Properties

Label 175.4.k.b.74.1
Level $175$
Weight $4$
Character 175.74
Analytic conductor $10.325$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(74,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.74");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.k (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 74.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 175.74
Dual form 175.4.k.b.149.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.59808 + 1.50000i) q^{2} +(1.73205 + 1.00000i) q^{3} +(0.500000 - 0.866025i) q^{4} -6.00000 q^{6} +(-12.1244 + 14.0000i) q^{7} -21.0000i q^{8} +(-11.5000 - 19.9186i) q^{9} +O(q^{10})\) \(q+(-2.59808 + 1.50000i) q^{2} +(1.73205 + 1.00000i) q^{3} +(0.500000 - 0.866025i) q^{4} -6.00000 q^{6} +(-12.1244 + 14.0000i) q^{7} -21.0000i q^{8} +(-11.5000 - 19.9186i) q^{9} +(22.5000 - 38.9711i) q^{11} +(1.73205 - 1.00000i) q^{12} +59.0000i q^{13} +(10.5000 - 54.5596i) q^{14} +(35.5000 + 61.4878i) q^{16} +(-46.7654 - 27.0000i) q^{17} +(59.7558 + 34.5000i) q^{18} +(-60.5000 - 104.789i) q^{19} +(-35.0000 + 12.1244i) q^{21} +135.000i q^{22} +(59.7558 - 34.5000i) q^{23} +(21.0000 - 36.3731i) q^{24} +(-88.5000 - 153.286i) q^{26} -100.000i q^{27} +(6.06218 + 17.5000i) q^{28} +162.000 q^{29} +(44.0000 - 76.2102i) q^{31} +(-38.9711 - 22.5000i) q^{32} +(77.9423 - 45.0000i) q^{33} +162.000 q^{34} -23.0000 q^{36} +(224.301 - 129.500i) q^{37} +(314.367 + 181.500i) q^{38} +(-59.0000 + 102.191i) q^{39} +195.000 q^{41} +(72.7461 - 84.0000i) q^{42} -286.000i q^{43} +(-22.5000 - 38.9711i) q^{44} +(-103.500 + 179.267i) q^{46} +(-38.9711 + 22.5000i) q^{47} +142.000i q^{48} +(-49.0000 - 339.482i) q^{49} +(-54.0000 - 93.5307i) q^{51} +(51.0955 + 29.5000i) q^{52} +(-517.017 - 298.500i) q^{53} +(150.000 + 259.808i) q^{54} +(294.000 + 254.611i) q^{56} -242.000i q^{57} +(-420.888 + 243.000i) q^{58} +(-180.000 + 311.769i) q^{59} +(-196.000 - 339.482i) q^{61} +264.000i q^{62} +(418.290 + 80.5000i) q^{63} -433.000 q^{64} +(-135.000 + 233.827i) q^{66} +(-242.487 - 140.000i) q^{67} +(-46.7654 + 27.0000i) q^{68} +138.000 q^{69} +48.0000 q^{71} +(-418.290 + 241.500i) q^{72} +(-578.505 - 334.000i) q^{73} +(-388.500 + 672.902i) q^{74} -121.000 q^{76} +(272.798 + 787.500i) q^{77} -354.000i q^{78} +(391.000 + 677.232i) q^{79} +(-210.500 + 364.597i) q^{81} +(-506.625 + 292.500i) q^{82} +768.000i q^{83} +(-7.00000 + 36.3731i) q^{84} +(429.000 + 743.050i) q^{86} +(280.592 + 162.000i) q^{87} +(-818.394 - 472.500i) q^{88} +(-597.000 - 1034.03i) q^{89} +(-826.000 - 715.337i) q^{91} -69.0000i q^{92} +(152.420 - 88.0000i) q^{93} +(67.5000 - 116.913i) q^{94} +(-45.0000 - 77.9423i) q^{96} -902.000i q^{97} +(636.529 + 808.500i) q^{98} -1035.00 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 24 q^{6} - 46 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{4} - 24 q^{6} - 46 q^{9} + 90 q^{11} + 42 q^{14} + 142 q^{16} - 242 q^{19} - 140 q^{21} + 84 q^{24} - 354 q^{26} + 648 q^{29} + 176 q^{31} + 648 q^{34} - 92 q^{36} - 236 q^{39} + 780 q^{41} - 90 q^{44} - 414 q^{46} - 196 q^{49} - 216 q^{51} + 600 q^{54} + 1176 q^{56} - 720 q^{59} - 784 q^{61} - 1732 q^{64} - 540 q^{66} + 552 q^{69} + 192 q^{71} - 1554 q^{74} - 484 q^{76} + 1564 q^{79} - 842 q^{81} - 28 q^{84} + 1716 q^{86} - 2388 q^{89} - 3304 q^{91} + 270 q^{94} - 180 q^{96} - 4140 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.59808 + 1.50000i −0.918559 + 0.530330i −0.883175 0.469044i \(-0.844599\pi\)
−0.0353837 + 0.999374i \(0.511265\pi\)
\(3\) 1.73205 + 1.00000i 0.333333 + 0.192450i 0.657320 0.753612i \(-0.271690\pi\)
−0.323987 + 0.946062i \(0.605023\pi\)
\(4\) 0.500000 0.866025i 0.0625000 0.108253i
\(5\) 0 0
\(6\) −6.00000 −0.408248
\(7\) −12.1244 + 14.0000i −0.654654 + 0.755929i
\(8\) 21.0000i 0.928078i
\(9\) −11.5000 19.9186i −0.425926 0.737725i
\(10\) 0 0
\(11\) 22.5000 38.9711i 0.616728 1.06820i −0.373351 0.927690i \(-0.621791\pi\)
0.990079 0.140514i \(-0.0448754\pi\)
\(12\) 1.73205 1.00000i 0.0416667 0.0240563i
\(13\) 59.0000i 1.25874i 0.777105 + 0.629371i \(0.216688\pi\)
−0.777105 + 0.629371i \(0.783312\pi\)
\(14\) 10.5000 54.5596i 0.200446 1.04155i
\(15\) 0 0
\(16\) 35.5000 + 61.4878i 0.554688 + 0.960747i
\(17\) −46.7654 27.0000i −0.667192 0.385204i 0.127820 0.991797i \(-0.459202\pi\)
−0.795012 + 0.606594i \(0.792535\pi\)
\(18\) 59.7558 + 34.5000i 0.782476 + 0.451763i
\(19\) −60.5000 104.789i −0.730508 1.26528i −0.956666 0.291186i \(-0.905950\pi\)
0.226158 0.974091i \(-0.427383\pi\)
\(20\) 0 0
\(21\) −35.0000 + 12.1244i −0.363696 + 0.125988i
\(22\) 135.000i 1.30828i
\(23\) 59.7558 34.5000i 0.541736 0.312772i −0.204046 0.978961i \(-0.565409\pi\)
0.745782 + 0.666190i \(0.232076\pi\)
\(24\) 21.0000 36.3731i 0.178609 0.309359i
\(25\) 0 0
\(26\) −88.5000 153.286i −0.667549 1.15623i
\(27\) 100.000i 0.712778i
\(28\) 6.06218 + 17.5000i 0.0409159 + 0.118114i
\(29\) 162.000 1.03733 0.518666 0.854977i \(-0.326429\pi\)
0.518666 + 0.854977i \(0.326429\pi\)
\(30\) 0 0
\(31\) 44.0000 76.2102i 0.254924 0.441541i −0.709951 0.704251i \(-0.751283\pi\)
0.964875 + 0.262710i \(0.0846163\pi\)
\(32\) −38.9711 22.5000i −0.215287 0.124296i
