Properties

Label 175.4.e.b.151.1
Level $175$
Weight $4$
Character 175.151
Analytic conductor $10.325$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(51,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.51");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 151.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 175.151
Dual form 175.4.e.b.51.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 + 2.59808i) q^{2} +(-1.00000 + 1.73205i) q^{3} +(-0.500000 + 0.866025i) q^{4} -6.00000 q^{6} +(14.0000 + 12.1244i) q^{7} +21.0000 q^{8} +(11.5000 + 19.9186i) q^{9} +O(q^{10})\) \(q+(1.50000 + 2.59808i) q^{2} +(-1.00000 + 1.73205i) q^{3} +(-0.500000 + 0.866025i) q^{4} -6.00000 q^{6} +(14.0000 + 12.1244i) q^{7} +21.0000 q^{8} +(11.5000 + 19.9186i) q^{9} +(22.5000 - 38.9711i) q^{11} +(-1.00000 - 1.73205i) q^{12} -59.0000 q^{13} +(-10.5000 + 54.5596i) q^{14} +(35.5000 + 61.4878i) q^{16} +(-27.0000 + 46.7654i) q^{17} +(-34.5000 + 59.7558i) q^{18} +(60.5000 + 104.789i) q^{19} +(-35.0000 + 12.1244i) q^{21} +135.000 q^{22} +(34.5000 + 59.7558i) q^{23} +(-21.0000 + 36.3731i) q^{24} +(-88.5000 - 153.286i) q^{26} -100.000 q^{27} +(-17.5000 + 6.06218i) q^{28} -162.000 q^{29} +(44.0000 - 76.2102i) q^{31} +(-22.5000 + 38.9711i) q^{32} +(45.0000 + 77.9423i) q^{33} -162.000 q^{34} -23.0000 q^{36} +(-129.500 - 224.301i) q^{37} +(-181.500 + 314.367i) q^{38} +(59.0000 - 102.191i) q^{39} +195.000 q^{41} +(-84.0000 - 72.7461i) q^{42} +286.000 q^{43} +(22.5000 + 38.9711i) q^{44} +(-103.500 + 179.267i) q^{46} +(22.5000 + 38.9711i) q^{47} -142.000 q^{48} +(49.0000 + 339.482i) q^{49} +(-54.0000 - 93.5307i) q^{51} +(29.5000 - 51.0955i) q^{52} +(298.500 - 517.017i) q^{53} +(-150.000 - 259.808i) q^{54} +(294.000 + 254.611i) q^{56} -242.000 q^{57} +(-243.000 - 420.888i) q^{58} +(180.000 - 311.769i) q^{59} +(-196.000 - 339.482i) q^{61} +264.000 q^{62} +(-80.5000 + 418.290i) q^{63} +433.000 q^{64} +(-135.000 + 233.827i) q^{66} +(-140.000 + 242.487i) q^{67} +(-27.0000 - 46.7654i) q^{68} -138.000 q^{69} +48.0000 q^{71} +(241.500 + 418.290i) q^{72} +(334.000 - 578.505i) q^{73} +(388.500 - 672.902i) q^{74} -121.000 q^{76} +(787.500 - 272.798i) q^{77} +354.000 q^{78} +(-391.000 - 677.232i) q^{79} +(-210.500 + 364.597i) q^{81} +(292.500 + 506.625i) q^{82} -768.000 q^{83} +(7.00000 - 36.3731i) q^{84} +(429.000 + 743.050i) q^{86} +(162.000 - 280.592i) q^{87} +(472.500 - 818.394i) q^{88} +(597.000 + 1034.03i) q^{89} +(-826.000 - 715.337i) q^{91} -69.0000 q^{92} +(88.0000 + 152.420i) q^{93} +(-67.5000 + 116.913i) q^{94} +(-45.0000 - 77.9423i) q^{96} -902.000 q^{97} +(-808.500 + 636.529i) q^{98} +1035.00 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{2} - 2 q^{3} - q^{4} - 12 q^{6} + 28 q^{7} + 42 q^{8} + 23 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 3 q^{2} - 2 q^{3} - q^{4} - 12 q^{6} + 28 q^{7} + 42 q^{8} + 23 q^{9} + 45 q^{11} - 2 q^{12} - 118 q^{13} - 21 q^{14} + 71 q^{16} - 54 q^{17} - 69 q^{18} + 121 q^{19} - 70 q^{21} + 270 q^{22} + 69 q^{23} - 42 q^{24} - 177 q^{26} - 200 q^{27} - 35 q^{28} - 324 q^{29} + 88 q^{31} - 45 q^{32} + 90 q^{33} - 324 q^{34} - 46 q^{36} - 259 q^{37} - 363 q^{38} + 118 q^{39} + 390 q^{41} - 168 q^{42} + 572 q^{43} + 45 q^{44} - 207 q^{46} + 45 q^{47} - 284 q^{48} + 98 q^{49} - 108 q^{51} + 59 q^{52} + 597 q^{53} - 300 q^{54} + 588 q^{56} - 484 q^{57} - 486 q^{58} + 360 q^{59} - 392 q^{61} + 528 q^{62} - 161 q^{63} + 866 q^{64} - 270 q^{66} - 280 q^{67} - 54 q^{68} - 276 q^{69} + 96 q^{71} + 483 q^{72} + 668 q^{73} + 777 q^{74} - 242 q^{76} + 1575 q^{77} + 708 q^{78} - 782 q^{79} - 421 q^{81} + 585 q^{82} - 1536 q^{83} + 14 q^{84} + 858 q^{86} + 324 q^{87} + 945 q^{88} + 1194 q^{89} - 1652 q^{91} - 138 q^{92} + 176 q^{93} - 135 q^{94} - 90 q^{96} - 1804 q^{97} - 1617 q^{98} + 2070 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.50000 + 2.59808i 0.530330 + 0.918559i 0.999374 + 0.0353837i \(0.0112653\pi\)
−0.469044 + 0.883175i \(0.655401\pi\)
\(3\) −1.00000 + 1.73205i −0.192450 + 0.333333i −0.946062 0.323987i \(-0.894977\pi\)
0.753612 + 0.657320i \(0.228310\pi\)
\(4\) −0.500000 + 0.866025i −0.0625000 + 0.108253i
\(5\) 0 0
\(6\) −6.00000 −0.408248
\(7\) 14.0000 + 12.1244i 0.755929 + 0.654654i
\(8\) 21.0000 0.928078
\(9\) 11.5000 + 19.9186i 0.425926 + 0.737725i
\(10\) 0 0
\(11\) 22.5000 38.9711i 0.616728 1.06820i −0.373351 0.927690i \(-0.621791\pi\)
0.990079 0.140514i \(-0.0448754\pi\)
\(12\) −1.00000 1.73205i −0.0240563 0.0416667i
\(13\) −59.0000 −1.25874 −0.629371 0.777105i \(-0.716688\pi\)
−0.629371 + 0.777105i \(0.716688\pi\)
\(14\) −10.5000 + 54.5596i −0.200446 + 1.04155i
\(15\) 0 0
\(16\) 35.5000 + 61.4878i 0.554688 + 0.960747i
\(17\) −27.0000 + 46.7654i −0.385204 + 0.667192i −0.991797 0.127820i \(-0.959202\pi\)
0.606594 + 0.795012i \(0.292535\pi\)
\(18\) −34.5000 + 59.7558i −0.451763 + 0.782476i
\(19\) 60.5000 + 104.789i 0.730508 + 1.26528i 0.956666 + 0.291186i \(0.0940500\pi\)
−0.226158 + 0.974091i \(0.572617\pi\)
\(20\) 0 0
\(21\) −35.0000 + 12.1244i −0.363696 + 0.125988i
\(22\) 135.000 1.30828
\(23\) 34.5000 + 59.7558i 0.312772 + 0.541736i 0.978961 0.204046i \(-0.0654092\pi\)
−0.666190 + 0.745782i \(0.732076\pi\)
