Properties

Label 175.4.e.a.151.1
Level $175$
Weight $4$
Character 175.151
Analytic conductor $10.325$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(51,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.51");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 7)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 151.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 175.151
Dual form 175.4.e.a.51.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.73205i) q^{2} +(3.50000 - 6.06218i) q^{3} +(2.00000 - 3.46410i) q^{4} +14.0000 q^{6} +(-14.0000 - 12.1244i) q^{7} +24.0000 q^{8} +(-11.0000 - 19.0526i) q^{9} +(2.50000 - 4.33013i) q^{11} +(-14.0000 - 24.2487i) q^{12} +14.0000 q^{13} +(7.00000 - 36.3731i) q^{14} +(8.00000 + 13.8564i) q^{16} +(-10.5000 + 18.1865i) q^{17} +(22.0000 - 38.1051i) q^{18} +(-24.5000 - 42.4352i) q^{19} +(-122.500 + 42.4352i) q^{21} +10.0000 q^{22} +(-79.5000 - 137.698i) q^{23} +(84.0000 - 145.492i) q^{24} +(14.0000 + 24.2487i) q^{26} +35.0000 q^{27} +(-70.0000 + 24.2487i) q^{28} +58.0000 q^{29} +(-73.5000 + 127.306i) q^{31} +(80.0000 - 138.564i) q^{32} +(-17.5000 - 30.3109i) q^{33} -42.0000 q^{34} -88.0000 q^{36} +(109.500 + 189.660i) q^{37} +(49.0000 - 84.8705i) q^{38} +(49.0000 - 84.8705i) q^{39} +350.000 q^{41} +(-196.000 - 169.741i) q^{42} +124.000 q^{43} +(-10.0000 - 17.3205i) q^{44} +(159.000 - 275.396i) q^{46} +(262.500 + 454.663i) q^{47} +112.000 q^{48} +(49.0000 + 339.482i) q^{49} +(73.5000 + 127.306i) q^{51} +(28.0000 - 48.4974i) q^{52} +(151.500 - 262.406i) q^{53} +(35.0000 + 60.6218i) q^{54} +(-336.000 - 290.985i) q^{56} -343.000 q^{57} +(58.0000 + 100.459i) q^{58} +(52.5000 - 90.9327i) q^{59} +(206.500 + 357.668i) q^{61} -294.000 q^{62} +(-77.0000 + 400.104i) q^{63} +448.000 q^{64} +(35.0000 - 60.6218i) q^{66} +(207.500 - 359.401i) q^{67} +(42.0000 + 72.7461i) q^{68} -1113.00 q^{69} -432.000 q^{71} +(-264.000 - 457.261i) q^{72} +(-556.500 + 963.886i) q^{73} +(-219.000 + 379.319i) q^{74} -196.000 q^{76} +(-87.5000 + 30.3109i) q^{77} +196.000 q^{78} +(51.5000 + 89.2006i) q^{79} +(419.500 - 726.595i) q^{81} +(350.000 + 606.218i) q^{82} -1092.00 q^{83} +(-98.0000 + 509.223i) q^{84} +(124.000 + 214.774i) q^{86} +(203.000 - 351.606i) q^{87} +(60.0000 - 103.923i) q^{88} +(164.500 + 284.922i) q^{89} +(-196.000 - 169.741i) q^{91} -636.000 q^{92} +(514.500 + 891.140i) q^{93} +(-525.000 + 909.327i) q^{94} +(-560.000 - 969.948i) q^{96} +882.000 q^{97} +(-539.000 + 424.352i) q^{98} -110.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 7 q^{3} + 4 q^{4} + 28 q^{6} - 28 q^{7} + 48 q^{8} - 22 q^{9} + 5 q^{11} - 28 q^{12} + 28 q^{13} + 14 q^{14} + 16 q^{16} - 21 q^{17} + 44 q^{18} - 49 q^{19} - 245 q^{21} + 20 q^{22} - 159 q^{23}+ \cdots - 220 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.73205i 0.353553 + 0.612372i 0.986869 0.161521i \(-0.0516399\pi\)
−0.633316 + 0.773893i \(0.718307\pi\)
\(3\) 3.50000 6.06218i 0.673575 1.16667i −0.303308 0.952893i \(-0.598091\pi\)
0.976883 0.213774i \(-0.0685756\pi\)
\(4\) 2.00000 3.46410i 0.250000 0.433013i
\(5\) 0 0
\(6\) 14.0000 0.952579
\(7\) −14.0000 12.1244i −0.755929 0.654654i
\(8\) 24.0000 1.06066
\(9\) −11.0000 19.0526i −0.407407 0.705650i
\(10\) 0 0
\(11\) 2.50000 4.33013i 0.0685253 0.118689i −0.829727 0.558169i \(-0.811504\pi\)
0.898252 + 0.439480i \(0.144837\pi\)
\(12\) −14.0000 24.2487i −0.336788 0.583333i
\(13\) 14.0000 0.298685 0.149342 0.988786i \(-0.452284\pi\)
0.149342 + 0.988786i \(0.452284\pi\)
\(14\) 7.00000 36.3731i 0.133631 0.694365i
\(15\) 0 0
\(16\) 8.00000 + 13.8564i 0.125000 + 0.216506i
\(17\) −10.5000 + 18.1865i −0.149801 + 0.259464i −0.931154 0.364626i \(-0.881197\pi\)
0.781353 + 0.624090i \(0.214530\pi\)
\(18\) 22.0000 38.1051i 0.288081 0.498970i
\(19\) −24.5000 42.4352i −0.295826 0.512385i 0.679351 0.733813i \(-0.262261\pi\)
−0.975177 + 0.221429i \(0.928928\pi\)
\(20\) 0 0
\(21\) −122.500 + 42.4352i −1.27294 + 0.440959i
\(22\) 10.0000 0.0969094
\(23\) −79.5000 137.698i −0.720735 1.24835i −0.960706 0.277569i \(-0.910471\pi\)
0.239971 0.970780i \(-0.422862\pi\)
\(24\) 84.0000 145.492i 0.714435 1.23744i
\(25\) 0 0
\(26\) 14.0000 + 24.2487i 0.105601 + 0.182906i
\(27\) 35.0000 0.249472
\(28\) −70.0000 + 24.2487i −0.472456 + 0.163663i
\(29\) 58.0000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) −73.5000 + 127.306i −0.425838 + 0.737574i −0.996498 0.0836128i \(-0.973354\pi\)
0.570660 + 0.821186i \(0.306687\pi\)
\(32\) 80.0000 138.564i 0.441942 0.765466i
\(33\) −17.5000 30.3109i −0.0923139 0.159892i
\(34\) −42.0000 −0.211851
\(35\) 0 0
\(36\) −88.0000 −0.407407
\(37\) 109.500 + 189.660i 0.486532 + 0.842698i 0.999880 0.0154821i \(-0.00492832\pi\)
−0.513348 + 0.858181i \(0.671595\pi\)
\(38\) 49.0000 84.8705i 0.209180 0.362311i
\(39\) 49.0000 84.8705i 0.201187 0.348466i
\(40\) 0 0
\(41\) 350.000 1.33319 0.666595 0.745420i \(-0.267751\pi\)
0.666595 + 0.745420i \(0.267751\pi\)
\(42\) −196.000 169.741i −0.720082 0.623610i
\(43\) 124.000 0.439763 0.219882 0.975527i \(-0.429433\pi\)
0.219882 + 0.975527i \(0.429433\pi\)
\(44\) −10.0000 17.3205i −0.0342627 0.0593447i
\(45\) 0 0
\(46\) 159.000 275.396i 0.509636 0.882716i
\(47\) 262.500 + 454.663i 0.814671 + 1.41105i 0.909564 + 0.415565i \(0.136416\pi\)
−0.0948921 + 0.995488i \(0.530251\pi\)
\(48\) 112.000 0.336788
\(49\) 49.0000 + 339.482i 0.142857 + 0.989743i
\(50\) 0 0
\(51\) 73.5000 + 127.306i 0.201805 + 0.349537i
\(52\) 28.0000 48.4974i 0.0746712 0.129334i
\(53\) 151.500 262.406i 0.392644 0.680079i −0.600153 0.799885i \(-0.704894\pi\)
0.992797 + 0.119806i \(0.0382272\pi\)
\(54\) 35.0000 + 60.6218i 0.0882018 + 0.152770i
\(55\) 0 0
\(56\) −336.000 290.985i −0.801784 0.694365i
\(57\) −343.000 −0.797043
\(58\) 58.0000 + 100.459i 0.131306 + 0.227429i
\(59\) 52.5000 90.9327i 0.115846 0.200651i −0.802272 0.596959i \(-0.796375\pi\)
0.918118 + 0.396308i \(0.129709\pi\)
\(60\) 0 0
\(61\) 206.500 + 357.668i 0.433436 + 0.750734i 0.997167 0.0752252i \(-0.0239676\pi\)
−0.563730 + 0.825959i \(0.690634\pi\)
\(62\) −294.000 −0.602226
\(63\) −77.0000 + 400.104i −0.153986 + 0.800132i
\(64\) 448.000 0.875000
\(65\) 0 0
\(66\) 35.0000 60.6218i 0.0652758 0.113061i
\(67\) 207.500 359.401i 0.378361 0.655340i −0.612463 0.790499i \(-0.709821\pi\)
0.990824 + 0.135159i \(0.0431546\pi\)
\(68\) 42.0000 + 72.7461i 0.0749007 + 0.129732i
\(69\) −1113.00 −1.94188
\(70\) 0 0
\(71\) −432.000 −0.722098 −0.361049 0.932547i \(-0.617581\pi\)
−0.361049 + 0.932547i \(0.617581\pi\)
\(72\) −264.000 457.261i −0.432121 0.748455i