\(33\) 77.9423 45.0000i 0.411152 0.237379i
\(34\) 162.000 0.817140
\(35\) 0 0
\(36\) −23.0000 −0.106481
\(37\) 224.301 129.500i 0.996616 0.575396i 0.0893706 0.995998i \(-0.471514\pi\)
0.907245 + 0.420602i \(0.138181\pi\)
\(38\) 314.367 + 181.500i 1.34203 + 0.774821i
\(39\) −59.0000 + 102.191i −0.242245 + 0.419581i
\(40\) 0 0
\(41\) 195.000 0.742778 0.371389 0.928477i \(-0.378882\pi\)
0.371389 + 0.928477i \(0.378882\pi\)
\(42\) 72.7461 84.0000i 0.267261 0.308607i
\(43\) 286.000i 1.01429i −0.861860 0.507146i \(-0.830700\pi\)
0.861860 0.507146i \(-0.169300\pi\)
\(44\) −22.5000 38.9711i −0.0770910 0.133525i
\(45\) 0 0
\(46\) −103.500 + 179.267i −0.331744 + 0.574598i
\(47\) −38.9711 + 22.5000i −0.120947 + 0.0698290i −0.559253 0.828997i \(-0.688912\pi\)
0.438306 + 0.898826i \(0.355579\pi\)
\(48\) 142.000i 0.426999i
\(49\) −49.0000 339.482i −0.142857 0.989743i
\(50\) 0 0
\(51\) −54.0000 93.5307i −0.148265 0.256802i
\(52\) 51.0955 + 29.5000i 0.136263 + 0.0786714i
\(53\) −517.017 298.500i −1.33996 0.773625i −0.353157 0.935564i \(-0.614892\pi\)
−0.986801 + 0.161939i \(0.948225\pi\)
\(54\) 150.000 + 259.808i 0.378008 + 0.654729i
\(55\) 0 0
\(56\) 294.000 + 254.611i 0.701561 + 0.607569i
\(57\) 242.000i 0.562345i
\(58\) −420.888 + 243.000i −0.952851 + 0.550129i
\(59\) −180.000 + 311.769i −0.397187 + 0.687947i −0.993378 0.114895i \(-0.963347\pi\)
0.596191 + 0.802843i \(0.296680\pi\)
\(60\) 0 0
\(61\) −196.000 339.482i −0.411397 0.712561i 0.583646 0.812009i \(-0.301626\pi\)
−0.995043 + 0.0994477i \(0.968292\pi\)
\(62\) 264.000i 0.540775i
\(63\) 418.290 + 80.5000i 0.836502 + 0.160985i
\(64\) −433.000 −0.845703
\(65\) 0 0
\(66\) −135.000 + 233.827i −0.251778 + 0.436092i
\(67\) −242.487 140.000i −0.442157 0.255279i 0.262355 0.964971i \(-0.415501\pi\)
−0.704512 + 0.709692i \(0.748834\pi\)
\(68\) −46.7654 + 27.0000i −0.0833990 + 0.0481505i
\(69\) 138.000 0.240772
\(70\) 0 0
\(71\) 48.0000 0.0802331 0.0401166 0.999195i \(-0.487227\pi\)
0.0401166 + 0.999195i \(0.487227\pi\)
\(72\) −418.290 + 241.500i −0.684666 + 0.395292i
\(73\) −578.505 334.000i −0.927519 0.535503i −0.0414929 0.999139i \(-0.513211\pi\)
−0.886026 + 0.463635i \(0.846545\pi\)
\(74\) −388.500 + 672.902i −0.610300 + 1.05707i
\(75\) 0 0
\(76\) −121.000 −0.182627
\(77\) 272.798 + 787.500i 0.403743 + 1.16551i
\(78\) 354.000i 0.513880i
\(79\) 391.000 + 677.232i 0.556847 + 0.964488i 0.997757 + 0.0669365i \(0.0213225\pi\)
−0.440910 + 0.897551i \(0.645344\pi\)
\(80\) 0 0
\(81\) −210.500 + 364.597i −0.288752 + 0.500133i
\(82\) −506.625 + 292.500i −0.682285 + 0.393917i
\(83\) 768.000i 1.01565i 0.861460 + 0.507825i \(0.169550\pi\)
−0.861460 + 0.507825i \(0.830450\pi\)
\(84\) −7.00000 + 36.3731i −0.00909241 + 0.0472456i
\(85\) 0 0
\(86\) 429.000 + 743.050i 0.537910 + 0.931687i
\(87\) 280.592 + 162.000i 0.345778 + 0.199635i
\(88\) −818.394 472.500i −0.991376 0.572371i
\(89\) −597.000 1034.03i −0.711032 1.23154i −0.964470 0.264192i \(-0.914895\pi\)
0.253438 0.967352i \(-0.418439\pi\)
\(90\) 0 0
\(91\) −826.000 715.337i −0.951520 0.824041i
\(92\) 69.0000i 0.0781929i
\(93\) 152.420 88.0000i 0.169949 0.0981202i
\(94\) 67.5000 116.913i 0.0740648 0.128284i
\(95\) 0 0
\(96\) −45.0000 77.9423i −0.0478416 0.0828641i
\(97\) 902.000i 0.944167i −0.881554 0.472084i \(-0.843502\pi\)
0.881554 0.472084i \(-0.156498\pi\)
\(98\) 636.529 + 808.500i 0.656113 + 0.833376i
\(99\) −1035.00 −1.05072
\(100\) 0 0
\(101\) −342.000 + 592.361i −0.336933 + 0.583586i −0.983854 0.178971i \(-0.942723\pi\)
0.646921 + 0.762557i \(0.276056\pi\)
\(102\) 280.592 + 162.000i 0.272380 + 0.157259i
\(103\) −1312.89 + 758.000i −1.25595 + 0.725126i −0.972286 0.233796i \(-0.924885\pi\)
−0.283669 + 0.958922i \(0.591552\pi\)
\(104\) 1239.00 1.16821
\(105\) 0 0
\(106\) 1791.00 1.64111
\(107\) 633.931 366.000i 0.572751 0.330678i −0.185496 0.982645i \(-0.559389\pi\)
0.758247 + 0.651967i \(0.226056\pi\)
\(108\) −86.6025 50.0000i −0.0771605 0.0445486i
\(109\) −800.000 + 1385.64i −0.702992 + 1.21762i 0.264420 + 0.964408i \(0.414820\pi\)
−0.967411 + 0.253210i \(0.918514\pi\)
\(110\) 0 0
\(111\) 518.000 0.442940
\(112\) −1291.24 248.500i −1.08938 0.209652i
\(113\) 1392.00i 1.15883i −0.815031 0.579417i \(-0.803280\pi\)
0.815031 0.579417i \(-0.196720\pi\)
\(114\) 363.000 + 628.734i 0.298229 + 0.516547i
\(115\) 0 0
\(116\) 81.0000 140.296i 0.0648333 0.112295i
\(117\) 1175.20 678.500i 0.928606 0.536131i
\(118\) 1080.00i 0.842560i
\(119\) 945.000 327.358i 0.727966 0.252175i
\(120\) 0 0
\(121\) −347.000 601.022i −0.260706 0.451556i
\(122\) 1018.45 + 588.000i 0.755785 + 0.436353i
\(123\) 337.750 + 195.000i 0.247593 + 0.142948i
\(124\) −44.0000 76.2102i −0.0318655 0.0551926i
\(125\) 0 0
\(126\) −1207.50 + 418.290i −0.853751 + 0.295748i
\(127\) 803.000i 0.561061i −0.959845 0.280530i \(-0.909490\pi\)
0.959845 0.280530i \(-0.0905104\pi\)
\(128\) 1436.74 829.500i 0.992115 0.572798i
\(129\) 286.000 495.367i 0.195201 0.338098i
\(130\) 0 0
\(131\) −1009.50 1748.51i −0.673286 1.16617i −0.976967 0.213391i \(-0.931549\pi\)
0.303681 0.952774i \(-0.401784\pi\)
\(132\) 90.0000i 0.0593447i
