Properties

Label 175.4.b.f.99.3
Level $175$
Weight $4$
Character 175.99
Analytic conductor $10.325$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(99,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.99");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 64x^{6} + 1264x^{4} + 8905x^{2} + 14400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.3
Root \(-3.53510i\) of defining polynomial
Character \(\chi\) \(=\) 175.99
Dual form 175.4.b.f.99.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.53510i q^{2} +6.46622i q^{3} -12.5671 q^{4} +29.3249 q^{6} -7.00000i q^{7} +20.7124i q^{8} -14.8119 q^{9} -54.0684 q^{11} -81.2617i q^{12} +75.2159i q^{13} -31.7457 q^{14} -6.60441 q^{16} +71.2538i q^{17} +67.1736i q^{18} +65.5100 q^{19} +45.2635 q^{21} +245.206i q^{22} +125.688i q^{23} -133.931 q^{24} +341.111 q^{26} +78.8106i q^{27} +87.9699i q^{28} -190.405 q^{29} -193.105 q^{31} +195.650i q^{32} -349.618i q^{33} +323.143 q^{34} +186.144 q^{36} -114.673i q^{37} -297.094i q^{38} -486.362 q^{39} +216.896 q^{41} -205.275i q^{42} -413.032i q^{43} +679.484 q^{44} +570.007 q^{46} +113.555i q^{47} -42.7055i q^{48} -49.0000 q^{49} -460.743 q^{51} -945.247i q^{52} +584.366i q^{53} +357.414 q^{54} +144.986 q^{56} +423.602i q^{57} +863.504i q^{58} -203.748 q^{59} -162.539 q^{61} +875.749i q^{62} +103.684i q^{63} +834.459 q^{64} -1585.55 q^{66} -477.534i q^{67} -895.456i q^{68} -812.725 q^{69} +822.294 q^{71} -306.790i q^{72} -798.993i q^{73} -520.052 q^{74} -823.273 q^{76} +378.479i q^{77} +2205.70i q^{78} +468.087 q^{79} -909.529 q^{81} -983.643i q^{82} -310.333i q^{83} -568.832 q^{84} -1873.14 q^{86} -1231.20i q^{87} -1119.88i q^{88} -1314.90 q^{89} +526.511 q^{91} -1579.53i q^{92} -1248.66i q^{93} +514.985 q^{94} -1265.12 q^{96} +1314.66i q^{97} +222.220i q^{98} +800.858 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 72 q^{4} + 2 q^{6} - 122 q^{9} + 200 q^{11} - 56 q^{14} + 320 q^{16} + 58 q^{19} - 42 q^{21} + 42 q^{24} + 1400 q^{26} - 258 q^{29} + 228 q^{31} - 406 q^{34} + 2202 q^{36} - 1348 q^{39} + 1342 q^{41}+ \cdots - 4766 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 4.53510i − 1.60340i −0.597727 0.801700i \(-0.703929\pi\)
0.597727 0.801700i \(-0.296071\pi\)
\(3\) 6.46622i 1.24442i 0.782849 + 0.622212i \(0.213766\pi\)
−0.782849 + 0.622212i \(0.786234\pi\)
\(4\) −12.5671 −1.57089
\(5\) 0 0
\(6\) 29.3249 1.99531
\(7\) − 7.00000i − 0.377964i
\(8\) 20.7124i 0.915365i
\(9\) −14.8119 −0.548591
\(10\) 0 0
\(11\) −54.0684 −1.48202 −0.741011 0.671493i \(-0.765653\pi\)
