Properties

Label 175.4.b.f.99.5
Level $175$
Weight $4$
Character 175.99
Analytic conductor $10.325$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(99,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.99");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 64x^{6} + 1264x^{4} + 8905x^{2} + 14400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.5
Root \(1.50478i\) of defining polynomial
Character \(\chi\) \(=\) 175.99
Dual form 175.4.b.f.99.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.504784i q^{2} +4.26379i q^{3} +7.74519 q^{4} -2.15229 q^{6} -7.00000i q^{7} +7.94792i q^{8} +8.82008 q^{9} +O(q^{10})\) \(q+0.504784i q^{2} +4.26379i q^{3} +7.74519 q^{4} -2.15229 q^{6} -7.00000i q^{7} +7.94792i q^{8} +8.82008 q^{9} +54.8800 q^{11} +33.0239i q^{12} +16.0073i q^{13} +3.53349 q^{14} +57.9496 q^{16} +0.422056i q^{17} +4.45223i q^{18} -127.501 q^{19} +29.8465 q^{21} +27.7025i q^{22} +51.1101i q^{23} -33.8883 q^{24} -8.08024 q^{26} +152.729i q^{27} -54.2164i q^{28} -41.4750 q^{29} +192.354 q^{31} +92.8353i q^{32} +233.997i q^{33} -0.213047 q^{34} +68.3132 q^{36} +189.232i q^{37} -64.3605i q^{38} -68.2519 q^{39} -76.3187 q^{41} +15.0660i q^{42} +294.499i q^{43} +425.056 q^{44} -25.7996 q^{46} -540.297i q^{47} +247.085i q^{48} -49.0000 q^{49} -1.79956 q^{51} +123.980i q^{52} -661.316i q^{53} -77.0953 q^{54} +55.6354 q^{56} -543.639i q^{57} -20.9359i q^{58} -410.312 q^{59} +46.0495 q^{61} +97.0974i q^{62} -61.7405i q^{63} +416.735 q^{64} -118.118 q^{66} -10.4074i q^{67} +3.26890i q^{68} -217.923 q^{69} -491.117 q^{71} +70.1012i q^{72} -814.540i q^{73} -95.5215 q^{74} -987.522 q^{76} -384.160i q^{77} -34.4525i q^{78} +858.725 q^{79} -413.064 q^{81} -38.5244i q^{82} -1055.80i q^{83} +231.167 q^{84} -148.658 q^{86} -176.841i q^{87} +436.182i q^{88} -341.567 q^{89} +112.051 q^{91} +395.858i q^{92} +820.159i q^{93} +272.733 q^{94} -395.831 q^{96} +1417.21i q^{97} -24.7344i q^{98} +484.046 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 72 q^{4} + 2 q^{6} - 122 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 72 q^{4} + 2 q^{6} - 122 q^{9} + 200 q^{11} - 56 q^{14} + 320 q^{16} + 58 q^{19} - 42 q^{21} + 42 q^{24} + 1400 q^{26} - 258 q^{29} + 228 q^{31} - 406 q^{34} + 2202 q^{36} - 1348 q^{39} + 1342 q^{41} - 876 q^{44} - 1994 q^{46} - 392 q^{49} - 1770 q^{51} + 5554 q^{54} + 378 q^{56} - 2036 q^{59} + 100 q^{61} + 4842 q^{64} - 7682 q^{66} - 2160 q^{69} + 430 q^{71} - 1246 q^{74} - 6514 q^{76} + 1902 q^{79} + 56 q^{81} + 2310 q^{84} - 198 q^{86} - 5638 q^{89} + 616 q^{91} + 6112 q^{94} - 2690 q^{96} - 4766 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.504784i 0.178468i 0.996011 + 0.0892340i \(0.0284419\pi\)
−0.996011 + 0.0892340i \(0.971558\pi\)
\(3\) 4.26379i 0.820567i 0.911958 + 0.410284i \(0.134570\pi\)
−0.911958 + 0.410284i \(0.865430\pi\)
\(4\) 7.74519 0.968149
\(5\) 0 0
\(6\) −2.15229 −0.146445
\(7\) − 7.00000i − 0.377964i
\(8\) 7.94792i 0.351252i
\(9\) 8.82008 0.326670
\(10\) 0 0
\(11\) 54.8800 1.50427 0.752134 0.659010i \(-0.229025\pi\)
0.752134 + 0.659010i \(0.229025\pi\)
\(12\) 33.0239i 0.794431i
\(13\) 16.0073i 0.341510i 0.985313 + 0.170755i \(0.0546207\pi\)
−0.985313 + 0.170755i \(0.945379\pi\)
\(14\) 3.53349 0.0674546
\(15\) 0 0
\(16\) 57.9496 0.905462
\(17\) 0.422056i 0.00602139i 0.999995 + 0.00301069i \(0.000958335\pi\)
−0.999995 + 0.00301069i \(0.999042\pi\)
\(18\) 4.45223i 0.0583000i
\(19\) −127.501 −1.53952 −0.769758 0.638336i \(-0.779623\pi\)
−0.769758 + 0.638336i \(0.779623\pi\)
\(20\) 0 0
\(21\) 29.8465 0.310145
\(22\) 27.7025i 0.268464i
\(23\) 51.1101i 0.463357i 0.972792 + 0.231678i \(0.0744217\pi\)
−0.972792 + 0.231678i \(0.925578\pi\)
\(24\) −33.8883 −0.288226
\(25\) 0 0
\(26\) −8.08024 −0.0609487
\(27\) 152.729i 1.08862i
\(28\) − 54.2164i − 0.365926i
\(29\) −41.4750 −0.265576 −0.132788 0.991144i \(-0.542393\pi\)
−0.132788 + 0.991144i \(0.542393\pi\)
\(30\) 0 0
\(31\) 192.354 1.11445 0.557224 0.830362i \(-0.311866\pi\)
0.557224 + 0.830362i \(0.311866\pi\)
\(32\) 92.8353i 0.512848i
\(33\) 233.997i 1.23435i
\(34\) −0.213047 −0.00107462
\(35\) 0 0
\(36\) 68.3132 0.316265
\(37\) 189.232i 0.840801i 0.907339 + 0.420400i \(0.138110\pi\)
−0.907339 + 0.420400i \(0.861890\pi\)
\(38\) − 64.3605i − 0.274754i
\(39\) −68.2519 −0.280232
\(40\) 0 0
\(41\) −76.3187 −0.290707 −0.145353 0.989380i \(-0.546432\pi\)
−0.145353 + 0.989380i \(0.546432\pi\)
\(42\) 15.0660i 0.0553510i
\(43\) 294.499i 1.04443i 0.852813 + 0.522216i \(0.174895\pi\)
−0.852813 + 0.522216i \(0.825105\pi\)
\(44\) 425.056 1.45636
\(45\) 0 0
\(46\) −25.7996 −0.0826943
\(47\) − 540.297i − 1.67682i −0.545043 0.838408i \(-0.683487\pi\)
0.545043 0.838408i \(-0.316513\pi\)
\(48\) 247.085i 0.742992i
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) −1.79956 −0.00494095
\(52\) 123.980i 0.330633i
\(53\) − 661.316i − 1.71394i −0.515368 0.856969i \(-0.672345\pi\)
0.515368 0.856969i \(-0.327655\pi\)
\(54\) −77.0953 −0.194284
\(55\) 0 0
\(56\) 55.6354 0.132761
\(57\) − 543.639i − 1.26328i
\(58\) − 20.9359i − 0.0473969i