\(73\) −556.500 + 963.886i −0.892238 + 1.54540i −0.0550526 + 0.998483i \(0.517533\pi\)
−0.837186 + 0.546919i \(0.815801\pi\)
\(74\) −219.000 + 379.319i −0.344030 + 0.595878i
\(75\) 0 0
\(76\) −196.000 −0.295826
\(77\) −87.5000 + 30.3109i −0.129501 + 0.0448603i
\(78\) 196.000 0.284521
\(79\) 51.5000 + 89.2006i 0.0733443 + 0.127036i 0.900365 0.435135i \(-0.143299\pi\)
−0.827021 + 0.562171i \(0.809966\pi\)
\(80\) 0 0
\(81\) 419.500 726.595i 0.575446 0.996701i
\(82\) 350.000 + 606.218i 0.471354 + 0.816409i
\(83\) −1092.00 −1.44413 −0.722064 0.691827i \(-0.756806\pi\)
−0.722064 + 0.691827i \(0.756806\pi\)
\(84\) −98.0000 + 509.223i −0.127294 + 0.661438i
\(85\) 0 0
\(86\) 124.000 + 214.774i 0.155480 + 0.269299i
\(87\) 203.000 351.606i 0.250160 0.433289i
\(88\) 60.0000 103.923i 0.0726821 0.125889i
\(89\) 164.500 + 284.922i 0.195921 + 0.339345i 0.947202 0.320637i \(-0.103897\pi\)
−0.751281 + 0.659982i \(0.770564\pi\)
\(90\) 0 0
\(91\) −196.000 169.741i −0.225784 0.195535i
\(92\) −636.000 −0.720735
\(93\) 514.500 + 891.140i 0.573668 + 0.993623i
\(94\) −525.000 + 909.327i −0.576060 + 0.997765i
\(95\) 0 0
\(96\) −560.000 969.948i −0.595362 1.03120i
\(97\) 882.000 0.923232 0.461616 0.887080i \(-0.347270\pi\)
0.461616 + 0.887080i \(0.347270\pi\)
\(98\) −539.000 + 424.352i −0.555584 + 0.437409i
\(99\) −110.000 −0.111671
\(100\) 0 0
\(101\) −689.500 + 1194.25i −0.679285 + 1.17656i 0.295911 + 0.955215i \(0.404377\pi\)
−0.975196 + 0.221341i \(0.928957\pi\)
\(102\) −147.000 + 254.611i −0.142698 + 0.247160i
\(103\) −339.500 588.031i −0.324776 0.562529i 0.656691 0.754160i \(-0.271956\pi\)
−0.981467 + 0.191631i \(0.938622\pi\)
\(104\) 336.000 0.316803
\(105\) 0 0
\(106\) 606.000 0.555282
\(107\) 228.500 + 395.774i 0.206448 + 0.357578i 0.950593 0.310440i \(-0.100476\pi\)
−0.744145 + 0.668018i \(0.767143\pi\)
\(108\) 70.0000 121.244i 0.0623681 0.108025i
\(109\) 562.500 974.279i 0.494291 0.856137i −0.505687 0.862717i \(-0.668761\pi\)
0.999978 + 0.00657959i \(0.00209436\pi\)
\(110\) 0 0
\(111\) 1533.00 1.31086
\(112\) 56.0000 290.985i 0.0472456 0.245495i
\(113\) 1538.00 1.28038 0.640190 0.768217i \(-0.278856\pi\)
0.640190 + 0.768217i \(0.278856\pi\)
\(114\) −343.000 594.093i −0.281797 0.488087i
\(115\) 0 0
\(116\) 116.000 200.918i 0.0928477 0.160817i
\(117\) −154.000 266.736i −0.121686 0.210767i
\(118\) 210.000 0.163831
\(119\) 367.500 127.306i 0.283098 0.0980680i
\(120\) 0 0
\(121\) 653.000 + 1131.03i 0.490609 + 0.849759i
\(122\) −413.000 + 715.337i −0.306486 + 0.530849i
\(123\) 1225.00 2121.76i 0.898004 1.55539i
\(124\) 294.000 + 509.223i 0.212919 + 0.368787i
\(125\) 0 0
\(126\) −770.000 + 266.736i −0.544421 + 0.188593i
\(127\) −72.0000 −0.0503068 −0.0251534 0.999684i \(-0.508007\pi\)
−0.0251534 + 0.999684i \(0.508007\pi\)
\(128\) −192.000 332.554i −0.132583 0.229640i
\(129\) 434.000 751.710i 0.296214 0.513057i
\(130\) 0 0
\(131\) −1074.50 1861.09i −0.716637 1.24125i −0.962325 0.271903i \(-0.912347\pi\)
0.245687 0.969349i \(-0.420986\pi\)
\(132\) −140.000 −0.0923139
\(133\) −171.500 + 891.140i −0.111812 + 0.580990i
\(134\) 830.000 0.535083
\(135\) 0 0
\(136\) −252.000 + 436.477i −0.158888 + 0.275203i
\(137\) −562.500 + 974.279i −0.350786 + 0.607578i −0.986387 0.164439i \(-0.947419\pi\)
0.635602 + 0.772017i \(0.280752\pi\)
\(138\) −1113.00 1927.77i −0.686557 1.18915i
\(139\) 252.000 0.153772 0.0768862 0.997040i \(-0.475502\pi\)
0.0768862 + 0.997040i \(0.475502\pi\)
\(140\) 0 0
\(141\) 3675.00 2.19497
\(142\) −432.000 748.246i −0.255300 0.442193i
\(143\) 35.0000 60.6218i 0.0204675 0.0354507i
\(144\) 176.000 304.841i 0.101852 0.176413i
\(145\) 0 0
\(146\) −2226.00 −1.26182
\(147\) 2229.50 + 891.140i 1.25093 + 0.500000i
\(148\) 876.000 0.486532
\(149\) 100.500 + 174.071i 0.0552569 + 0.0957078i 0.892331 0.451382i \(-0.149069\pi\)
−0.837074 + 0.547090i \(0.815736\pi\)
\(150\) 0 0
\(151\) −809.500 + 1402.10i −0.436266 + 0.755635i −0.997398 0.0720914i \(-0.977033\pi\)
0.561132 + 0.827726i \(0.310366\pi\)
\(152\) −588.000 1018.45i −0.313770 0.543466i
\(153\) 462.000 0.244121
\(154\) −140.000 121.244i −0.0732566 0.0634421i
\(155\) 0 0
\(156\) −196.000 339.482i −0.100593 0.174233i
\(157\) 339.500 588.031i 0.172580 0.298917i −0.766741 0.641956i \(-0.778123\pi\)
0.939321 + 0.343039i \(0.111456\pi\)
\(158\) −103.000 + 178.401i −0.0518623 + 0.0898281i
\(159\) −1060.50 1836.84i −0.528950 0.916169i
\(160\) 0 0
\(161\) −556.500 + 2891.66i −0.272412 + 1.41549i
\(162\) 1678.00 0.813803
\(163\) −233.500 404.434i −0.112203 0.194342i 0.804455 0.594014i \(-0.202457\pi\)
−0.916658 + 0.399672i \(0.869124\pi\)
\(164\) 700.000 1212.44i 0.333298 0.577288i
\(165\) 0 0
\(166\) −1092.00 1891.40i −0.510576 0.884344i
\(167\) −1204.00 −0.557894 −0.278947 0.960306i \(-0.589985\pi\)
−0.278947 + 0.960306i \(0.589985\pi\)
\(168\) −2940.00 + 1018.45i −1.35015 + 0.467707i
\(169\) −2001.00 −0.910787
\(170\) 0 0
\(171\) −539.000 + 933.575i −0.241043 + 0.417499i
\(172\) 248.000 429.549i 0.109941 0.190423i
\(173\) −1410.50 2443.06i −0.619875 1.07365i −0.989508 0.144477i \(-0.953850\pi\)
0.369633 0.929178i \(-0.379483\pi\)
\(174\) 812.000 0.353779
\(175\) 0 0
\(176\) 80.0000 0.0342627
\(177\) −367.500 636.529i −0.156062 0.270307i
\(178\) −329.000 + 569.845i −0.138537 + 0.239953i
\(179\) 1626.50 2817.18i 0.679164 1.17635i −0.296069 0.955166i \(-0.595676\pi\)
0.975233 0.221180i \(-0.0709907\pi\)
\(180\) 0 0
\(181\) 1582.00 0.649664 0.324832 0.945772i \(-0.394692\pi\)
0.324832 + 0.945772i \(0.394692\pi\)
\(182\) 98.0000 509.223i 0.0399134 0.207396i
\(183\) 2891.00 1.16781
\(184\) −1908.00 3304.75i −0.764454 1.32407i
\(185\) 0 0
\(186\) −1029.00 + 1782.28i −0.405645 + 0.702597i
\(187\) 52.5000 + 90.9327i 0.0205304 + 0.0355597i
\(188\) 2100.00 0.814671
\(189\) −490.000 424.352i −0.188583 0.163318i
\(190\) 0 0
\(191\) −1278.50 2214.43i −0.484340 0.838902i 0.515498 0.856891i \(-0.327607\pi\)
−0.999838 + 0.0179887i \(0.994274\pi\)
\(192\) 1568.00 2715.86i 0.589378 1.02083i
\(193\) −198.500 + 343.812i −0.0740329 + 0.128229i −0.900665 0.434514i \(-0.856920\pi\)
0.826632 + 0.562742i \(0.190254\pi\)
\(194\) 882.000 + 1527.67i 0.326412 + 0.565362i
\(195\) 0 0
\(196\) 1274.00 + 509.223i 0.464286 + 0.185577i
\(197\) −2914.00 −1.05388 −0.526939 0.849903i \(-0.676660\pi\)
−0.526939 + 0.849903i \(0.676660\pi\)
\(198\) −110.000 190.526i −0.0394816 0.0683842i
\(199\) −1669.50 + 2891.66i −0.594712 + 1.03007i 0.398875 + 0.917005i \(0.369401\pi\)
−0.993587 + 0.113066i \(0.963933\pi\)
\(200\) 0 0
\(201\) −1452.50 2515.80i −0.509709 0.882841i
\(202\) −2758.00 −0.960654
