Properties

Label 175.4.k.a
Level $175$
Weight $4$
Character orbit 175.k
Analytic conductor $10.325$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(74,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.74");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.k (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 7)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \zeta_{12} q^{2} + ( - 7 \zeta_{12}^{3} + 7 \zeta_{12}) q^{3} - 4 \zeta_{12}^{2} q^{4} + 14 q^{6} + ( - 7 \zeta_{12}^{3} - 14 \zeta_{12}) q^{7} - 24 \zeta_{12}^{3} q^{8} + ( - 22 \zeta_{12}^{2} + 22) q^{9} + \cdots + 110 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{4} + 56 q^{6} + 44 q^{9} + 10 q^{11} - 28 q^{14} + 32 q^{16} + 98 q^{19} - 490 q^{21} - 336 q^{24} + 56 q^{26} - 232 q^{29} - 294 q^{31} + 168 q^{34} - 352 q^{36} - 196 q^{39} + 1400 q^{41} + 40 q^{44}+ \cdots + 440 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1 + \zeta_{12}^{2}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
74.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
−1.73205 + 1.00000i −6.06218 3.50000i −2.00000 + 3.46410i 0 14.0000 12.1244 14.0000i 24.0000i 11.0000 + 19.0526i 0
74.2 1.73205 1.00000i 6.06218 + 3.50000i −2.00000 + 3.46410i 0 14.0000 −12.1244 + 14.0000i 24.0000i 11.0000 + 19.0526i 0
149.1 −1.73205 1.00000i −6.06218 + 3.50000i −2.00000 3.46410i 0 14.0000 12.1244 + 14.0000i 24.0000i 11.0000 19.0526i 0
149.2 1.73205 + 1.00000i 6.06218 3.50000i −2.00000 3.46410i 0 14.0000 −12.1244 14.0000i 24.0000i 11.0000 19.0526i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
7.c even 3 1 inner
35.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 175.4.k.a 4
5.b even 2 1 inner 175.4.k.a 4
5.c odd 4 1 7.4.c.a 2
5.c odd 4 1 175.4.e.a 2
7.c even 3 1 inner 175.4.k.a 4
15.e even 4 1 63.4.e.b 2
20.e even 4 1 112.4.i.c 2
35.f even 4 1 49.4.c.a 2
35.j even 6 1 inner 175.4.k.a 4
35.k even 12 1 49.4.a.c 1
35.k even 12 1 49.4.c.a 2
35.k even 12 1 1225.4.a.d 1
35.l odd 12 1 7.4.c.a 2
35.l odd 12 1 49.4.a.d 1
35.l odd 12 1 175.4.e.a 2
35.l odd 12 1 1225.4.a.c 1
40.i odd 4 1 448.4.i.f 2
40.k even 4 1 448.4.i.a 2
105.k odd 4 1 441.4.e.k 2
105.w odd 12 1 441.4.a.e 1
105.w odd 12 1 441.4.e.k 2
105.x even 12 1 63.4.e.b 2
105.x even 12 1 441.4.a.d 1
140.w even 12 1 112.4.i.c 2
140.w even 12 1 784.4.a.b 1
140.x odd 12 1 784.4.a.r 1
280.br even 12 1 448.4.i.a 2
280.bt odd 12 1 448.4.i.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7.4.c.a 2 5.c odd 4 1
7.4.c.a 2 35.l odd 12 1
49.4.a.c 1 35.k even 12 1
49.4.a.d 1 35.l odd 12 1
49.4.c.a 2 35.f even 4 1
49.4.c.a 2 35.k even 12 1
63.4.e.b 2 15.e even 4 1
63.4.e.b 2 105.x even 12 1
112.4.i.c 2 20.e even 4 1
112.4.i.c 2 140.w even 12 1
175.4.e.a 2 5.c odd 4 1
175.4.e.a 2 35.l odd 12 1
175.4.k.a 4 1.a even 1 1 trivial
175.4.k.a 4 5.b even 2 1 inner
175.4.k.a 4 7.c even 3 1 inner
175.4.k.a 4 35.j even 6 1 inner
441.4.a.d 1 105.x even 12 1
441.4.a.e 1 105.w odd 12 1
441.4.e.k 2 105.k odd 4 1
441.4.e.k 2 105.w odd 12 1
448.4.i.a 2 40.k even 4 1
448.4.i.a 2 280.br even 12 1
448.4.i.f 2 40.i odd 4 1
448.4.i.f 2 280.bt odd 12 1
784.4.a.b 1 140.w even 12 1
784.4.a.r 1 140.x odd 12 1
1225.4.a.c 1 35.l odd 12 1
1225.4.a.d 1 35.k even 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 4T_{2}^{2} + 16 \) acting on \(S_{4}^{\mathrm{new}}(175, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$3$ \( T^{4} - 49T^{2} + 2401 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 98 T^{2} + 117649 \) Copy content Toggle raw display
$11$ \( (T^{2} - 5 T + 25)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 196)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 441 T^{2} + 194481 \) Copy content Toggle raw display
$19$ \( (T^{2} - 49 T + 2401)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 25281 T^{2} + 639128961 \) Copy content Toggle raw display
$29$ \( (T + 58)^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} + 147 T + 21609)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 2300257521 \) Copy content Toggle raw display
$41$ \( (T - 350)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + 15376)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 75969140625 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 8428892481 \) Copy content Toggle raw display
$59$ \( (T^{2} + 105 T + 11025)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 413 T + 170569)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 29661450625 \) Copy content Toggle raw display
$71$ \( (T + 432)^{4} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 1534548635361 \) Copy content Toggle raw display
$79$ \( (T^{2} + 103 T + 10609)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 1192464)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 329 T + 108241)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 777924)^{2} \) Copy content Toggle raw display
show more
show less