\(59\) −410.312 −0.905390 −0.452695 0.891665i \(-0.649537\pi\)
−0.452695 + 0.891665i \(0.649537\pi\)
\(60\) 0 0
\(61\) 46.0495 0.0966563 0.0483281 0.998832i \(-0.484611\pi\)
0.0483281 + 0.998832i \(0.484611\pi\)
\(62\) 97.0974i 0.198893i
\(63\) − 61.7405i − 0.123469i
\(64\) 416.735 0.813935
\(65\) 0 0
\(66\) −118.118 −0.220292
\(67\) − 10.4074i − 0.0189771i −0.999955 0.00948854i \(-0.996980\pi\)
0.999955 0.00948854i \(-0.00302034\pi\)
\(68\) 3.26890i 0.00582960i
\(69\) −217.923 −0.380215
\(70\) 0 0
\(71\) −491.117 −0.820913 −0.410456 0.911880i \(-0.634631\pi\)
−0.410456 + 0.911880i \(0.634631\pi\)
\(72\) 70.1012i 0.114743i
\(73\) − 814.540i − 1.30595i −0.757378 0.652977i \(-0.773520\pi\)
0.757378 0.652977i \(-0.226480\pi\)
\(74\) −95.5215 −0.150056
\(75\) 0 0
\(76\) −987.522 −1.49048
\(77\) − 384.160i − 0.568560i
\(78\) − 34.4525i − 0.0500125i
\(79\) 858.725 1.22296 0.611482 0.791258i \(-0.290574\pi\)
0.611482 + 0.791258i \(0.290574\pi\)
\(80\) 0 0
\(81\) −413.064 −0.566617
\(82\) − 38.5244i − 0.0518818i
\(83\) − 1055.80i − 1.39626i −0.715972 0.698129i \(-0.754016\pi\)
0.715972 0.698129i \(-0.245984\pi\)
\(84\) 231.167 0.300267
\(85\) 0 0
\(86\) −148.658 −0.186398
\(87\) − 176.841i − 0.217923i
\(88\) 436.182i 0.528376i
\(89\) −341.567 −0.406809 −0.203405 0.979095i \(-0.565201\pi\)
−0.203405 + 0.979095i \(0.565201\pi\)
\(90\) 0 0
\(91\) 112.051 0.129079
\(92\) 395.858i 0.448598i
\(93\) 820.159i 0.914479i
\(94\) 272.733 0.299258
\(95\) 0 0
\(96\) −395.831 −0.420826
\(97\) 1417.21i 1.48346i 0.670697 + 0.741731i \(0.265995\pi\)
−0.670697 + 0.741731i \(0.734005\pi\)
\(98\) − 24.7344i − 0.0254954i
\(99\) 484.046 0.491398
\(100\) 0 0
\(101\) −121.051 −0.119258 −0.0596289 0.998221i \(-0.518992\pi\)
−0.0596289 + 0.998221i \(0.518992\pi\)
\(102\) − 0.908388i 0 0.000881802i
\(103\) − 655.594i − 0.627161i −0.949562 0.313581i \(-0.898471\pi\)
0.949562 0.313581i \(-0.101529\pi\)
\(104\) −127.225 −0.119956
\(105\) 0 0
\(106\) 333.821 0.305883
\(107\) − 2069.81i − 1.87006i −0.354567 0.935031i \(-0.615372\pi\)
0.354567 0.935031i \(-0.384628\pi\)
\(108\) 1182.92i 1.05395i
\(109\) −904.218 −0.794573 −0.397286 0.917695i \(-0.630048\pi\)
−0.397286 + 0.917695i \(0.630048\pi\)
\(110\) 0 0
\(111\) −806.848 −0.689934
\(112\) − 405.647i − 0.342232i
\(113\) − 843.350i − 0.702086i −0.936359 0.351043i \(-0.885827\pi\)
0.936359 0.351043i \(-0.114173\pi\)
\(114\) 274.420 0.225454
\(115\) 0 0
\(116\) −321.232 −0.257117
\(117\) 141.186i 0.111561i
\(118\) − 207.119i − 0.161583i
\(119\) 2.95439 0.00227587
\(120\) 0 0
\(121\) 1680.81 1.26282
\(122\) 23.2450i 0.0172501i
\(123\) − 325.407i − 0.238544i
\(124\) 1489.82 1.07895
\(125\) 0 0
\(126\) 31.1656 0.0220353
\(127\) − 2030.50i − 1.41872i −0.704845 0.709362i \(-0.748983\pi\)
0.704845 0.709362i \(-0.251017\pi\)
\(128\) 953.043i 0.658109i
\(129\) −1255.68 −0.857027
\(130\) 0 0
\(131\) 2872.47 1.91579 0.957897 0.287113i \(-0.0926954\pi\)
0.957897 + 0.287113i \(0.0926954\pi\)
\(132\) 1812.35i 1.19504i
\(133\) 892.509i 0.581882i
\(134\) 5.25348 0.00338680
\(135\) 0 0
\(136\) −3.35446 −0.00211502
\(137\) 1621.62i 1.01127i 0.862747 + 0.505636i \(0.168742\pi\)
−0.862747 + 0.505636i \(0.831258\pi\)
\(138\) − 110.004i − 0.0678562i
\(139\) −2617.72 −1.59735 −0.798677 0.601760i \(-0.794466\pi\)
−0.798677 + 0.601760i \(0.794466\pi\)
\(140\) 0 0
\(141\) 2303.71 1.37594
\(142\) − 247.908i − 0.146507i
\(143\) 878.482i 0.513723i
\(144\) 511.120 0.295787
\(145\) 0 0
\(146\) 411.166 0.233071
\(147\) − 208.926i − 0.117224i
\(148\) 1465.64i 0.814021i
\(149\) −2252.63 −1.23854 −0.619270 0.785178i \(-0.712571\pi\)
−0.619270 + 0.785178i \(0.712571\pi\)
\(150\) 0 0
\(151\) −1849.61 −0.996813 −0.498407 0.866943i \(-0.666081\pi\)
−0.498407 + 0.866943i \(0.666081\pi\)
\(152\) − 1013.37i − 0.540757i
\(153\) 3.72257i 0.00196700i
\(154\) 193.918 0.101470
\(155\) 0 0
\(156\) −528.624 −0.271307
\(157\) 3337.59i 1.69661i 0.529505 + 0.848307i \(0.322378\pi\)
−0.529505 + 0.848307i \(0.677622\pi\)
\(158\) 433.471i 0.218260i
\(159\) 2819.71 1.40640
\(160\) 0 0
\(161\) 357.771 0.175132
\(162\) − 208.508i − 0.101123i
\(163\) − 471.099i − 0.226376i −0.993574 0.113188i \(-0.963894\pi\)
0.993574 0.113188i \(-0.0361063\pi\)
\(164\) −591.103 −0.281447
\(165\) 0 0
\(166\) 532.952 0.249187
\(167\) 3676.72i 1.70367i 0.523809 + 0.851836i \(0.324511\pi\)
−0.523809 + 0.851836i \(0.675489\pi\)
\(168\) 237.218i 0.108939i
\(169\) 1940.77 0.883371
\(170\) 0 0
\(171\) −1124.57 −0.502913
\(172\) 2280.95i 1.01117i
\(173\) 1009.11i 0.443475i 0.975106 + 0.221737i \(0.0711728\pi\)
−0.975106 + 0.221737i \(0.928827\pi\)
\(174\) 89.2663 0.0388923
\(175\) 0 0
\(176\) 3180.27 1.36206
\(177\) − 1749.48i − 0.742934i
\(178\) − 172.417i − 0.0726024i
\(179\) −3201.27 −1.33673 −0.668364 0.743835i \(-0.733005\pi\)
−0.668364 + 0.743835i \(0.733005\pi\)
\(180\) 0 0
\(181\) −1970.14 −0.809056 −0.404528 0.914526i \(-0.632564\pi\)
−0.404528 + 0.914526i \(0.632564\pi\)
\(182\) 56.5617i 0.0230364i
\(183\) 196.345i 0.0793130i
\(184\) −406.219 −0.162755
\(185\) 0 0