\(203\) −812.000 703.213i −0.280745 0.243132i
\(204\) 588.000 0.201805
\(205\) 0 0
\(206\) 679.000 1176.06i 0.229651 0.397768i
\(207\) −1749.00 + 3029.36i −0.587265 + 1.01717i
\(208\) 112.000 + 193.990i 0.0373356 + 0.0646671i
\(209\) −245.000 −0.0810861
\(210\) 0 0
\(211\) 1780.00 0.580759 0.290380 0.956911i \(-0.406218\pi\)
0.290380 + 0.956911i \(0.406218\pi\)
\(212\) −606.000 1049.62i −0.196322 0.340040i
\(213\) −1512.00 + 2618.86i −0.486387 + 0.842448i
\(214\) −457.000 + 791.547i −0.145981 + 0.252846i
\(215\) 0 0
\(216\) 840.000 0.264605
\(217\) 2572.50 891.140i 0.804759 0.278777i
\(218\) 2250.00 0.699033
\(219\) 3895.50 + 6747.20i 1.20198 + 2.08189i
\(220\) 0 0
\(221\) −147.000 + 254.611i −0.0447434 + 0.0774978i
\(222\) 1533.00 + 2655.23i 0.463460 + 0.802737i
\(223\) 1400.00 0.420408 0.210204 0.977658i \(-0.432587\pi\)
0.210204 + 0.977658i \(0.432587\pi\)
\(224\) −2800.00 + 969.948i −0.835191 + 0.289319i
\(225\) 0 0
\(226\) 1538.00 + 2663.89i 0.452682 + 0.784069i
\(227\) −1102.50 + 1909.59i −0.322359 + 0.558342i −0.980974 0.194138i \(-0.937809\pi\)
0.658615 + 0.752480i \(0.271142\pi\)
\(228\) −686.000 + 1188.19i −0.199261 + 0.345130i
\(229\) −143.500 248.549i −0.0414094 0.0717231i 0.844578 0.535433i \(-0.179851\pi\)
−0.885987 + 0.463710i \(0.846518\pi\)
\(230\) 0 0
\(231\) −122.500 + 636.529i −0.0348914 + 0.181301i
\(232\) 1392.00 0.393919
\(233\) 2293.50 + 3972.46i 0.644859 + 1.11693i 0.984334 + 0.176314i \(0.0564173\pi\)
−0.339475 + 0.940615i \(0.610249\pi\)
\(234\) 308.000 533.472i 0.0860453 0.149035i
\(235\) 0 0
\(236\) −210.000 363.731i −0.0579230 0.100326i
\(237\) 721.000 0.197612
\(238\) 588.000 + 509.223i 0.160144 + 0.138689i
\(239\) 1668.00 0.451439 0.225720 0.974192i \(-0.427527\pi\)
0.225720 + 0.974192i \(0.427527\pi\)
\(240\) 0 0
\(241\) 1704.50 2952.28i 0.455587 0.789100i −0.543135 0.839646i \(-0.682763\pi\)
0.998722 + 0.0505456i \(0.0160960\pi\)
\(242\) −1306.00 + 2262.06i −0.346913 + 0.600870i
\(243\) −2464.00 4267.77i −0.650476 1.12666i
\(244\) 1652.00 0.433436
\(245\) 0 0
\(246\) 4900.00 1.26997
\(247\) −343.000 594.093i −0.0883586 0.153042i
\(248\) −1764.00 + 3055.34i −0.451670 + 0.782315i
\(249\) −3822.00 + 6619.90i −0.972729 + 1.68482i
\(250\) 0 0
\(251\) −4760.00 −1.19701 −0.598503 0.801121i \(-0.704238\pi\)
−0.598503 + 0.801121i \(0.704238\pi\)
\(252\) 1232.00 + 1066.94i 0.307971 + 0.266711i
\(253\) −795.000 −0.197554
\(254\) −72.0000 124.708i −0.0177861 0.0308065i
\(255\) 0 0
\(256\) 2176.00 3768.94i 0.531250 0.920152i
\(257\) −402.500 697.150i −0.0976936 0.169210i 0.813036 0.582213i \(-0.197813\pi\)
−0.910730 + 0.413003i \(0.864480\pi\)
\(258\) 1736.00 0.418909
\(259\) 766.500 3982.85i 0.183892 0.955530i
\(260\) 0 0
\(261\) −638.000 1105.05i −0.151307 0.262072i
\(262\) 2149.00 3722.18i 0.506739 0.877698i
\(263\) −128.500 + 222.569i −0.0301279 + 0.0521831i −0.880696 0.473681i \(-0.842925\pi\)
0.850568 + 0.525865i \(0.176258\pi\)
\(264\) −420.000 727.461i −0.0979137 0.169591i
\(265\) 0 0
\(266\) −1715.00 + 594.093i −0.395314 + 0.136941i
\(267\) 2303.00 0.527870
\(268\) −830.000 1437.60i −0.189180 0.327670i
\(269\) −1795.50 + 3109.90i −0.406965 + 0.704884i −0.994548 0.104280i \(-0.966746\pi\)
0.587583 + 0.809164i \(0.300080\pi\)
\(270\) 0 0
\(271\) −696.500 1206.37i −0.156123 0.270413i 0.777344 0.629075i \(-0.216566\pi\)
−0.933467 + 0.358662i \(0.883233\pi\)
\(272\) −336.000 −0.0749007
\(273\) −1715.00 + 594.093i −0.380207 + 0.131708i
\(274\) −2250.00 −0.496086
\(275\) 0 0
\(276\) −2226.00 + 3855.55i −0.485469 + 0.840857i
\(277\) 207.500 359.401i 0.0450089 0.0779577i −0.842643 0.538472i \(-0.819002\pi\)
0.887652 + 0.460514i \(0.152335\pi\)
\(278\) 252.000 + 436.477i 0.0543667 + 0.0941660i
\(279\) 3234.00 0.693959
\(280\) 0 0
\(281\) −4954.00 −1.05171 −0.525856 0.850574i \(-0.676255\pi\)
−0.525856 + 0.850574i \(0.676255\pi\)
\(282\) 3675.00 + 6365.29i 0.776039 + 1.34414i
\(283\) −2138.50 + 3703.99i −0.449190 + 0.778019i −0.998333 0.0577087i \(-0.981621\pi\)
0.549144 + 0.835728i \(0.314954\pi\)
\(284\) −864.000 + 1496.49i −0.180525 + 0.312678i
\(285\) 0 0
\(286\) 140.000 0.0289454
\(287\) −4900.00 4243.52i −1.00780 0.872778i
\(288\) −3520.00 −0.720201
\(289\) 2236.00 + 3872.87i 0.455119 + 0.788289i
\(290\) 0 0
\(291\) 3087.00 5346.84i 0.621866 1.07710i
\(292\) 2226.00 + 3855.55i 0.446119 + 0.772701i
\(293\) −7742.00 −1.54366 −0.771830 0.635829i \(-0.780658\pi\)
−0.771830 + 0.635829i \(0.780658\pi\)
\(294\) 686.000 + 4752.75i 0.136083 + 0.942809i
\(295\) 0 0
\(296\) 2628.00 + 4551.83i 0.516045 + 0.893817i
\(297\) 87.5000 151.554i 0.0170952 0.0296097i
\(298\) −201.000 + 348.142i −0.0390725 + 0.0676756i
\(299\) −1113.00 1927.77i −0.215272 0.372863i
\(300\) 0 0
\(301\) −1736.00 1503.42i −0.332430 0.287893i
\(302\) −3238.00 −0.616973
\(303\) 4826.50 + 8359.74i 0.915100 + 1.58500i
\(304\) 392.000 678.964i 0.0739564 0.128096i
\(305\) 0 0
\(306\) 462.000 + 800.207i 0.0863097 + 0.149493i
\(307\) 7364.00 1.36901 0.684504 0.729009i \(-0.260019\pi\)
0.684504 + 0.729009i \(0.260019\pi\)
\(308\) −70.0000 + 363.731i −0.0129501 + 0.0672905i
\(309\) −4753.00 −0.875044
\(310\) 0 0
\(311\) −4987.50 + 8638.60i −0.909374 + 1.57508i −0.0944372 + 0.995531i \(0.530105\pi\)
−0.814936 + 0.579550i \(0.803228\pi\)
\(312\) 1176.00 2036.89i 0.213391 0.369603i
\(313\) −2376.50 4116.22i −0.429162 0.743330i 0.567637 0.823279i \(-0.307858\pi\)
−0.996799 + 0.0799485i \(0.974524\pi\)
\(314\) 1358.00 0.244065
\(315\) 0 0
\(316\) 412.000 0.0733443
\(317\) −1738.50 3011.17i −0.308025 0.533515i 0.669905 0.742447i \(-0.266335\pi\)
−0.977930 + 0.208932i \(0.933001\pi\)
\(318\) 2121.00 3673.68i 0.374024 0.647829i
\(319\) 145.000 251.147i 0.0254497 0.0440801i
\(320\) 0 0
\(321\) 3199.00 0.556233
\(322\) −5565.00 + 1927.77i −0.963122 + 0.333635i
\(323\) 1029.00 0.177260
\(324\) −1678.00 2906.38i −0.287723 0.498351i
\(325\) 0 0
\(326\) 467.000 808.868i 0.0793397 0.137420i
\(327\) −3937.50 6819.95i −0.665885 1.15335i
\(328\) 8400.00 1.41406
\(329\) 1837.50 9547.93i 0.307917 1.59998i
\(330\) 0 0
\(331\) −1670.50 2893.39i −0.277399 0.480469i 0.693339 0.720612i \(-0.256139\pi\)
−0.970738 + 0.240143i \(0.922806\pi\)
\(332\) −2184.00 + 3782.80i −0.361032 + 0.625325i
\(333\) 2409.00 4172.51i 0.396434 0.686643i
\(334\) −1204.00 2085.39i −0.197245 0.341639i
\(335\) 0 0
\(336\) −1568.00 1357.93i −0.254588 0.220479i
\(337\) −7366.00 −1.19066 −0.595329 0.803482i \(-0.702978\pi\)
−0.595329 + 0.803482i \(0.702978\pi\)
\(338\) −2001.00 3465.83i −0.322012 0.557741i
\(339\) 5383.00 9323.63i 0.862432 1.49378i