\(24\) −21.0000 + 36.3731i −0.178609 + 0.309359i
\(25\) 0 0
\(26\) −88.5000 153.286i −0.667549 1.15623i
\(27\) −100.000 −0.712778
\(28\) −17.5000 + 6.06218i −0.118114 + 0.0409159i
\(29\) −162.000 −1.03733 −0.518666 0.854977i \(-0.673571\pi\)
−0.518666 + 0.854977i \(0.673571\pi\)
\(30\) 0 0
\(31\) 44.0000 76.2102i 0.254924 0.441541i −0.709951 0.704251i \(-0.751283\pi\)
0.964875 + 0.262710i \(0.0846163\pi\)
\(32\) −22.5000 + 38.9711i −0.124296 + 0.215287i
\(33\) 45.0000 + 77.9423i 0.237379 + 0.411152i
\(34\) −162.000 −0.817140
\(35\) 0 0
\(36\) −23.0000 −0.106481
\(37\) −129.500 224.301i −0.575396 0.996616i −0.995998 0.0893706i \(-0.971514\pi\)
0.420602 0.907245i \(-0.361819\pi\)
\(38\) −181.500 + 314.367i −0.774821 + 1.34203i
\(39\) 59.0000 102.191i 0.242245 0.419581i
\(40\) 0 0
\(41\) 195.000 0.742778 0.371389 0.928477i \(-0.378882\pi\)
0.371389 + 0.928477i \(0.378882\pi\)
\(42\) −84.0000 72.7461i −0.308607 0.267261i
\(43\) 286.000 1.01429 0.507146 0.861860i \(-0.330700\pi\)
0.507146 + 0.861860i \(0.330700\pi\)
\(44\) 22.5000 + 38.9711i 0.0770910 + 0.133525i
\(45\) 0 0
\(46\) −103.500 + 179.267i −0.331744 + 0.574598i
\(47\) 22.5000 + 38.9711i 0.0698290 + 0.120947i 0.898826 0.438306i \(-0.144421\pi\)
−0.828997 + 0.559253i \(0.811088\pi\)
\(48\) −142.000 −0.426999
\(49\) 49.0000 + 339.482i 0.142857 + 0.989743i
\(50\) 0 0
\(51\) −54.0000 93.5307i −0.148265 0.256802i
\(52\) 29.5000 51.0955i 0.0786714 0.136263i
\(53\) 298.500 517.017i 0.773625 1.33996i −0.161939 0.986801i \(-0.551775\pi\)
0.935564 0.353157i \(-0.114892\pi\)
\(54\) −150.000 259.808i −0.378008 0.654729i
\(55\) 0 0
\(56\) 294.000 + 254.611i 0.701561 + 0.607569i
\(57\) −242.000 −0.562345
\(58\) −243.000 420.888i −0.550129 0.952851i
\(59\) 180.000 311.769i 0.397187 0.687947i −0.596191 0.802843i \(-0.703320\pi\)
0.993378 + 0.114895i \(0.0366533\pi\)
\(60\) 0 0
\(61\) −196.000 339.482i −0.411397 0.712561i 0.583646 0.812009i \(-0.301626\pi\)
−0.995043 + 0.0994477i \(0.968292\pi\)
\(62\) 264.000 0.540775
\(63\) −80.5000 + 418.290i −0.160985 + 0.836502i
\(64\) 433.000 0.845703
\(65\) 0 0
\(66\) −135.000 + 233.827i −0.251778 + 0.436092i
\(67\) −140.000 + 242.487i −0.255279 + 0.442157i −0.964971 0.262355i \(-0.915501\pi\)
0.709692 + 0.704512i \(0.248834\pi\)
\(68\) −27.0000 46.7654i −0.0481505 0.0833990i
\(69\) −138.000 −0.240772
\(70\) 0 0
\(71\) 48.0000 0.0802331 0.0401166 0.999195i \(-0.487227\pi\)
0.0401166 + 0.999195i \(0.487227\pi\)
\(72\) 241.500 + 418.290i 0.395292 + 0.684666i
\(73\) 334.000 578.505i 0.535503 0.927519i −0.463635 0.886026i \(-0.653455\pi\)
0.999139 0.0414929i \(-0.0132114\pi\)
\(74\) 388.500 672.902i 0.610300 1.05707i
\(75\) 0 0
\(76\) −121.000 −0.182627
\(77\) 787.500 272.798i 1.16551 0.403743i
\(78\) 354.000 0.513880
\(79\) −391.000 677.232i −0.556847 0.964488i −0.997757 0.0669365i \(-0.978678\pi\)
0.440910 0.897551i \(-0.354656\pi\)
\(80\) 0 0
\(81\) −210.500 + 364.597i −0.288752 + 0.500133i
\(82\) 292.500 + 506.625i 0.393917 + 0.682285i
\(83\) −768.000 −1.01565 −0.507825 0.861460i \(-0.669550\pi\)
−0.507825 + 0.861460i \(0.669550\pi\)
\(84\) 7.00000 36.3731i 0.00909241 0.0472456i
\(85\) 0 0
\(86\) 429.000 + 743.050i 0.537910 + 0.931687i
\(87\) 162.000 280.592i 0.199635 0.345778i
\(88\) 472.500 818.394i 0.572371 0.991376i
\(89\) 597.000 + 1034.03i 0.711032 + 1.23154i 0.964470 + 0.264192i \(0.0851054\pi\)
−0.253438 + 0.967352i \(0.581561\pi\)
\(90\) 0 0
\(91\) −826.000 715.337i −0.951520 0.824041i
\(92\) −69.0000 −0.0781929
\(93\) 88.0000 + 152.420i 0.0981202 + 0.169949i
\(94\) −67.5000 + 116.913i −0.0740648 + 0.128284i
\(95\) 0 0
\(96\) −45.0000 77.9423i −0.0478416 0.0828641i
\(97\) −902.000 −0.944167 −0.472084 0.881554i \(-0.656498\pi\)
−0.472084 + 0.881554i \(0.656498\pi\)
\(98\) −808.500 + 636.529i −0.833376 + 0.656113i
\(99\) 1035.00 1.05072
\(100\) 0 0
\(101\) −342.000 + 592.361i −0.336933 + 0.583586i −0.983854 0.178971i \(-0.942723\pi\)
0.646921 + 0.762557i \(0.276056\pi\)
\(102\) 162.000 280.592i 0.157259 0.272380i
\(103\) −758.000 1312.89i −0.725126 1.25595i −0.958922 0.283669i \(-0.908448\pi\)
0.233796 0.972286i \(-0.424885\pi\)
\(104\) −1239.00 −1.16821
\(105\) 0 0
\(106\) 1791.00 1.64111
\(107\) −366.000 633.931i −0.330678 0.572751i 0.651967 0.758247i \(-0.273944\pi\)
−0.982645 + 0.185496i \(0.940611\pi\)
\(108\) 50.0000 86.6025i 0.0445486 0.0771605i
\(109\) 800.000 1385.64i 0.702992 1.21762i −0.264420 0.964408i \(-0.585180\pi\)
0.967411 0.253210i \(-0.0814863\pi\)
\(110\) 0 0
\(111\) 518.000 0.442940
\(112\) −248.500 + 1291.24i −0.209652 + 1.08938i
\(113\) 1392.00 1.15883 0.579417 0.815031i \(-0.303280\pi\)
0.579417 + 0.815031i \(0.303280\pi\)
\(114\) −363.000 628.734i −0.298229 0.516547i
\(115\) 0 0
\(116\) 81.0000 140.296i 0.0648333 0.112295i
\(117\) −678.500 1175.20i −0.536131 0.928606i
\(118\) 1080.00 0.842560
\(119\) −945.000 + 327.358i −0.727966 + 0.252175i
\(120\) 0 0
\(121\) −347.000 601.022i −0.260706 0.451556i
\(122\) 588.000 1018.45i 0.436353 0.755785i
\(123\) −195.000 + 337.750i −0.142948 + 0.247593i
\(124\) 44.0000 + 76.2102i 0.0318655 + 0.0551926i
\(125\) 0 0
\(126\) −1207.50 + 418.290i −0.853751 + 0.295748i