\(186\) −414.003 −0.163205
\(187\) 23.1624i 0.00905778i
\(188\) − 4184.70i − 1.62341i
\(189\) 1069.11 0.411460
\(190\) 0 0
\(191\) 3953.39 1.49768 0.748842 0.662749i \(-0.230610\pi\)
0.748842 + 0.662749i \(0.230610\pi\)
\(192\) 1776.87i 0.667888i
\(193\) 2425.45i 0.904598i 0.891866 + 0.452299i \(0.149396\pi\)
−0.891866 + 0.452299i \(0.850604\pi\)
\(194\) −715.385 −0.264751
\(195\) 0 0
\(196\) −379.514 −0.138307
\(197\) − 3126.50i − 1.13073i −0.824840 0.565366i \(-0.808735\pi\)
0.824840 0.565366i \(-0.191265\pi\)
\(198\) 244.338i 0.0876989i
\(199\) 3566.13 1.27033 0.635166 0.772376i \(-0.280932\pi\)
0.635166 + 0.772376i \(0.280932\pi\)
\(200\) 0 0
\(201\) 44.3749 0.0155720
\(202\) − 61.1046i − 0.0212837i
\(203\) 290.325i 0.100378i
\(204\) −13.9379 −0.00478358
\(205\) 0 0
\(206\) 330.933 0.111928
\(207\) 450.795i 0.151364i
\(208\) 927.618i 0.309225i
\(209\) −6997.27 −2.31584
\(210\) 0 0
\(211\) −3699.18 −1.20693 −0.603465 0.797389i \(-0.706214\pi\)
−0.603465 + 0.797389i \(0.706214\pi\)
\(212\) − 5122.02i − 1.65935i
\(213\) − 2094.02i − 0.673614i
\(214\) 1044.81 0.333746
\(215\) 0 0
\(216\) −1213.88 −0.382380
\(217\) − 1346.48i − 0.421222i
\(218\) − 456.435i − 0.141806i
\(219\) 3473.03 1.07162
\(220\) 0 0
\(221\) −6.75599 −0.00205637
\(222\) − 407.284i − 0.123131i
\(223\) − 102.041i − 0.0306419i −0.999883 0.0153210i \(-0.995123\pi\)
0.999883 0.0153210i \(-0.00487701\pi\)
\(224\) 649.847 0.193838
\(225\) 0 0
\(226\) 425.709 0.125300
\(227\) − 5739.91i − 1.67829i −0.543909 0.839144i \(-0.683057\pi\)
0.543909 0.839144i \(-0.316943\pi\)
\(228\) − 4210.59i − 1.22304i
\(229\) 843.125 0.243298 0.121649 0.992573i \(-0.461182\pi\)
0.121649 + 0.992573i \(0.461182\pi\)
\(230\) 0 0
\(231\) 1637.98 0.466541
\(232\) − 329.640i − 0.0932841i
\(233\) − 2017.65i − 0.567300i −0.958928 0.283650i \(-0.908455\pi\)
0.958928 0.283650i \(-0.0915454\pi\)
\(234\) −71.2683 −0.0199101
\(235\) 0 0
\(236\) −3177.94 −0.876553
\(237\) 3661.43i 1.00352i
\(238\) 1.49133i 0 0.000406170i
\(239\) −243.685 −0.0659526 −0.0329763 0.999456i \(-0.510499\pi\)
−0.0329763 + 0.999456i \(0.510499\pi\)
\(240\) 0 0
\(241\) −3060.58 −0.818048 −0.409024 0.912524i \(-0.634131\pi\)
−0.409024 + 0.912524i \(0.634131\pi\)
\(242\) 848.448i 0.225373i
\(243\) 2362.47i 0.623674i
\(244\) 356.662 0.0935777
\(245\) 0 0
\(246\) 164.260 0.0425725
\(247\) − 2040.95i − 0.525760i
\(248\) 1528.82i 0.391452i
\(249\) 4501.72 1.14572
\(250\) 0 0
\(251\) −6594.14 −1.65824 −0.829120 0.559070i \(-0.811158\pi\)
−0.829120 + 0.559070i \(0.811158\pi\)
\(252\) − 478.192i − 0.119537i
\(253\) 2804.92i 0.697012i
\(254\) 1024.96 0.253197
\(255\) 0 0
\(256\) 2852.80 0.696484
\(257\) − 512.646i − 0.124428i −0.998063 0.0622139i \(-0.980184\pi\)
0.998063 0.0622139i \(-0.0198161\pi\)
\(258\) − 633.847i − 0.152952i
\(259\) 1324.63 0.317793
\(260\) 0 0
\(261\) −365.813 −0.0867557
\(262\) 1449.98i 0.341908i
\(263\) − 3560.04i − 0.834681i −0.908750 0.417341i \(-0.862962\pi\)
0.908750 0.417341i \(-0.137038\pi\)
\(264\) −1859.79 −0.433568
\(265\) 0 0
\(266\) −450.524 −0.103847
\(267\) − 1456.37i − 0.333814i
\(268\) − 80.6072i − 0.0183726i
\(269\) 549.744 0.124604 0.0623020 0.998057i \(-0.480156\pi\)
0.0623020 + 0.998057i \(0.480156\pi\)
\(270\) 0 0
\(271\) −3944.91 −0.884267 −0.442134 0.896949i \(-0.645778\pi\)
−0.442134 + 0.896949i \(0.645778\pi\)
\(272\) 24.4580i 0.00545214i
\(273\) 477.764i 0.105918i
\(274\) −818.567 −0.180480
\(275\) 0 0
\(276\) −1687.86 −0.368105
\(277\) 1254.67i 0.272150i 0.990699 + 0.136075i \(0.0434488\pi\)
−0.990699 + 0.136075i \(0.956551\pi\)
\(278\) − 1321.38i − 0.285077i
\(279\) 1696.58 0.364056
\(280\) 0 0
\(281\) −681.496 −0.144679 −0.0723393 0.997380i \(-0.523046\pi\)
−0.0723393 + 0.997380i \(0.523046\pi\)
\(282\) 1162.88i 0.245561i
\(283\) − 5946.88i − 1.24914i −0.780970 0.624568i \(-0.785275\pi\)
0.780970 0.624568i \(-0.214725\pi\)
\(284\) −3803.79 −0.794766
\(285\) 0 0
\(286\) −443.444 −0.0916831
\(287\) 534.231i 0.109877i
\(288\) 818.815i 0.167532i
\(289\) 4912.82 0.999964
\(290\) 0 0
\(291\) −6042.69 −1.21728
\(292\) − 6308.77i − 1.26436i
\(293\) 2171.03i 0.432877i 0.976296 + 0.216438i \(0.0694441\pi\)
−0.976296 + 0.216438i \(0.930556\pi\)
\(294\) 105.462 0.0209207
\(295\) 0 0
\(296\) −1504.00 −0.295333
\(297\) 8381.79i 1.63758i
\(298\) − 1137.09i − 0.221040i
\(299\) −818.137 −0.158241
\(300\) 0 0
\(301\) 2061.49 0.394759
\(302\) − 933.651i − 0.177899i
\(303\) − 516.137i − 0.0978590i
\(304\) −7388.64 −1.39397
\(305\) 0 0
\(306\) −1.87909 −0.000351047 0
\(307\) 3644.59i 0.677549i 0.940868 + 0.338775i \(0.110012\pi\)
−0.940868 + 0.338775i \(0.889988\pi\)
\(308\) − 2975.39i − 0.550451i
\(309\) 2795.32 0.514628
\(310\) 0 0
\(311\) 2584.19 0.471177 0.235589 0.971853i \(-0.424298\pi\)
0.235589 + 0.971853i \(0.424298\pi\)
\(312\) − 542.461i − 0.0984320i
\(313\) 6693.63i 1.20878i 0.796690 + 0.604388i \(0.206582\pi\)
−0.796690 + 0.604388i \(0.793418\pi\)
\(314\) −1684.76 −0.302791
\(315\) 0 0
\(316\) 6650.99 1.18401
\(317\) 3843.36i 0.680962i 0.940251 + 0.340481i \(0.110590\pi\)
