) −40.0888 336.575i −0.113388 0.951977i
\(51\) 106.640 184.706i 0.292797 0.507139i
\(52\) 33.4236 + 21.7055i 0.0891350 + 0.0578850i
\(53\) −139.007 + 112.566i −0.360266 + 0.291738i −0.792315 0.610113i \(-0.791124\pi\)
0.432049 + 0.901850i \(0.357791\pi\)
\(54\) 368.557 164.092i 0.928783 0.413521i
\(55\) 305.718 + 163.264i 0.749508 + 0.400264i
\(56\) −356.131 248.494i −0.849823 0.592970i
\(57\) −304.907 + 304.907i −0.708525 + 0.708525i
\(58\) 113.103 139.670i 0.256054 0.316200i
\(59\) 224.430 249.255i 0.495226 0.550005i −0.442777 0.896632i \(-0.646006\pi\)
0.938003 + 0.346627i \(0.112673\pi\)
\(60\) −3.28545 + 26.3630i −0.00706917 + 0.0567241i
\(61\) 21.6790 19.5199i 0.0455036 0.0409716i −0.646065 0.763282i \(-0.723587\pi\)
0.691569 + 0.722311i \(0.256920\pi\)
\(62\) 289.219 567.624i 0.592433 1.16271i
\(63\) −153.769 + 197.484i −0.307509 + 0.394931i
\(64\) 519.698 + 168.860i 1.01503 + 0.329805i
\(65\) −267.909 634.346i −0.511230 1.21048i
\(66\) 229.398 + 206.551i 0.427832 + 0.385222i
\(67\) −152.203 + 58.4251i −0.277530 + 0.106534i −0.493152 0.869943i \(-0.664155\pi\)
0.215622 + 0.976477i \(0.430822\pi\)
\(68\) −9.72663 36.3003i −0.0173460 0.0647361i
\(69\) 413.306 300.285i 0.721105 0.523913i
\(70\) 201.129 + 524.218i 0.343421 + 0.895086i
\(71\) 814.332 + 591.647i 1.36118 + 0.988952i 0.998369 + 0.0570873i \(0.0181813\pi\)
0.362806 + 0.931865i \(0.381819\pi\)
\(72\) 113.560 295.833i 0.185877 0.484226i
\(73\) −662.166 + 1019.65i −1.06165 + 1.63480i −0.343149 + 0.939281i \(0.611493\pi\)
−0.718505 + 0.695522i \(0.755173\pi\)
\(74\) 444.968 256.903i 0.699007 0.403572i
\(75\) 302.407 345.345i 0.465586 0.531693i
\(76\) 75.9796i 0.114677i
\(77\) −557.287 137.973i −0.824788 0.204202i
\(78\) −95.9423 605.756i −0.139273 0.879337i
\(79\) −360.619 809.963i −0.513580 1.15352i −0.965249 0.261333i \(-0.915838\pi\)
0.451669 0.892186i \(-0.350829\pi\)
\(80\) −401.085 515.287i −0.560533 0.720135i
\(81\) 165.784 + 73.8120i 0.227413 + 0.101251i
\(82\) 508.445 136.237i 0.684736 0.183474i
\(83\) 24.2715 153.244i 0.0320981 0.202659i −0.966428 0.256939i \(-0.917286\pi\)
0.998526 + 0.0542793i \(0.0172861\pi\)
\(84\) −5.43511 43.6712i −0.00705976 0.0567252i
\(85\) −212.516 + 613.577i −0.271183 + 0.782962i
\(86\) 926.503 + 1028.99i 1.16171 + 1.29021i
\(87\) 243.059 12.7382i 0.299524 0.0156974i
\(88\) 725.861 38.0408i 0.879284 0.0460813i
\(89\) −453.316 503.458i −0.539903 0.599623i 0.410032 0.912071i \(-0.365518\pi\)
−0.949935 + 0.312448i \(0.898851\pi\)
\(90\) −336.044 + 234.394i −0.393579 + 0.274526i
\(91\) 687.969 + 909.846i 0.792513 + 1.04811i
\(92\) 14.0819 88.9097i 0.0159581 0.100755i
\(93\) 833.353 223.296i 0.929190 0.248976i
\(94\) 378.134 + 168.356i 0.414910 + 0.184730i
\(95\) 736.085 1087.04i 0.794955 1.17398i
\(96\) 43.6282 + 97.9905i 0.0463832 + 0.104178i
\(97\) −145.119 916.247i −0.151903 0.959080i −0.939415 0.342781i \(-0.888631\pi\)
0.787512 0.616299i \(-0.211369\pi\)
\(98\) −535.982 760.124i −0.552473 0.783512i
\(99\) 418.934i 0.425298i
\(100\) −5.34977 80.7064i −0.00534977 0.0807064i
\(101\) −698.425 + 403.236i −0.688078 + 0.397262i −0.802892 0.596125i \(-0.796706\pi\)
0.114814 + 0.993387i \(0.463373\pi\)
\(102\) −314.985 + 485.035i −0.305767 + 0.470839i
\(103\) 420.660 1095.86i 0.402416 1.04833i −0.571335 0.820717i \(-0.693574\pi\)
0.973752 0.227614i \(-0.0730923\pi\)
\(104\) −1168.34 848.847i −1.10159 0.800349i
\(105\) −345.323 + 677.457i −0.320953 + 0.629648i
\(106\) 392.394 285.091i 0.359554 0.261231i
\(107\) −122.393 456.777i −0.110581 0.412695i 0.888337 0.459192i \(-0.151861\pi\)
−0.998918 + 0.0464971i \(0.985194\pi\)
\(108\) 89.8766 34.5004i 0.0800776 0.0307389i
\(109\) 447.221 + 402.679i 0.392991 + 0.353850i 0.841812 0.539771i \(-0.181489\pi\)
−0.448821 + 0.893622i \(0.648156\pi\)
\(110\) −804.687 485.491i −0.697490 0.420816i
\(111\) 661.775 + 215.024i 0.565882 + 0.183866i
\(112\) 853.463 + 664.540i 0.720042 + 0.560653i
\(113\) −775.719 + 1522.44i −0.645784 + 1.26742i 0.303449 + 0.952848i \(0.401862\pi\)
−0.949233 + 0.314574i \(0.898138\pi\)
\(114\) 868.933 782.391i 0.713886 0.642786i
\(115\) −1062.82 + 1135.60i −0.861812 + 0.920830i
\(116\) 28.6967 31.8709i 0.0229692 0.0255098i
\(117\) −523.817 + 646.860i −0.413905 + 0.511130i
\(118\) −643.111 + 643.111i −0.501722 + 0.501722i
\(119\) 91.9839 1071.69i 0.0708584 0.825560i
\(120\) 168.888 947.767i 0.128477 0.720991i
\(121\) −338.060 + 150.514i −0.253989 + 0.113083i
\(122\) −61.4751 + 49.7816i −0.0456205 + 0.0369427i
\(123\) 597.856 + 388.252i 0.438267 + 0.284614i
\(124\) 76.0098 131.653i 0.0550475 0.0953450i
\(125\) −705.339 + 1206.49i −0.504699 + 0.863295i
\(126\) 444.419 512.948i 0.314222 0.362675i
\(127\) −435.811 855.328i −0.304504 0.597623i 0.687155 0.726511i \(-0.258859\pi\)
−0.991659 + 0.128888i \(0.958859\pi\)
\(128\) −1165.18 447.270i −0.804596 0.308855i
\(129\) −196.009 + 1864.90i −0.133780 + 1.27283i
\(130\) 635.449 + 1755.77i 0.428712 + 1.18455i
\(131\) −1350.89 + 141.984i −0.900976 + 0.0946964i −0.543678 0.839294i \(-0.682969\pi\)
−0.357298 + 0.933990i \(0.616302\pi\)
\(132\) 52.0860 + 52.0860i 0.0343447 + 0.0343447i
\(133\) −740.418 + 2044.75i −0.482725 + 1.33310i
\(134\) 420.443 136.610i 0.271050 0.0880696i
\(135\) −1620.10 377.122i −1.03286 0.240426i
\(136\) 283.135 + 1332.05i 0.178519 + 0.839868i
\(137\) 109.999 + 2098.91i 0.0685977 + 1.30892i 0.788581 + 0.614931i \(0.210816\pi\)