\(127\) −803.000 −0.561061 −0.280530 0.959845i \(-0.590510\pi\)
−0.280530 + 0.959845i \(0.590510\pi\)
\(128\) 829.500 + 1436.74i 0.572798 + 0.992115i
\(129\) −286.000 + 495.367i −0.195201 + 0.338098i
\(130\) 0 0
\(131\) −1009.50 1748.51i −0.673286 1.16617i −0.976967 0.213391i \(-0.931549\pi\)
0.303681 0.952774i \(-0.401784\pi\)
\(132\) −90.0000 −0.0593447
\(133\) −423.500 + 2200.57i −0.276106 + 1.43469i
\(134\) −840.000 −0.541529
\(135\) 0 0
\(136\) −567.000 + 982.073i −0.357499 + 0.619206i
\(137\) 30.0000 51.9615i 0.0187086 0.0324042i −0.856520 0.516115i \(-0.827378\pi\)
0.875228 + 0.483710i \(0.160711\pi\)
\(138\) −207.000 358.535i −0.127688 0.221163i
\(139\) −1708.00 −1.04224 −0.521118 0.853485i \(-0.674485\pi\)
−0.521118 + 0.853485i \(0.674485\pi\)
\(140\) 0 0
\(141\) −90.0000 −0.0537544
\(142\) 72.0000 + 124.708i 0.0425500 + 0.0736988i
\(143\) −1327.50 + 2299.30i −0.776302 + 1.34459i
\(144\) −816.500 + 1414.22i −0.472512 + 0.818414i
\(145\) 0 0
\(146\) 2004.00 1.13597
\(147\) −637.000 254.611i −0.357407 0.142857i
\(148\) 259.000 0.143849
\(149\) 543.000 + 940.504i 0.298552 + 0.517108i 0.975805 0.218643i \(-0.0701629\pi\)
−0.677253 + 0.735751i \(0.736830\pi\)
\(150\) 0 0
\(151\) 1433.00 2482.03i 0.772291 1.33765i −0.164014 0.986458i \(-0.552444\pi\)
0.936305 0.351189i \(-0.114222\pi\)
\(152\) 1270.50 + 2200.57i 0.677968 + 1.17428i
\(153\) −1242.00 −0.656273
\(154\) 1890.00 + 1636.79i 0.988965 + 0.856468i
\(155\) 0 0
\(156\) 59.0000 + 102.191i 0.0302806 + 0.0524476i
\(157\) −114.500 + 198.320i −0.0582044 + 0.100813i −0.893659 0.448746i \(-0.851871\pi\)
0.835455 + 0.549559i \(0.185204\pi\)
\(158\) 1173.00 2031.70i 0.590626 1.02299i
\(159\) 597.000 + 1034.03i 0.297768 + 0.515750i
\(160\) 0 0
\(161\) −241.500 + 1254.87i −0.118217 + 0.614271i
\(162\) −1263.00 −0.612535
\(163\) −614.000 1063.48i −0.295044 0.511031i 0.679951 0.733258i \(-0.262001\pi\)
−0.974995 + 0.222226i \(0.928668\pi\)
\(164\) −97.5000 + 168.875i −0.0464236 + 0.0804080i
\(165\) 0 0
\(166\) −1152.00 1995.32i −0.538630 0.932934i
\(167\) 1929.00 0.893835 0.446918 0.894575i \(-0.352522\pi\)
0.446918 + 0.894575i \(0.352522\pi\)
\(168\) −735.000 + 254.611i −0.337539 + 0.116927i
\(169\) 1284.00 0.584433
\(170\) 0 0
\(171\) −1391.50 + 2410.15i −0.622285 + 1.07783i
\(172\) −143.000 + 247.683i −0.0633933 + 0.109800i
\(173\) −349.500 605.352i −0.153595 0.266035i 0.778951 0.627084i \(-0.215752\pi\)
−0.932547 + 0.361049i \(0.882419\pi\)
\(174\) 972.000 0.423489
\(175\) 0 0
\(176\) 3195.00 1.36836
\(177\) 360.000 + 623.538i 0.152877 + 0.264791i
\(178\) −1791.00 + 3102.10i −0.754164 + 1.30625i
\(179\) −1558.50 + 2699.40i −0.650770 + 1.12717i 0.332167 + 0.943221i \(0.392220\pi\)
−0.982936 + 0.183945i \(0.941113\pi\)
\(180\) 0 0
\(181\) −1798.00 −0.738366 −0.369183 0.929357i \(-0.620362\pi\)
−0.369183 + 0.929357i \(0.620362\pi\)
\(182\) 619.500 3219.02i 0.252310 1.31104i
\(183\) 784.000 0.316694
\(184\) 724.500 + 1254.87i 0.290276 + 0.502773i
\(185\) 0 0
\(186\) −264.000 + 457.261i −0.104072 + 0.180258i
\(187\) 1215.00 + 2104.44i 0.475132 + 0.822952i
\(188\) −45.0000 −0.0174572
\(189\) −1400.00 1212.44i −0.538810 0.466623i
\(190\) 0 0
\(191\) 1194.00 + 2068.07i 0.452329 + 0.783457i 0.998530 0.0541974i \(-0.0172600\pi\)
−0.546201 + 0.837654i \(0.683927\pi\)
\(192\) −433.000 + 749.978i −0.162756 + 0.281901i
\(193\) 136.000 235.559i 0.0507228 0.0878544i −0.839549 0.543284i \(-0.817181\pi\)
0.890272 + 0.455429i \(0.150514\pi\)
\(194\) −1353.00 2343.46i −0.500720 0.867273i
\(195\) 0 0
\(196\) −318.500 127.306i −0.116071 0.0463942i
\(197\) 2109.00 0.762741 0.381371 0.924422i \(-0.375452\pi\)
0.381371 + 0.924422i \(0.375452\pi\)
\(198\) 1552.50 + 2689.01i 0.557229 + 0.965149i
\(199\) −712.000 + 1233.22i −0.253630 + 0.439300i −0.964522 0.264001i \(-0.914958\pi\)
0.710893 + 0.703301i \(0.248291\pi\)
\(200\) 0 0
\(201\) −280.000 484.974i −0.0982571 0.170186i
\(202\) −2052.00 −0.714744
\(203\) −2268.00 1964.15i −0.784150 0.679094i
\(204\) 108.000 0.0370662
\(205\) 0 0
\(206\) 2274.00 3938.68i 0.769112 1.33214i
\(207\) −793.500 + 1374.38i −0.266435 + 0.461479i
\(208\) −2094.50 3627.78i −0.698209 1.20933i
\(209\) 5445.00 1.80210
\(210\) 0 0
\(211\) −3625.00 −1.18273 −0.591363 0.806405i \(-0.701410\pi\)
−0.591363 + 0.806405i \(0.701410\pi\)
\(212\) 298.500 + 517.017i 0.0967031 + 0.167495i
\(213\) −48.0000 + 83.1384i −0.0154409 + 0.0267444i
\(214\) 1098.00 1901.79i 0.350737 0.607494i
\(215\) 0 0
\(216\) −2100.00 −0.661513
\(217\) 1540.00 533.472i 0.481760 0.166887i
\(218\) 4800.00 1.49127
\(219\) 668.000 + 1157.01i 0.206115 + 0.357002i
\(220\) 0 0
\(221\) 1593.00 2759.16i 0.484872 0.839823i
\(222\) 777.000 + 1345.80i 0.234905 + 0.406867i
\(223\) 4960.00 1.48944 0.744722 0.667374i \(-0.232582\pi\)
0.744722 + 0.667374i \(0.232582\pi\)
\(224\) −787.500 + 272.798i −0.234898 + 0.0813709i
\(225\) 0 0
\(226\) 2088.00 + 3616.52i 0.614565 + 1.06446i
\(227\) −750.000 + 1299.04i −0.219292 + 0.379825i −0.954592 0.297917i \(-0.903708\pi\)
0.735300 + 0.677742i \(0.237041\pi\)
\(228\) 121.000 209.578i 0.0351466 0.0608757i
\(229\) −3046.00 5275.83i −0.878975 1.52243i −0.852467 0.522781i \(-0.824894\pi\)