−0.940251 + 0.340481i \(0.889410\pi\)
\(318\) 1423.35i 0.250998i
\(319\) −2276.15 −0.399498
\(320\) 0 0
\(321\) 8825.26 1.53451
\(322\) 180.597i 0.0312555i
\(323\) − 53.8126i − 0.00927002i
\(324\) −3199.26 −0.548570
\(325\) 0 0
\(326\) 237.803 0.0404009
\(327\) − 3855.40i − 0.652000i
\(328\) − 606.575i − 0.102111i
\(329\) −3782.08 −0.633777
\(330\) 0 0
\(331\) −821.922 −0.136486 −0.0682431 0.997669i \(-0.521739\pi\)
−0.0682431 + 0.997669i \(0.521739\pi\)
\(332\) − 8177.39i − 1.35179i
\(333\) 1669.05i 0.274664i
\(334\) −1855.95 −0.304051
\(335\) 0 0
\(336\) 1729.59 0.280825
\(337\) − 1032.55i − 0.166904i −0.996512 0.0834520i \(-0.973405\pi\)
0.996512 0.0834520i \(-0.0265945\pi\)
\(338\) 979.667i 0.157653i
\(339\) 3595.87 0.576108
\(340\) 0 0
\(341\) 10556.4 1.67643
\(342\) − 567.665i − 0.0897538i
\(343\) 343.000i 0.0539949i
\(344\) −2340.65 −0.366859
\(345\) 0 0
\(346\) −509.382 −0.0791461
\(347\) 2587.70i 0.400332i 0.979762 + 0.200166i \(0.0641482\pi\)
−0.979762 + 0.200166i \(0.935852\pi\)
\(348\) − 1369.67i − 0.210982i
\(349\) 8454.24 1.29669 0.648345 0.761346i \(-0.275461\pi\)
0.648345 + 0.761346i \(0.275461\pi\)
\(350\) 0 0
\(351\) −2444.79 −0.371776
\(352\) 5094.80i 0.771460i
\(353\) − 4129.63i − 0.622658i −0.950302 0.311329i \(-0.899226\pi\)
0.950302 0.311329i \(-0.100774\pi\)
\(354\) 883.111 0.132590
\(355\) 0 0
\(356\) −2645.50 −0.393852
\(357\) 12.5969i 0.00186750i
\(358\) − 1615.95i − 0.238563i
\(359\) 4536.69 0.666957 0.333478 0.942758i \(-0.391778\pi\)
0.333478 + 0.942758i \(0.391778\pi\)
\(360\) 0 0
\(361\) 9397.56 1.37011
\(362\) − 994.492i − 0.144390i
\(363\) 7166.65i 1.03623i
\(364\) 867.859 0.124968
\(365\) 0 0
\(366\) −99.1120 −0.0141548
\(367\) − 1643.00i − 0.233689i −0.993150 0.116844i \(-0.962722\pi\)
0.993150 0.116844i \(-0.0372779\pi\)
\(368\) 2961.81i 0.419552i
\(369\) −673.137 −0.0949650
\(370\) 0 0
\(371\) −4629.21 −0.647808
\(372\) 6352.29i 0.885352i
\(373\) 9019.53i 1.25205i 0.779804 + 0.626024i \(0.215319\pi\)
−0.779804 + 0.626024i \(0.784681\pi\)
\(374\) −11.6920 −0.00161652
\(375\) 0 0
\(376\) 4294.23 0.588984
\(377\) − 663.904i − 0.0906971i
\(378\) 539.667i 0.0734325i
\(379\) 2463.63 0.333900 0.166950 0.985965i \(-0.446608\pi\)
0.166950 + 0.985965i \(0.446608\pi\)
\(380\) 0 0
\(381\) 8657.63 1.16416
\(382\) 1995.61i 0.267289i
\(383\) − 11007.2i − 1.46852i −0.678867 0.734261i \(-0.737529\pi\)
0.678867 0.734261i \(-0.262471\pi\)
\(384\) −4063.58 −0.540023
\(385\) 0 0
\(386\) −1224.33 −0.161442
\(387\) 2597.50i 0.341184i
\(388\) 10976.6i 1.43621i
\(389\) −6162.79 −0.803254 −0.401627 0.915803i \(-0.631555\pi\)
−0.401627 + 0.915803i \(0.631555\pi\)
\(390\) 0 0
\(391\) −21.5713 −0.00279005
\(392\) − 389.448i − 0.0501788i
\(393\) 12247.6i 1.57204i
\(394\) 1578.21 0.201799
\(395\) 0 0
\(396\) 3749.03 0.475747
\(397\) 15137.9i 1.91373i 0.290537 + 0.956864i \(0.406166\pi\)
−0.290537 + 0.956864i \(0.593834\pi\)
\(398\) 1800.12i 0.226714i
\(399\) −3805.47 −0.477473
\(400\) 0 0
\(401\) 3302.29 0.411243 0.205622 0.978632i \(-0.434078\pi\)
0.205622 + 0.978632i \(0.434078\pi\)
\(402\) 22.3997i 0.00277910i
\(403\) 3079.08i 0.380596i
\(404\) −937.564 −0.115459
\(405\) 0 0
\(406\) −146.551 −0.0179143
\(407\) 10385.1i 1.26479i
\(408\) − 14.3027i − 0.00173552i
\(409\) −4576.40 −0.553273 −0.276636 0.960975i \(-0.589220\pi\)
−0.276636 + 0.960975i \(0.589220\pi\)
\(410\) 0 0
\(411\) −6914.25 −0.829817
\(412\) − 5077.70i − 0.607186i
\(413\) 2872.18i 0.342205i
\(414\) −227.554 −0.0270137
\(415\) 0 0
\(416\) −1486.05 −0.175143
\(417\) − 11161.4i − 1.31074i
\(418\) − 3532.11i − 0.413304i
\(419\) 6778.05 0.790285 0.395142 0.918620i \(-0.370695\pi\)
0.395142 + 0.918620i \(0.370695\pi\)
\(420\) 0 0
\(421\) −3952.68 −0.457582 −0.228791 0.973476i \(-0.573477\pi\)
−0.228791 + 0.973476i \(0.573477\pi\)
\(422\) − 1867.29i − 0.215398i
\(423\) − 4765.46i − 0.547765i
\(424\) 5256.08 0.602024
\(425\) 0 0
\(426\) 1057.03 0.120219
\(427\) − 322.346i − 0.0365326i
\(428\) − 16031.1i − 1.81050i
\(429\) −3745.67 −0.421544
\(430\) 0 0
\(431\) −3435.10 −0.383905 −0.191952 0.981404i \(-0.561482\pi\)
−0.191952 + 0.981404i \(0.561482\pi\)
\(432\) 8850.60i 0.985705i
\(433\) − 5457.82i − 0.605742i −0.953032 0.302871i \(-0.902055\pi\)
0.953032 0.302871i \(-0.0979451\pi\)
\(434\) 679.682 0.0751746
\(435\) 0 0
\(436\) −7003.35 −0.769265
\(437\) − 6516.61i − 0.713344i
\(438\) 1753.13i 0.191250i
\(439\) −4188.10 −0.455323 −0.227662 0.973740i \(-0.573108\pi\)
−0.227662 + 0.973740i \(0.573108\pi\)
\(440\) 0 0
\(441\) −432.184 −0.0466671
\(442\) − 3.41031i 0 0.000366996i
\(443\) 2097.50i 0.224955i 0.993654 + 0.112478i \(0.0358787\pi\)
−0.993654 + 0.112478i \(0.964121\pi\)
\(444\) −6249.19 −0.667959
\(445\) 0 0
\(446\) 51.5085 0.00546860
\(447\) − 9604.74i − 1.01631i
\(448\) − 2917.14i − 0.307639i
\(449\) −11318.2 −1.18962 −0.594809 0.803867i \(-0.702772\pi\)
−0.594809 + 0.803867i \(0.702772\pi\)
\(450\) 0 0
\(451\) −4188.37 −0.437301
\(452\) − 6531.91i − 0.679724i
\(453\) − 7886.34i − 0.817952i
\(454\) 2897.41 0.299521
\(455\) 0 0