−0.719983 + 0.693991i \(0.755851\pi\)
\(138\) −1161.81 + 754.490i −0.716667 + 0.465409i
\(139\) 314.529 968.020i 0.191928 0.590694i −0.808071 0.589086i \(-0.799488\pi\)
0.999999 0.00160814i \(-0.000511888\pi\)
\(140\) 41.3821 + 127.433i 0.0249816 + 0.0769290i
\(141\) 173.222 + 533.123i 0.103460 + 0.318419i
\(142\) −2121.18 1717.70i −1.25356 1.01511i
\(143\) −1844.19 494.149i −1.07845 0.288971i
\(144\) −321.039 + 721.065i −0.185786 + 0.417283i
\(145\) −719.326 + 177.964i −0.411977 + 0.101925i
\(146\) 1937.79 2667.14i 1.09844 1.51188i
\(147\) 279.306 1228.23i 0.156712 0.689136i
\(148\) 109.244 55.6628i 0.0606746 0.0309152i
\(149\) −1008.06 582.002i −0.554250 0.319997i 0.196584 0.980487i \(-0.437015\pi\)
−0.750835 + 0.660490i \(0.770348\pi\)
\(150\) −867.902 + 892.246i −0.472426 + 0.485677i
\(151\) 1480.43 + 2564.18i 0.797851 + 1.38192i 0.921013 + 0.389532i \(0.127363\pi\)
−0.123162 + 0.992387i \(0.539303\pi\)
\(152\) 144.094 2749.48i 0.0768920 1.46719i
\(153\) 775.232 122.785i 0.409633 0.0648794i
\(154\) 1489.50 + 452.708i 0.779400 + 0.236885i
\(155\) −2362.91 + 1147.18i −1.22448 + 0.594473i
\(156\) −15.2979 145.550i −0.00785137 0.0747008i
\(157\) 421.349 1572.50i 0.214187 0.799356i −0.772265 0.635301i \(-0.780876\pi\)
0.986451 0.164055i \(-0.0524573\pi\)
\(158\) 861.578 + 2244.49i 0.433819 + 1.13014i
\(159\) 642.502 + 136.568i 0.320464 + 0.0681166i
\(160\) −186.827 267.848i −0.0923121 0.132345i
\(161\) 1245.39 2255.49i 0.609630 1.10408i
\(162\) −438.455 223.404i −0.212643 0.108347i
\(163\) 990.532 + 1525.29i 0.475978 + 0.732942i 0.992355 0.123419i \(-0.0393860\pi\)
−0.516376 + 0.856362i \(0.672719\pi\)
\(164\) 122.864 26.1155i 0.0585004 0.0124346i
\(165\) −240.587 1249.80i −0.113513 0.589676i
\(166\) −87.4728 + 411.527i −0.0408989 + 0.192414i
\(167\) 2081.75 + 329.718i 0.964617 + 0.152780i 0.618823 0.785530i \(-0.287610\pi\)
0.345794 + 0.938311i \(0.387610\pi\)
\(168\) 113.859 + 1590.64i 0.0522882 + 0.730480i
\(169\) 938.314 + 1291.48i 0.427089 + 0.587837i
\(170\) 662.550 1631.35i 0.298913 0.735995i
\(171\) −1578.18 165.874i −0.705770 0.0741794i
\(172\) 207.935 + 256.778i 0.0921796 + 0.113832i
\(173\) 1410.34 + 73.9129i 0.619805 + 0.0324826i 0.359655 0.933085i \(-0.382894\pi\)
0.260151 + 0.965568i \(0.416228\pi\)
\(174\) −659.989 −0.287550
\(175\) 642.509 2224.09i 0.277538 0.960715i
\(176\) −1810.50 −0.775406
\(177\) −1230.02 64.4624i −0.522337 0.0273745i
\(178\) 1156.09 + 1427.65i 0.486813 + 0.601164i
\(179\) −2507.71 263.571i −1.04712 0.110057i −0.434690 0.900580i \(-0.643142\pi\)
−0.612432 + 0.790523i \(0.709809\pi\)
\(180\) −83.0065 + 51.6594i −0.0343719 + 0.0213915i
\(181\) 91.0800 + 125.361i 0.0374029 + 0.0514807i 0.827309 0.561747i \(-0.189871\pi\)
−0.789906 + 0.613228i \(0.789871\pi\)
\(182\) −1733.84 2561.42i −0.706157 1.04321i
\(183\) −105.809 16.7585i −0.0427411 0.00676952i
\(184\) −678.199 + 3190.67i −0.271725 + 1.27837i
\(185\) −2102.21 261.986i −0.835447 0.104117i
\(186\) −2288.34 + 486.401i −0.902091 + 0.191745i
\(187\) 980.560 + 1509.93i 0.383453 + 0.590466i
\(188\) 88.0068 + 44.8417i 0.0341413 + 0.0173958i
\(189\) 2754.94 52.6228i 1.06028 0.0202526i
\(190\) −2147.52 + 2839.14i −0.819987 + 1.08407i
\(191\) 2500.78 + 531.558i 0.947383 + 0.201373i 0.655597 0.755111i \(-0.272417\pi\)
0.291786 + 0.956484i \(0.405750\pi\)
\(192\) −719.133 1873.40i −0.270307 0.704174i
\(193\) 779.705 2909.90i 0.290800 1.08528i −0.653696 0.756757i \(-0.726783\pi\)
0.944496 0.328523i \(-0.106551\pi\)
\(194\) 262.941 + 2501.71i 0.0973094 + 0.925837i
\(195\) −1191.21 + 2230.58i −0.437458 + 0.819155i
\(196\) −118.231 187.831i −0.0430873 0.0684517i
\(197\) 3567.49 565.034i 1.29022 0.204350i 0.526652 0.850081i \(-0.323447\pi\)
0.763565 + 0.645731i \(0.223447\pi\)
\(198\) −59.4533 + 1134.44i −0.0213392 + 0.407176i
\(199\) −529.940 917.884i −0.188776 0.326970i 0.756066 0.654495i \(-0.227119\pi\)
−0.944843 + 0.327525i \(0.893785\pi\)
\(200\) 40.5340 + 2930.67i 0.0143309 + 1.03615i
\(201\) 518.485 + 299.348i 0.181946 + 0.105047i
\(202\) 1948.50 992.810i 0.678693 0.345811i
\(203\) 1082.86 578.054i 0.374393 0.199859i
\(204\) −81.1186 + 111.650i −0.0278404 + 0.0383190i
\(205\) −2010.81 816.662i −0.685080 0.278235i
\(206\) −1294.63 + 2907.79i −0.437870 + 0.983472i
\(207\) 1816.01 + 486.599i 0.609766 + 0.163386i
\(208\) 2795.52 + 2263.77i 0.931896 + 0.754635i
\(209\) −1124.81 3461.81i −0.372271 1.14573i
\(210\) 1031.25 1785.49i 0.338871 0.586716i
\(211\) 722.040 2222.21i 0.235579 0.725039i −0.761465 0.648206i \(-0.775519\pi\)
0.997044 0.0768324i \(-0.0244806\pi\)
\(212\) 97.0680 63.0367i 0.0314465 0.0204216i
\(213\) −193.455 3691.34i −0.0622315 1.18745i
\(214\) 266.606 + 1254.28i 0.0851626 + 0.400659i
\(215\) −487.269 5688.18i −0.154565 1.80433i
\(216\) −3317.80 + 1078.02i −1.04513 + 0.339583i
\(217\) 3328.51 2802.30i 1.04126 0.876647i
\(218\) −1153.89 1153.89i −0.358492 0.358492i
\(219\) 4440.26 466.690i 1.37007 0.144000i
\(220\) −185.694 125.742i −0.0569067 0.0385342i
\(221\) 373.906 3557.47i 0.113808 1.08281i
\(222\) −1761.51 676.181i −0.532545 0.204425i
\(223\) −1486.05 2916.55i −0.446249 0.875813i −0.999095 0.0425298i \(-0.986458\pi\)
0.552846 0.833283i \(-0.313542\pi\)
\(224\) 408.851 + 354.230i 0.121953 + 0.105661i
\(225\) 1688.04 + 65.0722i 0.500161 + 0.0192806i