\(340\) 0 0
\(341\) 367.500 + 636.529i 0.0583614 + 0.101085i
\(342\) −2156.00 −0.340886
\(343\) 3430.00 5346.84i 0.539949 0.841698i
\(344\) 2976.00 0.466439
\(345\) 0 0
\(346\) 2821.00 4886.12i 0.438318 0.759188i
\(347\) 3707.50 6421.58i 0.573571 0.993454i −0.422625 0.906305i \(-0.638891\pi\)
0.996195 0.0871487i \(-0.0277755\pi\)
\(348\) −812.000 1406.43i −0.125080 0.216645i
\(349\) −3878.00 −0.594798 −0.297399 0.954753i \(-0.596119\pi\)
−0.297399 + 0.954753i \(0.596119\pi\)
\(350\) 0 0
\(351\) 490.000 0.0745136
\(352\) −400.000 692.820i −0.0605684 0.104908i
\(353\) 633.500 1097.25i 0.0955179 0.165442i −0.814307 0.580435i \(-0.802883\pi\)
0.909825 + 0.414993i \(0.136216\pi\)
\(354\) 735.000 1273.06i 0.110353 0.191136i
\(355\) 0 0
\(356\) 1316.00 0.195921
\(357\) 514.500 2673.42i 0.0762751 0.396337i
\(358\) 6506.00 0.960483
\(359\) −2342.50 4057.33i −0.344380 0.596484i 0.640861 0.767657i \(-0.278578\pi\)
−0.985241 + 0.171173i \(0.945244\pi\)
\(360\) 0 0
\(361\) 2229.00 3860.74i 0.324974 0.562872i
\(362\) 1582.00 + 2740.10i 0.229691 + 0.397836i
\(363\) 9142.00 1.32185
\(364\) −980.000 + 339.482i −0.141115 + 0.0488838i
\(365\) 0 0
\(366\) 2891.00 + 5007.36i 0.412882 + 0.715133i
\(367\) −2320.50 + 4019.22i −0.330052 + 0.571667i −0.982522 0.186148i \(-0.940400\pi\)
0.652470 + 0.757815i \(0.273733\pi\)
\(368\) 1272.00 2203.17i 0.180184 0.312087i
\(369\) −3850.00 6668.40i −0.543152 0.940766i
\(370\) 0 0
\(371\) −5302.50 + 1836.84i −0.742027 + 0.257046i
\(372\) 4116.00 0.573668
\(373\) −4398.50 7618.43i −0.610578 1.05755i −0.991143 0.132798i \(-0.957604\pi\)
0.380565 0.924754i \(-0.375730\pi\)
\(374\) −105.000 + 181.865i −0.0145172 + 0.0251445i
\(375\) 0 0
\(376\) 6300.00 + 10911.9i 0.864090 + 1.49665i
\(377\) 812.000 0.110929
\(378\) 245.000 1273.06i 0.0333371 0.173225i
\(379\) 13680.0 1.85407 0.927037 0.374969i \(-0.122347\pi\)
0.927037 + 0.374969i \(0.122347\pi\)
\(380\) 0 0
\(381\) −252.000 + 436.477i −0.0338854 + 0.0586913i
\(382\) 2557.00 4428.85i 0.342480 0.593193i
\(383\) 4882.50 + 8456.74i 0.651395 + 1.12825i 0.982785 + 0.184755i \(0.0591490\pi\)
−0.331390 + 0.943494i \(0.607518\pi\)
\(384\) −2688.00 −0.357217
\(385\) 0 0
\(386\) −794.000 −0.104698
\(387\) −1364.00 2362.52i −0.179163 0.310319i
\(388\) 1764.00 3055.34i 0.230808 0.399771i
\(389\) −865.500 + 1499.09i −0.112809 + 0.195390i −0.916902 0.399113i \(-0.869318\pi\)
0.804093 + 0.594504i \(0.202651\pi\)
\(390\) 0 0
\(391\) 3339.00 0.431868
\(392\) 1176.00 + 8147.57i 0.151523 + 1.04978i
\(393\) −15043.0 −1.93084
\(394\) −2914.00 5047.20i −0.372602 0.645366i
\(395\) 0 0
\(396\) −220.000 + 381.051i −0.0279177 + 0.0483549i
\(397\) 5491.50 + 9511.56i 0.694233 + 1.20245i 0.970439 + 0.241348i \(0.0775896\pi\)
−0.276206 + 0.961099i \(0.589077\pi\)
\(398\) −6678.00 −0.841050
\(399\) 4802.00 + 4158.65i 0.602508 + 0.521787i
\(400\) 0 0
\(401\) −3301.50 5718.37i −0.411145 0.712124i 0.583870 0.811847i \(-0.301538\pi\)
−0.995015 + 0.0997232i \(0.968204\pi\)
\(402\) 2905.00 5031.61i 0.360418 0.624263i
\(403\) −1029.00 + 1782.28i −0.127191 + 0.220302i
\(404\) 2758.00 + 4777.00i 0.339643 + 0.588278i
\(405\) 0 0
\(406\) 406.000 2109.64i 0.0496292 0.257881i
\(407\) 1095.00 0.133359
\(408\) 1764.00 + 3055.34i 0.214047 + 0.370740i
\(409\) −5477.50 + 9487.31i −0.662213 + 1.14699i 0.317820 + 0.948151i \(0.397049\pi\)
−0.980033 + 0.198835i \(0.936284\pi\)
\(410\) 0 0
\(411\) 3937.50 + 6819.95i 0.472561 + 0.818500i
\(412\) −2716.00 −0.324776
\(413\) −1837.50 + 636.529i −0.218928 + 0.0758391i
\(414\) −6996.00 −0.830518
\(415\) 0 0
\(416\) 1120.00 1939.90i 0.132001 0.228633i
\(417\) 882.000 1527.67i 0.103577 0.179401i
\(418\) −245.000 424.352i −0.0286683 0.0496549i
\(419\) 6636.00 0.773723 0.386861 0.922138i \(-0.373559\pi\)
0.386861 + 0.922138i \(0.373559\pi\)
\(420\) 0 0
\(421\) −16630.0 −1.92517 −0.962585 0.270980i \(-0.912652\pi\)
−0.962585 + 0.270980i \(0.912652\pi\)
\(422\) 1780.00 + 3083.05i 0.205329 + 0.355641i
\(423\) 5775.00 10002.6i 0.663806 1.14975i
\(424\) 3636.00 6297.74i 0.416462 0.721333i
\(425\) 0 0
\(426\) −6048.00 −0.687856
\(427\) 1445.50 7511.04i 0.163824 0.851252i
\(428\) 1828.00 0.206448
\(429\) −245.000 424.352i −0.0275728 0.0477574i
\(430\) 0 0
\(431\) −2461.50 + 4263.44i −0.275096 + 0.476480i −0.970159 0.242468i \(-0.922043\pi\)
0.695064 + 0.718948i \(0.255376\pi\)
\(432\) 280.000 + 484.974i 0.0311840 + 0.0540123i
\(433\) −8974.00 −0.995988 −0.497994 0.867180i \(-0.665930\pi\)
−0.497994 + 0.867180i \(0.665930\pi\)
\(434\) 4116.00 + 3564.56i 0.455240 + 0.394250i
\(435\) 0 0
\(436\) −2250.00 3897.11i −0.247146 0.428069i
\(437\) −3895.50 + 6747.20i −0.426423 + 0.738587i
\(438\) −7791.00 + 13494.4i −0.849928 + 1.47212i
\(439\) 2089.50 + 3619.12i 0.227167 + 0.393465i 0.956967 0.290195i \(-0.0937203\pi\)
−0.729800 + 0.683660i \(0.760387\pi\)
\(440\) 0 0
\(441\) 5929.00 4667.88i 0.640212 0.504036i
\(442\) −588.000 −0.0632767
\(443\) −6463.50 11195.1i −0.693206 1.20067i −0.970782 0.239964i \(-0.922864\pi\)
0.277576 0.960704i \(-0.410469\pi\)
\(444\) 3066.00 5310.47i 0.327716 0.567621i
\(445\) 0 0
\(446\) 1400.00 + 2424.87i 0.148637 + 0.257446i
\(447\) 1407.00 0.148879
\(448\) −6272.00 5431.71i −0.661438 0.572822i
\(449\) −2826.00 −0.297032 −0.148516 0.988910i \(-0.547450\pi\)
−0.148516 + 0.988910i \(0.547450\pi\)
\(450\) 0 0
\(451\) 875.000 1515.54i 0.0913573 0.158235i
\(452\) 3076.00 5327.79i 0.320095 0.554421i
\(453\) 5666.50 + 9814.67i 0.587716 + 1.01795i
\(454\) −4410.00 −0.455884
\(455\) 0 0
\(456\) −8232.00 −0.845392
\(457\) 4239.50 + 7343.03i 0.433951 + 0.751625i 0.997209 0.0746560i \(-0.0237859\pi\)
−0.563259 + 0.826281i \(0.690453\pi\)
\(458\) 287.000 497.099i 0.0292808 0.0507159i
\(459\) −367.500 + 636.529i −0.0373713 + 0.0647290i
\(460\) 0 0
\(461\) 9338.00 0.943414 0.471707 0.881755i \(-0.343638\pi\)
0.471707 + 0.881755i \(0.343638\pi\)
\(462\) −1225.00 + 424.352i −0.123360 + 0.0427330i
\(463\) 4016.00 0.403109 0.201554 0.979477i \(-0.435401\pi\)
0.201554 + 0.979477i \(0.435401\pi\)
\(464\) 464.000 + 803.672i 0.0464238 + 0.0804084i
\(465\) 0 0
\(466\) −4587.00 + 7944.92i −0.455984 + 0.789788i
\(467\) −2929.50 5074.04i −0.290281 0.502781i 0.683595 0.729861i \(-0.260415\pi\)
−0.973876 + 0.227080i \(0.927082\pi\)
\(468\) −1232.00 −0.121686
\(469\) −7262.50 + 2515.80i −0.715034 + 0.247695i
\(470\) 0 0
\(471\) −2376.50 4116.22i −0.232491 0.402687i
\(472\) 1260.00 2182.38i 0.122873 0.212823i
\(473\) 310.000 536.936i 0.0301349 0.0521952i
\(474\) 721.000 + 1248.81i 0.0698663 + 0.121012i
\(475\) 0 0