\(456\) 4320.79 0.443728
\(457\) 11696.4i 1.19723i 0.801036 + 0.598617i \(0.204283\pi\)
−0.801036 + 0.598617i \(0.795717\pi\)
\(458\) 425.596i 0.0434209i
\(459\) −64.4603 −0.00655501
\(460\) 0 0
\(461\) 10685.0 1.07951 0.539753 0.841823i \(-0.318518\pi\)
0.539753 + 0.841823i \(0.318518\pi\)
\(462\) 826.825i 0.0832627i
\(463\) − 10407.2i − 1.04463i −0.852752 0.522315i \(-0.825068\pi\)
0.852752 0.522315i \(-0.174932\pi\)
\(464\) −2403.46 −0.240469
\(465\) 0 0
\(466\) 1018.48 0.101245
\(467\) 2978.24i 0.295111i 0.989054 + 0.147555i \(0.0471404\pi\)
−0.989054 + 0.147555i \(0.952860\pi\)
\(468\) 1093.51i 0.108008i
\(469\) −72.8517 −0.00717266
\(470\) 0 0
\(471\) −14230.8 −1.39219
\(472\) − 3261.12i − 0.318020i
\(473\) 16162.1i 1.57111i
\(474\) −1848.23 −0.179097
\(475\) 0 0
\(476\) 22.8823 0.00220338
\(477\) − 5832.86i − 0.559892i
\(478\) − 123.008i − 0.0117704i
\(479\) 14214.3 1.35588 0.677940 0.735117i \(-0.262873\pi\)
0.677940 + 0.735117i \(0.262873\pi\)
\(480\) 0 0
\(481\) −3029.11 −0.287142
\(482\) − 1544.93i − 0.145995i
\(483\) 1525.46i 0.143708i
\(484\) 13018.2 1.22260
\(485\) 0 0
\(486\) −1192.54 −0.111306
\(487\) − 18097.0i − 1.68389i −0.539562 0.841946i \(-0.681410\pi\)
0.539562 0.841946i \(-0.318590\pi\)
\(488\) 365.998i 0.0339507i
\(489\) 2008.67 0.185757
\(490\) 0 0
\(491\) −13750.8 −1.26388 −0.631940 0.775017i \(-0.717741\pi\)
−0.631940 + 0.775017i \(0.717741\pi\)
\(492\) − 2520.34i − 0.230947i
\(493\) − 17.5048i − 0.00159914i
\(494\) 1030.24 0.0938314
\(495\) 0 0
\(496\) 11146.9 1.00909
\(497\) 3437.82i 0.310276i
\(498\) 2272.40i 0.204475i
\(499\) −15684.2 −1.40706 −0.703528 0.710667i \(-0.748393\pi\)
−0.703528 + 0.710667i \(0.748393\pi\)
\(500\) 0 0
\(501\) −15676.8 −1.39798
\(502\) − 3328.61i − 0.295943i
\(503\) 977.937i 0.0866880i 0.999060 + 0.0433440i \(0.0138011\pi\)
−0.999060 + 0.0433440i \(0.986199\pi\)
\(504\) 490.709 0.0433689
\(505\) 0 0
\(506\) −1415.88 −0.124394
\(507\) 8275.02i 0.724865i
\(508\) − 15726.6i − 1.37354i
\(509\) 19664.6 1.71242 0.856208 0.516632i \(-0.172814\pi\)
0.856208 + 0.516632i \(0.172814\pi\)
\(510\) 0 0
\(511\) −5701.78 −0.493604
\(512\) 9064.39i 0.782409i
\(513\) − 19473.2i − 1.67595i
\(514\) 258.775 0.0222064
\(515\) 0 0
\(516\) −9725.49 −0.829730
\(517\) − 29651.5i − 2.52238i
\(518\) 668.650i 0.0567158i
\(519\) −4302.63 −0.363901
\(520\) 0 0
\(521\) 12522.8 1.05304 0.526519 0.850163i \(-0.323497\pi\)
0.526519 + 0.850163i \(0.323497\pi\)
\(522\) − 184.656i − 0.0154831i
\(523\) 1104.42i 0.0923382i 0.998934 + 0.0461691i \(0.0147013\pi\)
−0.998934 + 0.0461691i \(0.985299\pi\)
\(524\) 22247.8 1.85477
\(525\) 0 0
\(526\) 1797.05 0.148964
\(527\) 81.1843i 0.00671052i
\(528\) 13560.0i 1.11766i
\(529\) 9554.75 0.785301
\(530\) 0 0
\(531\) −3618.98 −0.295763
\(532\) 6912.65i 0.563349i
\(533\) − 1221.66i − 0.0992794i
\(534\) 735.152 0.0595751
\(535\) 0 0
\(536\) 82.7170 0.00666573
\(537\) − 13649.5i − 1.09687i
\(538\) 277.502i 0.0222378i
\(539\) −2689.12 −0.214895
\(540\) 0 0
\(541\) −2126.45 −0.168989 −0.0844945 0.996424i \(-0.526928\pi\)
−0.0844945 + 0.996424i \(0.526928\pi\)
\(542\) − 1991.33i − 0.157813i
\(543\) − 8400.25i − 0.663884i
\(544\) −39.1817 −0.00308805
\(545\) 0 0
\(546\) −241.167 −0.0189029
\(547\) 2137.04i 0.167044i 0.996506 + 0.0835220i \(0.0266169\pi\)
−0.996506 + 0.0835220i \(0.973383\pi\)
\(548\) 12559.8i 0.979063i
\(549\) 406.160 0.0315747
\(550\) 0 0
\(551\) 5288.11 0.408859
\(552\) − 1732.03i − 0.133551i
\(553\) − 6011.08i − 0.462237i
\(554\) −633.335 −0.0485701
\(555\) 0 0
\(556\) −20274.8 −1.54648
\(557\) 19435.1i 1.47844i 0.673465 + 0.739219i \(0.264805\pi\)
−0.673465 + 0.739219i \(0.735195\pi\)
\(558\) 856.407i 0.0649724i
\(559\) −4714.14 −0.356685
\(560\) 0 0
\(561\) −98.7598 −0.00743252
\(562\) − 344.008i − 0.0258205i
\(563\) 1467.52i 0.109855i 0.998490 + 0.0549276i \(0.0174928\pi\)
−0.998490 + 0.0549276i \(0.982507\pi\)
\(564\) 17842.7 1.33212
\(565\) 0 0
\(566\) 3001.89 0.222931
\(567\) 2891.45i 0.214161i
\(568\) − 3903.35i − 0.288347i
\(569\) −15080.3 −1.11107 −0.555536 0.831493i \(-0.687487\pi\)
−0.555536 + 0.831493i \(0.687487\pi\)
\(570\) 0 0
\(571\) 15800.8 1.15804 0.579022 0.815312i \(-0.303435\pi\)
0.579022 + 0.815312i \(0.303435\pi\)
\(572\) 6804.02i 0.497361i
\(573\) 16856.5i 1.22895i
\(574\) −269.671 −0.0196095
\(575\) 0 0
\(576\) 3675.63 0.265888
\(577\) − 6165.64i − 0.444851i −0.974950 0.222425i \(-0.928603\pi\)
0.974950 0.222425i \(-0.0713973\pi\)
\(578\) 2479.91i 0.178461i
\(579\) −10341.6 −0.742283
\(580\) 0 0
\(581\) −7390.62 −0.527736
\(582\) − 3050.25i − 0.217246i
\(583\) − 36293.0i − 2.57822i
\(584\) 6473.89 0.458719
\(585\) 0 0
\(586\) −1095.90 −0.0772547
\(587\) − 23104.0i − 1.62454i −0.583285 0.812268i \(-0.698233\pi\)
0.583285 0.812268i \(-0.301767\pi\)
\(588\) − 1618.17i − 0.113490i
\(589\) −24525.4 −1.71571
\(590\) 0 0
\(591\) 13330.8 0.927841
\(592\) 10965.9i 0.761313i
\(593\) 6544.43i 0.453200i 0.973988 + 0.226600i \(0.0727610\pi\)
−0.973988 + 0.226600i \(0.927239\pi\)
\(594\) −4230.99 −0.292255
\(595\) 0 0
\(596\) −17447.0 −1.19909