\(133\) 2200.57 + 423.500i 1.43469 + 0.276106i
\(134\) 840.000 0.541529
\(135\) 0 0
\(136\) −567.000 + 982.073i −0.357499 + 0.619206i
\(137\) 51.9615 + 30.0000i 0.0324042 + 0.0187086i 0.516115 0.856520i \(-0.327378\pi\)
−0.483710 + 0.875228i \(0.660711\pi\)
\(138\) −358.535 + 207.000i −0.221163 + 0.127688i
\(139\) 1708.00 1.04224 0.521118 0.853485i \(-0.325515\pi\)
0.521118 + 0.853485i \(0.325515\pi\)
\(140\) 0 0
\(141\) −90.0000 −0.0537544
\(142\) −124.708 + 72.0000i −0.0736988 + 0.0425500i
\(143\) 2299.30 + 1327.50i 1.34459 + 0.776302i
\(144\) 816.500 1414.22i 0.472512 0.818414i
\(145\) 0 0
\(146\) 2004.00 1.13597
\(147\) 254.611 637.000i 0.142857 0.357407i
\(148\) 259.000i 0.143849i
\(149\) −543.000 940.504i −0.298552 0.517108i 0.677253 0.735751i \(-0.263170\pi\)
−0.975805 + 0.218643i \(0.929837\pi\)
\(150\) 0 0
\(151\) 1433.00 2482.03i 0.772291 1.33765i −0.164014 0.986458i \(-0.552444\pi\)
0.936305 0.351189i \(-0.114222\pi\)
\(152\) −2200.57 + 1270.50i −1.17428 + 0.677968i
\(153\) 1242.00i 0.656273i
\(154\) −1890.00 1636.79i −0.988965 0.856468i
\(155\) 0 0
\(156\) 59.0000 + 102.191i 0.0302806 + 0.0524476i
\(157\) −198.320 114.500i −0.100813 0.0582044i 0.448746 0.893659i \(-0.351871\pi\)
−0.549559 + 0.835455i \(0.685204\pi\)
\(158\) −2031.70 1173.00i −1.02299 0.590626i
\(159\) −597.000 1034.03i −0.297768 0.515750i
\(160\) 0 0
\(161\) −241.500 + 1254.87i −0.118217 + 0.614271i
\(162\) 1263.00i 0.612535i
\(163\) −1063.48 + 614.000i −0.511031 + 0.295044i −0.733258 0.679951i \(-0.762001\pi\)
0.222226 + 0.974995i \(0.428668\pi\)
\(164\) 97.5000 168.875i 0.0464236 0.0804080i
\(165\) 0 0
\(166\) −1152.00 1995.32i −0.538630 0.932934i
\(167\) 1929.00i 0.893835i 0.894575 + 0.446918i \(0.147478\pi\)
−0.894575 + 0.446918i \(0.852522\pi\)
\(168\) 254.611 + 735.000i 0.116927 + 0.337539i
\(169\) −1284.00 −0.584433
\(170\) 0 0
\(171\) −1391.50 + 2410.15i −0.622285 + 1.07783i
\(172\) −247.683 143.000i −0.109800 0.0633933i
\(173\) −605.352 + 349.500i −0.266035 + 0.153595i −0.627084 0.778951i \(-0.715752\pi\)
0.361049 + 0.932547i \(0.382419\pi\)
\(174\) −972.000 −0.423489
\(175\) 0 0
\(176\) 3195.00 1.36836
\(177\) −623.538 + 360.000i −0.264791 + 0.152877i
\(178\) 3102.10 + 1791.00i 1.30625 + 0.754164i
\(179\) 1558.50 2699.40i 0.650770 1.12717i −0.332167 0.943221i \(-0.607780\pi\)
0.982936 0.183945i \(-0.0588870\pi\)
\(180\) 0 0
\(181\) −1798.00 −0.738366 −0.369183 0.929357i \(-0.620362\pi\)
−0.369183 + 0.929357i \(0.620362\pi\)
\(182\) 3219.02 + 619.500i 1.31104 + 0.252310i
\(183\) 784.000i 0.316694i
\(184\) −724.500 1254.87i −0.290276 0.502773i
\(185\) 0 0
\(186\) −264.000 + 457.261i −0.104072 + 0.180258i
\(187\) −2104.44 + 1215.00i −0.822952 + 0.475132i
\(188\) 45.0000i 0.0174572i
\(189\) 1400.00 + 1212.44i 0.538810 + 0.466623i
\(190\) 0 0
\(191\) 1194.00 + 2068.07i 0.452329 + 0.783457i 0.998530 0.0541974i \(-0.0172600\pi\)
−0.546201 + 0.837654i \(0.683927\pi\)
\(192\) −749.978 433.000i −0.281901 0.162756i
\(193\) −235.559 136.000i −0.0878544 0.0507228i 0.455429 0.890272i \(-0.349486\pi\)
−0.543284 + 0.839549i \(0.682819\pi\)
\(194\) 1353.00 + 2343.46i 0.500720 + 0.867273i
\(195\) 0 0
\(196\) −318.500 127.306i −0.116071 0.0463942i
\(197\) 2109.00i 0.762741i 0.924422 + 0.381371i \(0.124548\pi\)
−0.924422 + 0.381371i \(0.875452\pi\)
\(198\) 2689.01 1552.50i 0.965149 0.557229i
\(199\) 712.000 1233.22i 0.253630 0.439300i −0.710893 0.703301i \(-0.751709\pi\)
0.964522 + 0.264001i \(0.0850422\pi\)
\(200\) 0 0
\(201\) −280.000 484.974i −0.0982571 0.170186i
\(202\) 2052.00i 0.714744i
\(203\) −1964.15 + 2268.00i −0.679094 + 0.784150i
\(204\) −108.000 −0.0370662
\(205\) 0 0
\(206\) 2274.00 3938.68i 0.769112 1.33214i
\(207\) −1374.38 793.500i −0.461479 0.266435i
\(208\) −3627.78 + 2094.50i −1.20933 + 0.698209i
\(209\) −5445.00 −1.80210
\(210\) 0 0
\(211\) −3625.00 −1.18273 −0.591363 0.806405i \(-0.701410\pi\)
−0.591363 + 0.806405i \(0.701410\pi\)
\(212\) −517.017 + 298.500i −0.167495 + 0.0967031i
\(213\) 83.1384 + 48.0000i 0.0267444 + 0.0154409i
\(214\) −1098.00 + 1901.79i −0.350737 + 0.607494i
\(215\) 0 0
\(216\) −2100.00 −0.661513
\(217\) 533.472 + 1540.00i 0.166887 + 0.481760i
\(218\) 4800.00i 1.49127i
\(219\) −668.000 1157.01i −0.206115 0.357002i
\(220\) 0 0
\(221\) 1593.00 2759.16i 0.484872 0.839823i
\(222\) −1345.80 + 777.000i −0.406867 + 0.234905i
\(223\) 4960.00i 1.48944i −0.667374 0.744722i \(-0.732582\pi\)
0.667374 0.744722i \(-0.267418\pi\)
\(224\) 787.500 272.798i 0.234898 0.0813709i
\(225\) 0 0
\(226\) 2088.00 + 3616.52i 0.614565 + 1.06446i
\(227\) −1299.04 750.000i −0.379825 0.219292i 0.297917 0.954592i \(-0.403708\pi\)
−0.677742 + 0.735300i \(0.737041\pi\)
\(228\) −209.578 121.000i −0.0608757 0.0351466i
\(229\) 3046.00 + 5275.83i 0.878975 + 1.52243i 0.852467 + 0.522781i \(0.175106\pi\)
0.0265085 + 0.999649i \(0.491561\pi\)
\(230\) 0 0
\(231\) −315.000 + 1636.79i −0.0897207 + 0.466202i
\(232\) 3402.00i 0.962725i
\(233\) 119.512 69.0000i 0.0336028 0.0194006i −0.483104 0.875563i \(-0.660491\pi\)
0.516707 + 0.856162i \(0.327158\pi\)
\(234\) −2035.50 + 3525.59i −0.568653 + 0.984936i
\(235\) 0 0