\(476\) 294.000 1527.67i 0.0283098 0.147102i
\(477\) −6666.00 −0.639864
\(478\) 1668.00 + 2889.06i 0.159608 + 0.276449i
\(479\) −3251.50 + 5631.76i −0.310156 + 0.537206i −0.978396 0.206740i \(-0.933715\pi\)
0.668240 + 0.743946i \(0.267048\pi\)
\(480\) 0 0
\(481\) 1533.00 + 2655.23i 0.145320 + 0.251701i
\(482\) 6818.00 0.644297
\(483\) 15582.0 + 13494.4i 1.46792 + 1.27126i
\(484\) 5224.00 0.490609
\(485\) 0 0
\(486\) 4928.00 8535.55i 0.459956 0.796667i
\(487\) −8024.50 + 13898.8i −0.746663 + 1.29326i 0.202751 + 0.979230i \(0.435012\pi\)
−0.949414 + 0.314028i \(0.898322\pi\)
\(488\) 4956.00 + 8584.04i 0.459729 + 0.796273i
\(489\) −3269.00 −0.302309
\(490\) 0 0
\(491\) 8864.00 0.814718 0.407359 0.913268i \(-0.366450\pi\)
0.407359 + 0.913268i \(0.366450\pi\)
\(492\) −4900.00 8487.05i −0.449002 0.777695i
\(493\) −609.000 + 1054.82i −0.0556348 + 0.0963624i
\(494\) 686.000 1188.19i 0.0624789 0.108217i
\(495\) 0 0
\(496\) −2352.00 −0.212919
\(497\) 6048.00 + 5237.72i 0.545855 + 0.472724i
\(498\) −15288.0 −1.37565
\(499\) 5105.50 + 8842.99i 0.458023 + 0.793319i 0.998856 0.0478104i \(-0.0152243\pi\)
−0.540833 + 0.841130i \(0.681891\pi\)
\(500\) 0 0
\(501\) −4214.00 + 7298.86i −0.375784 + 0.650876i
\(502\) −4760.00 8244.56i −0.423206 0.733014i
\(503\) 1680.00 0.148921 0.0744607 0.997224i \(-0.476276\pi\)
0.0744607 + 0.997224i \(0.476276\pi\)
\(504\) −1848.00 + 9602.49i −0.163326 + 0.848668i
\(505\) 0 0
\(506\) −795.000 1376.98i −0.0698460 0.120977i
\(507\) −7003.50 + 12130.4i −0.613484 + 1.06259i
\(508\) −144.000 + 249.415i −0.0125767 + 0.0217835i
\(509\) 4728.50 + 8190.00i 0.411762 + 0.713193i 0.995083 0.0990489i \(-0.0315800\pi\)
−0.583320 + 0.812242i \(0.698247\pi\)
\(510\) 0 0
\(511\) 19477.5 6747.20i 1.68617 0.584107i
\(512\) 5632.00 0.486136
\(513\) −857.500 1485.23i −0.0738003 0.127826i
\(514\) 805.000 1394.30i 0.0690798 0.119650i
\(515\) 0 0
\(516\) −1736.00 3006.84i −0.148107 0.256529i
\(517\) 2625.00 0.223302
\(518\) 7665.00 2655.23i 0.650156 0.225221i
\(519\) −19747.0 −1.67013
\(520\) 0 0
\(521\) 9040.50 15658.6i 0.760214 1.31673i −0.182526 0.983201i \(-0.558427\pi\)
0.942740 0.333528i \(-0.108239\pi\)
\(522\) 1276.00 2210.10i 0.106990 0.185313i
\(523\) 10188.5 + 17647.0i 0.851839 + 1.47543i 0.879546 + 0.475813i \(0.157846\pi\)
−0.0277071 + 0.999616i \(0.508821\pi\)
\(524\) −8596.00 −0.716637
\(525\) 0 0
\(526\) −514.000 −0.0426073
\(527\) −1543.50 2673.42i −0.127582 0.220979i
\(528\) 280.000 484.974i 0.0230785 0.0399731i
\(529\) −6557.00 + 11357.1i −0.538917 + 0.933431i
\(530\) 0 0
\(531\) −2310.00 −0.188786
\(532\) 2744.00 + 2376.37i 0.223623 + 0.193663i
\(533\) 4900.00 0.398204
\(534\) 2303.00 + 3988.91i 0.186630 + 0.323253i
\(535\) 0 0
\(536\) 4980.00 8625.61i 0.401312 0.695093i
\(537\) −11385.5 19720.3i −0.914936 1.58472i
\(538\) −7182.00 −0.575535
\(539\) 1592.50 + 636.529i 0.127261 + 0.0508668i
\(540\) 0 0
\(541\) 3096.50 + 5363.30i 0.246079 + 0.426222i 0.962435 0.271514i \(-0.0875243\pi\)
−0.716355 + 0.697736i \(0.754191\pi\)
\(542\) 1393.00 2412.75i 0.110396 0.191211i
\(543\) 5537.00 9590.37i 0.437597 0.757941i
\(544\) 1680.00 + 2909.85i 0.132407 + 0.229336i
\(545\) 0 0
\(546\) −2744.00 2376.37i −0.215078 0.186263i
\(547\) 18464.0 1.44326 0.721630 0.692279i \(-0.243393\pi\)
0.721630 + 0.692279i \(0.243393\pi\)
\(548\) 2250.00 + 3897.11i 0.175393 + 0.303789i
\(549\) 4543.00 7868.71i 0.353170 0.611709i
\(550\) 0 0
\(551\) −1421.00 2461.24i −0.109867 0.190295i
\(552\) −26712.0 −2.05967
\(553\) 360.500 1873.21i 0.0277216 0.144045i
\(554\) 830.000 0.0636522
\(555\) 0 0
\(556\) 504.000 872.954i 0.0384431 0.0665854i
\(557\) −4706.50 + 8151.90i −0.358027 + 0.620120i −0.987631 0.156796i \(-0.949884\pi\)
0.629604 + 0.776916i \(0.283217\pi\)
\(558\) 3234.00 + 5601.45i 0.245351 + 0.424961i
\(559\) 1736.00 0.131351
\(560\) 0 0
\(561\) 735.000 0.0553150
\(562\) −4954.00 8580.58i −0.371836 0.644039i
\(563\) 1599.50 2770.42i 0.119735 0.207387i −0.799928 0.600097i \(-0.795129\pi\)
0.919663 + 0.392709i \(0.128462\pi\)
\(564\) 7350.00 12730.6i 0.548743 0.950450i
\(565\) 0 0
\(566\) −8554.00 −0.635250
\(567\) −14682.5 + 5086.17i −1.08749 + 0.376718i
\(568\) −10368.0 −0.765901
\(569\) −10791.5 18691.4i −0.795085 1.37713i −0.922785 0.385314i \(-0.874093\pi\)
0.127701 0.991813i \(-0.459240\pi\)
\(570\) 0 0
\(571\) −10133.5 + 17551.7i −0.742686 + 1.28637i 0.208582 + 0.978005i \(0.433115\pi\)
−0.951268 + 0.308365i \(0.900218\pi\)
\(572\) −140.000 242.487i −0.0102337 0.0177253i
\(573\) −17899.0 −1.30496
\(574\) 2450.00 12730.6i 0.178155 0.925721i
\(575\) 0 0
\(576\) −4928.00 8535.55i −0.356481 0.617444i
\(577\) 6975.50 12081.9i 0.503282 0.871710i −0.496711 0.867916i \(-0.665459\pi\)
0.999993 0.00379418i \(-0.00120773\pi\)
\(578\) −4472.00 + 7745.73i −0.321818 + 0.557405i
\(579\) 1389.50 + 2406.68i 0.0997334 + 0.172743i
\(580\) 0 0
\(581\) 15288.0 + 13239.8i 1.09166 + 0.945403i
\(582\) 12348.0 0.879452
\(583\) −757.500 1312.03i −0.0538121 0.0932053i
\(584\) −13356.0 + 23133.3i −0.946362 + 1.63915i
\(585\) 0 0
\(586\) −7742.00 13409.5i −0.545766 0.945295i
\(587\) 20972.0 1.47463 0.737314 0.675550i \(-0.236094\pi\)
0.737314 + 0.675550i \(0.236094\pi\)
\(588\) 7546.00 5940.93i 0.529238 0.416667i
\(589\) 7203.00 0.503895
\(590\) 0 0
\(591\) −10199.0 + 17665.2i −0.709866 + 1.22952i
\(592\) −1752.00 + 3034.55i −0.121633 + 0.210675i
\(593\) −94.5000 163.679i −0.00654410 0.0113347i 0.862735 0.505657i \(-0.168750\pi\)
−0.869279 + 0.494322i \(0.835416\pi\)
\(594\) 350.000 0.0241762
\(595\) 0 0
\(596\) 804.000 0.0552569
\(597\) 11686.5 + 20241.6i 0.801167 + 1.38766i
\(598\) 2226.00 3855.55i 0.152221 0.263654i
\(599\) 5140.50 8903.61i 0.350643 0.607331i −0.635719 0.771920i \(-0.719296\pi\)
0.986362 + 0.164589i \(0.0526297\pi\)
\(600\) 0 0
\(601\) −6090.00 −0.413338 −0.206669 0.978411i \(-0.566262\pi\)
−0.206669 + 0.978411i \(0.566262\pi\)
\(602\) 868.000 4510.26i 0.0587658 0.305356i
\(603\) −9130.00 −0.616588
\(604\) 3238.00 + 5608.38i 0.218133 + 0.377817i
\(605\) 0 0
\(606\) −9653.00 + 16719.5i −0.647073 + 1.12076i
\(607\) 2474.50 + 4285.96i 0.165464 + 0.286593i 0.936820 0.349812i \(-0.113754\pi\)
−0.771356 + 0.636404i \(0.780421\pi\)
\(608\) −7840.00 −0.522951
\(609\) −7105.00 + 2461.24i −0.472757 + 0.163768i
\(610\) 0 0
\(611\) 3675.00 + 6365.29i 0.243330 + 0.421460i
\(612\) 924.000 1600.41i 0.0610302 0.105707i
\(613\) −7898.50 + 13680.6i −0.520420 + 0.901394i 0.479298 + 0.877652i \(0.340891\pi\)
−0.999718 + 0.0237416i \(0.992442\pi\)
\(614\) 7364.00 + 12754.8i 0.484018 + 0.838343i
\(615\) 0 0