−0.741011 + 0.671493i \(0.765653\pi\)
\(12\) − 81.2617i − 1.95485i
\(13\) 75.2159i 1.60470i 0.596853 + 0.802351i \(0.296418\pi\)
−0.596853 + 0.802351i \(0.703582\pi\)
\(14\) −31.7457 −0.606028
\(15\) 0 0
\(16\) −6.60441 −0.103194
\(17\) 71.2538i 1.01656i 0.861191 + 0.508282i \(0.169719\pi\)
−0.861191 + 0.508282i \(0.830281\pi\)
\(18\) 67.1736i 0.879610i
\(19\) 65.5100 0.791002 0.395501 0.918466i \(-0.370571\pi\)
0.395501 + 0.918466i \(0.370571\pi\)
\(20\) 0 0
\(21\) 45.2635 0.470348
\(22\) 245.206i 2.37627i
\(23\) 125.688i 1.13947i 0.821830 + 0.569733i \(0.192953\pi\)
−0.821830 + 0.569733i \(0.807047\pi\)
\(24\) −133.931 −1.13910
\(25\) 0 0
\(26\) 341.111 2.57298
\(27\) 78.8106i 0.561745i
\(28\) 87.9699i 0.593741i
\(29\) −190.405 −1.21922 −0.609608 0.792703i \(-0.708673\pi\)
−0.609608 + 0.792703i \(0.708673\pi\)
\(30\) 0 0
\(31\) −193.105 −1.11879 −0.559397 0.828900i \(-0.688967\pi\)
−0.559397 + 0.828900i \(0.688967\pi\)
\(32\) 195.650i 1.08083i
\(33\) − 349.618i − 1.84426i
\(34\) 323.143 1.62996
\(35\) 0 0
\(36\) 186.144 0.861776
\(37\) − 114.673i − 0.509516i −0.967005 0.254758i \(-0.918004\pi\)
0.967005 0.254758i \(-0.0819957\pi\)
\(38\) − 297.094i − 1.26829i
\(39\) −486.362 −1.99693
\(40\) 0 0
\(41\) 216.896 0.826180 0.413090 0.910690i \(-0.364449\pi\)
0.413090 + 0.910690i \(0.364449\pi\)
\(42\) − 205.275i − 0.754156i
\(43\) − 413.032i − 1.46481i −0.680870 0.732405i \(-0.738398\pi\)
0.680870 0.732405i \(-0.261602\pi\)
\(44\) 679.484 2.32809
\(45\) 0 0
\(46\) 570.007 1.82702
\(47\) 113.555i 0.352421i 0.984353 + 0.176210i \(0.0563839\pi\)
−0.984353 + 0.176210i \(0.943616\pi\)
\(48\) − 42.7055i − 0.128417i
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) −460.743 −1.26504
\(52\) − 945.247i − 2.52081i
\(53\) 584.366i 1.51451i 0.653122 + 0.757253i \(0.273459\pi\)
−0.653122 + 0.757253i \(0.726541\pi\)
\(54\) 357.414 0.900701
\(55\) 0 0
\(56\) 144.986 0.345976
\(57\) 423.602i 0.984341i
\(58\) 863.504i 1.95489i
\(59\) −203.748 −0.449589 −0.224795 0.974406i \(-0.572171\pi\)
−0.224795 + 0.974406i \(0.572171\pi\)
\(60\) 0 0
\(61\) −162.539 −0.341163 −0.170581 0.985344i \(-0.554565\pi\)
−0.170581 + 0.985344i \(0.554565\pi\)
\(62\) 875.749i 1.79387i
\(63\) 103.684i 0.207348i
\(64\) 834.459 1.62980
\(65\) 0 0
\(66\) −1585.55 −2.95709
\(67\) − 477.534i − 0.870747i −0.900250 0.435374i \(-0.856616\pi\)
0.900250 0.435374i \(-0.143384\pi\)
\(68\) − 895.456i − 1.59691i
\(69\) −812.725 −1.41798
\(70\) 0 0
\(71\) 822.294 1.37448 0.687242 0.726429i \(-0.258821\pi\)