\(226\) 2316.64 4012.53i 0.681860 1.18102i
\(227\) 1624.61 + 1055.03i 0.475018 + 0.308481i 0.759852 0.650097i \(-0.225272\pi\)
−0.284833 + 0.958577i \(0.591938\pi\)
\(228\) 216.838 175.592i 0.0629844 0.0510038i
\(229\) −5130.30 + 2284.16i −1.48044 + 0.659133i −0.978589 0.205823i \(-0.934013\pi\)
−0.501848 + 0.864956i \(0.667346\pi\)
\(230\) 3039.18 2924.28i 0.871295 0.838354i
\(231\) 894.149 + 1909.30i 0.254678 + 0.543821i
\(232\) −1098.89 + 1098.89i −0.310973 + 0.310973i
\(233\) 2187.57 2701.43i 0.615076 0.759555i −0.370492 0.928836i \(-0.620811\pi\)
0.985568 + 0.169280i \(0.0541443\pi\)
\(234\) 1510.25 1677.30i 0.421915 0.468584i
\(235\) −824.687 1494.15i −0.228922 0.414756i
\(236\) −161.285 + 145.222i −0.0444863 + 0.0400557i
\(237\) −1478.15 + 2901.03i −0.405131 + 0.795113i
\(238\) −401.174 + 2888.99i −0.109261 + 0.786829i
\(239\) −641.964 208.587i −0.173746 0.0564534i 0.220852 0.975307i \(-0.429116\pi\)
−0.394598 + 0.918854i \(0.629116\pi\)
\(240\) −543.652 + 2335.50i −0.146219 + 0.628150i
\(241\) −1692.75 1524.16i −0.452447 0.407385i 0.411150 0.911568i \(-0.365127\pi\)
−0.863597 + 0.504182i \(0.831794\pi\)
\(242\) 936.797 359.603i 0.248841 0.0955212i
\(243\) 867.209 + 3236.47i 0.228936 + 0.854402i
\(244\) −15.2712 + 11.0952i −0.00400673 + 0.00291106i
\(245\) −128.164 + 3832.71i −0.0334208 + 0.999441i
\(246\) −1563.84 1136.20i −0.405313 0.294477i
\(247\) −2591.72 + 6751.66i −0.667640 + 1.73926i
\(248\) −3000.25 + 4619.98i −0.768210 + 1.18294i
\(249\) −493.435 + 284.885i −0.125583 + 0.0725054i
\(250\) 2081.22 3166.98i 0.526511 0.801189i
\(251\) 1060.65i 0.266725i −0.991067 0.133362i \(-0.957423\pi\)
0.991067 0.133362i \(-0.0425774\pi\)
\(252\) 112.311 116.685i 0.0280752 0.0291686i
\(253\) 674.623 + 4259.40i 0.167641 + 1.05844i
\(254\) 1058.75 + 2378.00i 0.261544 + 0.587437i
\(255\) 2242.22 811.503i 0.550640 0.199287i
\(256\) −901.870 401.538i −0.220183 0.0980318i
\(257\) −6860.90 + 1838.37i −1.66526 + 0.446204i −0.963826 0.266533i \(-0.914122\pi\)
−0.701431 + 0.712737i \(0.747455\pi\)
\(258\) 795.434 5022.17i 0.191944 1.21189i
\(259\) 3482.39 433.402i 0.835464 0.103978i
\(260\) 129.500 + 426.337i 0.0308895 + 0.101693i
\(261\) 599.346 + 665.641i 0.142140 + 0.157863i
\(262\) 3678.24 192.769i 0.867338 0.0454553i
\(263\) −982.964 + 51.5149i −0.230464 + 0.0120781i −0.167219 0.985920i \(-0.553479\pi\)
−0.0632458 + 0.997998i \(0.520145\pi\)
\(264\) −1786.06 1983.62i −0.416380 0.462437i
\(265\) −1999.44 38.5238i −0.463490 0.00893019i
\(266\) 2295.17 5431.92i 0.529045 1.25208i
\(267\) −389.187 + 2457.23i −0.0892054 + 0.563221i
\(268\) 101.898 27.3034i 0.0232253 0.00622321i
\(269\) 606.394 + 269.984i 0.137444 + 0.0611941i 0.474306 0.880360i \(-0.342699\pi\)
−0.336862 + 0.941554i \(0.609366\pi\)
\(270\) 4333.56 + 1251.13i 0.976786 + 0.282005i
\(271\) 421.404 + 946.489i 0.0944593 + 0.212159i 0.954595 0.297906i \(-0.0962881\pi\)
−0.860136 + 0.510065i \(0.829621\pi\)
\(272\) −530.636 3350.30i −0.118289 0.746845i
\(273\) 1006.68 4066.08i 0.223177 0.901430i
\(274\) 5699.29i 1.25659i
\(275\) 1438.53 + 3597.98i 0.315443 + 0.788968i
\(276\) −286.283 + 165.286i −0.0624355 + 0.0360472i
\(277\) 1264.52 1947.19i 0.274288 0.422367i −0.674502 0.738273i \(-0.735642\pi\)
0.948790 + 0.315906i \(0.102308\pi\)
\(278\) −989.094 + 2576.68i −0.213388 + 0.555895i
\(279\) 2568.64 + 1866.23i 0.551184 + 0.400459i
\(280\) −1255.82 4689.91i −0.268035 1.00098i
\(281\) 1238.66 899.939i 0.262962 0.191053i −0.448490 0.893788i \(-0.648038\pi\)
0.711452 + 0.702735i \(0.248038\pi\)
\(282\) −393.412 1468.23i −0.0830756 0.310042i
\(283\) −6279.36 + 2410.42i −1.31897 + 0.506306i −0.913142 0.407643i \(-0.866351\pi\)
−0.405830 + 0.913948i \(0.633018\pi\)
\(284\) −484.025 435.818i −0.101132 0.0910600i
\(285\) −4803.41 + 411.477i −0.998349 + 0.0855221i
\(286\) 4923.77 + 1599.83i 1.01800 + 0.330769i
\(287\) 3560.98 + 494.489i 0.732397 + 0.101703i
\(288\) −179.209 + 351.718i −0.0366667 + 0.0719625i
\(289\) 1144.36 1030.38i 0.232924 0.209726i
\(290\) 1973.13 379.829i 0.399538 0.0769114i
\(291\) −2279.50 + 2531.64i −0.459198 + 0.509991i
\(292\) 495.086 611.380i 0.0992216 0.122528i
\(293\) 1519.59 1519.59i 0.302988 0.302988i −0.539194 0.842182i \(-0.681271\pi\)
0.842182 + 0.539194i \(0.181271\pi\)
\(294\) −930.641 + 3286.31i −0.184612 + 0.651910i
\(295\) 3714.40 515.164i 0.733087 0.101675i
\(296\) −4058.80 + 1807.09i −0.797003 + 0.354849i
\(297\) −3584.24 + 2902.46i −0.700265 + 0.567063i
\(298\) 2647.14 + 1719.07i 0.514579 + 0.334171i
\(299\) 4284.11 7420.30i 0.828617 1.43521i
\(300\) −217.964 + 201.783i −0.0419472 + 0.0388332i
\(301\) 3093.60 + 8936.68i 0.592400 + 1.71130i
\(302\) −3644.97 7153.66i −0.694519 1.36307i
\(303\) 2764.88 + 1061.34i 0.524219 + 0.201229i
\(304\) −716.852 + 6820.39i −0.135244 + 1.28676i
\(305\) 325.975 10.7921i 0.0611975 0.00202607i
\(306\) −2116.69 + 222.473i −0.395434 + 0.0415618i
\(307\) −6681.99 6681.99i −1.24222 1.24222i −0.959079 0.283140i \(-0.908624\pi\)
−0.283140 0.959079i \(-0.591376\pi\)
\(308\) 349.295 + 126.482i 0.0646199 + 0.0233994i
\(309\) −4099.62 + 1332.05i −0.754756 + 0.245235i
\(310\) 6561.36 2771.12i 1.20213 0.507706i
\(311\) −1270.80 5978.67i −0.231706 1.09009i −0.928070 0.372405i \(-0.878533\pi\)
0.696364 0.717689i \(-0.254800\pi\)
\(312\) 277.553 + 5296.04i 0.0503634 + 0.960990i