\(236\) 180.000 + 311.769i 0.0496483 + 0.0859934i
\(237\) 1564.00i 0.428661i
\(238\) −1964.15 + 2268.00i −0.534944 + 0.617700i
\(239\) 5502.00 1.48910 0.744550 0.667567i \(-0.232664\pi\)
0.744550 + 0.667567i \(0.232664\pi\)
\(240\) 0 0
\(241\) −1775.50 + 3075.26i −0.474564 + 0.821970i −0.999576 0.0291256i \(-0.990728\pi\)
0.525011 + 0.851095i \(0.324061\pi\)
\(242\) 1803.06 + 1041.00i 0.478948 + 0.276521i
\(243\) −3067.46 + 1771.00i −0.809785 + 0.467530i
\(244\) −392.000 −0.102849
\(245\) 0 0
\(246\) −1170.00 −0.303238
\(247\) 6182.56 3569.50i 1.59266 0.919522i
\(248\) −1600.41 924.000i −0.409784 0.236589i
\(249\) −768.000 + 1330.22i −0.195462 + 0.338550i
\(250\) 0 0
\(251\) 7065.00 1.77665 0.888324 0.459216i \(-0.151870\pi\)
0.888324 + 0.459216i \(0.151870\pi\)
\(252\) 278.860 322.000i 0.0697085 0.0804924i
\(253\) 3105.00i 0.771580i
\(254\) 1204.50 + 2086.26i 0.297547 + 0.515367i
\(255\) 0 0
\(256\) −756.500 + 1310.30i −0.184692 + 0.319897i
\(257\) 3533.38 2040.00i 0.857613 0.495143i −0.00559954 0.999984i \(-0.501782\pi\)
0.863212 + 0.504842i \(0.168449\pi\)
\(258\) 1716.00i 0.414083i
\(259\) −906.500 + 4710.31i −0.217479 + 1.13006i
\(260\) 0 0
\(261\) −1863.00 3226.81i −0.441827 0.765267i
\(262\) 5245.52 + 3028.50i 1.23690 + 0.714127i
\(263\) 2847.49 + 1644.00i 0.667619 + 0.385450i 0.795174 0.606381i \(-0.207380\pi\)
−0.127555 + 0.991832i \(0.540713\pi\)
\(264\) −945.000 1636.79i −0.220306 0.381581i
\(265\) 0 0
\(266\) −6352.50 + 2200.57i −1.46427 + 0.507239i
\(267\) 2388.00i 0.547353i
\(268\) −242.487 + 140.000i −0.0552696 + 0.0319099i
\(269\) −1632.00 + 2826.71i −0.369906 + 0.640697i −0.989551 0.144186i \(-0.953944\pi\)
0.619644 + 0.784883i \(0.287277\pi\)
\(270\) 0 0
\(271\) 1376.00 + 2383.30i 0.308436 + 0.534226i 0.978020 0.208510i \(-0.0668612\pi\)
−0.669585 + 0.742736i \(0.733528\pi\)
\(272\) 3834.00i 0.854671i
\(273\) −715.337 2065.00i −0.158587 0.457800i
\(274\) −180.000 −0.0396869
\(275\) 0 0
\(276\) 69.0000 119.512i 0.0150482 0.0260643i
\(277\) −4061.66 2345.00i −0.881016 0.508655i −0.0100228 0.999950i \(-0.503190\pi\)
−0.870993 + 0.491295i \(0.836524\pi\)
\(278\) −4437.51 + 2562.00i −0.957354 + 0.552729i
\(279\) −2024.00 −0.434314
\(280\) 0 0
\(281\) 7821.00 1.66036 0.830181 0.557494i \(-0.188237\pi\)
0.830181 + 0.557494i \(0.188237\pi\)
\(282\) 233.827 135.000i 0.0493765 0.0285076i
\(283\) 569.845 + 329.000i 0.119695 + 0.0691061i 0.558652 0.829402i \(-0.311319\pi\)
−0.438957 + 0.898508i \(0.644652\pi\)
\(284\) 24.0000 41.5692i 0.00501457 0.00868549i
\(285\) 0 0
\(286\) −7965.00 −1.64678
\(287\) −2364.25 + 2730.00i −0.486262 + 0.561487i
\(288\) 1035.00i 0.211764i
\(289\) −998.500 1729.45i −0.203236 0.352016i
\(290\) 0 0
\(291\) 902.000 1562.31i 0.181705 0.314722i
\(292\) −578.505 + 334.000i −0.115940 + 0.0669379i
\(293\) 5997.00i 1.19573i −0.801597 0.597864i \(-0.796016\pi\)
0.801597 0.597864i \(-0.203984\pi\)
\(294\) 294.000 + 2036.89i 0.0583212 + 0.404061i
\(295\) 0 0
\(296\) −2719.50 4710.31i −0.534013 0.924937i
\(297\) −3897.11 2250.00i −0.761392 0.439590i
\(298\) 2821.51 + 1629.00i 0.548476 + 0.316663i
\(299\) 2035.50 + 3525.59i 0.393699 + 0.681907i
\(300\) 0 0
\(301\) 4004.00 + 3467.57i 0.766733 + 0.664011i
\(302\) 8598.00i 1.63828i
\(303\) −1184.72 + 684.000i −0.224622 + 0.129686i
\(304\) 4295.50 7440.02i 0.810407 1.40367i
\(305\) 0 0
\(306\) −1863.00 3226.81i −0.348041 0.602825i
\(307\) 6226.00i 1.15745i 0.815523 + 0.578724i \(0.196449\pi\)
−0.815523 + 0.578724i \(0.803551\pi\)
\(308\) 818.394 + 157.500i 0.151404 + 0.0291376i
\(309\) −3032.00 −0.558202
\(310\) 0 0
\(311\) −2340.00 + 4053.00i −0.426653 + 0.738985i −0.996573 0.0827149i \(-0.973641\pi\)
0.569920 + 0.821700i \(0.306974\pi\)
\(312\) 2146.01 + 1239.00i 0.389404 + 0.224822i
\(313\) 890.274 514.000i 0.160771 0.0928211i −0.417456 0.908697i \(-0.637078\pi\)
0.578227 + 0.815876i \(0.303745\pi\)
\(314\) 687.000 0.123470
\(315\) 0 0
\(316\) 782.000 0.139212
\(317\) −7466.87 + 4311.00i −1.32297 + 0.763817i −0.984201 0.177053i \(-0.943344\pi\)
−0.338768 + 0.940870i \(0.610010\pi\)
\(318\) 3102.10 + 1791.00i 0.547036 + 0.315831i
\(319\) 3645.00 6313.33i 0.639752 1.10808i
\(320\) 0 0
\(321\) 1464.00 0.254556
\(322\) −1254.87 3622.50i −0.217178 0.626938i
\(323\) 6534.00i 1.12558i
\(324\) 210.500 + 364.597i 0.0360940 + 0.0625166i
\(325\) 0 0
\(326\) 1842.00 3190.44i 0.312942 0.542031i
\(327\) −2771.28 + 1600.00i −0.468661 + 0.270582i
\(328\) 4095.00i 0.689355i
\(329\) 157.500 818.394i 0.0263929 0.137141i
\(330\) 0 0
\(331\) 999.500 + 1731.18i 0.165974 + 0.287476i 0.937001 0.349327i \(-0.113590\pi\)
−0.771027 + 0.636803i \(0.780256\pi\)
\(332\) 665.108 + 384.000i 0.109947 + 0.0634781i
\(333\) −5158.91 2978.50i −0.848969 0.490153i
\(334\) −2893.50 5011.69i −0.474028 0.821040i
\(335\) 0 0
\(336\) −1988.00 1721.66i −0.322781 0.279536i
\(337\) 5114.00i 0.826639i −0.910586 0.413319i \(-0.864369\pi\)
0.910586 0.413319i \(-0.135631\pi\)
\(338\) 3335.93 1926.00i 0.536836 0.309943i
\(339\) 1392.00 2411.01i 0.223018 0.386278i
\(340\) 0 0
\(341\) −1980.00 3429.46i −0.314437 0.544621i
\(342\) 8349.00i 1.32006i
\(343\) 5346.84 + 3430.00i 0.841698 + 0.539949i