\(616\) −2100.00 + 727.461i −0.137356 + 0.0475816i
\(617\) 9378.00 0.611903 0.305951 0.952047i \(-0.401025\pi\)
0.305951 + 0.952047i \(0.401025\pi\)
\(618\) −4753.00 8232.44i −0.309375 0.535853i
\(619\) 12176.5 21090.3i 0.790654 1.36945i −0.134908 0.990858i \(-0.543074\pi\)
0.925562 0.378595i \(-0.123593\pi\)
\(620\) 0 0
\(621\) −2782.50 4819.43i −0.179803 0.311429i
\(622\) −19950.0 −1.28605
\(623\) 1151.50 5983.37i 0.0740512 0.384781i
\(624\) 1568.00 0.100593
\(625\) 0 0
\(626\) 4753.00 8232.44i 0.303463 0.525614i
\(627\) −857.500 + 1485.23i −0.0546176 + 0.0946005i
\(628\) −1358.00 2352.12i −0.0862900 0.149459i
\(629\) −4599.00 −0.291533
\(630\) 0 0
\(631\) −12640.0 −0.797449 −0.398725 0.917071i \(-0.630547\pi\)
−0.398725 + 0.917071i \(0.630547\pi\)
\(632\) 1236.00 + 2140.81i 0.0777934 + 0.134742i
\(633\) 6230.00 10790.7i 0.391185 0.677553i
\(634\) 3477.00 6022.34i 0.217806 0.377252i
\(635\) 0 0
\(636\) −8484.00 −0.528950
\(637\) 686.000 + 4752.75i 0.0426692 + 0.295621i
\(638\) 580.000 0.0359913
\(639\) 4752.00 + 8230.71i 0.294188 + 0.509549i
\(640\) 0 0
\(641\) 520.500 901.532i 0.0320726 0.0555513i −0.849544 0.527518i \(-0.823123\pi\)
0.881616 + 0.471967i \(0.156456\pi\)
\(642\) 3199.00 + 5540.83i 0.196658 + 0.340622i
\(643\) −9548.00 −0.585593 −0.292797 0.956175i \(-0.594586\pi\)
−0.292797 + 0.956175i \(0.594586\pi\)
\(644\) 8904.00 + 7711.09i 0.544824 + 0.471832i
\(645\) 0 0
\(646\) 1029.00 + 1782.28i 0.0626710 + 0.108549i
\(647\) −1620.50 + 2806.79i −0.0984674 + 0.170551i −0.911050 0.412295i \(-0.864727\pi\)
0.812583 + 0.582845i \(0.198061\pi\)
\(648\) 10068.0 17438.3i 0.610352 1.05716i
\(649\) −262.500 454.663i −0.0158768 0.0274994i
\(650\) 0 0
\(651\) 3601.50 18713.9i 0.216826 1.12666i
\(652\) −1868.00 −0.112203
\(653\) −4426.50 7666.92i −0.265272 0.459464i 0.702363 0.711819i \(-0.252128\pi\)
−0.967635 + 0.252355i \(0.918795\pi\)
\(654\) 7875.00 13639.9i 0.470851 0.815539i
\(655\) 0 0
\(656\) 2800.00 + 4849.74i 0.166649 + 0.288644i
\(657\) 24486.0 1.45402
\(658\) 18375.0 6365.29i 1.08865 0.377120i
\(659\) 7044.00 0.416381 0.208191 0.978088i \(-0.433243\pi\)
0.208191 + 0.978088i \(0.433243\pi\)
\(660\) 0 0
\(661\) 6044.50 10469.4i 0.355679 0.616054i −0.631555 0.775331i \(-0.717583\pi\)
0.987234 + 0.159277i \(0.0509163\pi\)
\(662\) 3341.00 5786.78i 0.196151 0.339743i
\(663\) 1029.00 + 1782.28i 0.0602761 + 0.104401i
\(664\) −26208.0 −1.53173
\(665\) 0 0
\(666\) 9636.00 0.560642
\(667\) −4611.00 7986.49i −0.267674 0.463625i
\(668\) −2408.00 + 4170.78i −0.139474 + 0.241575i
\(669\) 4900.00 8487.05i 0.283176 0.490476i
\(670\) 0 0
\(671\) 2065.00 0.118805
\(672\) −3920.00 + 20368.9i −0.225026 + 1.16927i
\(673\) −982.000 −0.0562456 −0.0281228 0.999604i \(-0.508953\pi\)
−0.0281228 + 0.999604i \(0.508953\pi\)
\(674\) −7366.00 12758.3i −0.420961 0.729126i
\(675\) 0 0
\(676\) −4002.00 + 6931.67i −0.227697 + 0.394383i
\(677\) −15256.5 26425.0i −0.866108 1.50014i −0.865943 0.500143i \(-0.833281\pi\)
−0.000164659 1.00000i \(-0.500052\pi\)
\(678\) 21532.0 1.21966
\(679\) −12348.0 10693.7i −0.697898 0.604397i
\(680\) 0 0
\(681\) 7717.50 + 13367.1i 0.434266 + 0.752171i
\(682\) −735.000 + 1273.06i −0.0412677 + 0.0714778i
\(683\) 5737.50 9937.64i 0.321434 0.556740i −0.659350 0.751836i \(-0.729169\pi\)
0.980784 + 0.195096i \(0.0625019\pi\)
\(684\) 2156.00 + 3734.30i 0.120522 + 0.208749i
\(685\) 0 0
\(686\) 12691.0 + 594.093i 0.706333 + 0.0330650i
\(687\) −2009.00 −0.111569
\(688\) 992.000 + 1718.19i 0.0549704 + 0.0952116i
\(689\) 2121.00 3673.68i 0.117277 0.203129i
\(690\) 0 0
\(691\) 14157.5 + 24521.5i 0.779416 + 1.34999i 0.932279 + 0.361741i \(0.117818\pi\)
−0.152862 + 0.988248i \(0.548849\pi\)
\(692\) −11284.0 −0.619875
\(693\) 1540.00 + 1333.68i 0.0844152 + 0.0731057i
\(694\) 14830.0 0.811151
\(695\) 0 0
\(696\) 4872.00 8438.55i 0.265334 0.459573i
\(697\) −3675.00 + 6365.29i −0.199714 + 0.345915i
\(698\) −3878.00 6716.89i −0.210293 0.364238i
\(699\) 32109.0 1.73744
\(700\) 0 0
\(701\) 10614.0 0.571876 0.285938 0.958248i \(-0.407695\pi\)
0.285938 + 0.958248i \(0.407695\pi\)
\(702\) 490.000 + 848.705i 0.0263445 + 0.0456301i
\(703\) 5365.50 9293.32i 0.287857 0.498583i
\(704\) 1120.00 1939.90i 0.0599596 0.103853i
\(705\) 0 0
\(706\) 2534.00 0.135083
\(707\) 24132.5 8359.74i 1.28373 0.444697i
\(708\) −2940.00 −0.156062
\(709\) −5149.50 8919.20i −0.272769 0.472451i 0.696801 0.717265i \(-0.254606\pi\)
−0.969570 + 0.244814i \(0.921273\pi\)
\(710\) 0 0
\(711\) 1133.00 1962.41i 0.0597621 0.103511i
\(712\) 3948.00 + 6838.14i 0.207806 + 0.359930i
\(713\) 23373.0 1.22767
\(714\) 5145.00 1782.28i 0.269673 0.0934176i
\(715\) 0 0
\(716\) −6506.00 11268.7i −0.339582 0.588173i
\(717\) 5838.00 10111.7i 0.304078 0.526679i
\(718\) 4685.00 8114.66i 0.243513 0.421778i
\(719\) −16264.5 28170.9i −0.843621 1.46119i −0.886813 0.462128i \(-0.847086\pi\)
0.0431924 0.999067i \(-0.486247\pi\)
\(720\) 0 0
\(721\) −2376.50 + 12348.7i −0.122754 + 0.637847i
\(722\) 8916.00 0.459583
\(723\) −11931.5 20666.0i −0.613744 1.06304i
\(724\) 3164.00 5480.21i 0.162416 0.281313i
\(725\) 0 0
\(726\) 9142.00 + 15834.4i 0.467344 + 0.809463i
\(727\) −29456.0 −1.50270 −0.751350 0.659904i \(-0.770597\pi\)
−0.751350 + 0.659904i \(0.770597\pi\)
\(728\) −4704.00 4073.78i −0.239481 0.207396i
\(729\) −11843.0 −0.601687
\(730\) 0 0
\(731\) −1302.00 + 2255.13i −0.0658772 + 0.114103i
\(732\) 5782.00 10014.7i 0.291952 0.505676i
\(733\) 13933.5 + 24133.5i 0.702109 + 1.21609i 0.967725 + 0.252009i \(0.0810912\pi\)
−0.265616 + 0.964079i \(0.585575\pi\)
\(734\) −9282.00 −0.466764
\(735\) 0 0
\(736\) −25440.0 −1.27409
\(737\) −1037.50 1797.00i −0.0518546 0.0898147i
\(738\) 7700.00 13336.8i 0.384066 0.665222i
\(739\) −9769.50 + 16921.3i −0.486302 + 0.842299i −0.999876 0.0157460i \(-0.994988\pi\)
0.513574 + 0.858045i \(0.328321\pi\)
\(740\) 0 0
\(741\) −4802.00 −0.238065
\(742\) −8484.00 7347.36i −0.419754 0.363518i
\(743\) −1248.00 −0.0616214 −0.0308107 0.999525i \(-0.509809\pi\)
−0.0308107 + 0.999525i \(0.509809\pi\)
\(744\) 12348.0 + 21387.4i 0.608467 + 1.05390i
\(745\) 0 0
\(746\) 8797.00 15236.9i 0.431744 0.747803i
\(747\) 12012.0 + 20805.4i 0.588348 + 1.01905i
\(748\) 420.000 0.0205304
\(749\) 1599.50 8311.25i 0.0780300 0.405456i
\(750\) 0 0
\(751\) −14046.5 24329.3i −0.682509 1.18214i −0.974213 0.225631i \(-0.927556\pi\)
0.291704 0.956509i \(-0.405778\pi\)
\(752\) −4200.00 + 7274.61i −0.203668 + 0.352763i
\(753\) −16660.0 + 28856.0i −0.806274 + 1.39651i
\(754\) 812.000 + 1406.43i 0.0392192 + 0.0679297i
\(755\) 0 0
\(756\) −2450.00 + 848.705i −0.117865 + 0.0408295i