\(313\) 1227.20 796.950i 0.221614 0.143918i −0.429057 0.903277i \(-0.641154\pi\)
0.650671 + 0.759359i \(0.274488\pi\)
\(314\) −1364.14 + 4198.39i −0.245168 + 0.754550i
\(315\) −2737.27 + 581.350i −0.489612 + 0.103985i
\(316\) 177.283 + 545.622i 0.0315600 + 0.0971317i
\(317\) 4186.98 + 3390.55i 0.741843 + 0.600733i 0.923935 0.382549i \(-0.124954\pi\)
−0.182092 + 0.983281i \(0.558287\pi\)
\(318\) −1720.46 460.995i −0.303391 0.0812935i
\(319\) −835.669 + 1876.94i −0.146672 + 0.329431i
\(320\) 3228.10 + 5186.93i 0.563926 + 0.906119i
\(321\) −1020.74 + 1404.93i −0.177483 + 0.244285i
\(322\) −3692.50 + 5930.93i −0.639052 + 1.02645i
\(323\) 6076.36 3096.06i 1.04674 0.533342i
\(324\) −101.694 58.7129i −0.0174372 0.0100674i
\(325\) 2277.57 7354.17i 0.388728 1.25519i
\(326\) −2465.81 4270.91i −0.418923 0.725595i
\(327\) 115.660 2206.93i 0.0195597 0.373222i
\(328\) −4495.61 + 712.035i −0.756795 + 0.119864i
\(329\) 1931.44 + 2064.39i 0.323658 + 0.345938i
\(330\) 474.123 + 3418.48i 0.0790897 + 0.570246i
\(331\) −1160.55 11041.9i −0.192718 1.83359i −0.481795 0.876284i \(-0.660015\pi\)
0.289077 0.957306i \(-0.406651\pi\)
\(332\) −25.9843 + 96.9746i −0.00429540 + 0.0160306i
\(333\) 917.684 + 2390.65i 0.151017 + 0.393414i
\(334\) −5590.42 1188.28i −0.915850 0.194670i
\(335\) −1722.36 596.548i −0.280903 0.0972923i
\(336\) −75.8600 3971.47i −0.0123170 0.644826i
\(337\) 4595.45 + 2341.50i 0.742820 + 0.378486i 0.784077 0.620663i \(-0.213136\pi\)
−0.0412578 + 0.999149i \(0.513136\pi\)
\(338\) −2357.59 3630.37i −0.379397 0.584220i
\(339\) 6137.59 1304.58i 0.983328 0.209013i
\(340\) 178.259 380.477i 0.0284338 0.0606891i
\(341\) −1514.18 + 7123.67i −0.240462 + 1.13129i
\(342\) 4250.04 + 673.140i 0.671976 + 0.106431i
\(343\) −1351.41 6207.04i −0.212738 0.977109i
\(344\) −7037.58 9686.40i −1.10303 1.51819i
\(345\) 5697.11 + 408.753i 0.889050 + 0.0637871i
\(346\) −3808.59 400.299i −0.591767 0.0621972i
\(347\) 4306.00 + 5317.47i 0.666162 + 0.822641i 0.992453 0.122628i \(-0.0391322\pi\)
−0.326291 + 0.945269i \(0.605799\pi\)
\(348\) −157.276 8.24246i −0.0242266 0.00126966i
\(349\) −11499.5 −1.76377 −0.881883 0.471469i \(-0.843724\pi\)
−0.881883 + 0.471469i \(0.843724\pi\)
\(350\) −2055.49 + 5931.45i −0.313916 + 0.905855i
\(351\) 9163.40 1.39346
\(352\) −904.217 47.3880i −0.136917 0.00717553i
\(353\) −7952.37 9820.36i −1.19904 1.48069i −0.835830 0.548988i \(-0.815013\pi\)
−0.363212 0.931706i \(-0.618320\pi\)
\(354\) 3321.63 + 349.117i 0.498708 + 0.0524163i
\(355\) 2702.75 + 10924.4i 0.404077 + 1.63326i
\(356\) 257.667 + 354.648i 0.0383605 + 0.0527987i
\(357\) −3271.07 + 2214.20i −0.484939 + 0.328258i
\(358\) 6753.25 + 1069.61i 0.996985 + 0.157907i
\(359\) −1378.99 + 6487.61i −0.202730 + 0.953769i 0.752657 + 0.658413i \(0.228772\pi\)
−0.955387 + 0.295357i \(0.904562\pi\)
\(360\) 3101.73 1711.98i 0.454099 0.250637i
\(361\) −6777.36 + 1440.57i −0.988097 + 0.210026i
\(362\) −228.846 352.392i −0.0332262 0.0511639i
\(363\) 1210.82 + 616.944i 0.175073 + 0.0892043i
\(364\) −381.185 632.040i −0.0548888 0.0910107i
\(365\) −13006.2 + 3950.63i −1.86513 + 0.566536i
\(366\) 284.143 + 60.3964i 0.0405803 + 0.00862561i
\(367\) 3538.38 + 9217.80i 0.503276 + 1.31108i 0.916349 + 0.400380i \(0.131122\pi\)
−0.413074 + 0.910698i \(0.635545\pi\)
\(368\) 2102.92 7848.22i 0.297887 1.11173i
\(369\) 274.221 + 2609.04i 0.0386866 + 0.368079i
\(370\) 5655.43 + 1007.77i 0.794626 + 0.141599i
\(371\) 3226.56 750.505i 0.451522 0.105025i
\(372\) −551.385 + 87.3309i −0.0768495 + 0.0121718i
\(373\) 157.316 3001.76i 0.0218378 0.416690i −0.965735 0.259529i \(-0.916433\pi\)
0.987573 0.157161i \(-0.0502340\pi\)
\(374\) −2440.99 4227.92i −0.337488 0.584547i
\(375\) 5073.27 775.287i 0.698620 0.106762i
\(376\) −3099.67 1789.59i −0.425141 0.245455i
\(377\) 3637.17 1853.23i 0.496880 0.253173i
\(378\) −7467.61 248.472i −1.01612 0.0338095i
\(379\) 5780.56 7956.26i 0.783450 1.07833i −0.211443 0.977390i \(-0.567816\pi\)
0.994893 0.100936i \(-0.0321836\pi\)
\(380\) −547.212 + 649.748i −0.0738721 + 0.0877141i
\(381\) −1433.84 + 3220.46i −0.192803 + 0.433042i
\(382\) −6696.46 1794.31i −0.896913 0.240327i
\(383\) −6865.01 5559.18i −0.915890 0.741673i 0.0505083 0.998724i \(-0.483916\pi\)
−0.966398 + 0.257051i \(0.917249\pi\)
\(384\) 1416.31 + 4358.96i 0.188218 + 0.579277i
\(385\) −3772.00 5193.52i −0.499321 0.687497i
\(386\) −2524.33 + 7769.10i −0.332863 + 1.02445i
\(387\) −5787.53 + 3758.46i −0.760198 + 0.493678i
\(388\) 31.4154 + 599.442i 0.00411051 + 0.0784332i
\(389\) 1454.71 + 6843.85i 0.189605 + 0.892023i 0.965346 + 0.260972i \(0.0840430\pi\)
−0.775741 + 0.631051i \(0.782624\pi\)
\(390\) 3542.25 5871.17i 0.459919 0.762303i
\(391\) −7684.24 + 2496.76i −0.993885 + 0.322933i
\(392\) 3922.23 + 7021.29i 0.505364 + 0.904666i
\(393\) 3527.17 + 3527.17i 0.452728 + 0.452728i
\(394\) −9740.63 + 1023.78i −1.24550 + 0.130907i
\(395\) 2749.56 9523.69i 0.350241 1.21314i
\(396\) −28.3355 + 269.594i −0.00359574 + 0.0342111i
\(397\) −5650.52 2169.03i −0.714336 0.274208i −0.0260639 0.999660i \(-0.508297\pi\)
−0.688273 + 0.725452i \(0.741631\pi\)
\(398\) 1304.77 + 2560.76i 0.164327 + 0.322510i
\(399\) 7546.63 2612.41i 0.946877 0.327780i
\(400\) 281.221 7295.18i 0.0351526 0.911897i
\(401\) 360.274 624.012i 0.0448659 0.0777099i −0.842720 0.538351i \(-0.819047\pi\)
0.887586 + 0.460642i \(0.152381\pi\)
\(402\) −1361.53 884.189i −0.168923 0.109700i