\(344\) −6006.00 −0.941342
\(345\) 0 0
\(346\) 1048.50 1816.06i 0.162912 0.282173i
\(347\) 3741.23 + 2160.00i 0.578789 + 0.334164i 0.760652 0.649160i \(-0.224879\pi\)
−0.181863 + 0.983324i \(0.558213\pi\)
\(348\) 280.592 162.000i 0.0432222 0.0249543i
\(349\) −7922.00 −1.21506 −0.607529 0.794298i \(-0.707839\pi\)
−0.607529 + 0.794298i \(0.707839\pi\)
\(350\) 0 0
\(351\) 5900.00 0.897204
\(352\) −1753.70 + 1012.50i −0.265547 + 0.153314i
\(353\) −717.069 414.000i −0.108118 0.0624221i 0.444966 0.895548i \(-0.353216\pi\)
−0.553084 + 0.833125i \(0.686549\pi\)
\(354\) 1080.00 1870.61i 0.162151 0.280853i
\(355\) 0 0
\(356\) −1194.00 −0.177758
\(357\) 1964.15 + 378.000i 0.291187 + 0.0560389i
\(358\) 9351.00i 1.38049i
\(359\) −675.000 1169.13i −0.0992344 0.171879i 0.812134 0.583472i \(-0.198306\pi\)
−0.911368 + 0.411593i \(0.864973\pi\)
\(360\) 0 0
\(361\) −3891.00 + 6739.41i −0.567284 + 0.982564i
\(362\) 4671.34 2697.00i 0.678233 0.391578i
\(363\) 1388.00i 0.200692i
\(364\) −1032.50 + 357.668i −0.148675 + 0.0515025i
\(365\) 0 0
\(366\) 1176.00 + 2036.89i 0.167952 + 0.290902i
\(367\) 2425.74 + 1400.50i 0.345020 + 0.199198i 0.662490 0.749071i \(-0.269500\pi\)
−0.317470 + 0.948268i \(0.602833\pi\)
\(368\) 4242.66 + 2449.50i 0.600989 + 0.346981i
\(369\) −2242.50 3884.12i −0.316368 0.547966i
\(370\) 0 0
\(371\) 10447.5 3619.12i 1.46201 0.506456i
\(372\) 176.000i 0.0245300i
\(373\) 5717.50 3301.00i 0.793675 0.458229i −0.0475795 0.998867i \(-0.515151\pi\)
0.841255 + 0.540639i \(0.181817\pi\)
\(374\) 3645.00 6313.33i 0.503953 0.872872i
\(375\) 0 0
\(376\) 472.500 + 818.394i 0.0648067 + 0.112249i
\(377\) 9558.00i 1.30573i
\(378\) −5455.96 1050.00i −0.742392 0.142873i
\(379\) 8305.00 1.12559 0.562796 0.826596i \(-0.309726\pi\)
0.562796 + 0.826596i \(0.309726\pi\)
\(380\) 0 0
\(381\) 803.000 1390.84i 0.107976 0.187020i
\(382\) −6204.21 3582.00i −0.830981 0.479767i
\(383\) 818.394 472.500i 0.109185 0.0630382i −0.444413 0.895822i \(-0.646588\pi\)
0.553598 + 0.832784i \(0.313254\pi\)
\(384\) 3318.00 0.440940
\(385\) 0 0
\(386\) 816.000 0.107599
\(387\) −5696.72 + 3289.00i −0.748270 + 0.432014i
\(388\) −781.155 451.000i −0.102209 0.0590105i
\(389\) 6018.00 10423.5i 0.784382 1.35859i −0.144985 0.989434i \(-0.546313\pi\)
0.929367 0.369156i \(-0.120353\pi\)
\(390\) 0 0
\(391\) −3726.00 −0.481923
\(392\) −7129.12 + 1029.00i −0.918559 + 0.132583i
\(393\) 4038.00i 0.518296i
\(394\) −3163.50 5479.34i −0.404505 0.700623i
\(395\) 0 0
\(396\) −517.500 + 896.336i −0.0656701 + 0.113744i
\(397\) 2336.54 1349.00i 0.295384 0.170540i −0.344983 0.938609i \(-0.612115\pi\)
0.640367 + 0.768069i \(0.278782\pi\)
\(398\) 4272.00i 0.538030i
\(399\) 3388.00 + 2934.09i 0.425093 + 0.368141i
\(400\) 0 0
\(401\) −3526.50 6108.08i −0.439165 0.760655i 0.558461 0.829531i \(-0.311392\pi\)
−0.997625 + 0.0688756i \(0.978059\pi\)
\(402\) 1454.92 + 840.000i 0.180510 + 0.104217i
\(403\) 4496.40 + 2596.00i 0.555786 + 0.320883i
\(404\) 342.000 + 592.361i 0.0421167 + 0.0729482i
\(405\) 0 0
\(406\) 1701.00 8838.66i 0.207929 1.08043i
\(407\) 11655.0i 1.41945i
\(408\) −1964.15 + 1134.00i −0.238333 + 0.137601i
\(409\) −5435.00 + 9413.70i −0.657074 + 1.13809i 0.324295 + 0.945956i \(0.394873\pi\)
−0.981369 + 0.192130i \(0.938460\pi\)
\(410\) 0 0
\(411\) 60.0000 + 103.923i 0.00720093 + 0.0124724i
\(412\) 1516.00i 0.181281i
\(413\) −2182.38 6300.00i −0.260020 0.750612i
\(414\) 4761.00 0.565194
\(415\) 0 0
\(416\) 1327.50 2299.30i 0.156457 0.270991i
\(417\) 2958.34 + 1708.00i 0.347412 + 0.200578i
\(418\) 14146.5 8167.50i 1.65533 0.955707i
\(419\) 9729.00 1.13435 0.567175 0.823597i \(-0.308036\pi\)
0.567175 + 0.823597i \(0.308036\pi\)
\(420\) 0 0
\(421\) −12550.0 −1.45285 −0.726425 0.687246i \(-0.758819\pi\)
−0.726425 + 0.687246i \(0.758819\pi\)
\(422\) 9418.03 5437.50i 1.08640 0.627235i
\(423\) 896.336 + 517.500i 0.103029 + 0.0594840i
\(424\) −6268.50 + 10857.4i −0.717984 + 1.24358i
\(425\) 0 0
\(426\) −288.000 −0.0327550
\(427\) 7129.12 + 1372.00i 0.807968 + 0.155494i
\(428\) 732.000i 0.0826695i
\(429\) 2655.00 + 4598.59i 0.298799 + 0.517534i
\(430\) 0 0
\(431\) −1494.00 + 2587.68i −0.166969 + 0.289198i −0.937353 0.348382i \(-0.886731\pi\)
0.770384 + 0.637580i \(0.220065\pi\)
\(432\) 6148.78 3550.00i 0.684799 0.395369i
\(433\) 16616.0i 1.84414i 0.387019 + 0.922072i \(0.373505\pi\)
−0.387019 + 0.922072i \(0.626495\pi\)
\(434\) −3696.00 3200.83i −0.408787 0.354020i
\(435\) 0 0
\(436\) 800.000 + 1385.64i 0.0878740 + 0.152202i
\(437\) −7230.45 4174.50i −0.791485 0.456964i
\(438\) 3471.03 + 2004.00i 0.378658 + 0.218618i
\(439\) 3673.00 + 6361.82i 0.399323 + 0.691647i 0.993642 0.112581i \(-0.0359119\pi\)
−0.594320 + 0.804229i \(0.702579\pi\)
\(440\) 0 0
\(441\) −6198.50 + 4880.05i −0.669312 + 0.526947i
\(442\) 9558.00i 1.02857i
\(443\) 10.3923 6.00000i 0.00111457 0.000643496i −0.499443 0.866347i \(-0.666462\pi\)
0.500557 + 0.865703i \(0.333129\pi\)
\(444\) 259.000 448.601i 0.0276838 0.0479497i
\(445\) 0 0
\(446\) 7440.00 + 12886.5i 0.789897 + 1.36814i
\(447\) 2172.00i 0.229826i
\(448\) 5249.85 6062.00i 0.553643 0.639291i