\(757\) −35954.0 −1.72625 −0.863124 0.504991i \(-0.831496\pi\)
−0.863124 + 0.504991i \(0.831496\pi\)
\(758\) 13680.0 + 23694.5i 0.655514 + 1.13538i
\(759\) −2782.50 + 4819.43i −0.133068 + 0.230480i
\(760\) 0 0
\(761\) 430.500 + 745.648i 0.0205067 + 0.0355187i 0.876097 0.482136i \(-0.160139\pi\)
−0.855590 + 0.517654i \(0.826805\pi\)
\(762\) −1008.00 −0.0479212
\(763\) −19687.5 + 6819.95i −0.934122 + 0.323589i
\(764\) −10228.0 −0.484340
\(765\) 0 0
\(766\) −9765.00 + 16913.5i −0.460605 + 0.797792i
\(767\) 735.000 1273.06i 0.0346014 0.0599315i
\(768\) −15232.0 26382.6i −0.715674 1.23958i
\(769\) 24710.0 1.15873 0.579366 0.815067i \(-0.303300\pi\)
0.579366 + 0.815067i \(0.303300\pi\)
\(770\) 0 0
\(771\) −5635.00 −0.263216
\(772\) 794.000 + 1375.25i 0.0370164 + 0.0641143i
\(773\) 8249.50 14288.6i 0.383847 0.664843i −0.607761 0.794120i \(-0.707932\pi\)
0.991609 + 0.129277i \(0.0412656\pi\)
\(774\) 2728.00 4725.03i 0.126687 0.219429i
\(775\) 0 0
\(776\) 21168.0 0.979236
\(777\) −21462.0 18586.6i −0.990920 0.858162i
\(778\) −3462.00 −0.159536
\(779\) −8575.00 14852.3i −0.394392 0.683107i
\(780\) 0 0
\(781\) −1080.00 + 1870.61i −0.0494820 + 0.0857053i
\(782\) 3339.00 + 5783.32i 0.152688 + 0.264464i
\(783\) 2030.00 0.0926517
\(784\) −4312.00 + 3394.82i −0.196429 + 0.154647i
\(785\) 0 0
\(786\) −15043.0 26055.2i −0.682654 1.18239i
\(787\) 8235.50 14264.3i 0.373016 0.646083i −0.617012 0.786954i \(-0.711657\pi\)
0.990028 + 0.140871i \(0.0449902\pi\)
\(788\) −5828.00 + 10094.4i −0.263469 + 0.456342i
\(789\) 899.500 + 1557.98i 0.0405869 + 0.0702985i
\(790\) 0 0
\(791\) −21532.0 18647.3i −0.967876 0.838205i
\(792\) −2640.00 −0.118445
\(793\) 2891.00 + 5007.36i 0.129461 + 0.224233i
\(794\) −10983.0 + 19023.1i −0.490897 + 0.850258i
\(795\) 0 0
\(796\) 6678.00 + 11566.6i 0.297356 + 0.515036i
\(797\) 36470.0 1.62087 0.810435 0.585828i \(-0.199231\pi\)
0.810435 + 0.585828i \(0.199231\pi\)
\(798\) −2401.00 + 12476.0i −0.106509 + 0.553439i
\(799\) −11025.0 −0.488156
\(800\) 0 0
\(801\) 3619.00 6268.29i 0.159639 0.276503i
\(802\) 6603.00 11436.7i 0.290723 0.503547i
\(803\) 2782.50 + 4819.43i 0.122282 + 0.211798i
\(804\) −11620.0 −0.509709
\(805\) 0 0
\(806\) −4116.00 −0.179876
\(807\) 12568.5 + 21769.3i 0.548243 + 0.949585i
\(808\) −16548.0 + 28662.0i −0.720491 + 1.24793i
\(809\) −17875.5 + 30961.3i −0.776847 + 1.34554i 0.156904 + 0.987614i \(0.449849\pi\)
−0.933751 + 0.357924i \(0.883485\pi\)
\(810\) 0 0
\(811\) −16492.0 −0.714072 −0.357036 0.934091i \(-0.616213\pi\)
−0.357036 + 0.934091i \(0.616213\pi\)
\(812\) −4060.00 + 1406.43i −0.175466 + 0.0607831i
\(813\) −9751.00 −0.420643
\(814\) 1095.00 + 1896.60i 0.0471495 + 0.0816654i
\(815\) 0 0
\(816\) −1176.00 + 2036.89i −0.0504513 + 0.0873842i
\(817\) −3038.00 5261.97i −0.130093 0.225328i
\(818\) −21910.0 −0.936510
\(819\) −1078.00 + 5601.45i −0.0459931 + 0.238987i
\(820\) 0 0
\(821\) 20736.5 + 35916.7i 0.881497 + 1.52680i 0.849677 + 0.527304i \(0.176797\pi\)
0.0318198 + 0.999494i \(0.489870\pi\)
\(822\) −7875.00 + 13639.9i −0.334151 + 0.578767i
\(823\) −12532.5 + 21706.9i −0.530809 + 0.919387i 0.468545 + 0.883440i \(0.344778\pi\)
−0.999354 + 0.0359479i \(0.988555\pi\)
\(824\) −8148.00 14112.7i −0.344477 0.596652i
\(825\) 0 0
\(826\) −2940.00 2546.11i −0.123845 0.107253i
\(827\) −9732.00 −0.409208 −0.204604 0.978845i \(-0.565591\pi\)
−0.204604 + 0.978845i \(0.565591\pi\)
\(828\) 6996.00 + 12117.4i 0.293633 + 0.508587i
\(829\) −13877.5 + 24036.5i −0.581406 + 1.00702i 0.413907 + 0.910319i \(0.364164\pi\)
−0.995313 + 0.0967055i \(0.969170\pi\)
\(830\) 0 0
\(831\) −1452.50 2515.80i −0.0606338 0.105021i
\(832\) 6272.00 0.261349
\(833\) −6688.50 2673.42i −0.278203 0.111199i
\(834\) 3528.00 0.146480
\(835\) 0 0
\(836\) −490.000 + 848.705i −0.0202715 + 0.0351113i
\(837\) −2572.50 + 4455.70i −0.106235 + 0.184004i
\(838\) 6636.00 + 11493.9i 0.273552 + 0.473806i
\(839\) 21112.0 0.868733 0.434367 0.900736i \(-0.356972\pi\)
0.434367 + 0.900736i \(0.356972\pi\)
\(840\) 0 0
\(841\) −21025.0 −0.862069
\(842\) −16630.0 28804.0i −0.680650 1.17892i
\(843\) −17339.0 + 30032.0i −0.708407 + 1.22700i
\(844\) 3560.00 6166.10i 0.145190 0.251476i
\(845\) 0 0
\(846\) 23100.0 0.938764
\(847\) 4571.00 23751.6i 0.185433 0.963536i
\(848\) 4848.00 0.196322
\(849\) 14969.5 + 25927.9i 0.605126 + 1.04811i
\(850\) 0 0
\(851\) 17410.5 30155.9i 0.701321 1.21472i
\(852\) 6048.00 + 10475.4i 0.243194 + 0.421224i
\(853\) 21238.0 0.852492 0.426246 0.904607i \(-0.359836\pi\)
0.426246 + 0.904607i \(0.359836\pi\)
\(854\) 14455.0 5007.36i 0.579204 0.200642i
\(855\) 0 0
\(856\) 5484.00 + 9498.57i 0.218971 + 0.379269i
\(857\) −17804.5 + 30838.3i −0.709673 + 1.22919i 0.255305 + 0.966861i \(0.417824\pi\)
−0.964978 + 0.262330i \(0.915509\pi\)
\(858\) 490.000 848.705i 0.0194969 0.0337696i
\(859\) −1088.50 1885.34i −0.0432353 0.0748858i 0.843598 0.536975i \(-0.180433\pi\)
−0.886833 + 0.462090i \(0.847100\pi\)
\(860\) 0 0
\(861\) −42875.0 + 14852.3i −1.69707 + 0.587882i
\(862\) −9846.00 −0.389044
\(863\) −16123.5 27926.7i −0.635980 1.10155i −0.986307 0.164921i \(-0.947263\pi\)
0.350327 0.936627i \(-0.386070\pi\)
\(864\) 2800.00 4849.74i 0.110252 0.190962i
\(865\) 0 0
\(866\) −8974.00 15543.4i −0.352135 0.609916i
\(867\) 31304.0 1.22623
\(868\) 2058.00 10693.7i 0.0804759 0.418165i
\(869\) 515.000 0.0201038
\(870\) 0 0
\(871\) 2905.00 5031.61i 0.113011 0.195740i
\(872\) 13500.0 23382.7i 0.524275 0.908071i
\(873\) −9702.00 16804.4i −0.376132 0.651479i
\(874\) −15582.0 −0.603054
\(875\) 0 0
\(876\) 31164.0 1.20198
\(877\) 13815.5 + 23929.1i 0.531946 + 0.921357i 0.999305 + 0.0372891i \(0.0118723\pi\)
−0.467359 + 0.884068i \(0.654794\pi\)
\(878\) −4179.00 + 7238.24i −0.160631 + 0.278222i
\(879\) −27097.0 + 46933.4i −1.03977 + 1.80094i
\(880\) 0 0
\(881\) 24402.0 0.933172 0.466586 0.884476i \(-0.345484\pi\)
0.466586 + 0.884476i \(0.345484\pi\)
\(882\) 14014.0 + 5601.45i 0.535007 + 0.213844i
\(883\) 19612.0 0.747448 0.373724 0.927540i \(-0.378081\pi\)
0.373724 + 0.927540i \(0.378081\pi\)
\(884\) 588.000 + 1018.45i 0.0223717 + 0.0387489i
\(885\) 0 0
\(886\) 12927.0 22390.2i 0.490170 0.849000i
\(887\) 1130.50 + 1958.08i 0.0427942 + 0.0741218i 0.886629 0.462481i \(-0.153041\pi\)
−0.843835 + 0.536603i \(0.819707\pi\)
\(888\) 36792.0 1.39038
\(889\) 1008.00 + 872.954i 0.0380284 + 0.0329335i
\(890\) 0 0
\(891\) −2097.50 3632.98i −0.0788652 0.136599i
\(892\) 2800.00 4849.74i 0.105102 0.182042i
\(893\) 12862.5 22278.5i 0.482001 0.834851i
\(894\) 1407.00 + 2437.00i 0.0526366 + 0.0911693i