\(597\) 15205.2i 1.04239i
\(598\) − 412.982i − 0.0282410i
\(599\) −3215.71 −0.219349 −0.109675 0.993968i \(-0.534981\pi\)
−0.109675 + 0.993968i \(0.534981\pi\)
\(600\) 0 0
\(601\) −234.653 −0.0159263 −0.00796313 0.999968i \(-0.502535\pi\)
−0.00796313 + 0.999968i \(0.502535\pi\)
\(602\) 1040.61i 0.0704517i
\(603\) − 91.7939i − 0.00619923i
\(604\) −14325.6 −0.965064
\(605\) 0 0
\(606\) 260.537 0.0174647
\(607\) 14528.7i 0.971501i 0.874098 + 0.485750i \(0.161454\pi\)
−0.874098 + 0.485750i \(0.838546\pi\)
\(608\) − 11836.6i − 0.789537i
\(609\) −1237.89 −0.0823672
\(610\) 0 0
\(611\) 8648.71 0.572650
\(612\) 28.8320i 0.00190435i
\(613\) 11332.7i 0.746696i 0.927691 + 0.373348i \(0.121790\pi\)
−0.927691 + 0.373348i \(0.878210\pi\)
\(614\) −1839.73 −0.120921
\(615\) 0 0
\(616\) 3053.27 0.199708
\(617\) 17400.2i 1.13534i 0.823255 + 0.567672i \(0.192156\pi\)
−0.823255 + 0.567672i \(0.807844\pi\)
\(618\) 1411.03i 0.0918446i
\(619\) 11987.8 0.778402 0.389201 0.921153i \(-0.372751\pi\)
0.389201 + 0.921153i \(0.372751\pi\)
\(620\) 0 0
\(621\) −7806.02 −0.504420
\(622\) 1304.46i 0.0840900i
\(623\) 2390.97i 0.153759i
\(624\) −3955.17 −0.253740
\(625\) 0 0
\(626\) −3378.84 −0.215728
\(627\) − 29834.9i − 1.90030i
\(628\) 25850.3i 1.64258i
\(629\) −79.8667 −0.00506279
\(630\) 0 0
\(631\) −3800.38 −0.239764 −0.119882 0.992788i \(-0.538252\pi\)
−0.119882 + 0.992788i \(0.538252\pi\)
\(632\) 6825.08i 0.429568i
\(633\) − 15772.6i − 0.990368i
\(634\) −1940.07 −0.121530
\(635\) 0 0
\(636\) 21839.2 1.36161
\(637\) − 784.359i − 0.0487872i
\(638\) − 1148.96i − 0.0712976i
\(639\) −4331.69 −0.268167
\(640\) 0 0
\(641\) 12294.2 0.757552 0.378776 0.925488i \(-0.376345\pi\)
0.378776 + 0.925488i \(0.376345\pi\)
\(642\) 4454.85i 0.273861i
\(643\) 14615.4i 0.896382i 0.893938 + 0.448191i \(0.147932\pi\)
−0.893938 + 0.448191i \(0.852068\pi\)
\(644\) 2771.01 0.169554
\(645\) 0 0
\(646\) 27.1637 0.00165440
\(647\) 16047.0i 0.975071i 0.873103 + 0.487536i \(0.162104\pi\)
−0.873103 + 0.487536i \(0.837896\pi\)
\(648\) − 3283.00i − 0.199025i
\(649\) −22517.9 −1.36195
\(650\) 0 0
\(651\) 5741.12 0.345641
\(652\) − 3648.75i − 0.219166i
\(653\) 623.425i 0.0373607i 0.999826 + 0.0186803i \(0.00594648\pi\)
−0.999826 + 0.0186803i \(0.994054\pi\)
\(654\) 1946.14 0.116361
\(655\) 0 0
\(656\) −4422.63 −0.263224
\(657\) − 7184.30i − 0.426616i
\(658\) − 1909.13i − 0.113109i
\(659\) −963.459 −0.0569515 −0.0284758 0.999594i \(-0.509065\pi\)
−0.0284758 + 0.999594i \(0.509065\pi\)
\(660\) 0 0
\(661\) 24183.6 1.42304 0.711522 0.702664i \(-0.248006\pi\)
0.711522 + 0.702664i \(0.248006\pi\)
\(662\) − 414.893i − 0.0243584i
\(663\) − 28.8061i − 0.00168739i
\(664\) 8391.43 0.490438
\(665\) 0 0
\(666\) −842.507 −0.0490187
\(667\) − 2119.79i − 0.123057i
\(668\) 28476.9i 1.64941i
\(669\) 435.080 0.0251438
\(670\) 0 0
\(671\) 2527.20 0.145397
\(672\) 2770.81i 0.159057i
\(673\) 14167.0i 0.811437i 0.913998 + 0.405718i \(0.132979\pi\)
−0.913998 + 0.405718i \(0.867021\pi\)
\(674\) 521.215 0.0297870
\(675\) 0 0
\(676\) 15031.6 0.855235
\(677\) 19397.1i 1.10117i 0.834780 + 0.550584i \(0.185595\pi\)
−0.834780 + 0.550584i \(0.814405\pi\)
\(678\) 1815.14i 0.102817i
\(679\) 9920.47 0.560696
\(680\) 0 0
\(681\) 24473.8 1.37715
\(682\) 5328.71i 0.299189i
\(683\) 20984.8i 1.17564i 0.808992 + 0.587820i \(0.200014\pi\)
−0.808992 + 0.587820i \(0.799986\pi\)
\(684\) −8710.02 −0.486895
\(685\) 0 0
\(686\) −173.141 −0.00963636
\(687\) 3594.91i 0.199643i
\(688\) 17066.1i 0.945694i
\(689\) 10585.9 0.585328
\(690\) 0 0
\(691\) −18079.2 −0.995320 −0.497660 0.867372i \(-0.665807\pi\)
−0.497660 + 0.867372i \(0.665807\pi\)
\(692\) 7815.75i 0.429350i
\(693\) − 3388.32i − 0.185731i
\(694\) −1306.23 −0.0714465
\(695\) 0 0
\(696\) 1405.52 0.0765459
\(697\) − 32.2107i − 0.00175046i
\(698\) 4267.56i 0.231418i
\(699\) 8602.86 0.465508
\(700\) 0 0
\(701\) 18660.6 1.00542 0.502711 0.864455i \(-0.332336\pi\)
0.502711 + 0.864455i \(0.332336\pi\)
\(702\) − 1234.09i − 0.0663500i
\(703\) − 24127.4i − 1.29443i
\(704\) 22870.4 1.22438
\(705\) 0 0
\(706\) 2084.57 0.111125
\(707\) 847.358i 0.0450752i
\(708\) − 13550.1i − 0.719271i
\(709\) 24545.4 1.30017 0.650085 0.759862i \(-0.274733\pi\)
0.650085 + 0.759862i \(0.274733\pi\)
\(710\) 0 0
\(711\) 7574.02 0.399505
\(712\) − 2714.74i − 0.142892i
\(713\) 9831.26i 0.516387i
\(714\) −6.35871 −0.000333290 0
\(715\) 0 0
\(716\) −24794.5 −1.29415
\(717\) − 1039.02i − 0.0541185i
\(718\) 2290.05i 0.119030i
\(719\) 7300.32 0.378659 0.189330 0.981914i \(-0.439369\pi\)
0.189330 + 0.981914i \(0.439369\pi\)
\(720\) 0 0
\(721\) −4589.16 −0.237045
\(722\) 4743.74i 0.244520i
\(723\) − 13049.7i − 0.671263i
\(724\) −15259.1 −0.783286
\(725\) 0 0
\(726\) −3617.61 −0.184934
\(727\) − 15466.0i − 0.788998i −0.918896 0.394499i \(-0.870918\pi\)
0.918896 0.394499i \(-0.129082\pi\)
\(728\) 890.574i 0.0453391i
\(729\) −21225.8 −1.07838
\(730\) 0 0
\(731\) −124.295 −0.00628893
\(732\) 1520.73i 0.0767868i
\(733\) − 13830.5i − 0.696917i −0.937324 0.348459i \(-0.886705\pi\)
0.937324 0.348459i \(-0.113295\pi\)