\(449\) −9669.00 −1.01628 −0.508138 0.861275i \(-0.669666\pi\)
−0.508138 + 0.861275i \(0.669666\pi\)
\(450\) 0 0
\(451\) 4387.50 7599.37i 0.458092 0.793438i
\(452\) −1205.51 696.000i −0.125448 0.0724272i
\(453\) 4964.06 2866.00i 0.514860 0.297255i
\(454\) 4500.00 0.465188
\(455\) 0 0
\(456\) −5082.00 −0.521900
\(457\) 8343.29 4817.00i 0.854010 0.493063i −0.00799181 0.999968i \(-0.502544\pi\)
0.862002 + 0.506905i \(0.169211\pi\)
\(458\) −15827.5 9138.00i −1.61478 0.932294i
\(459\) −2700.00 + 4676.54i −0.274565 + 0.475560i
\(460\) 0 0
\(461\) −342.000 −0.0345521 −0.0172761 0.999851i \(-0.505499\pi\)
−0.0172761 + 0.999851i \(0.505499\pi\)
\(462\) −1636.79 4725.00i −0.164827 0.475816i
\(463\) 2411.00i 0.242006i 0.992652 + 0.121003i \(0.0386110\pi\)
−0.992652 + 0.121003i \(0.961389\pi\)
\(464\) 5751.00 + 9961.02i 0.575395 + 0.996614i
\(465\) 0 0
\(466\) −207.000 + 358.535i −0.0205774 + 0.0356412i
\(467\) 1044.43 603.000i 0.103491 0.0597506i −0.447361 0.894353i \(-0.647636\pi\)
0.550852 + 0.834603i \(0.314303\pi\)
\(468\) 1357.00i 0.134033i
\(469\) 4900.00 1697.41i 0.482433 0.167120i
\(470\) 0 0
\(471\) −229.000 396.640i −0.0224029 0.0388030i
\(472\) 6547.15 + 3780.00i 0.638468 + 0.368620i
\(473\) −11145.7 6435.00i −1.08347 0.625543i
\(474\) −2346.00 4063.39i −0.227332 0.393751i
\(475\) 0 0
\(476\) 189.000 982.073i 0.0181992 0.0945656i
\(477\) 13731.0i 1.31803i
\(478\) −14294.6 + 8253.00i −1.36783 + 0.789714i
\(479\) −216.000 + 374.123i −0.0206039 + 0.0356871i −0.876144 0.482050i \(-0.839892\pi\)
0.855540 + 0.517737i \(0.173226\pi\)
\(480\) 0 0
\(481\) 7640.50 + 13233.7i 0.724276 + 1.25448i
\(482\) 10653.0i 1.00670i
\(483\) −1673.16 + 1932.00i −0.157622 + 0.182006i
\(484\) −694.000 −0.0651766
\(485\) 0 0
\(486\) 5313.00 9202.39i 0.495890 0.858907i
\(487\) −10302.2 5948.00i −0.958602 0.553449i −0.0628592 0.998022i \(-0.520022\pi\)
−0.895742 + 0.444574i \(0.853355\pi\)
\(488\) −7129.12 + 4116.00i −0.661312 + 0.381809i
\(489\) −2456.00 −0.227125
\(490\) 0 0
\(491\) −12276.0 −1.12833 −0.564163 0.825663i \(-0.690801\pi\)
−0.564163 + 0.825663i \(0.690801\pi\)
\(492\) 337.750 195.000i 0.0309491 0.0178685i
\(493\) −7575.99 4374.00i −0.692100 0.399584i
\(494\) −10708.5 + 18547.7i −0.975300 + 1.68927i
\(495\) 0 0
\(496\) 6248.00 0.565612
\(497\) −581.969 + 672.000i −0.0525249 + 0.0606505i
\(498\) 4608.00i 0.414637i
\(499\) −5438.00 9418.89i −0.487852 0.844985i 0.512050 0.858956i \(-0.328886\pi\)
−0.999902 + 0.0139706i \(0.995553\pi\)
\(500\) 0 0
\(501\) −1929.00 + 3341.13i −0.172019 + 0.297945i
\(502\) −18355.4 + 10597.5i −1.63196 + 0.942210i
\(503\) 12000.0i 1.06372i 0.846831 + 0.531862i \(0.178508\pi\)
−0.846831 + 0.531862i \(0.821492\pi\)
\(504\) 1690.50 8784.10i 0.149406 0.776339i
\(505\) 0 0
\(506\) 4657.50 + 8067.03i 0.409192 + 0.708741i
\(507\) −2223.95 1284.00i −0.194811 0.112474i
\(508\) −695.418 401.500i −0.0607366 0.0350663i
\(509\) −5841.00 10116.9i −0.508640 0.880990i −0.999950 0.0100055i \(-0.996815\pi\)
0.491310 0.870985i \(-0.336518\pi\)
\(510\) 0 0
\(511\) 11690.0 4049.53i 1.01201 0.350569i
\(512\) 8733.00i 0.753804i
\(513\) −10478.9 + 6050.00i −0.901862 + 0.520690i
\(514\) −6120.00 + 10600.2i −0.525178 + 0.909635i
\(515\) 0 0
\(516\) −286.000 495.367i −0.0244001 0.0422622i
\(517\) 2025.00i 0.172262i
\(518\) −4710.31 13597.5i −0.399535 1.15336i
\(519\) −1398.00 −0.118238
\(520\) 0 0
\(521\) −4804.50 + 8321.64i −0.404010 + 0.699765i −0.994206 0.107495i \(-0.965717\pi\)
0.590196 + 0.807260i \(0.299050\pi\)
\(522\) 9680.43 + 5589.00i 0.811688 + 0.468628i
\(523\) 18349.3 10594.0i 1.53415 0.885742i 0.534987 0.844860i \(-0.320317\pi\)
0.999164 0.0408820i \(-0.0130168\pi\)
\(524\) −2019.00 −0.168321
\(525\) 0 0
\(526\) −9864.00 −0.817663
\(527\) −4115.35 + 2376.00i −0.340166 + 0.196395i
\(528\) 5533.90 + 3195.00i 0.456122 + 0.263342i
\(529\) −3703.00 + 6413.78i −0.304348 + 0.527146i
\(530\) 0 0
\(531\) 8280.00 0.676688
\(532\) 1467.05 1694.00i 0.119557 0.138053i
\(533\) 11505.0i 0.934966i
\(534\) 3582.00 + 6204.21i 0.290278 + 0.502776i
\(535\) 0 0
\(536\) −2940.00 + 5092.23i −0.236919 + 0.410356i
\(537\) 5398.80 3117.00i 0.433846 0.250481i
\(538\) 9792.00i 0.784690i
\(539\) −14332.5 5728.76i −1.14535 0.457802i
\(540\) 0 0
\(541\) −4036.00 6990.56i −0.320742 0.555541i 0.659900 0.751354i \(-0.270599\pi\)
−0.980641 + 0.195813i \(0.937265\pi\)
\(542\) −7149.91 4128.00i −0.566632 0.327145i
\(543\) −3114.23 1798.00i −0.246122 0.142099i
\(544\) 1215.00 + 2104.44i 0.0957586 + 0.165859i
\(545\) 0 0
\(546\) 4956.00 + 4292.02i 0.388456 + 0.336413i
\(547\) 344.000i 0.0268892i −0.999910 0.0134446i \(-0.995720\pi\)
0.999910 0.0134446i \(-0.00427967\pi\)
\(548\) 51.9615 30.0000i 0.00405052 0.00233857i
\(549\) −4508.00 + 7808.09i −0.350449 + 0.606996i
\(550\) 0 0
\(551\) −9801.00 16975.8i −0.757780 1.31251i
\(552\) 2898.00i 0.223455i
\(553\) −14221.9 2737.00i −1.09363 0.210468i
\(554\) 14070.0 1.07902
\(555\) 0 0
\(556\) 854.000 1479.17i 0.0651397 0.112825i
\(557\) 15902.8 + 9181.50i 1.20974 + 0.698443i 0.962702 0.270563i \(-0.0872100\pi\)
0.247036 + 0.969006i \(0.420543\pi\)
\(558\) 5258.51 3036.00i 0.398943 0.230330i