\(895\) 0 0
\(896\) −1344.00 + 6983.63i −0.0501115 + 0.260387i
\(897\) −15582.0 −0.580009
\(898\) −2826.00 4894.78i −0.105017 0.181894i
\(899\) −4263.00 + 7383.73i −0.158152 + 0.273928i
\(900\) 0 0
\(901\) 3181.50 + 5510.52i 0.117637 + 0.203754i
\(902\) 3500.00 0.129199
\(903\) −15190.0 + 5261.97i −0.559791 + 0.193917i
\(904\) 36912.0 1.35805
\(905\) 0 0
\(906\) −11333.0 + 19629.3i −0.415578 + 0.719802i
\(907\) −11916.5 + 20640.0i −0.436252 + 0.755611i −0.997397 0.0721066i \(-0.977028\pi\)
0.561145 + 0.827718i \(0.310361\pi\)
\(908\) 4410.00 + 7638.34i 0.161180 + 0.279171i
\(909\) 30338.0 1.10698
\(910\) 0 0
\(911\) 31824.0 1.15738 0.578692 0.815546i \(-0.303563\pi\)
0.578692 + 0.815546i \(0.303563\pi\)
\(912\) −2744.00 4752.75i −0.0996304 0.172565i
\(913\) −2730.00 + 4728.50i −0.0989593 + 0.171402i
\(914\) −8479.00 + 14686.1i −0.306849 + 0.531479i
\(915\) 0 0
\(916\) −1148.00 −0.0414094
\(917\) −7521.50 + 39082.9i −0.270863 + 1.40745i
\(918\) −1470.00 −0.0528510
\(919\) 8409.50 + 14565.7i 0.301854 + 0.522826i 0.976556 0.215264i \(-0.0690612\pi\)
−0.674702 + 0.738090i \(0.735728\pi\)
\(920\) 0 0
\(921\) 25774.0 44641.9i 0.922130 1.59718i
\(922\) 9338.00 + 16173.9i 0.333547 + 0.577721i
\(923\) −6048.00 −0.215680
\(924\) 1960.00 + 1697.41i 0.0697828 + 0.0604336i
\(925\) 0 0
\(926\) 4016.00 + 6955.92i 0.142520 + 0.246853i
\(927\) −7469.00 + 12936.7i −0.264632 + 0.458357i
\(928\) 4640.00 8036.72i 0.164133 0.284287i
\(929\) −899.500 1557.98i −0.0317671 0.0550222i 0.849705 0.527259i \(-0.176780\pi\)
−0.881472 + 0.472237i \(0.843447\pi\)
\(930\) 0 0
\(931\) 13205.5 10396.6i 0.464869 0.365989i
\(932\) 18348.0 0.644859
\(933\) 34912.5 + 60470.2i 1.22506 + 2.12187i
\(934\) 5859.00 10148.1i 0.205259 0.355520i
\(935\) 0 0
\(936\) −3696.00 6401.66i −0.129068 0.223552i
\(937\) −14154.0 −0.493480 −0.246740 0.969082i \(-0.579359\pi\)
−0.246740 + 0.969082i \(0.579359\pi\)
\(938\) −11620.0 10063.2i −0.404484 0.350294i
\(939\) −33271.0 −1.15629
\(940\) 0 0
\(941\) −6023.50 + 10433.0i −0.208672 + 0.361431i −0.951296 0.308277i \(-0.900247\pi\)
0.742624 + 0.669708i \(0.233581\pi\)
\(942\) 4753.00 8232.44i 0.164396 0.284742i
\(943\) −27825.0 48194.3i −0.960877 1.66429i
\(944\) 1680.00 0.0579230
\(945\) 0 0
\(946\) 1240.00 0.0426172
\(947\) −12189.5 21112.8i −0.418274 0.724472i 0.577492 0.816396i \(-0.304031\pi\)
−0.995766 + 0.0919245i \(0.970698\pi\)
\(948\) 1442.00 2497.62i 0.0494029 0.0855684i
\(949\) −7791.00 + 13494.4i −0.266498 + 0.461588i
\(950\) 0 0
\(951\) −24339.0 −0.829912
\(952\) 8820.00 3055.34i 0.300271 0.104017i
\(953\) 52330.0 1.77874 0.889368 0.457192i \(-0.151145\pi\)
0.889368 + 0.457192i \(0.151145\pi\)
\(954\) −6666.00 11545.9i −0.226226 0.391835i
\(955\) 0 0
\(956\) 3336.00 5778.12i 0.112860 0.195479i
\(957\) −1015.00 1758.03i −0.0342845 0.0593825i
\(958\) −13006.0 −0.438627
\(959\) 19687.5 6819.95i 0.662922 0.229643i
\(960\) 0 0
\(961\) 4091.00 + 7085.82i 0.137323 + 0.237851i
\(962\) −3066.00 + 5310.47i −0.102757 + 0.177980i
\(963\) 5027.00 8707.02i 0.168217 0.291360i
\(964\) −6818.00 11809.1i −0.227794 0.394550i
\(965\) 0 0
\(966\) −7791.00 + 40483.2i −0.259494 + 1.34837i
\(967\) 12416.0 0.412897 0.206449 0.978457i \(-0.433809\pi\)
0.206449 + 0.978457i \(0.433809\pi\)
\(968\) 15672.0 + 27144.7i 0.520369 + 0.901305i
\(969\) 3601.50 6237.98i 0.119398 0.206804i
\(970\) 0 0
\(971\) −18406.5 31881.0i −0.608334 1.05367i −0.991515 0.129993i \(-0.958505\pi\)
0.383181 0.923673i \(-0.374829\pi\)
\(972\) −19712.0 −0.650476
\(973\) −3528.00 3055.34i −0.116241 0.100668i
\(974\) −32098.0 −1.05594
\(975\) 0 0
\(976\) −3304.00 + 5722.70i −0.108359 + 0.187683i
\(977\) 17497.5 30306.6i 0.572973 0.992418i −0.423286 0.905996i \(-0.639123\pi\)
0.996259 0.0864221i \(-0.0275434\pi\)
\(978\) −3269.00 5662.07i −0.106883 0.185126i
\(979\) 1645.00 0.0537022
\(980\) 0 0
\(981\) −24750.0 −0.805511
\(982\) 8864.00 + 15352.9i 0.288046 + 0.498911i
\(983\) −7150.50 + 12385.0i −0.232010 + 0.401853i −0.958399 0.285430i \(-0.907863\pi\)
0.726390 + 0.687283i \(0.241197\pi\)
\(984\) 29400.0 50922.3i 0.952477 1.64974i
\(985\) 0 0
\(986\) −2436.00 −0.0786796
\(987\) −51450.0 44557.0i −1.65924 1.43695i
\(988\) −2744.00 −0.0883586
\(989\) −9858.00 17074.6i −0.316953 0.548978i
\(990\) 0 0
\(991\) 1332.50 2307.96i 0.0427127 0.0739805i −0.843879 0.536534i \(-0.819733\pi\)
0.886591 + 0.462553i \(0.153067\pi\)
\(992\) 11760.0 + 20368.9i 0.376392 + 0.651929i
\(993\) −23387.0 −0.747396
\(994\) −3024.00 + 15713.2i −0.0964944 + 0.501400i
\(995\) 0 0
\(996\) 15288.0 + 26479.6i 0.486364 + 0.842408i
\(997\) 12435.5 21538.9i 0.395021 0.684197i −0.598083 0.801434i \(-0.704071\pi\)
0.993104 + 0.117237i \(0.0374039\pi\)
\(998\) −10211.0 + 17686.0i −0.323871 + 0.560962i
\(999\) 3832.50 + 6638.08i 0.121376 + 0.210230i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.4.e.a.151.1 2
5.2 odd 4 175.4.k.a.74.1 4
5.3 odd 4 175.4.k.a.74.2 4
5.4 even 2 7.4.c.a.4.1 yes 2
7.2 even 3 inner 175.4.e.a.51.1 2
7.3 odd 6 1225.4.a.d.1.1 1
7.4 even 3 1225.4.a.c.1.1 1
15.14 odd 2 63.4.e.b.46.1 2
20.19 odd 2 112.4.i.c.81.1 2
35.2 odd 12 175.4.k.a.149.2 4
35.4 even 6 49.4.a.d.1.1 1
35.9 even 6 7.4.c.a.2.1 2
35.19 odd 6 49.4.c.a.30.1 2
35.23 odd 12 175.4.k.a.149.1 4
35.24 odd 6 49.4.a.c.1.1 1
35.34 odd 2 49.4.c.a.18.1 2
40.19 odd 2 448.4.i.a.193.1 2
40.29 even 2 448.4.i.f.193.1 2
105.44 odd 6 63.4.e.b.37.1 2
105.59 even 6 441.4.a.e.1.1 1
105.74 odd 6 441.4.a.d.1.1 1
105.89 even 6 441.4.e.k.226.1 2
105.104 even 2 441.4.e.k.361.1 2
140.39 odd 6 784.4.a.b.1.1 1
140.59 even 6 784.4.a.r.1.1 1
140.79 odd 6 112.4.i.c.65.1 2
280.149 even 6 448.4.i.f.65.1 2
280.219 odd 6 448.4.i.a.65.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.4.c.a.2.1 2 35.9 even 6
7.4.c.a.4.1 yes 2 5.4 even 2
49.4.a.c.1.1 1 35.24 odd 6
49.4.a.d.1.1 1 35.4 even 6
49.4.c.a.18.1 2 35.34 odd 2
49.4.c.a.30.1 2 35.19 odd 6
63.4.e.b.37.1 2 105.44 odd 6
63.4.e.b.46.1 2 15.14 odd 2
112.4.i.c.65.1 2 140.79 odd 6
112.4.i.c.81.1 2 20.19 odd 2
175.4.e.a.51.1 2 7.2 even 3 inner
175.4.e.a.151.1 2 1.1 even 1 trivial
175.4.k.a.74.1 4 5.2 odd 4
175.4.k.a.74.2 4 5.3 odd 4
175.4.k.a.149.1 4 35.23 odd 12
175.4.k.a.149.2 4 35.2 odd 12
441.4.a.d.1.1 1 105.74 odd 6
441.4.a.e.1.1 1 105.59 even 6
441.4.e.k.226.1 2 105.89 even 6
441.4.e.k.361.1 2 105.104 even 2
448.4.i.a.65.1 2 280.219 odd 6
448.4.i.a.193.1 2 40.19 odd 2
448.4.i.f.65.1 2 280.149 even 6
448.4.i.f.193.1 2 40.29 even 2
784.4.a.b.1.1 1 140.39 odd 6
784.4.a.r.1.1 1 140.59 even 6
1225.4.a.c.1.1 1 7.4 even 3
1225.4.a.d.1.1 1 7.3 odd 6