0.687242 + 0.726429i \(0.258821\pi\)
\(72\) − 306.790i − 0.502161i
\(73\) − 798.993i − 1.28103i −0.767947 0.640514i \(-0.778721\pi\)
0.767947 0.640514i \(-0.221279\pi\)
\(74\) −520.052 −0.816957
\(75\) 0 0
\(76\) −823.273 −1.24258
\(77\) 378.479i 0.560152i
\(78\) 2205.70i 3.20188i
\(79\) 468.087 0.666632 0.333316 0.942815i \(-0.391832\pi\)
0.333316 + 0.942815i \(0.391832\pi\)
\(80\) 0 0
\(81\) −909.529 −1.24764
\(82\) − 983.643i − 1.32470i
\(83\) − 310.333i − 0.410403i −0.978720 0.205202i \(-0.934215\pi\)
0.978720 0.205202i \(-0.0657850\pi\)
\(84\) −568.832 −0.738865
\(85\) 0 0
\(86\) −1873.14 −2.34867
\(87\) − 1231.20i − 1.51722i
\(88\) − 1119.88i − 1.35659i
\(89\) −1314.90 −1.56606 −0.783029 0.621985i \(-0.786326\pi\)
−0.783029 + 0.621985i \(0.786326\pi\)
\(90\) 0 0
\(91\) 526.511 0.606520
\(92\) − 1579.53i − 1.78998i
\(93\) − 1248.66i − 1.39225i
\(94\) 514.985 0.565071
\(95\) 0 0
\(96\) −1265.12 −1.34501
\(97\) 1314.66i 1.37612i 0.725656 + 0.688058i \(0.241537\pi\)
−0.725656 + 0.688058i \(0.758463\pi\)
\(98\) 222.220i 0.229057i
\(99\) 800.858 0.813023
\(100\) 0 0
\(101\) −401.240 −0.395296 −0.197648 0.980273i \(-0.563330\pi\)
−0.197648 + 0.980273i \(0.563330\pi\)
\(102\) 2089.51i 2.02836i
\(103\) 291.844i 0.279187i 0.990209 + 0.139594i \(0.0445796\pi\)
−0.990209 + 0.139594i \(0.955420\pi\)
\(104\) −1557.90 −1.46889
\(105\) 0 0
\(106\) 2650.16 2.42836
\(107\) 21.9594i 0.0198402i 0.999951 + 0.00992009i \(0.00315772\pi\)
−0.999951 + 0.00992009i \(0.996842\pi\)
\(108\) − 990.422i − 0.882439i
\(109\) 17.3019 0.0152039 0.00760194 0.999971i \(-0.497580\pi\)
0.00760194 + 0.999971i \(0.497580\pi\)
\(110\) 0 0
\(111\) 741.498 0.634053
\(112\) 46.2308i 0.0390036i
\(113\) 58.8182i 0.0489660i 0.999700 + 0.0244830i \(0.00779396\pi\)
−0.999700 + 0.0244830i \(0.992206\pi\)
\(114\) 1921.08 1.57829
\(115\) 0 0
\(116\) 2392.84 1.91526
\(117\) − 1114.09i − 0.880324i
\(118\) 924.018i 0.720871i
\(119\) 498.777 0.384225
\(120\) 0 0
\(121\) 1592.39 1.19639
\(122\) 737.129i 0.547020i
\(123\) 1402.49i 1.02812i
\(124\) 2426.77 1.75750
\(125\) 0 0
\(126\) 470.216 0.332461
\(127\) − 1862.03i − 1.30101i −0.759501 0.650507i \(-0.774557\pi\)
0.759501 0.650507i \(-0.225443\pi\)
\(128\) − 2219.15i − 1.53240i
\(129\) 2670.75 1.82284
\(130\) 0 0
\(131\) 775.161 0.516994 0.258497 0.966012i \(-0.416773\pi\)
0.258497 + 0.966012i \(0.416773\pi\)
\(132\) 4393.69i 2.89714i
\(133\) − 458.570i − 0.298971i
\(134\) −2165.66 −1.39616
\(135\) 0 0
\(136\) −1475.83 −0.930528