\(559\) 16874.0 1.27673
\(560\) 0 0
\(561\) −4860.00 −0.365756
\(562\) −20319.6 + 11731.5i −1.52514 + 0.880540i
\(563\) 5450.76 + 3147.00i 0.408033 + 0.235578i 0.689944 0.723863i \(-0.257635\pi\)
−0.281912 + 0.959440i \(0.590968\pi\)
\(564\) −45.0000 + 77.9423i −0.00335965 + 0.00581908i
\(565\) 0 0
\(566\) −1974.00 −0.146596
\(567\) −2552.18 7367.50i −0.189032 0.545689i
\(568\) 1008.00i 0.0744626i
\(569\) 5866.50 + 10161.1i 0.432226 + 0.748637i 0.997065 0.0765642i \(-0.0243950\pi\)
−0.564839 + 0.825201i \(0.691062\pi\)
\(570\) 0 0
\(571\) −526.000 + 911.059i −0.0385506 + 0.0667717i −0.884657 0.466242i \(-0.845607\pi\)
0.846106 + 0.533014i \(0.178941\pi\)
\(572\) 2299.30 1327.50i 0.168074 0.0970377i
\(573\) 4776.00i 0.348203i
\(574\) 2047.50 10639.1i 0.148887 0.773638i
\(575\) 0 0
\(576\) 4979.50 + 8624.75i 0.360207 + 0.623897i
\(577\) −11393.4 6578.00i −0.822036 0.474603i 0.0290821 0.999577i \(-0.490742\pi\)
−0.851118 + 0.524974i \(0.824075\pi\)
\(578\) 5188.36 + 2995.50i 0.373369 + 0.215565i
\(579\) −272.000 471.118i −0.0195232 0.0338152i
\(580\) 0 0
\(581\) −10752.0 9311.51i −0.767759 0.664899i
\(582\) 5412.00i 0.385455i
\(583\) −23265.8 + 13432.5i −1.65278 + 0.954232i
\(584\) −7014.00 + 12148.6i −0.496989 + 0.860810i
\(585\) 0 0
\(586\) 8995.50 + 15580.7i 0.634131 + 1.09835i
\(587\) 13368.0i 0.939960i 0.882677 + 0.469980i \(0.155739\pi\)
−0.882677 + 0.469980i \(0.844261\pi\)
\(588\) −424.352 539.000i −0.0297619 0.0378027i
\(589\) −10648.0 −0.744895
\(590\) 0 0
\(591\) −2109.00 + 3652.90i −0.146790 + 0.254247i
\(592\) 15925.3 + 9194.50i 1.10562 + 0.638330i
\(593\) 23091.7 13332.0i 1.59909 0.923237i 0.607431 0.794372i \(-0.292200\pi\)
0.991662 0.128865i \(-0.0411334\pi\)
\(594\) 13500.0 0.932511
\(595\) 0 0
\(596\) −1086.00 −0.0746381
\(597\) 2466.44 1424.00i 0.169087 0.0976222i
\(598\) −10576.8 6106.50i −0.723271 0.417581i
\(599\) 3807.00 6593.92i 0.259682 0.449783i −0.706474 0.707739i \(-0.749715\pi\)
0.966157 + 0.257955i \(0.0830488\pi\)
\(600\) 0 0
\(601\) 6410.00 0.435057 0.217529 0.976054i \(-0.430200\pi\)
0.217529 + 0.976054i \(0.430200\pi\)
\(602\) −15604.0 3003.00i −1.05643 0.203311i
\(603\) 6440.00i 0.434921i
\(604\) −1433.00 2482.03i −0.0965363 0.167206i
\(605\) 0 0
\(606\) 2052.00 3554.17i 0.137552 0.238248i
\(607\) 18592.7 10734.5i 1.24325 0.717792i 0.273498 0.961873i \(-0.411819\pi\)
0.969755 + 0.244080i \(0.0784861\pi\)
\(608\) 5445.00i 0.363197i
\(609\) −5670.00 + 1964.15i −0.377274 + 0.130692i
\(610\) 0 0
\(611\) −1327.50 2299.30i −0.0878967 0.152242i
\(612\) 1075.60 + 621.000i 0.0710436 + 0.0410171i
\(613\) −3236.34 1868.50i −0.213237 0.123113i 0.389578 0.920994i \(-0.372621\pi\)
−0.602815 + 0.797881i \(0.705954\pi\)
\(614\) −9339.00 16175.6i −0.613830 1.06318i
\(615\) 0 0
\(616\) 16537.5 5728.76i 1.08168 0.374705i
\(617\) 18078.0i 1.17957i −0.807561 0.589784i \(-0.799213\pi\)
0.807561 0.589784i \(-0.200787\pi\)
\(618\) 7877.37 4548.00i 0.512741 0.296031i
\(619\) 6143.50 10640.9i 0.398915 0.690940i −0.594678 0.803964i \(-0.702720\pi\)
0.993592 + 0.113024i \(0.0360537\pi\)
\(620\) 0 0
\(621\) −3450.00 5975.58i −0.222937 0.386138i
\(622\) 14040.0i 0.905069i
\(623\) 21714.7 + 4179.00i 1.39644 + 0.268745i
\(624\) −8378.00 −0.537481
\(625\) 0 0
\(626\) −1542.00 + 2670.82i −0.0984516 + 0.170523i
\(627\) −9431.02 5445.00i −0.600699 0.346814i
\(628\) −198.320 + 114.500i −0.0126016 + 0.00727555i
\(629\) −13986.0 −0.886579
\(630\) 0 0
\(631\) −9580.00 −0.604396 −0.302198 0.953245i \(-0.597720\pi\)
−0.302198 + 0.953245i \(0.597720\pi\)
\(632\) 14221.9 8211.00i 0.895120 0.516798i
\(633\) −6278.68 3625.00i −0.394242 0.227616i
\(634\) 12933.0 22400.6i 0.810150 1.40322i
\(635\) 0 0
\(636\) −1194.00 −0.0744421
\(637\) 20029.4 2891.00i 1.24583 0.179820i
\(638\) 21870.0i 1.35712i
\(639\) −552.000 956.092i −0.0341734 0.0591900i
\(640\) 0 0
\(641\) −5389.50 + 9334.89i −0.332094 + 0.575204i −0.982922 0.184021i \(-0.941089\pi\)
0.650828 + 0.759225i \(0.274422\pi\)
\(642\) −3803.58 + 2196.00i −0.233825 + 0.134999i
\(643\) 8882.00i 0.544746i 0.962192 + 0.272373i \(0.0878085\pi\)
−0.962192 + 0.272373i \(0.912191\pi\)
\(644\) 966.000 + 836.581i 0.0591083 + 0.0511893i
\(645\) 0 0
\(646\) −9801.00 16975.8i −0.596928 1.03391i
\(647\) −9542.73 5509.50i −0.579851 0.334777i 0.181223 0.983442i \(-0.441994\pi\)
−0.761074 + 0.648665i \(0.775328\pi\)
\(648\) 7656.53 + 4420.50i 0.464162 + 0.267984i
\(649\) 8100.00 + 14029.6i 0.489912 + 0.848552i
\(650\) 0 0
\(651\) −616.000 + 3200.83i −0.0370859 + 0.192704i
\(652\) 1228.00i 0.0737610i
\(653\) 19332.3 11161.5i 1.15855 0.668887i 0.207591 0.978216i \(-0.433438\pi\)
0.950955 + 0.309329i \(0.100104\pi\)
\(654\) 4800.00 8313.84i 0.286995 0.497090i
\(655\) 0 0
\(656\) 6922.50 + 11990.1i 0.412009 + 0.713621i
\(657\) 15364.0i 0.912339i
\(658\) 818.394 + 2362.50i 0.0484868 + 0.139969i
\(659\) 11856.0 0.700826 0.350413 0.936595i \(-0.386041\pi\)
0.350413 + 0.936595i \(0.386041\pi\)
\(660\) 0 0
\(661\) 16622.0 28790.1i 0.978095 1.69411i 0.308777 0.951134i \(-0.400080\pi\)
0.669318 0.742976i \(-0.266586\pi\)
\(662\) −5193.55 2998.50i −0.304914 0.176042i