\(403\) 11245.1 9106.12i 1.38997 1.12558i
\(404\) 476.727 212.252i 0.0587080 0.0261385i
\(405\) 886.122 + 1825.20i 0.108720 + 0.223939i
\(406\) −3014.32 + 1411.65i −0.368469 + 0.172559i
\(407\) −4153.39 + 4153.39i −0.505838 + 0.505838i
\(408\) 3147.19 3886.45i 0.381884 0.471588i
\(409\) −1548.77 + 1720.08i −0.187241 + 0.207952i −0.829456 0.558573i \(-0.811349\pi\)
0.642214 + 0.766525i \(0.278016\pi\)
\(410\) 5329.21 + 2496.82i 0.641929 + 0.300754i
\(411\) 5735.87 5164.60i 0.688393 0.619832i
\(412\) −344.825 + 676.758i −0.0412338 + 0.0809259i
\(413\) −5755.65 + 2336.46i −0.685755 + 0.278377i
\(414\) −4848.55 1575.39i −0.575587 0.187020i
\(415\) 1311.24 1135.68i 0.155099 0.134333i
\(416\) 1336.91 + 1203.76i 0.157566 + 0.141873i
\(417\) −3489.52 + 1339.50i −0.409790 + 0.157304i
\(418\) 2554.60 + 9533.91i 0.298923 + 1.11559i
\(419\) −12380.6 + 8995.00i −1.44351 + 1.04877i −0.456213 + 0.889871i \(0.650794\pi\)
−0.987295 + 0.158899i \(0.949206\pi\)
\(420\) 268.045 412.603i 0.0311411 0.0479356i
\(421\) −2092.56 1520.33i −0.242245 0.176001i 0.460038 0.887899i \(-0.347836\pi\)
−0.702283 + 0.711898i \(0.747836\pi\)
\(422\) −2270.59 + 5915.08i −0.261920 + 0.682326i
\(423\) −1123.54 + 1730.11i −0.129146 + 0.198867i
\(424\) −3632.15 + 2097.03i −0.416021 + 0.240190i
\(425\) −6236.39 + 3716.51i −0.711786 + 0.424182i
\(426\) 10023.3i 1.13998i
\(427\) −519.099 + 149.774i −0.0588312 + 0.0169744i
\(428\) 47.8678 + 302.225i 0.00540602 + 0.0341323i
\(429\) 2851.74 + 6405.12i 0.320940 + 0.720844i
\(430\) 512.240 + 15472.2i 0.0574475 + 1.73520i
\(431\) −3801.20 1692.41i −0.424820 0.189142i 0.183179 0.983080i \(-0.441361\pi\)
−0.608000 + 0.793937i \(0.708028\pi\)
\(432\) 8393.38 2249.00i 0.934784 0.250474i
\(433\) −9.78478 + 61.7786i −0.00108597 + 0.00685656i −0.988225 0.153005i \(-0.951105\pi\)
0.987139 + 0.159862i \(0.0511049\pi\)
\(434\) −9411.01 + 7116.01i −1.04088 + 0.787050i
\(435\) 2170.28 + 1641.60i 0.239212 + 0.180939i
\(436\) −260.561 289.383i −0.0286207 0.0317865i
\(437\) 16312.9 854.921i 1.78570 0.0935845i
\(438\) −12090.1 + 633.613i −1.31892 + 0.0691215i
\(439\) −519.826 577.325i −0.0565146 0.0627659i 0.714225 0.699917i \(-0.246780\pi\)
−0.770739 + 0.637151i \(0.780113\pi\)
\(440\) 6481.25 + 4902.40i 0.702230 + 0.531166i
\(441\) 4159.59 2045.74i 0.449151 0.220898i
\(442\) −1517.37 + 9580.27i −0.163289 + 1.03097i
\(443\) −4829.88 + 1294.16i −0.518002 + 0.138798i −0.508342 0.861155i \(-0.669741\pi\)
−0.00965948 + 0.999953i \(0.503075\pi\)
\(444\) −411.324 183.133i −0.0439653 0.0195746i
\(445\) −250.627 7570.20i −0.0266986 0.806431i
\(446\) 3610.20 + 8108.65i 0.383291 + 0.860887i
\(447\) 668.687 + 4221.92i 0.0707557 + 0.446734i
\(448\) −7291.46 7018.13i −0.768949 0.740124i
\(449\) 11489.2i 1.20759i −0.797140 0.603795i \(-0.793655\pi\)
0.797140 0.603795i \(-0.206345\pi\)
\(450\) −4561.84 415.770i −0.477882 0.0435546i
\(451\) −5211.35 + 3008.77i −0.544108 + 0.314141i
\(452\) 602.167 927.256i 0.0626627 0.0964921i
\(453\) 3896.57 10150.9i 0.404143 1.05283i
\(454\) −4249.58 3087.50i −0.439301 0.319171i
\(455\) −669.557 + 12735.5i −0.0689875 + 1.31219i
\(456\) −8179.74 + 5942.93i −0.840025 + 0.610314i
\(457\) 2489.15 + 9289.63i 0.254786 + 0.950876i 0.968209 + 0.250142i \(0.0804773\pi\)
−0.713423 + 0.700734i \(0.752856\pi\)
\(458\) 14216.6 5457.23i 1.45043 0.556768i
\(459\) −6421.46 5781.91i −0.653003 0.587966i
\(460\) 760.758 658.901i 0.0771099 0.0667857i
\(461\) −1512.54 491.455i −0.152812 0.0496515i 0.231612 0.972808i \(-0.425600\pi\)
−0.384424 + 0.923157i \(0.625600\pi\)
\(462\) −2150.32 5297.11i −0.216541 0.533428i
\(463\) 6906.92 13555.6i 0.693287 1.36065i −0.228725 0.973491i \(-0.573456\pi\)
0.922012 0.387161i \(-0.126544\pi\)
\(464\) 2876.69 2590.18i 0.287816 0.259151i
\(465\) 8734.70 + 4092.34i 0.871101 + 0.408124i
\(466\) −6307.13 + 7004.78i −0.626979 + 0.696331i
\(467\) 7594.50 9378.43i 0.752530 0.929297i −0.246677 0.969098i \(-0.579339\pi\)
0.999208 + 0.0398002i \(0.0126722\pi\)
\(468\) 380.840 380.840i 0.0376161 0.0376161i
\(469\) 3008.32 + 258.206i 0.296186 + 0.0254218i
\(470\) 2021.14 + 4163.07i 0.198358 + 0.408570i
\(471\) −5461.49 + 2431.61i −0.534294 + 0.237883i
\(472\) 6111.85 4949.28i 0.596018 0.482646i
\(473\) −13275.4 8621.13i −1.29049 0.838055i
\(474\) 4414.39 7645.95i 0.427763 0.740908i
\(475\) 14123.6 3994.57i 1.36429 0.385860i
\(476\) −131.680 + 683.436i −0.0126797 + 0.0658093i
\(477\) 1097.43 + 2153.83i 0.105342 + 0.206744i
\(478\) 1708.78 + 655.940i 0.163510 + 0.0627657i
\(479\) −860.700 + 8189.01i −0.0821010 + 0.781139i 0.873569 + 0.486700i \(0.161799\pi\)
−0.955670 + 0.294439i \(0.904867\pi\)
\(480\) −332.645 + 1152.19i −0.0316315 + 0.109563i
\(481\) 11606.3 1219.87i 1.10021 0.115637i
\(482\) 4367.52 + 4367.52i 0.412729 + 0.412729i
\(483\) −9315.08 + 1658.31i −0.877538 + 0.156223i
\(484\) 227.730 73.9939i 0.0213871 0.00694909i
\(485\) 5357.89 8880.54i 0.501627 0.831432i
\(486\) −1889.02 8887.15i −0.176312 0.829484i
\(487\) 259.370 + 4949.08i 0.0241339 + 0.460502i 0.983790 + 0.179325i \(0.0573914\pi\)
−0.959656 + 0.281177i \(0.909275\pi\)
\(488\) 573.664 372.541i 0.0532142 0.0345577i
\(489\) 2063.85 6351.87i 0.190860 0.587406i
\(490\) 890.979 10360.5i 0.0821435 0.955180i
\(491\) 1550.07 + 4770.64i 0.142472 + 0.438485i 0.996677 0.0814518i \(-0.0259557\pi\)
−0.854205 + 0.519936i \(0.825956\pi\)