\(137\) 1027.95i 0.641051i 0.947240 + 0.320525i \(0.103859\pi\)
−0.947240 + 0.320525i \(0.896141\pi\)
\(138\) 3685.79i 2.27359i
\(139\) 1029.66 0.628309 0.314154 0.949372i \(-0.398279\pi\)
0.314154 + 0.949372i \(0.398279\pi\)
\(140\) 0 0
\(141\) −734.274 −0.438561
\(142\) − 3729.18i − 2.20385i
\(143\) − 4066.80i − 2.37820i
\(144\) 97.8241 0.0566112
\(145\) 0 0
\(146\) −3623.51 −2.05400
\(147\) − 316.845i − 0.177775i
\(148\) 1441.11i 0.800393i
\(149\) −1414.67 −0.777814 −0.388907 0.921277i \(-0.627147\pi\)
−0.388907 + 0.921277i \(0.627147\pi\)
\(150\) 0 0
\(151\) 2094.96 1.12904 0.564522 0.825418i \(-0.309060\pi\)
0.564522 + 0.825418i \(0.309060\pi\)
\(152\) 1356.87i 0.724056i
\(153\) − 1055.41i − 0.557678i
\(154\) 1716.44 0.898147
\(155\) 0 0
\(156\) 6112.17 3.13696
\(157\) 709.495i 0.360662i 0.983606 + 0.180331i \(0.0577168\pi\)
−0.983606 + 0.180331i \(0.942283\pi\)
\(158\) − 2122.82i − 1.06888i
\(159\) −3778.64 −1.88469
\(160\) 0 0
\(161\) 879.815 0.430678
\(162\) 4124.80i 2.00046i
\(163\) 3276.23i 1.57432i 0.616749 + 0.787160i \(0.288449\pi\)
−0.616749 + 0.787160i \(0.711551\pi\)
\(164\) −2725.75 −1.29784
\(165\) 0 0
\(166\) −1407.39 −0.658040
\(167\) − 2860.69i − 1.32555i −0.748819 0.662775i \(-0.769379\pi\)
0.748819 0.662775i \(-0.230621\pi\)
\(168\) 937.514i 0.430540i
\(169\) −3460.42 −1.57507
\(170\) 0 0
\(171\) −970.331 −0.433936
\(172\) 5190.62i 2.30105i
\(173\) 2803.44i 1.23203i 0.787734 + 0.616015i \(0.211254\pi\)
−0.787734 + 0.616015i \(0.788746\pi\)
\(174\) −5583.61 −2.43271
\(175\) 0 0
\(176\) 357.090 0.152936
\(177\) − 1317.48i − 0.559479i
\(178\) 5963.20i 2.51102i
\(179\) −248.617 −0.103813 −0.0519064 0.998652i \(-0.516530\pi\)
−0.0519064 + 0.998652i \(0.516530\pi\)
\(180\) 0 0
\(181\) 2075.56 0.852347 0.426174 0.904641i \(-0.359861\pi\)
0.426174 + 0.904641i \(0.359861\pi\)
\(182\) − 2387.78i − 0.972494i
\(183\) − 1051.01i − 0.424551i
\(184\) −2603.29 −1.04303
\(185\) 0 0
\(186\) −5662.78 −2.23234
\(187\) − 3852.58i − 1.50657i
\(188\) − 1427.07i − 0.553614i
\(189\) 551.674 0.212319
\(190\) 0 0
\(191\) −1252.95 −0.474663 −0.237331 0.971429i \(-0.576273\pi\)
−0.237331 + 0.971429i \(0.576273\pi\)
\(192\) 5395.79i 2.02817i
\(193\) 1602.12i 0.597527i 0.954327 + 0.298764i \(0.0965743\pi\)
−0.954327 + 0.298764i \(0.903426\pi\)
\(194\) 5962.10 2.20646
\(195\) 0 0
\(196\) 615.789 0.224413
\(197\) − 2346.38i − 0.848593i −0.905523 0.424296i \(-0.860521\pi\)
0.905523 0.424296i \(-0.139479\pi\)
\(198\) − 3631.97i − 1.30360i
\(199\) 1993.53 0.710140 0.355070 0.934840i \(-0.384457\pi\)