\(663\) 5518.31 3186.00i 0.323248 0.186627i
\(664\) 16128.0 0.942602
\(665\) 0 0
\(666\) 17871.0 1.03977
\(667\) 9680.43 5589.00i 0.561961 0.324448i
\(668\) 1670.56 + 964.500i 0.0967605 + 0.0558647i
\(669\) 4960.00 8590.97i 0.286644 0.496482i
\(670\) 0 0
\(671\) −17640.0 −1.01488
\(672\) 1636.79 + 315.000i 0.0939590 + 0.0180824i
\(673\) 12322.0i 0.705763i −0.935668 0.352881i \(-0.885202\pi\)
0.935668 0.352881i \(-0.114798\pi\)
\(674\) 7671.00 + 13286.6i 0.438392 + 0.759316i
\(675\) 0 0
\(676\) −642.000 + 1111.98i −0.0365271 + 0.0632668i
\(677\) 10909.3 6298.50i 0.619320 0.357564i −0.157285 0.987553i \(-0.550274\pi\)
0.776604 + 0.629989i \(0.216941\pi\)
\(678\) 8352.00i 0.473092i
\(679\) 12628.0 + 10936.2i 0.713723 + 0.618103i
\(680\) 0 0
\(681\) −1500.00 2598.08i −0.0844055 0.146195i
\(682\) 10288.4 + 5940.00i 0.577658 + 0.333511i
\(683\) 7222.65 + 4170.00i 0.404637 + 0.233617i 0.688483 0.725253i \(-0.258277\pi\)
−0.283846 + 0.958870i \(0.591610\pi\)
\(684\) 1391.50 + 2410.15i 0.0777856 + 0.134729i
\(685\) 0 0
\(686\) −19036.5 891.140i −1.05950 0.0495975i
\(687\) 12184.0i 0.676636i
\(688\) 17585.5 10153.0i 0.974479 0.562616i
\(689\) 17611.5 30504.0i 0.973795 1.68666i
\(690\) 0 0
\(691\) 10100.0 + 17493.7i 0.556038 + 0.963086i 0.997822 + 0.0659643i \(0.0210124\pi\)
−0.441784 + 0.897121i \(0.645654\pi\)
\(692\) 699.000i 0.0383988i
\(693\) 12548.7 14490.0i 0.687859 0.794271i
\(694\) −12960.0 −0.708869
\(695\) 0 0
\(696\) 3402.00 5892.44i 0.185277 0.320908i
\(697\) −9119.25 5265.00i −0.495576 0.286121i
\(698\) 20582.0 11883.0i 1.11610 0.644381i
\(699\) 276.000 0.0149346
\(700\) 0 0
\(701\) 474.000 0.0255388 0.0127694 0.999918i \(-0.495935\pi\)
0.0127694 + 0.999918i \(0.495935\pi\)
\(702\) −15328.6 + 8850.00i −0.824135 + 0.475814i
\(703\) −27140.4 15669.5i −1.45607 0.840663i
\(704\) −9742.50 + 16874.5i −0.521569 + 0.903383i
\(705\) 0 0
\(706\) 2484.00 0.132417
\(707\) −4146.53 11970.0i −0.220575 0.636744i
\(708\) 720.000i 0.0382193i
\(709\) −12563.0 21759.8i −0.665463 1.15262i −0.979160 0.203093i \(-0.934901\pi\)
0.313696 0.949523i \(-0.398433\pi\)
\(710\) 0 0
\(711\) 8993.00 15576.3i 0.474351 0.821601i
\(712\) −21714.7 + 12537.0i −1.14297 + 0.659893i
\(713\) 6072.00i 0.318932i
\(714\) −5670.00 + 1964.15i −0.297191 + 0.102950i
\(715\) 0 0
\(716\) −1558.50 2699.40i −0.0813462 0.140896i
\(717\) 9529.74 + 5502.00i 0.496367 + 0.286577i
\(718\) 3507.40 + 2025.00i 0.182305 + 0.105254i
\(719\) −3648.00 6318.52i −0.189218 0.327734i 0.755772 0.654835i \(-0.227262\pi\)
−0.944990 + 0.327100i \(0.893928\pi\)
\(720\) 0 0
\(721\) 5306.00 27570.8i 0.274072 1.42412i
\(722\) 23346.0i 1.20339i
\(723\) −6150.51 + 3551.00i −0.316376 + 0.182660i
\(724\) −899.000 + 1557.11i −0.0461479 + 0.0799305i
\(725\) 0 0
\(726\) 2082.00 + 3606.13i 0.106433 + 0.184347i
\(727\) 15421.0i 0.786703i 0.919388 + 0.393352i \(0.128684\pi\)
−0.919388 + 0.393352i \(0.871316\pi\)
\(728\) −15022.1 + 17346.0i −0.764774 + 0.883085i
\(729\) 4283.00 0.217599
\(730\) 0 0
\(731\) −7722.00 + 13374.9i −0.390709 + 0.676728i
\(732\) −678.964 392.000i −0.0342831 0.0197934i
\(733\) −25259.4 + 14583.5i −1.27282 + 0.734862i −0.975517 0.219922i \(-0.929420\pi\)
−0.297301 + 0.954784i \(0.596086\pi\)
\(734\) −8403.00 −0.422562
\(735\) 0 0
\(736\) −3105.00 −0.155505
\(737\) −10911.9 + 6300.00i −0.545381 + 0.314876i
\(738\) 11652.4 + 6727.50i 0.581206 + 0.335559i
\(739\) −6690.50 + 11588.3i −0.333037 + 0.576836i −0.983106 0.183039i \(-0.941407\pi\)
0.650069 + 0.759875i \(0.274740\pi\)
\(740\) 0 0
\(741\) 14278.0 0.707848
\(742\) −21714.7 + 25074.0i −1.07436 + 1.24056i
\(743\) 5487.00i 0.270927i 0.990782 + 0.135463i \(0.0432523\pi\)
−0.990782 + 0.135463i \(0.956748\pi\)
\(744\) −1848.00 3200.83i −0.0910631 0.157726i
\(745\) 0 0
\(746\) −9903.00 + 17152.5i −0.486025 + 0.841820i
\(747\) 15297.5 8832.00i 0.749271 0.432592i
\(748\) 2430.00i 0.118783i
\(749\) −2562.00 + 13312.5i −0.124985 + 0.649439i
\(750\) 0 0
\(751\) −3319.00 5748.68i −0.161268 0.279324i 0.774056 0.633117i \(-0.218225\pi\)
−0.935324 + 0.353793i \(0.884892\pi\)
\(752\) −2766.95 1597.50i −0.134176 0.0774665i
\(753\) 12236.9 + 7065.00i 0.592216 + 0.341916i
\(754\) −14337.0 24832.4i −0.692470 1.19939i
\(755\) 0 0
\(756\) 1750.00 606.218i 0.0841890 0.0291639i
\(757\) 14846.0i 0.712797i −0.934334 0.356398i \(-0.884005\pi\)
0.934334 0.356398i \(-0.115995\pi\)
\(758\) −21577.0 + 12457.5i −1.03392 + 0.596935i
\(759\) 3105.00 5378.02i 0.148491 0.257193i
\(760\) 0 0
\(761\) 1825.50 + 3161.86i 0.0869571 + 0.150614i 0.906223 0.422799i \(-0.138952\pi\)
−0.819266 + 0.573413i \(0.805619\pi\)
\(762\) 4818.00i 0.229052i
\(763\) −9699.48 28000.0i −0.460216 1.32853i
\(764\) 2388.00 0.113082
\(765\) 0 0
\(766\) −1417.50 + 2455.18i −0.0668621 + 0.115809i
\(767\) −18394.4 10620.0i −0.865949 0.499956i
\(768\) −2620.59 + 1513.00i −0.123128 + 0.0710881i
\(769\) −29855.0 −1.40000 −0.699999 0.714144i \(-0.746816\pi\)
−0.699999 + 0.714144i \(0.746816\pi\)
\(770\) 0 0
\(771\) 8160.00 0.381161
\(772\) −235.559 + 136.000i −0.0109818 + 0.00634035i
\(773\) 5645.62 + 3259.50i 0.262689 + 0.151664i 0.625561 &