−0.0265085 0.999649i \(-0.508439\pi\)
\(230\) 0 0
\(231\) −315.000 + 1636.79i −0.0897207 + 0.466202i
\(232\) −3402.00 −0.962725
\(233\) 69.0000 + 119.512i 0.0194006 + 0.0336028i 0.875563 0.483104i \(-0.160491\pi\)
−0.856162 + 0.516707i \(0.827158\pi\)
\(234\) 2035.50 3525.59i 0.568653 0.984936i
\(235\) 0 0
\(236\) 180.000 + 311.769i 0.0496483 + 0.0859934i
\(237\) 1564.00 0.428661
\(238\) −2268.00 1964.15i −0.617700 0.534944i
\(239\) −5502.00 −1.48910 −0.744550 0.667567i \(-0.767336\pi\)
−0.744550 + 0.667567i \(0.767336\pi\)
\(240\) 0 0
\(241\) −1775.50 + 3075.26i −0.474564 + 0.821970i −0.999576 0.0291256i \(-0.990728\pi\)
0.525011 + 0.851095i \(0.324061\pi\)
\(242\) 1041.00 1803.06i 0.276521 0.478948i
\(243\) −1771.00 3067.46i −0.467530 0.809785i
\(244\) 392.000 0.102849
\(245\) 0 0
\(246\) −1170.00 −0.303238
\(247\) −3569.50 6182.56i −0.919522 1.59266i
\(248\) 924.000 1600.41i 0.236589 0.409784i
\(249\) 768.000 1330.22i 0.195462 0.338550i
\(250\) 0 0
\(251\) 7065.00 1.77665 0.888324 0.459216i \(-0.151870\pi\)
0.888324 + 0.459216i \(0.151870\pi\)
\(252\) −322.000 278.860i −0.0804924 0.0697085i
\(253\) 3105.00 0.771580
\(254\) −1204.50 2086.26i −0.297547 0.515367i
\(255\) 0 0
\(256\) −756.500 + 1310.30i −0.184692 + 0.319897i
\(257\) −2040.00 3533.38i −0.495143 0.857613i 0.504842 0.863212i \(-0.331551\pi\)
−0.999984 + 0.00559954i \(0.998218\pi\)
\(258\) −1716.00 −0.414083
\(259\) 906.500 4710.31i 0.217479 1.13006i
\(260\) 0 0
\(261\) −1863.00 3226.81i −0.441827 0.765267i
\(262\) 3028.50 5245.52i 0.714127 1.23690i
\(263\) −1644.00 + 2847.49i −0.385450 + 0.667619i −0.991832 0.127555i \(-0.959287\pi\)
0.606381 + 0.795174i \(0.292620\pi\)
\(264\) 945.000 + 1636.79i 0.220306 + 0.381581i
\(265\) 0 0
\(266\) −6352.50 + 2200.57i −1.46427 + 0.507239i
\(267\) −2388.00 −0.547353
\(268\) −140.000 242.487i −0.0319099 0.0552696i
\(269\) 1632.00 2826.71i 0.369906 0.640697i −0.619644 0.784883i \(-0.712723\pi\)
0.989551 + 0.144186i \(0.0460564\pi\)
\(270\) 0 0
\(271\) 1376.00 + 2383.30i 0.308436 + 0.534226i 0.978020 0.208510i \(-0.0668612\pi\)
−0.669585 + 0.742736i \(0.733528\pi\)
\(272\) −3834.00 −0.854671
\(273\) 2065.00 715.337i 0.457800 0.158587i
\(274\) 180.000 0.0396869
\(275\) 0 0
\(276\) 69.0000 119.512i 0.0150482 0.0260643i
\(277\) −2345.00 + 4061.66i −0.508655 + 0.881016i 0.491295 + 0.870993i \(0.336524\pi\)
−0.999950 + 0.0100228i \(0.996810\pi\)
\(278\) −2562.00 4437.51i −0.552729 0.957354i
\(279\) 2024.00 0.434314
\(280\) 0 0
\(281\) 7821.00 1.66036 0.830181 0.557494i \(-0.188237\pi\)
0.830181 + 0.557494i \(0.188237\pi\)
\(282\) −135.000 233.827i −0.0285076 0.0493765i
\(283\) −329.000 + 569.845i −0.0691061 + 0.119695i −0.898508 0.438957i \(-0.855348\pi\)
0.829402 + 0.558652i \(0.188681\pi\)
\(284\) −24.0000 + 41.5692i −0.00501457 + 0.00868549i
\(285\) 0 0
\(286\) −7965.00 −1.64678
\(287\) 2730.00 + 2364.25i 0.561487 + 0.486262i
\(288\) −1035.00 −0.211764
\(289\) 998.500 + 1729.45i 0.203236 + 0.352016i
\(290\) 0 0
\(291\) 902.000 1562.31i 0.181705 0.314722i
\(292\) 334.000 + 578.505i 0.0669379 + 0.115940i
\(293\) 5997.00 1.19573 0.597864 0.801597i \(-0.296016\pi\)
0.597864 + 0.801597i \(0.296016\pi\)
\(294\) −294.000 2036.89i −0.0583212 0.404061i
\(295\) 0 0
\(296\) −2719.50 4710.31i −0.534013 0.924937i
\(297\) −2250.00 + 3897.11i −0.439590 + 0.761392i
\(298\) −1629.00 + 2821.51i −0.316663 + 0.548476i
\(299\) −2035.50 3525.59i −0.393699 0.681907i
\(300\) 0 0
\(301\) 4004.00 + 3467.57i 0.766733 + 0.664011i
\(302\) 8598.00 1.63828
\(303\) −684.000 1184.72i −0.129686 0.224622i
\(304\) −4295.50 + 7440.02i −0.810407 + 1.40367i
\(305\) 0 0
\(306\) −1863.00 3226.81i −0.348041 0.602825i
\(307\) 6226.00 1.15745 0.578724 0.815523i \(-0.303551\pi\)
0.578724 + 0.815523i \(0.303551\pi\)
\(308\) −157.500 + 818.394i −0.0291376 + 0.151404i
\(309\) 3032.00 0.558202
\(310\) 0 0
\(311\) −2340.00 + 4053.00i −0.426653 + 0.738985i −0.996573 0.0827149i \(-0.973641\pi\)
0.569920 + 0.821700i \(0.306974\pi\)
\(312\) 1239.00 2146.01i 0.224822 0.389404i
\(313\) 514.000 + 890.274i 0.0928211 + 0.160771i 0.908697 0.417456i \(-0.137078\pi\)
−0.815876 + 0.578227i \(0.803745\pi\)
\(314\) −687.000 −0.123470
\(315\) 0 0
\(316\) 782.000 0.139212
\(317\) 4311.00 + 7466.87i 0.763817 + 1.32297i 0.940870 + 0.338768i \(0.110010\pi\)
−0.177053 + 0.984201i \(0.556656\pi\)
\(318\) −1791.00 + 3102.10i −0.315831 + 0.547036i
\(319\) −3645.00 + 6313.33i −0.639752 + 1.10808i
\(320\) 0 0
\(321\) 1464.00 0.254556
\(322\) −3622.50 + 1254.87i −0.626938 + 0.217178i
\(323\) −6534.00 −1.12558
\(324\) −210.500 364.597i −0.0360940 0.0625166i
\(325\) 0 0
\(326\) 1842.00 3190.44i 0.312942 0.542031i
\(327\) 1600.00 + 2771.28i 0.270582 + 0.468661i
\(328\) 4095.00 0.689355
\(329\) −157.500 + 818.394i −0.0263929 + 0.137141i
\(330\) 0 0
\(331\) 999.500 + 1731.18i 0.165974 + 0.287476i 0.937001 0.349327i \(-0.113590\pi\)
−0.771027 + 0.636803i \(0.780256\pi\)
\(332\) 384.000 665.108i 0.0634781 0.109947i
\(333\) 2978.50 5158.91i 0.490153 0.848969i
\(334\) 2893.50 + 5011.69i 0.474028 + 0.821040i
\(335\) 0 0
\(336\) −1988.00 1721.66i −0.322781 0.279536i
\(337\) −5114.00 −0.826639 −0.413319 0.910586i \(-0.635631\pi\)