\(492\) −358.474 290.287i −0.0328481 0.0265999i
\(493\) −3718.18 996.283i −0.339672 0.0910149i
\(494\) 7976.31 17915.1i 0.726460 1.63166i
\(495\) 3017.20 3582.56i 0.273966 0.325301i
\(496\) 8065.23 11100.8i 0.730120 1.00492i
\(497\) −8778.93 16445.4i −0.792332 1.48426i
\(498\) 1376.61 701.418i 0.123870 0.0631150i
\(499\) 2102.09 + 1213.64i 0.188582 + 0.108878i 0.591319 0.806438i \(-0.298608\pi\)
−0.402737 + 0.915316i \(0.631941\pi\)
\(500\) 535.506 728.699i 0.0478971 0.0651768i
\(501\) −3870.04 6703.10i −0.345111 0.597750i
\(502\) −150.523 + 2872.16i −0.0133829 + 0.255360i
\(503\) 2881.96 456.458i 0.255468 0.0404621i −0.0273868 0.999625i \(-0.508719\pi\)
0.282855 + 0.959163i \(0.408719\pi\)
\(504\) −4285.51 + 4009.50i −0.378753 + 0.354360i
\(505\) −8876.79 1581.80i −0.782202 0.139385i
\(506\) −1222.34 11629.8i −0.107391 1.02176i
\(507\) 1517.26 5662.51i 0.132907 0.496017i
\(508\) 222.603 + 579.901i 0.0194418 + 0.0506475i
\(509\) 1066.03 + 226.592i 0.0928311 + 0.0197319i 0.254093 0.967180i \(-0.418223\pi\)
−0.161262 + 0.986912i \(0.551556\pi\)
\(510\) −6186.89 + 1879.27i −0.537177 + 0.163168i
\(511\) 19281.5 11628.7i 1.66920 1.00670i
\(512\) 11281.6 + 5748.24i 0.973787 + 0.496169i
\(513\) 9514.82 + 14651.5i 0.818888 + 1.26098i
\(514\) 18839.6 4004.48i 1.61669 0.343638i
\(515\) 11489.8 6341.71i 0.983107 0.542619i
\(516\) 252.273 1186.85i 0.0215227 0.101256i
\(517\) −4673.64 740.231i −0.397575 0.0629697i
\(518\) −9491.52 + 679.409i −0.805084 + 0.0576284i
\(519\) −3048.42 4195.79i −0.257824 0.354864i
\(520\) −3877.69 15673.5i −0.327015 1.32178i
\(521\) 6671.53 + 701.206i 0.561008 + 0.0589643i 0.380789 0.924662i \(-0.375653\pi\)
0.180219 + 0.983626i \(0.442319\pi\)
\(522\) −1528.51 1887.56i −0.128163 0.158268i
\(523\) 17158.9 + 899.261i 1.43462 + 0.0751853i 0.753723 0.657192i \(-0.228256\pi\)
0.680899 + 0.732378i \(0.261589\pi\)
\(524\) 878.933 0.0732755
\(525\) −7832.17 + 3306.30i −0.651093 + 0.274854i
\(526\) 2669.09 0.221251
\(527\) −13626.0 714.111i −1.12630 0.0590269i
\(528\) 4184.13 + 5166.97i 0.344869 + 0.425878i
\(529\) −7147.06 751.187i −0.587414 0.0617397i
\(530\) 5408.85 + 388.071i 0.443293 + 0.0318052i
\(531\) −2664.31 3667.11i −0.217743 0.299697i
\(532\) 614.777 1265.76i 0.0501015 0.103154i
\(533\) 11808.7 + 1870.31i 0.959645 + 0.151993i
\(534\) 1402.60 6598.73i 0.113664 0.534747i
\(535\) 2243.09 4787.66i 0.181266 0.386895i
\(536\) −3739.16 + 794.783i −0.301319 + 0.0640474i
\(537\) 5043.21 + 7765.86i 0.405271 + 0.624063i
\(538\) −1603.75 817.149i −0.128517 0.0654829i
\(539\) 8167.58 + 6807.73i 0.652695 + 0.544025i
\(540\) 1017.06 + 352.265i 0.0810509 + 0.0280724i
\(541\) −11407.0 2424.63i −0.906514 0.192685i −0.269014 0.963136i \(-0.586698\pi\)
−0.637500 + 0.770451i \(0.720031\pi\)
\(542\) −1006.80 2622.81i −0.0797895 0.207859i
\(543\) 147.277 549.647i 0.0116396 0.0434394i
\(544\) −177.324 1687.13i −0.0139756 0.132969i
\(545\) 924.323 + 6664.48i 0.0726489 + 0.523807i
\(546\) −3303.05 + 10867.7i −0.258897 + 0.851824i
\(547\) −22623.9 + 3583.28i −1.76843 + 0.280091i −0.953920 0.300062i \(-0.902992\pi\)
−0.814507 + 0.580154i \(0.802992\pi\)
\(548\) 71.1772 1358.14i 0.00554843 0.105870i
\(549\) −197.121 341.423i −0.0153241 0.0265421i
\(550\) −3384.82 9947.15i −0.262416 0.771178i
\(551\) 6739.82 + 3891.24i 0.521100 + 0.300857i
\(552\) 10673.2 5438.27i 0.822974 0.419326i
\(553\) −546.056 + 16411.3i −0.0419904 + 1.26199i
\(554\) −3700.55 + 5093.38i −0.283793 + 0.390608i
\(555\) 4110.62 + 6604.96i 0.314389 + 0.505162i
\(556\) −267.881 + 601.670i −0.0204329 + 0.0458930i
\(557\) 8494.79 + 2276.17i 0.646205 + 0.173150i 0.567012 0.823709i \(-0.308099\pi\)
0.0791924 + 0.996859i \(0.474766\pi\)
\(558\) −6690.81 5418.11i −0.507606 0.411052i
\(559\) 9718.51 + 29910.5i 0.735330 + 2.26311i
\(560\) 2512.41 + 11829.6i 0.189587 + 0.892664i
\(561\) 2043.07 6287.93i 0.153759 0.473220i
\(562\) −3481.90 + 2261.17i −0.261343 + 0.169718i
\(563\) −772.871 14747.3i −0.0578555 1.10395i −0.861145 0.508359i \(-0.830252\pi\)
0.803290 0.595589i \(-0.203081\pi\)
\(564\) −75.4136 354.793i −0.00563030 0.0264885i
\(565\) −17598.4 + 7432.46i −1.31039 + 0.553427i
\(566\) 17346.0 5636.07i 1.28818 0.418554i
\(567\) −2164.60 2571.07i −0.160326 0.190432i
\(568\) 16688.9 + 16688.9i 1.23284 + 1.23284i
\(569\) 705.977 74.2011i 0.0520142 0.00546691i −0.0784856 0.996915i \(-0.525008\pi\)
0.130500 + 0.991448i \(0.458342\pi\)
\(570\) 13065.6 432.564i 0.960103 0.0317862i
\(571\) 2821.30 26842.9i 0.206774 1.96732i −0.0431981 0.999067i \(-0.513755\pi\)
0.249972 0.968253i \(-0.419579\pi\)
\(572\) 1153.36 + 442.732i 0.0843081 + 0.0323629i
\(573\) −4262.39 8365.42i −0.310758 0.609896i
\(574\) −9572.64 1844.39i −0.696088 0.134117i
\(575\) −17267.5 + 2056.71i −1.25236 + 0.149166i
\(576\) 3692.41 6395.45i 0.267102 0.462634i
\(577\) −11250.8 7306.37i −0.811746 0.527154i 0.0707386 0.997495i \(-0.477464\pi\)
−0.882485 + 0.470341i \(0.844131\pi\)
\(578\) −3245.04 + 2627.78i −0.233522 + 0.189103i
\(579\) −10106.5 + 4499.69i −0.725407 + 0.322972i
\(580\) 474.940 65.8713i 0.0340014 0.00471579i
\(581\) −1644.30 + 2356.54i −0.117413 + 0.168272i
\(582\) 6531.96 6531.96i 0.465221 0.465221i
\(583\) −3489.44 + 4309.10i −0.247887 + 0.306115i
\(584\) −19075.2 + 21185.1i −1.35160 + 1.50111i
\(585\) −9138.22 + 1759.12i −0.645844 + 0.124326i