\(734\) 829.358 0.0417060
\(735\) 0 0
\(736\) −4744.83 −0.237631
\(737\) − 571.157i − 0.0285466i
\(738\) − 339.788i − 0.0169482i
\(739\) −11714.5 −0.583118 −0.291559 0.956553i \(-0.594174\pi\)
−0.291559 + 0.956553i \(0.594174\pi\)
\(740\) 0 0
\(741\) 8702.20 0.431422
\(742\) − 2336.75i − 0.115613i
\(743\) 28963.4i 1.43010i 0.699074 + 0.715050i \(0.253596\pi\)
−0.699074 + 0.715050i \(0.746404\pi\)
\(744\) −6518.56 −0.321212
\(745\) 0 0
\(746\) −4552.91 −0.223450
\(747\) − 9312.26i − 0.456115i
\(748\) 179.397i 0.00876928i
\(749\) −14488.7 −0.706817
\(750\) 0 0
\(751\) 6331.99 0.307667 0.153833 0.988097i \(-0.450838\pi\)
0.153833 + 0.988097i \(0.450838\pi\)
\(752\) − 31310.0i − 1.51829i
\(753\) − 28116.0i − 1.36070i
\(754\) 335.128 0.0161865
\(755\) 0 0
\(756\) 8280.43 0.398355
\(757\) 6256.80i 0.300406i 0.988655 + 0.150203i \(0.0479927\pi\)
−0.988655 + 0.150203i \(0.952007\pi\)
\(758\) 1243.60i 0.0595905i
\(759\) −11959.6 −0.571945
\(760\) 0 0
\(761\) 13953.7 0.664679 0.332340 0.943160i \(-0.392162\pi\)
0.332340 + 0.943160i \(0.392162\pi\)
\(762\) 4370.23i 0.207765i
\(763\) 6329.53i 0.300320i
\(764\) 30619.8 1.44998
\(765\) 0 0
\(766\) 5556.28 0.262084
\(767\) − 6568.00i − 0.309200i
\(768\) 12163.7i 0.571512i
\(769\) −34278.1 −1.60741 −0.803707 0.595025i \(-0.797142\pi\)
−0.803707 + 0.595025i \(0.797142\pi\)
\(770\) 0 0
\(771\) 2185.82 0.102101
\(772\) 18785.5i 0.875786i
\(773\) 8769.31i 0.408034i 0.978967 + 0.204017i \(0.0653997\pi\)
−0.978967 + 0.204017i \(0.934600\pi\)
\(774\) −1311.18 −0.0608905
\(775\) 0 0
\(776\) −11263.9 −0.521069
\(777\) 5647.94i 0.260770i
\(778\) − 3110.88i − 0.143355i
\(779\) 9730.73 0.447547
\(780\) 0 0
\(781\) −26952.5 −1.23487
\(782\) − 10.8889i 0 0.000497934i
\(783\) − 6334.45i − 0.289112i
\(784\) −2839.53 −0.129352
\(785\) 0 0
\(786\) −6182.40 −0.280558
\(787\) 3546.15i 0.160618i 0.996770 + 0.0803092i \(0.0255908\pi\)
−0.996770 + 0.0803092i \(0.974409\pi\)
\(788\) − 24215.4i − 1.09472i
\(789\) 15179.3 0.684912
\(790\) 0 0
\(791\) −5903.45 −0.265363
\(792\) 3847.16i 0.172604i
\(793\) 737.130i 0.0330091i
\(794\) −7641.37 −0.341539
\(795\) 0 0
\(796\) 27620.3 1.22987
\(797\) 18169.4i 0.807520i 0.914865 + 0.403760i \(0.132297\pi\)
−0.914865 + 0.403760i \(0.867703\pi\)
\(798\) − 1920.94i − 0.0852137i
\(799\) 228.035 0.0100968
\(800\) 0 0
\(801\) −3012.65 −0.132892
\(802\) 1666.94i 0.0733938i
\(803\) − 44702.0i − 1.96451i
\(804\) 343.692 0.0150760
\(805\) 0 0
\(806\) −1554.27 −0.0679241
\(807\) 2343.99i 0.102246i
\(808\) − 962.104i − 0.0418895i
\(809\) −11853.0 −0.515115 −0.257557 0.966263i \(-0.582918\pi\)
−0.257557 + 0.966263i \(0.582918\pi\)
\(810\) 0 0
\(811\) −11921.1 −0.516161 −0.258080 0.966123i \(-0.583090\pi\)
−0.258080 + 0.966123i \(0.583090\pi\)
\(812\) 2248.62i 0.0971813i
\(813\) − 16820.3i − 0.725601i
\(814\) −5242.22 −0.225724
\(815\) 0 0
\(816\) −104.284 −0.00447384
\(817\) − 37548.9i − 1.60792i
\(818\) − 2310.09i − 0.0987415i
\(819\) 988.301 0.0421661
\(820\) 0 0
\(821\) −42094.1 −1.78940 −0.894698 0.446671i \(-0.852610\pi\)
−0.894698 + 0.446671i \(0.852610\pi\)
\(822\) − 3490.20i − 0.148096i
\(823\) 1622.17i 0.0687064i 0.999410 + 0.0343532i \(0.0109371\pi\)
−0.999410 + 0.0343532i \(0.989063\pi\)
\(824\) 5210.61 0.220291
\(825\) 0 0
\(826\) −1449.83 −0.0610727
\(827\) − 28171.7i − 1.18455i −0.805735 0.592277i \(-0.798229\pi\)
0.805735 0.592277i \(-0.201771\pi\)
\(828\) 3491.50i 0.146543i
\(829\) 9244.23 0.387293 0.193646 0.981071i \(-0.437969\pi\)
0.193646 + 0.981071i \(0.437969\pi\)
\(830\) 0 0
\(831\) −5349.63 −0.223317
\(832\) 6670.81i 0.277967i
\(833\) − 20.6807i 0 0.000860198i
\(834\) 5634.10 0.233924
\(835\) 0 0
\(836\) −54195.2 −2.24208
\(837\) 29378.2i 1.21321i
\(838\) 3421.45i 0.141041i
\(839\) 43012.5 1.76991 0.884956 0.465674i \(-0.154188\pi\)
0.884956 + 0.465674i \(0.154188\pi\)
\(840\) 0 0
\(841\) −22668.8 −0.929469
\(842\) − 1995.25i − 0.0816637i
\(843\) − 2905.76i − 0.118718i
\(844\) −28650.9 −1.16849
\(845\) 0 0
\(846\) 2405.53 0.0977585
\(847\) − 11765.7i − 0.477302i
\(848\) − 38323.0i − 1.55191i
\(849\) 25356.3 1.02500
\(850\) 0 0
\(851\) −9671.70 −0.389591
\(852\) − 16218.6i − 0.652159i
\(853\) − 19756.9i − 0.793041i −0.918026 0.396521i \(-0.870217\pi\)
0.918026 0.396521i \(-0.129783\pi\)
\(854\) 162.715 0.00651991
\(855\) 0 0
\(856\) 16450.7 0.656862
\(857\) − 325.658i − 0.0129805i −0.999979 0.00649024i \(-0.997934\pi\)
0.999979 0.00649024i \(-0.00206592\pi\)
\(858\) − 1890.75i − 0.0752321i
\(859\) −3275.22 −0.130092 −0.0650461 0.997882i \(-0.520719\pi\)
−0.0650461 + 0.997882i \(0.520719\pi\)
\(860\) 0 0
\(861\) −2277.85 −0.0901613
\(862\) − 1733.98i − 0.0685147i
\(863\) 44585.0i 1.75862i 0.476247 + 0.879311i \(0.341997\pi\)
−0.476247 + 0.879311i \(0.658003\pi\)
\(864\) −14178.7 −0.558297
\(865\) 0 0
\(866\) 2755.02 0.108106
\(867\) 20947.3i 0.820537i
\(868\) − 10428.8i − 0.407805i
\(869\) 47126.9 1.83967
\(870\) 0 0
\(871\) 166.594 0.00648087
\(872\) − 7186.65i − 0.279095i
\(873\) 12499.9i 0.484602i
\(874\) 3289.48 0.127309
\(875\) 0 0