−0.413319 + 0.910586i \(0.635631\pi\)
\(338\) 1926.00 + 3335.93i 0.309943 + 0.536836i
\(339\) −1392.00 + 2411.01i −0.223018 + 0.386278i
\(340\) 0 0
\(341\) −1980.00 3429.46i −0.314437 0.544621i
\(342\) −8349.00 −1.32006
\(343\) −3430.00 + 5346.84i −0.539949 + 0.841698i
\(344\) 6006.00 0.941342
\(345\) 0 0
\(346\) 1048.50 1816.06i 0.162912 0.282173i
\(347\) 2160.00 3741.23i 0.334164 0.578789i −0.649160 0.760652i \(-0.724879\pi\)
0.983324 + 0.181863i \(0.0582128\pi\)
\(348\) 162.000 + 280.592i 0.0249543 + 0.0432222i
\(349\) 7922.00 1.21506 0.607529 0.794298i \(-0.292161\pi\)
0.607529 + 0.794298i \(0.292161\pi\)
\(350\) 0 0
\(351\) 5900.00 0.897204
\(352\) 1012.50 + 1753.70i 0.153314 + 0.265547i
\(353\) 414.000 717.069i 0.0624221 0.108118i −0.833125 0.553084i \(-0.813451\pi\)
0.895548 + 0.444966i \(0.146784\pi\)
\(354\) −1080.00 + 1870.61i −0.162151 + 0.280853i
\(355\) 0 0
\(356\) −1194.00 −0.177758
\(357\) 378.000 1964.15i 0.0560389 0.291187i
\(358\) −9351.00 −1.38049
\(359\) 675.000 + 1169.13i 0.0992344 + 0.171879i 0.911368 0.411593i \(-0.135027\pi\)
−0.812134 + 0.583472i \(0.801694\pi\)
\(360\) 0 0
\(361\) −3891.00 + 6739.41i −0.567284 + 0.982564i
\(362\) −2697.00 4671.34i −0.391578 0.678233i
\(363\) 1388.00 0.200692
\(364\) 1032.50 357.668i 0.148675 0.0515025i
\(365\) 0 0
\(366\) 1176.00 + 2036.89i 0.167952 + 0.290902i
\(367\) 1400.50 2425.74i 0.199198 0.345020i −0.749071 0.662490i \(-0.769500\pi\)
0.948268 + 0.317470i \(0.102833\pi\)
\(368\) −2449.50 + 4242.66i −0.346981 + 0.600989i
\(369\) 2242.50 + 3884.12i 0.316368 + 0.547966i
\(370\) 0 0
\(371\) 10447.5 3619.12i 1.46201 0.506456i
\(372\) −176.000 −0.0245300
\(373\) 3301.00 + 5717.50i 0.458229 + 0.793675i 0.998867 0.0475795i \(-0.0151507\pi\)
−0.540639 + 0.841255i \(0.681817\pi\)
\(374\) −3645.00 + 6313.33i −0.503953 + 0.872872i
\(375\) 0 0
\(376\) 472.500 + 818.394i 0.0648067 + 0.112249i
\(377\) 9558.00 1.30573
\(378\) 1050.00 5455.96i 0.142873 0.742392i
\(379\) −8305.00 −1.12559 −0.562796 0.826596i \(-0.690274\pi\)
−0.562796 + 0.826596i \(0.690274\pi\)
\(380\) 0 0
\(381\) 803.000 1390.84i 0.107976 0.187020i
\(382\) −3582.00 + 6204.21i −0.479767 + 0.830981i
\(383\) 472.500 + 818.394i 0.0630382 + 0.109185i 0.895822 0.444413i \(-0.146588\pi\)
−0.832784 + 0.553598i \(0.813254\pi\)
\(384\) −3318.00 −0.440940
\(385\) 0 0
\(386\) 816.000 0.107599
\(387\) 3289.00 + 5696.72i 0.432014 + 0.748270i
\(388\) 451.000 781.155i 0.0590105 0.102209i
\(389\) −6018.00 + 10423.5i −0.784382 + 1.35859i 0.144985 + 0.989434i \(0.453687\pi\)
−0.929367 + 0.369156i \(0.879647\pi\)
\(390\) 0 0
\(391\) −3726.00 −0.481923
\(392\) 1029.00 + 7129.12i 0.132583 + 0.918559i
\(393\) 4038.00 0.518296
\(394\) 3163.50 + 5479.34i 0.404505 + 0.700623i
\(395\) 0 0
\(396\) −517.500 + 896.336i −0.0656701 + 0.113744i
\(397\) −1349.00 2336.54i −0.170540 0.295384i 0.768069 0.640367i \(-0.221218\pi\)
−0.938609 + 0.344983i \(0.887885\pi\)
\(398\) −4272.00 −0.538030
\(399\) −3388.00 2934.09i −0.425093 0.368141i
\(400\) 0 0
\(401\) −3526.50 6108.08i −0.439165 0.760655i 0.558461 0.829531i \(-0.311392\pi\)
−0.997625 + 0.0688756i \(0.978059\pi\)
\(402\) 840.000 1454.92i 0.104217 0.180510i
\(403\) −2596.00 + 4496.40i −0.320883 + 0.555786i
\(404\) −342.000 592.361i −0.0421167 0.0729482i
\(405\) 0 0
\(406\) 1701.00 8838.66i 0.207929 1.08043i
\(407\) −11655.0 −1.41945
\(408\) −1134.00 1964.15i −0.137601 0.238333i
\(409\) 5435.00 9413.70i 0.657074 1.13809i −0.324295 0.945956i \(-0.605127\pi\)
0.981369 0.192130i \(-0.0615396\pi\)
\(410\) 0 0
\(411\) 60.0000 + 103.923i 0.00720093 + 0.0124724i
\(412\) 1516.00 0.181281
\(413\) 6300.00 2182.38i 0.750612 0.260020i
\(414\) −4761.00 −0.565194
\(415\) 0 0
\(416\) 1327.50 2299.30i 0.156457 0.270991i
\(417\) 1708.00 2958.34i 0.200578 0.347412i
\(418\) 8167.50 + 14146.5i 0.955707 + 1.65533i
\(419\) −9729.00 −1.13435 −0.567175 0.823597i \(-0.691964\pi\)
−0.567175 + 0.823597i \(0.691964\pi\)
\(420\) 0 0
\(421\) −12550.0 −1.45285 −0.726425 0.687246i \(-0.758819\pi\)
−0.726425 + 0.687246i \(0.758819\pi\)
\(422\) −5437.50 9418.03i −0.627235 1.08640i
\(423\) −517.500 + 896.336i −0.0594840 + 0.103029i
\(424\) 6268.50 10857.4i 0.717984 1.24358i
\(425\) 0 0
\(426\) −288.000 −0.0327550
\(427\) 1372.00 7129.12i 0.155494 0.807968i
\(428\) 732.000 0.0826695
\(429\) −2655.00 4598.59i −0.298799 0.517534i
\(430\) 0 0
\(431\) −1494.00 + 2587.68i −0.166969 + 0.289198i −0.937353 0.348382i \(-0.886731\pi\)
0.770384 + 0.637580i \(0.220065\pi\)
\(432\) −3550.00 6148.78i −0.395369 0.684799i
\(433\) −16616.0 −1.84414 −0.922072 0.387019i \(-0.873505\pi\)
−0.922072 + 0.387019i \(0.873505\pi\)
\(434\) 3696.00 + 3200.83i 0.408787 + 0.354020i
\(435\) 0 0
\(436\) 800.000 + 1385.64i 0.0878740 + 0.152202i
\(437\) −4174.50 + 7230.45i −0.456964 + 0.791485i
\(438\) −2004.00 + 3471.03i −0.218618 + 0.378658i
\(439\) −3673.00 6361.82i −0.399323 0.691647i 0.594320 0.804229i \(-0.297421\pi\)
−0.993642 + 0.112581i \(0.964088\pi\)
\(440\) 0 0
\(441\) −6198.50 + 4880.05i −0.669312 + 0.526947i
\(442\) 9558.00 1.02857
\(443\) 6.00000 + 10.3923i 0.000643496 + 0.00111457i 0.866347 0.499443i \(-0.166462\pi\)