0.355070 + 0.934840i \(0.384457\pi\)
\(200\) 0 0
\(201\) 3087.84 1.08358
\(202\) 1819.67i 0.633818i
\(203\) 1332.83i 0.460820i
\(204\) 5790.21 1.98723
\(205\) 0 0
\(206\) 1323.54 0.447649
\(207\) − 1861.68i − 0.625101i
\(208\) − 496.756i − 0.165595i
\(209\) −3542.02 −1.17228
\(210\) 0 0
\(211\) −5852.55 −1.90951 −0.954754 0.297396i \(-0.903882\pi\)
−0.954754 + 0.297396i \(0.903882\pi\)
\(212\) − 7343.80i − 2.37912i
\(213\) 5317.13i 1.71044i
\(214\) 99.5883 0.0318117
\(215\) 0 0
\(216\) −1632.35 −0.514202
\(217\) 1351.73i 0.422864i
\(218\) − 78.4659i − 0.0243779i
\(219\) 5166.46 1.59414
\(220\) 0 0
\(221\) −5359.42 −1.63128
\(222\) − 3362.77i − 1.01664i
\(223\) − 1719.58i − 0.516374i −0.966095 0.258187i \(-0.916875\pi\)
0.966095 0.258187i \(-0.0831251\pi\)
\(224\) 1369.55 0.408514
\(225\) 0 0
\(226\) 266.747 0.0785120
\(227\) 5686.00i 1.66252i 0.555881 + 0.831262i \(0.312381\pi\)
−0.555881 + 0.831262i \(0.687619\pi\)
\(228\) − 5323.46i − 1.54629i
\(229\) 3087.40 0.890923 0.445461 0.895301i \(-0.353040\pi\)
0.445461 + 0.895301i \(0.353040\pi\)
\(230\) 0 0
\(231\) −2447.33 −0.697066
\(232\) − 3943.73i − 1.11603i
\(233\) 3997.55i 1.12398i 0.827143 + 0.561991i \(0.189965\pi\)
−0.827143 + 0.561991i \(0.810035\pi\)
\(234\) −5052.52 −1.41151
\(235\) 0 0
\(236\) 2560.53 0.706255
\(237\) 3026.75i 0.829573i
\(238\) − 2262.00i − 0.616067i
\(239\) 4499.79 1.21786 0.608928 0.793226i \(-0.291600\pi\)
0.608928 + 0.793226i \(0.291600\pi\)
\(240\) 0 0
\(241\) 3633.26 0.971115 0.485557 0.874205i \(-0.338617\pi\)
0.485557 + 0.874205i \(0.338617\pi\)
\(242\) − 7221.66i − 1.91829i
\(243\) − 3753.32i − 0.990847i
\(244\) 2042.64 0.535929
\(245\) 0 0
\(246\) 6360.45 1.64849
\(247\) 4927.39i 1.26932i
\(248\) − 3999.65i − 1.02411i
\(249\) 2006.68 0.510715
\(250\) 0 0
\(251\) −1211.21 −0.304585 −0.152292 0.988335i \(-0.548666\pi\)
−0.152292 + 0.988335i \(0.548666\pi\)
\(252\) − 1303.00i − 0.325721i
\(253\) − 6795.74i − 1.68871i
\(254\) −8444.50 −2.08604
\(255\) 0 0
\(256\) −3388.39 −0.827245
\(257\) 6225.81i 1.51111i 0.655085 + 0.755556i \(0.272633\pi\)
−0.655085 + 0.755556i \(0.727367\pi\)
\(258\) − 12112.1i − 2.92275i
\(259\) −802.709 −0.192579
\(260\) 0 0
\(261\) 2820.27 0.668851
\(262\) − 3515.43i − 0.828947i
\(263\) − 757.377i − 0.177574i −0.996051 0.0887869i \(-0.971701\pi\)
0.996051 0.0887869i \(-0.0282990\pi\)
\(264\) 7241.41 1.68817
\(265\) 0 0
\(266\) −2079.66 −0.479369
\(267\) − 8502.43i − 1.94884i
\(268\) 6001.23i 1.36785i