\(586\) −4330.57 + 3899.26i −0.305280 + 0.274875i
\(587\) 7038.43 13813.7i 0.494901 0.971298i −0.499569 0.866274i \(-0.666508\pi\)
0.994470 0.105024i \(-0.0334919\pi\)
\(588\) −262.814 + 771.506i −0.0184324 + 0.0541095i
\(589\) 26236.3 + 8524.70i 1.83540 + 0.596357i
\(590\) −10131.4 + 867.889i −0.706953 + 0.0605600i
\(591\) −9857.15 8875.42i −0.686073 0.617743i
\(592\) 10331.6 3965.93i 0.717275 0.275336i
\(593\) 2508.80 + 9362.99i 0.173734 + 0.648384i 0.996764 + 0.0803859i \(0.0256153\pi\)
−0.823030 + 0.567998i \(0.807718\pi\)
\(594\) 10117.7 7350.95i 0.698880 0.507766i
\(595\) 8505.01 8502.19i 0.586002 0.585808i
\(596\) 609.344 + 442.714i 0.0418787 + 0.0304267i
\(597\) −1394.83 + 3633.66i −0.0956225 + 0.249105i
\(598\) −12654.1 + 19485.5i −0.865322 + 1.33248i
\(599\) −20321.4 + 11732.6i −1.38616 + 0.800301i −0.992880 0.119118i \(-0.961993\pi\)
−0.393281 + 0.919418i \(0.628660\pi\)
\(600\) 8270.17 6888.59i 0.562713 0.468709i
\(601\) 14917.1i 1.01245i 0.862402 + 0.506224i \(0.168959\pi\)
−0.862402 + 0.506224i \(0.831041\pi\)
\(602\) −7108.95 24638.8i −0.481295 1.66811i
\(603\) 344.666 + 2176.14i 0.0232768 + 0.146964i
\(604\) −779.257 1750.24i −0.0524959 0.117908i
\(605\) −3974.97 1147.60i −0.267116 0.0771184i
\(606\) −7336.44 3266.39i −0.491786 0.218957i
\(607\) −6759.38 + 1811.17i −0.451985 + 0.121109i −0.477628 0.878562i \(-0.658503\pi\)
0.0256432 + 0.999671i \(0.491837\pi\)
\(608\) −536.535 + 3387.55i −0.0357884 + 0.225959i
\(609\) −4152.24 1754.46i −0.276284 0.116740i
\(610\) −884.242 17.0369i −0.0586917 0.00113083i
\(611\) 6290.83 + 6986.67i 0.416530 + 0.462603i
\(612\) −507.185 + 26.5804i −0.0334996 + 0.00175564i
\(613\) 29784.7 1560.95i 1.96247 0.102849i 0.971508 0.237005i \(-0.0761658\pi\)
0.990960 + 0.134156i \(0.0428324\pi\)
\(614\) 17146.0 + 19042.5i 1.12696 + 1.25162i
\(615\) 2316.40 + 7625.99i 0.151880 + 0.500016i
\(616\) −12400.1 5239.46i −0.811061 0.342701i
\(617\) −2955.95 + 18663.2i −0.192872 + 1.21775i 0.681253 + 0.732048i \(0.261435\pi\)
−0.874126 + 0.485700i \(0.838565\pi\)
\(618\) 11290.5 3025.27i 0.734901 0.196916i
\(619\) 23587.5 + 10501.8i 1.53160 + 0.681914i 0.987575 0.157152i \(-0.0502311\pi\)
0.544030 + 0.839066i \(0.316898\pi\)
\(620\) 1598.18 578.414i 0.103523 0.0374672i
\(621\) −8418.54 18908.4i −0.544001 1.22185i
\(622\) 2592.76 + 16370.1i 0.167139 + 1.05527i
\(623\) 3478.24 + 12055.2i 0.223680 + 0.775249i
\(624\) 13209.8i 0.847459i
\(625\) −14721.0 + 5237.53i −0.942146 + 0.335202i
\(626\) −3436.24 + 1983.91i −0.219392 + 0.126666i
\(627\) −7280.16 + 11210.5i −0.463703 + 0.714040i
\(628\) −377.507 + 983.440i −0.0239875 + 0.0624897i
\(629\) −8903.11 6468.49i −0.564372 0.410040i
\(630\) 7494.79 1185.78i 0.473968 0.0749885i
\(631\) −10416.5 + 7568.00i −0.657168 + 0.477460i −0.865705 0.500554i \(-0.833130\pi\)
0.208537 + 0.978014i \(0.433130\pi\)
\(632\) −5380.60 20080.7i −0.338653 1.26387i
\(633\) −8010.62 + 3074.99i −0.502991 + 0.193080i
\(634\) −10856.8 9775.51i −0.680093 0.612358i
\(635\) 2433.26 10453.2i 0.152065 0.653262i
\(636\) −404.228 131.342i −0.0252023 0.00818874i
\(637\) −4099.15 20723.9i −0.254968 1.28903i
\(638\) 2529.29 4964.00i 0.156952 0.308036i
\(639\) 10109.1 9102.29i 0.625838 0.563507i
\(640\) −6742.87 12216.6i −0.416461 0.754537i
\(641\) 2619.41 2909.15i 0.161405 0.179258i −0.657018 0.753875i \(-0.728182\pi\)
0.818422 + 0.574617i \(0.194849\pi\)
\(642\) 2963.45 3659.56i 0.182178 0.224971i
\(643\) −69.8723 + 69.8723i −0.00428537 + 0.00428537i −0.709246 0.704961i \(-0.750965\pi\)
0.704961 + 0.709246i \(0.250965\pi\)
\(644\) −953.993 + 1367.23i −0.0583736 + 0.0836588i
\(645\) −15107.4 + 14536.2i −0.922251 + 0.887384i
\(646\) −16893.6 + 7521.53i −1.02890 + 0.458097i
\(647\) 5874.83 4757.35i 0.356976 0.289074i −0.434010 0.900908i \(-0.642902\pi\)
0.790986 + 0.611835i \(0.209568\pi\)
\(648\) 3568.65 + 2317.51i 0.216342 + 0.140494i
\(649\) 5198.65 9004.33i 0.314430 0.544608i
\(650\) −7211.12 + 19591.2i −0.435144 + 1.18220i
\(651\) −15689.8 3023.00i −0.944595 0.181998i
\(652\) −534.265 1048.55i −0.0320912 0.0629825i
\(653\) −14818.0 5688.10i −0.888015 0.340877i −0.128764 0.991675i \(-0.541101\pi\)
−0.759251 + 0.650798i \(0.774434\pi\)
\(654\) −626.396 + 5959.76i −0.0374526 + 0.356338i
\(655\) −12574.9 8515.04i −0.750138 0.507954i
\(656\) 11275.4 1185.09i 0.671083 0.0705337i
\(657\) 11618.2 + 11618.2i 0.689908 + 0.689908i
\(658\) −4937.19 5864.29i −0.292510 0.347438i
\(659\) −1451.51 + 471.625i −0.0858010 + 0.0278784i −0.351603 0.936149i \(-0.614363\pi\)
0.265802 + 0.964028i \(0.414363\pi\)
\(660\) 70.2908 + 820.546i 0.00414556 + 0.0483935i
\(661\) 5084.82 + 23922.2i 0.299208 + 1.40766i 0.828863 + 0.559451i \(0.188988\pi\)
−0.529655 + 0.848213i \(0.677679\pi\)
\(662\) 1575.65 + 30065.2i 0.0925067 + 1.76513i
\(663\) −11016.8 + 7154.38i −0.645333 + 0.419084i
\(664\) 1124.21 3459.95i 0.0657043 0.202217i
\(665\) −21058.2 + 12153.3i −1.22797 + 0.708699i
\(666\) −2145.74 6603.90i −0.124843 0.384228i
\(667\) −7165.60 5802.59i −0.415972 0.336847i
\(668\) −1317.36 352.985i −0.0763025 0.0204452i
\(669\) −4889.19 + 10981.3i −0.282551 + 0.634621i
\(670\) 4579.34 + 1859.83i 0.264053 + 0.107241i
\(671\) 531.539 731.601i 0.0305810 0.0420911i
\(672\) 66.0626 1985.46i 0.00379229 0.113974i
\(673\) −10452.6 + 5325.87i −0.598690 + 0.305048i −0.726947 0.686693i \(-0.759062\pi\)