−0.865703 + 0.500557i \(0.833129\pi\)
\(444\) −259.000 + 448.601i −0.0276838 + 0.0479497i
\(445\) 0 0
\(446\) 7440.00 + 12886.5i 0.789897 + 1.36814i
\(447\) −2172.00 −0.229826
\(448\) 6062.00 + 5249.85i 0.639291 + 0.553643i
\(449\) 9669.00 1.01628 0.508138 0.861275i \(-0.330334\pi\)
0.508138 + 0.861275i \(0.330334\pi\)
\(450\) 0 0
\(451\) 4387.50 7599.37i 0.458092 0.793438i
\(452\) −696.000 + 1205.51i −0.0724272 + 0.125448i
\(453\) 2866.00 + 4964.06i 0.297255 + 0.514860i
\(454\) −4500.00 −0.465188
\(455\) 0 0
\(456\) −5082.00 −0.521900
\(457\) −4817.00 8343.29i −0.493063 0.854010i 0.506905 0.862002i \(-0.330789\pi\)
−0.999968 + 0.00799181i \(0.997456\pi\)
\(458\) 9138.00 15827.5i 0.932294 1.61478i
\(459\) 2700.00 4676.54i 0.274565 0.475560i
\(460\) 0 0
\(461\) −342.000 −0.0345521 −0.0172761 0.999851i \(-0.505499\pi\)
−0.0172761 + 0.999851i \(0.505499\pi\)
\(462\) −4725.00 + 1636.79i −0.475816 + 0.164827i
\(463\) −2411.00 −0.242006 −0.121003 0.992652i \(-0.538611\pi\)
−0.121003 + 0.992652i \(0.538611\pi\)
\(464\) −5751.00 9961.02i −0.575395 0.996614i
\(465\) 0 0
\(466\) −207.000 + 358.535i −0.0205774 + 0.0356412i
\(467\) −603.000 1044.43i −0.0597506 0.103491i 0.834603 0.550852i \(-0.185697\pi\)
−0.894353 + 0.447361i \(0.852364\pi\)
\(468\) 1357.00 0.134033
\(469\) −4900.00 + 1697.41i −0.482433 + 0.167120i
\(470\) 0 0
\(471\) −229.000 396.640i −0.0224029 0.0388030i
\(472\) 3780.00 6547.15i 0.368620 0.638468i
\(473\) 6435.00 11145.7i 0.625543 1.08347i
\(474\) 2346.00 + 4063.39i 0.227332 + 0.393751i
\(475\) 0 0
\(476\) 189.000 982.073i 0.0181992 0.0945656i
\(477\) 13731.0 1.31803
\(478\) −8253.00 14294.6i −0.789714 1.36783i
\(479\) 216.000 374.123i 0.0206039 0.0356871i −0.855540 0.517737i \(-0.826774\pi\)
0.876144 + 0.482050i \(0.160108\pi\)
\(480\) 0 0
\(481\) 7640.50 + 13233.7i 0.724276 + 1.25448i
\(482\) −10653.0 −1.00670
\(483\) −1932.00 1673.16i −0.182006 0.157622i
\(484\) 694.000 0.0651766
\(485\) 0 0
\(486\) 5313.00 9202.39i 0.495890 0.858907i
\(487\) −5948.00 + 10302.2i −0.553449 + 0.958602i 0.444574 + 0.895742i \(0.353355\pi\)
−0.998022 + 0.0628592i \(0.979978\pi\)
\(488\) −4116.00 7129.12i −0.381809 0.661312i
\(489\) 2456.00 0.227125
\(490\) 0 0
\(491\) −12276.0 −1.12833 −0.564163 0.825663i \(-0.690801\pi\)
−0.564163 + 0.825663i \(0.690801\pi\)
\(492\) −195.000 337.750i −0.0178685 0.0309491i
\(493\) 4374.00 7575.99i 0.399584 0.692100i
\(494\) 10708.5 18547.7i 0.975300 1.68927i
\(495\) 0 0
\(496\) 6248.00 0.565612
\(497\) 672.000 + 581.969i 0.0606505 + 0.0525249i
\(498\) 4608.00 0.414637
\(499\) 5438.00 + 9418.89i 0.487852 + 0.844985i 0.999902 0.0139706i \(-0.00444712\pi\)
−0.512050 + 0.858956i \(0.671114\pi\)
\(500\) 0 0
\(501\) −1929.00 + 3341.13i −0.172019 + 0.297945i
\(502\) 10597.5 + 18355.4i 0.942210 + 1.63196i
\(503\) −12000.0 −1.06372 −0.531862 0.846831i \(-0.678508\pi\)
−0.531862 + 0.846831i \(0.678508\pi\)
\(504\) −1690.50 + 8784.10i −0.149406 + 0.776339i
\(505\) 0 0
\(506\) 4657.50 + 8067.03i 0.409192 + 0.708741i
\(507\) −1284.00 + 2223.95i −0.112474 + 0.194811i
\(508\) 401.500 695.418i 0.0350663 0.0607366i
\(509\) 5841.00 + 10116.9i 0.508640 + 0.880990i 0.999950 + 0.0100055i \(0.00318492\pi\)
−0.491310 + 0.870985i \(0.663482\pi\)
\(510\) 0 0
\(511\) 11690.0 4049.53i 1.01201 0.350569i
\(512\) 8733.00 0.753804
\(513\) −6050.00 10478.9i −0.520690 0.901862i
\(514\) 6120.00 10600.2i 0.525178 0.909635i
\(515\) 0 0
\(516\) −286.000 495.367i −0.0244001 0.0422622i
\(517\) 2025.00 0.172262
\(518\) 13597.5 4710.31i 1.15336 0.399535i
\(519\) 1398.00 0.118238
\(520\) 0 0
\(521\) −4804.50 + 8321.64i −0.404010 + 0.699765i −0.994206 0.107495i \(-0.965717\pi\)
0.590196 + 0.807260i \(0.299050\pi\)
\(522\) 5589.00 9680.43i 0.468628 0.811688i
\(523\) 10594.0 + 18349.3i 0.885742 + 1.53415i 0.844860 + 0.534987i \(0.179683\pi\)
0.0408820 + 0.999164i \(0.486983\pi\)
\(524\) 2019.00 0.168321
\(525\) 0 0
\(526\) −9864.00 −0.817663
\(527\) 2376.00 + 4115.35i 0.196395 + 0.340166i
\(528\) −3195.00 + 5533.90i −0.263342 + 0.456122i
\(529\) 3703.00 6413.78i 0.304348 0.527146i
\(530\) 0 0
\(531\) 8280.00 0.676688
\(532\) −1694.00 1467.05i −0.138053 0.119557i
\(533\) −11505.0 −0.934966
\(534\) −3582.00 6204.21i −0.290278 0.502776i
\(535\) 0 0
\(536\) −2940.00 + 5092.23i −0.236919 + 0.410356i
\(537\) −3117.00 5398.80i −0.250481 0.433846i
\(538\) 9792.00 0.784690
\(539\) 14332.5 + 5728.76i 1.14535 + 0.457802i
\(540\) 0 0
\(541\) −4036.00 6990.56i −0.320742 0.555541i 0.659900 0.751354i \(-0.270599\pi\)
−0.980641 + 0.195813i \(0.937265\pi\)
\(542\) −4128.00 + 7149.91i −0.327145 + 0.566632i
\(543\) 1798.00 3114.23i 0.142099 0.246122i
\(544\) −1215.00 2104.44i −0.0957586 0.165859i
\(545\) 0 0
\(546\) 4956.00 + 4292.02i 0.388456 + 0.336413i
\(547\) −344.000 −0.0268892 −0.0134446 0.999910i \(-0.504280\pi\)
−0.0134446 + 0.999910i \(0.504280\pi\)
\(548\) 30.0000 + 51.9615i 0.00233857 + 0.00405052i
\(549\) 4508.00 7808.09i 0.350449 0.606996i
\(550\) 0 0
\(551\) −9801.00 16975.8i −0.757780 1.31251i
\(552\) −2898.00 −0.223455
\(553\) 2737.00 14221.9i 0.210468 1.09363i
\(554\) −14070.0 −1.07902
\(555\) 0 0
\(556\) 854.000 1479.17i 0.0651397 0.112825i