\(876\) 26899.3 1.03749
\(877\) − 16433.8i − 0.632761i −0.948632 0.316380i \(-0.897532\pi\)
0.948632 0.316380i \(-0.102468\pi\)
\(878\) − 2114.08i − 0.0812607i
\(879\) −9256.82 −0.355205
\(880\) 0 0
\(881\) −39080.2 −1.49449 −0.747245 0.664549i \(-0.768624\pi\)
−0.747245 + 0.664549i \(0.768624\pi\)
\(882\) − 218.159i − 0.00832858i
\(883\) 48548.2i 1.85026i 0.379652 + 0.925129i \(0.376044\pi\)
−0.379652 + 0.925129i \(0.623956\pi\)
\(884\) −52.3264 −0.00199087
\(885\) 0 0
\(886\) −1058.78 −0.0401473
\(887\) 13447.1i 0.509029i 0.967069 + 0.254514i \(0.0819156\pi\)
−0.967069 + 0.254514i \(0.918084\pi\)
\(888\) − 6412.76i − 0.242340i
\(889\) −14213.5 −0.536227
\(890\) 0 0
\(891\) −22669.0 −0.852344
\(892\) − 790.325i − 0.0296660i
\(893\) 68888.5i 2.58148i
\(894\) 4848.32 0.181378
\(895\) 0 0
\(896\) 6671.30 0.248742
\(897\) − 3488.37i − 0.129847i
\(898\) − 5713.24i − 0.212309i
\(899\) −7977.90 −0.295971
\(900\) 0 0
\(901\) 279.112 0.0103203
\(902\) − 2114.22i − 0.0780442i
\(903\) 8789.76i 0.323926i
\(904\) 6702.87 0.246609
\(905\) 0 0
\(906\) 3980.89 0.145978
\(907\) − 15750.3i − 0.576604i −0.957539 0.288302i \(-0.906909\pi\)
0.957539 0.288302i \(-0.0930908\pi\)
\(908\) − 44456.7i − 1.62483i
\(909\) −1067.68 −0.0389579
\(910\) 0 0
\(911\) 31449.7 1.14377 0.571886 0.820333i \(-0.306212\pi\)
0.571886 + 0.820333i \(0.306212\pi\)
\(912\) − 31503.6i − 1.14385i
\(913\) − 57942.4i − 2.10034i
\(914\) −5904.16 −0.213668
\(915\) 0 0
\(916\) 6530.17 0.235549
\(917\) − 20107.3i − 0.724102i
\(918\) − 32.5385i − 0.00116986i
\(919\) 30355.6 1.08960 0.544798 0.838567i \(-0.316606\pi\)
0.544798 + 0.838567i \(0.316606\pi\)
\(920\) 0 0
\(921\) −15539.8 −0.555975
\(922\) 5393.64i 0.192657i
\(923\) − 7861.46i − 0.280350i
\(924\) 12686.5 0.451682
\(925\) 0 0
\(926\) 5253.39 0.186433
\(927\) − 5782.39i − 0.204874i
\(928\) − 3850.34i − 0.136200i
\(929\) 28533.8 1.00771 0.503856 0.863788i \(-0.331914\pi\)
0.503856 + 0.863788i \(0.331914\pi\)
\(930\) 0 0
\(931\) 6247.56 0.219931
\(932\) − 15627.1i − 0.549231i
\(933\) 11018.5i 0.386632i
\(934\) −1503.37 −0.0526678
\(935\) 0 0
\(936\) −1122.13 −0.0391860
\(937\) 19269.1i 0.671817i 0.941895 + 0.335908i \(0.109043\pi\)
−0.941895 + 0.335908i \(0.890957\pi\)
\(938\) − 36.7743i − 0.00128009i
\(939\) −28540.3 −0.991881
\(940\) 0 0
\(941\) −2097.84 −0.0726756 −0.0363378 0.999340i \(-0.511569\pi\)
−0.0363378 + 0.999340i \(0.511569\pi\)
\(942\) − 7183.46i − 0.248461i
\(943\) − 3900.66i − 0.134701i
\(944\) −23777.4 −0.819797
\(945\) 0 0
\(946\) −8158.36 −0.280392
\(947\) − 5072.14i − 0.174047i −0.996206 0.0870235i \(-0.972264\pi\)
0.996206 0.0870235i \(-0.0277355\pi\)
\(948\) 28358.5i 0.971561i
\(949\) 13038.6 0.445997
\(950\) 0 0
\(951\) −16387.3 −0.558775
\(952\) 23.4813i 0 0.000799403i
\(953\) − 23464.1i − 0.797564i −0.917046 0.398782i \(-0.869433\pi\)
0.917046 0.398782i \(-0.130567\pi\)
\(954\) 2944.33 0.0999227
\(955\) 0 0
\(956\) −1887.39 −0.0638519
\(957\) − 9705.02i − 0.327815i
\(958\) 7175.13i 0.241981i
\(959\) 11351.3 0.382225
\(960\) 0 0
\(961\) 7209.24 0.241994
\(962\) − 1529.04i − 0.0512457i
\(963\) − 18255.9i − 0.610892i
\(964\) −23704.8 −0.791992
\(965\) 0 0
\(966\) −770.028 −0.0256472
\(967\) 6994.27i 0.232596i 0.993214 + 0.116298i \(0.0371028\pi\)
−0.993214 + 0.116298i \(0.962897\pi\)
\(968\) 13359.0i 0.443568i
\(969\) 229.446 0.00760667
\(970\) 0 0
\(971\) 37752.5 1.24772 0.623860 0.781536i \(-0.285564\pi\)
0.623860 + 0.781536i \(0.285564\pi\)
\(972\) 18297.8i 0.603809i
\(973\) 18324.0i 0.603743i
\(974\) 9135.09 0.300521
\(975\) 0 0
\(976\) 2668.55 0.0875186
\(977\) 6380.21i 0.208926i 0.994529 + 0.104463i \(0.0333124\pi\)
−0.994529 + 0.104463i \(0.966688\pi\)
\(978\) 1013.94i 0.0331517i
\(979\) −18745.2 −0.611950
\(980\) 0 0
\(981\) −7975.28 −0.259563
\(982\) − 6941.18i − 0.225562i
\(983\) 17330.0i 0.562299i 0.959664 + 0.281150i \(0.0907157\pi\)
−0.959664 + 0.281150i \(0.909284\pi\)
\(984\) 2586.31 0.0837891
\(985\) 0 0
\(986\) 8.83612 0.000285395 0
\(987\) − 16126.0i − 0.520057i
\(988\) − 15807.6i − 0.509014i
\(989\) −15051.9 −0.483945
\(990\) 0 0
\(991\) 32191.8 1.03189 0.515947 0.856621i \(-0.327440\pi\)
0.515947 + 0.856621i \(0.327440\pi\)
\(992\) 17857.3i 0.571542i
\(993\) − 3504.50i − 0.111996i
\(994\) −1735.35 −0.0553743
\(995\) 0 0
\(996\) 34866.7 1.10923
\(997\) 2678.20i 0.0850748i 0.999095 + 0.0425374i \(0.0135442\pi\)
−0.999095 + 0.0425374i \(0.986456\pi\)
\(998\) − 7917.13i − 0.251114i
\(999\) −28901.4 −0.915314
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.4.b.f.99.5 8
5.2 odd 4 175.4.a.h.1.2 yes 4
5.3 odd 4 175.4.a.g.1.3 4
5.4 even 2 inner 175.4.b.f.99.4 8
15.2 even 4 1575.4.a.bg.1.3 4
15.8 even 4 1575.4.a.bl.1.2 4
35.13 even 4 1225.4.a.z.1.3 4
35.27 even 4 1225.4.a.bd.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.4.a.g.1.3 4 5.3 odd 4
175.4.a.h.1.2 yes 4 5.2 odd 4
175.4.b.f.99.4 8 5.4 even 2 inner
175.4.b.f.99.5 8 1.1 even 1 trivial
1225.4.a.z.1.3 4 35.13 even 4
1225.4.a.bd.1.2 4 35.27 even 4
1575.4.a.bg.1.3 4 15.2 even 4
1575.4.a.bl.1.2 4 15.8 even 4