0.128258 + 0.991741i \(0.459062\pi\)
\(674\) −12111.8 6992.74i −0.692179 0.399630i
\(675\) −11138.4 14893.1i −0.635135 0.849237i
\(676\) −516.476 894.562i −0.0293853 0.0508968i
\(677\) −193.073 + 3684.06i −0.0109607 + 0.209143i 0.987659 + 0.156620i \(0.0500597\pi\)
−0.998620 + 0.0525233i \(0.983274\pi\)
\(678\) −16805.2 + 2661.68i −0.951917 + 0.150769i
\(679\) −4996.09 + 16438.2i −0.282375 + 0.929072i
\(680\) −7172.25 + 13430.3i −0.404476 + 0.757395i
\(681\) −743.580 7074.70i −0.0418415 0.398095i
\(682\) 5111.24 19075.4i 0.286979 1.07102i
\(683\) 4432.24 + 11546.4i 0.248309 + 0.646867i 0.999919 0.0127410i \(-0.00405570\pi\)
−0.751610 + 0.659608i \(0.770722\pi\)
\(684\) 1004.38 + 213.487i 0.0561453 + 0.0119341i
\(685\) −14175.9 + 18741.3i −0.790705 + 1.04536i
\(686\) 2778.62 + 16999.9i 0.154647 + 0.946150i
\(687\) 18375.1 + 9362.57i 1.02046 + 0.519948i
\(688\) 16242.9 + 25011.8i 0.900078 + 1.38600i
\(689\) 10775.8 2290.47i 0.595829 0.126647i
\(690\) −15369.3 1915.38i −0.847968 0.105677i
\(691\) −1651.86 + 7771.39i −0.0909403 + 0.427840i 0.908999 + 0.416799i \(0.136848\pi\)
−0.999939 + 0.0110415i \(0.996485\pi\)
\(692\) −902.589 142.956i −0.0495828 0.00785315i
\(693\) −3389.74 + 6979.12i −0.185809 + 0.382561i
\(694\) −10905.6 15010.3i −0.596502 0.821015i
\(695\) 9661.49 6012.86i 0.527311 0.328174i
\(696\) 5675.71 + 596.541i 0.309105 + 0.0324883i
\(697\) −7095.08 8761.69i −0.385574 0.476145i
\(698\) 31139.6 + 1631.96i 1.68861 + 0.0884965i
\(699\) −12765.2 −0.690733
\(700\) −563.900 + 1387.79i −0.0304478 + 0.0749339i
\(701\) 17261.2 0.930023 0.465011 0.885305i \(-0.346050\pi\)
0.465011 + 0.885305i \(0.346050\pi\)
\(702\) −24813.7 1300.43i −1.33409 0.0699167i
\(703\) 14001.9 + 17290.9i 0.751197 + 0.927651i
\(704\) 16846.5 + 1770.63i 0.901882 + 0.0947916i
\(705\) −2358.27 + 5806.61i −0.125982 + 0.310198i
\(706\) 20140.7 + 27721.2i 1.07366 + 1.47777i
\(707\) 14897.9 1066.40i 0.792496 0.0567274i
\(708\) 787.185 + 124.678i 0.0417856 + 0.00661819i
\(709\) −1513.92 + 7122.46i −0.0801927 + 0.377277i −0.999882 0.0153702i \(-0.995107\pi\)
0.919689 + 0.392647i \(0.128441\pi\)
\(710\) −5768.47 29965.9i −0.304911 1.58395i
\(711\) −11720.2 + 2491.21i −0.618203 + 0.131403i
\(712\) −8651.63 13322.3i −0.455384 0.701230i
\(713\) −29121.2 14838.0i −1.52959 0.779365i
\(714\) 9172.00 5531.66i 0.480747 0.289940i
\(715\) −12211.9 17507.8i −0.638738 0.915739i
\(716\) 1595.94 + 339.228i 0.0833006 + 0.0177061i
\(717\) 888.320 + 2314.15i 0.0462691 + 0.120535i
\(718\) 4654.87 17372.2i 0.241947 0.902959i
\(719\) −268.925 2558.65i −0.0139488 0.132714i 0.985331 0.170653i \(-0.0545876\pi\)
−0.999280 + 0.0379384i \(0.987921\pi\)
\(720\) −7938.57 + 3854.11i −0.410907 + 0.199492i
\(721\) −15874.8 + 14852.4i −0.819986 + 0.767176i
\(722\) 18556.9 2939.13i 0.956534 0.151500i
\(723\) −437.780 + 8353.34i −0.0225190 + 0.429687i
\(724\) −50.1331 86.8331i −0.00257346 0.00445736i
\(725\) −7433.10 3658.76i −0.380770 0.187425i
\(726\) −3191.24 1842.46i −0.163138 0.0941877i
\(727\) 3267.94 1665.10i 0.166714 0.0849450i −0.368642 0.929571i \(-0.620177\pi\)
0.535356 + 0.844626i \(0.320177\pi\)
\(728\) 12595.3 + 23594.6i 0.641227 + 1.20120i
\(729\) 10112.4 13918.5i 0.513764 0.707135i
\(730\) 35780.2 8852.19i 1.81409 0.448814i
\(731\) 12062.4 27092.7i 0.610321 1.37080i
\(732\) 66.9570 + 17.9411i 0.00338088 + 0.000905904i
\(733\) −24305.1 19681.9i −1.22473 0.991771i −0.999849 0.0173856i \(-0.994466\pi\)
−0.224886 0.974385i \(-0.572201\pi\)
\(734\) −8273.48 25463.2i −0.416049 1.28047i
\(735\) 11234.4 8491.79i 0.563790 0.426156i
\(736\) 1255.68 3864.59i 0.0628873 0.193547i
\(737\) −4238.49 + 2752.51i −0.211841 + 0.137571i
\(738\) −372.303 7103.96i −0.0185700 0.354336i
\(739\) 2560.77 + 12047.5i 0.127469 + 0.599694i 0.994790 + 0.101945i \(0.0325065\pi\)
−0.867321 + 0.497749i \(0.834160\pi\)
\(740\) 1335.10 + 310.782i 0.0663235 + 0.0154386i
\(741\) 25258.1 8206.85i 1.25220 0.406864i
\(742\) −8843.75 + 1574.40i −0.437553 + 0.0778951i
\(743\) −15893.1 15893.1i −0.784738 0.784738i 0.195889 0.980626i \(-0.437241\pi\)
−0.980626 + 0.195889i \(0.937241\pi\)
\(744\) 20118.6 2114.55i 0.991378 0.104198i
\(745\) −4428.88 12237.2i −0.217801 0.601792i
\(746\) −851.994 + 8106.18i −0.0418146 + 0.397839i
\(747\) −1957.55 751.431i −0.0958806 0.0368051i
\(748\) −528.887 1038.00i −0.0258530 0.0507393i
\(749\) −1656.97 + 8599.88i −0.0808334 + 0.419537i
\(750\) −13848.0 + 1379.43i −0.674210 + 0.0671597i
\(751\) 1691.67 2930.06i 0.0821970 0.142369i −0.821996 0.569493i \(-0.807140\pi\)
0.904193 + 0.427123i \(0.140473\pi\)
\(752\) 7476.95 + 4855.59i 0.362575 + 0.235459i
\(753\) −3027.00 + 2451.21i −0.146494 + 0.118628i
\(754\) −10112.1 + 4502.22i −0.488412 + 0.217455i
\(755\) −5807.39 + 32590.0i −0.279937 + 1.57096i
\(756\) −1776.43 152.472i −0.0854605 0.00733514i
\(757\) 26806.8 26806.8i 1.28707 1.28707i 0.350506 0.936561i \(-0.386010\pi\)
0.936561 0.350506i \(-0.113990\pi\)
\(758\) −16782.4 + 20724.5i −0.804173 + 0.993071i
\(759\) 10596.8 11769.0i 0.506772 0.562827i
\(760\) 21034.2 22474.7i 1.00394 1.07269i
\(761\) −12268.4 + 11046.5i −0.584399 + 0.526196i −0.907436 0.420191i \(-0.861963\pi\)
0.323036 + 0.946387i \(0.395296\pi\)
\(762\) 4339.75 8517.23i 0.206315 0.404917i
\(763\) −4192.14 10327.0i −0.198907 0.489988i
\(764\) −1573.36 511.215i −0.0745054 0.0242083i
\(765\) 7513.78 + 4533.28i 0.35511