\(557\) 9181.50 15902.8i 0.698443 1.20974i −0.270563 0.962702i \(-0.587210\pi\)
0.969006 0.247036i \(-0.0794567\pi\)
\(558\) 3036.00 + 5258.51i 0.230330 + 0.398943i
\(559\) −16874.0 −1.27673
\(560\) 0 0
\(561\) −4860.00 −0.365756
\(562\) 11731.5 + 20319.6i 0.880540 + 1.52514i
\(563\) −3147.00 + 5450.76i −0.235578 + 0.408033i −0.959440 0.281912i \(-0.909032\pi\)
0.723863 + 0.689944i \(0.242365\pi\)
\(564\) 45.0000 77.9423i 0.00335965 0.00581908i
\(565\) 0 0
\(566\) −1974.00 −0.146596
\(567\) −7367.50 + 2552.18i −0.545689 + 0.189032i
\(568\) 1008.00 0.0744626
\(569\) −5866.50 10161.1i −0.432226 0.748637i 0.564839 0.825201i \(-0.308938\pi\)
−0.997065 + 0.0765642i \(0.975605\pi\)
\(570\) 0 0
\(571\) −526.000 + 911.059i −0.0385506 + 0.0667717i −0.884657 0.466242i \(-0.845607\pi\)
0.846106 + 0.533014i \(0.178941\pi\)
\(572\) −1327.50 2299.30i −0.0970377 0.168074i
\(573\) −4776.00 −0.348203
\(574\) −2047.50 + 10639.1i −0.148887 + 0.773638i
\(575\) 0 0
\(576\) 4979.50 + 8624.75i 0.360207 + 0.623897i
\(577\) −6578.00 + 11393.4i −0.474603 + 0.822036i −0.999577 0.0290821i \(-0.990742\pi\)
0.524974 + 0.851118i \(0.324075\pi\)
\(578\) −2995.50 + 5188.36i −0.215565 + 0.373369i
\(579\) 272.000 + 471.118i 0.0195232 + 0.0338152i
\(580\) 0 0
\(581\) −10752.0 9311.51i −0.767759 0.664899i
\(582\) 5412.00 0.385455
\(583\) −13432.5 23265.8i −0.954232 1.65278i
\(584\) 7014.00 12148.6i 0.496989 0.860810i
\(585\) 0 0
\(586\) 8995.50 + 15580.7i 0.634131 + 1.09835i
\(587\) 13368.0 0.939960 0.469980 0.882677i \(-0.344261\pi\)
0.469980 + 0.882677i \(0.344261\pi\)
\(588\) 539.000 424.352i 0.0378027 0.0297619i
\(589\) 10648.0 0.744895
\(590\) 0 0
\(591\) −2109.00 + 3652.90i −0.146790 + 0.254247i
\(592\) 9194.50 15925.3i 0.638330 1.10562i
\(593\) 13332.0 + 23091.7i 0.923237 + 1.59909i 0.794372 + 0.607431i \(0.207800\pi\)
0.128865 + 0.991662i \(0.458867\pi\)
\(594\) −13500.0 −0.932511
\(595\) 0 0
\(596\) −1086.00 −0.0746381
\(597\) −1424.00 2466.44i −0.0976222 0.169087i
\(598\) 6106.50 10576.8i 0.417581 0.723271i
\(599\) −3807.00 + 6593.92i −0.259682 + 0.449783i −0.966157 0.257955i \(-0.916951\pi\)
0.706474 + 0.707739i \(0.250285\pi\)
\(600\) 0 0
\(601\) 6410.00 0.435057 0.217529 0.976054i \(-0.430200\pi\)
0.217529 + 0.976054i \(0.430200\pi\)
\(602\) −3003.00 + 15604.0i −0.203311 + 1.05643i
\(603\) −6440.00 −0.434921
\(604\) 1433.00 + 2482.03i 0.0965363 + 0.167206i
\(605\) 0 0
\(606\) 2052.00 3554.17i 0.137552 0.238248i
\(607\) −10734.5 18592.7i −0.717792 1.24325i −0.961873 0.273498i \(-0.911819\pi\)
0.244080 0.969755i \(-0.421514\pi\)
\(608\) −5445.00 −0.363197
\(609\) 5670.00 1964.15i 0.377274 0.130692i
\(610\) 0 0
\(611\) −1327.50 2299.30i −0.0878967 0.152242i
\(612\) 621.000 1075.60i 0.0410171 0.0710436i
\(613\) 1868.50 3236.34i 0.123113 0.213237i −0.797881 0.602815i \(-0.794046\pi\)
0.920994 + 0.389578i \(0.127379\pi\)
\(614\) 9339.00 + 16175.6i 0.613830 + 1.06318i
\(615\) 0 0
\(616\) 16537.5 5728.76i 1.08168 0.374705i
\(617\) −18078.0 −1.17957 −0.589784 0.807561i \(-0.700787\pi\)
−0.589784 + 0.807561i \(0.700787\pi\)
\(618\) 4548.00 + 7877.37i 0.296031 + 0.512741i
\(619\) −6143.50 + 10640.9i −0.398915 + 0.690940i −0.993592 0.113024i \(-0.963946\pi\)
0.594678 + 0.803964i \(0.297280\pi\)
\(620\) 0 0
\(621\) −3450.00 5975.58i −0.222937 0.386138i
\(622\) −14040.0 −0.905069
\(623\) −4179.00 + 21714.7i −0.268745 + 1.39644i
\(624\) 8378.00 0.537481
\(625\) 0 0
\(626\) −1542.00 + 2670.82i −0.0984516 + 0.170523i
\(627\) −5445.00 + 9431.02i −0.346814 + 0.600699i
\(628\) −114.500 198.320i −0.00727555 0.0126016i
\(629\) 13986.0 0.886579
\(630\) 0 0
\(631\) −9580.00 −0.604396 −0.302198 0.953245i \(-0.597720\pi\)
−0.302198 + 0.953245i \(0.597720\pi\)
\(632\) −8211.00 14221.9i −0.516798 0.895120i
\(633\) 3625.00 6278.68i 0.227616 0.394242i
\(634\) −12933.0 + 22400.6i −0.810150 + 1.40322i
\(635\) 0 0
\(636\) −1194.00 −0.0744421
\(637\) −2891.00 20029.4i −0.179820 1.24583i
\(638\) −21870.0 −1.35712
\(639\) 552.000 + 956.092i 0.0341734 + 0.0591900i
\(640\) 0 0
\(641\) −5389.50 + 9334.89i −0.332094 + 0.575204i −0.982922 0.184021i \(-0.941089\pi\)
0.650828 + 0.759225i \(0.274422\pi\)
\(642\) 2196.00 + 3803.58i 0.134999 + 0.233825i
\(643\) −8882.00 −0.544746 −0.272373 0.962192i \(-0.587809\pi\)
−0.272373 + 0.962192i \(0.587809\pi\)
\(644\) −966.000 836.581i −0.0591083 0.0511893i
\(645\) 0 0
\(646\) −9801.00 16975.8i −0.596928 1.03391i
\(647\) −5509.50 + 9542.73i −0.334777 + 0.579851i −0.983442 0.181223i \(-0.941994\pi\)
0.648665 + 0.761074i \(0.275328\pi\)
\(648\) −4420.50 + 7656.53i −0.267984 + 0.464162i
\(649\) −8100.00 14029.6i −0.489912 0.848552i
\(650\) 0 0
\(651\) −616.000 + 3200.83i −0.0370859 + 0.192704i
\(652\) 1228.00 0.0737610
\(653\) 11161.5 + 19332.3i 0.668887 + 1.15855i 0.978216 + 0.207591i \(0.0665624\pi\)
−0.309329 + 0.950955i \(0.600104\pi\)
\(654\) −4800.00 + 8313.84i −0.286995 + 0.497090i
\(655\) 0 0
\(656\) 6922.50 + 11990.1i 0.412009 + 0.713621i
\(657\) 15364.0 0.912339
\(658\) −2362.50 + 818.394i −0.139969 + 0.0484868i
\(659\) −11856.0 −0.700826 −0.350413 0.936595i \(-0.613959\pi\)
−0.350413 + 0.936595i \(0.613959\pi\)
\(660\) 0 0
\(661\) 16622.0 28790.1i 0.978095 1.69411i 0.308777 0.951134i \(-0.400080\pi\)
0.669318 0.742976i \(-0.266586\pi\)
\(662\) −2998.50 + 5193.55i −0.176042 + 0.304914i
\(663\) 3186.00 + 5518.31i 0.186627 + 0.323248i
\(664\) −16128.0 −0.942602
\(665\) 0 0
\(666\) 17871.0 1.03977
\(667\) −5589.00 9680.43i −0.324448 0.561961i
\(668\) −964.500 + 1670.56i −0.0558647 + 0.0967605i
\(669\) −4960.00 + 8590.97i −0.286644 + 0.496482i
\(670\) 0 0
\(671\) −17640.0 −1.01488
\(672\) 315.000 1636.79i 0.0180824 0.0939590i
\(673\) 12322.0 0.705763 0.352881 0.935668i \(-0.385202\pi\)
0.352881 + 0.935668i \(0.385202\pi\)
\(674\) −7671.00 13286.6i −0.438392 0.759316i
\(675\) 0 0
\(676\) −642.000 + 1111.98i −0.0365271 + 0.0632668i
\(677\) −6298.50 10909.3i −0.357564 0.619320i 0.629989 0.776604i \(-0.283059\pi\)
−0.987553 + 0.157285i \(0.949726\pi\)
\(678\) −8352.00 −0.473092
\(679\) −12628.0 10936.2i −0.713723 0.618103i
\(680\) 0 0
\(681\) −1500.00 2598.08i −0.0844055 0.146195i
\(682\) 5940.00 10288.4i 0.333511 0.577658i
\(683\) −4170.00 + 7222.65i −0.233617 + 0.404637i −0.958870 0.283846i \(-0.908390\pi\)
0.725253 + 0.688483i \(0.241723\pi\)
\(684\) −1391.50 2410.15i −0.0777856 0.134729i
\(685\) 0 0
\(686\) −19036.5 891.140i −1.05950 0.0495975i
\(687\) 12184.0 0.676636
\(688\) 10153.0 + 17585.5i 0.562616 + 0.974479i
\(689\) −17611.5 + 30504.0i −0.973795 + 1.68666i
\(690\) 0 0
\(691\) 10100.0 + 17493.7i 0.556038 + 0.963086i 0.997822 + 0.0659643i \(0.0210124\pi\)
−0.441784 + 0.897121i \(0.645654\pi\)
\(692\) 699.000 0.0383988
\(693\) 14490.0 + 12548.7i 0.794271 + 0.687859i
\(694\) 12960.0 0.708869
\(695\) 0 0
\(696\) 3402.00 5892.44i 0.185277 0.320908i
\(697\) −5265.00 + 9119.25i −0.286121 + 0.495576i
\(698\) 11883.0 + 20582.0i 0.644381 + 1.11610i
\(699\) −276.000 −0.0149346
\(700\) 0 0
\(701\) 474.000 0.0255388 0.0127694 0.999918i \(-0.495935\pi\)
0.0127694 + 0.999918i \(0.495935\pi\)
\(702\) 8850.00 + 15328.6i 0.475814 + 0.824135i
\(703\) 15669.5 27140.4i 0.840663 1.45607i
\(704\) 9742.50 16874.5i 0.521569 0.903383i
\(705\) 0 0
\(706\) 2484.00 0.132417
\(707\) −11970.0 + 4146.53i −0.636744 + 0.220575i
\(708\) −720.000 −0.0382193
\(709\) 12563.0 + 21759.8i 0.665463 + 1.15262i 0.979160 + 0.203093i \(0.0650993\pi\)
−0.313696 + 0.949523i \(0.601567\pi\)
\(710\) 0 0
\(711\) 8993.00 15576.3i 0.474351 0.821601i
\(712\) 12537.0 + 21714.7i 0.659893 + 1.14297i
\(713\) 6072.00 0.318932
\(714\) 5670.00 1964.15i 0.297191 0.102950i
\(715\) 0 0
\(716\) −1558.50 2699.40i −0.0813462 0.140896i
\(717\) 5502.00 9529.74i 0.286577 0.496367i
\(718\) −2025.00 + 3507.40i −0.105254 + 0.182305i
\(719\) 3648.00 + 6318.52i 0.189218 + 0.327734i 0.944990 0.327100i \(-0.106072\pi\)
−0.755772 + 0.654835i \(0.772738\pi\)
\(720\) 0 0
\(721\) 5306.00 27570.8i 0.274072 1.42412i
\(722\) −23346.0 −1.20339
\(723\) −3551.00 6150.51i −0.182660 0.316376i
\(724\) 899.000 1557.11i 0.0461479 0.0799305i
\(725\) 0 0
\(726\) 2082.00 + 3606.13i 0.106433 + 0.184347i
\(727\) 15421.0 0.786703 0.393352 0.919388i \(-0.371316\pi\)
0.393352 + 0.919388i \(0.371316\pi\)
\(728\) −17346.0 15022.1i −0.883085 0.764774i
\(729\) −4283.00 −0.217599
\(730\) 0 0
\(731\) −7722.00 + 13374.9i −0.390709 + 0.676728i
\(732\) −392.000 + 678.964i −0.0197934 + 0.0342831i
\(733\) −14583.5 25259.4i −0.734862 1.27282i −0.954784 0.297301i \(-0.903914\pi\)
0.219922 0.975517i \(-0.429420\pi\)
\(734\) 8403.00 0.422562
\(735\) 0 0
\(736\) −3105.00 −0.155505
\(737\) 6300.00 + 10911.9i 0.314876 + 0.545381i
\(738\) −6727.50 + 11652.4i −0.335559 + 0.581206i
\(739\) 6690.50 11588.3i 0.333037 0.576836i −0.650069 0.759875i \(-0.725260\pi\)
0.983106 + 0.183039i \(0.0585934\pi\)
\(740\) 0 0
\(741\) 14278.0 0.707848
\(742\) 25074.0 + 21714.7i 1.24056 + 1.07436i
\(743\) −5487.00 −0.270927 −0.135463 0.990782i \(-0.543252\pi\)
−0.135463 + 0.990782i \(0.543252\pi\)
\(744\) 1848.00 + 3200.83i 0.0910631 + 0.157726i
\(745\) 0 0
\(746\) −9903.00 + 17152.5i −0.486025 + 0.841820i
\(747\) −8832.00 15297.5i −0.432592 0.749271i
\(748\) −2430.00 −0.118783
\(749\) 2562.00 13312.5i 0.124985 0.649439i
\(750\) 0 0
\(751\) −3319.00 5748.68i −0.161268 0.279324i 0.774056 0.633117i \(-0.218225\pi\)
−0.935324 + 0.353793i \(0.884892\pi\)
\(752\) −1597.50 + 2766.95i −0.0774665 + 0.134176i
\(753\) −7065.00 + 12236.9i −0.341916 + 0.592216i
\(754\) 14337.0 + 24832.4i 0.692470 + 1.19939i
\(755\) 0 0
\(756\) 1750.00 606.218i 0.0841890 0.0291639i
\(757\) −14846.0 −0.712797 −0.356398 0.934334i \(-0.615995\pi\)
−0.356398 + 0.934334i \(0.615995\pi\)
\(758\) −12457.5 21577.0i −0.596935 1.03392i
\(759\) −3105.00 + 5378.02i −0.148491 + 0.257193i
\(760\) 0 0
\(761\) 1825.50 + 3161.86i 0.0869571 + 0.150614i 0.906223 0.422799i \(-0.138952\pi\)
−0.819266 + 0.573413i \(0.805619\pi\)
\(762\) 4818.00 0.229052
\(763\) 28000.0 9699.48i 1.32853 0.460216i
\(764\) −2388.00 −0.113082
\(765\) 0 0
\(766\) −1417.50 + 2455.18i −0.0668621 + 0.115809i
\(767\) −10620.0 + 18394.4i −0.499956 + 0.865949i
\(768\) −1513.00 2620.59i −0.0710881 0.123128i
\(769\) 29855.0 1.40000 0.699999 0.714144i \(-0.253184\pi\)
0.699999 + 0.714144i \(0.253184\pi\)
\(770\) 0 0
\(771\) 8160.00 0.381161
\(772\) 136.000 + 235.559i 0.00634035 + 0.0109818i