\(269\) −1750.59 −0.396786 −0.198393 0.980123i \(-0.563572\pi\)
−0.198393 + 0.980123i \(0.563572\pi\)
\(270\) 0 0
\(271\) 4451.86 0.997902 0.498951 0.866630i \(-0.333719\pi\)
0.498951 + 0.866630i \(0.333719\pi\)
\(272\) − 470.589i − 0.104903i
\(273\) 3404.53i 0.754768i
\(274\) 4661.87 1.02786
\(275\) 0 0
\(276\) 10213.6 2.22749
\(277\) 7691.69i 1.66841i 0.551456 + 0.834204i \(0.314072\pi\)
−0.551456 + 0.834204i \(0.685928\pi\)
\(278\) − 4669.62i − 1.00743i
\(279\) 2860.26 0.613760
\(280\) 0 0
\(281\) −199.034 −0.0422540 −0.0211270 0.999777i \(-0.506725\pi\)
−0.0211270 + 0.999777i \(0.506725\pi\)
\(282\) 3330.01i 0.703188i
\(283\) − 799.307i − 0.167893i −0.996470 0.0839467i \(-0.973247\pi\)
0.996470 0.0839467i \(-0.0267526\pi\)
\(284\) −10333.9 −2.15916
\(285\) 0 0
\(286\) −18443.3 −3.81321
\(287\) − 1518.27i − 0.312267i
\(288\) − 2897.96i − 0.592931i
\(289\) −164.110 −0.0334031
\(290\) 0 0
\(291\) −8500.86 −1.71247
\(292\) 10041.0i 2.01235i
\(293\) 3302.75i 0.658528i 0.944238 + 0.329264i \(0.106801\pi\)
−0.944238 + 0.329264i \(0.893199\pi\)
\(294\) −1436.92 −0.285044
\(295\) 0 0
\(296\) 2375.14 0.466393
\(297\) − 4261.16i − 0.832518i
\(298\) 6415.67i 1.24715i
\(299\) −9453.72 −1.82850
\(300\) 0 0
\(301\) −2891.22 −0.553646
\(302\) − 9500.87i − 1.81031i
\(303\) − 2594.51i − 0.491916i
\(304\) −432.655 −0.0816265
\(305\) 0 0
\(306\) −4786.38 −0.894180
\(307\) 8628.17i 1.60402i 0.597308 + 0.802012i \(0.296237\pi\)
−0.597308 + 0.802012i \(0.703763\pi\)
\(308\) − 4756.39i − 0.879937i
\(309\) −1887.13 −0.347427
\(310\) 0 0
\(311\) −4900.60 −0.893530 −0.446765 0.894651i \(-0.647424\pi\)
−0.446765 + 0.894651i \(0.647424\pi\)
\(312\) − 10073.7i − 1.82792i
\(313\) − 9114.26i − 1.64590i −0.568110 0.822952i \(-0.692325\pi\)
0.568110 0.822952i \(-0.307675\pi\)
\(314\) 3217.63 0.578285
\(315\) 0 0
\(316\) −5882.51 −1.04721
\(317\) 8022.82i 1.42147i 0.703459 + 0.710736i \(0.251638\pi\)
−0.703459 + 0.710736i \(0.748362\pi\)
\(318\) 17136.5i 3.02191i
\(319\) 10294.9 1.80691
\(320\) 0 0
\(321\) −141.995 −0.0246896
\(322\) − 3990.05i − 0.690549i
\(323\) 4667.84i 0.804104i
\(324\) 11430.2 1.95990
\(325\) 0 0
\(326\) 14858.0 2.52426
\(327\) 111.878i 0.0189201i
\(328\) 4492.42i 0.756257i
\(329\) 794.888 0.133202
\(330\) 0 0
\(331\) −1333.58 −0.221451 −0.110725 0.993851i \(-0.535317\pi\)
−0.110725 + 0.993851i \(0.535317\pi\)
\(332\) 3899.99i 0.644698i
\(333\) 1698.53i 0.279515i
\(334\) −12973.5 −2.12539
\(335\) 0 0
\(336\) −298.939 −0.0485370
\(337\) 1687.33i 0.272744i 0.990658 + 0.136372i \(0.0435442\pi\)
−0.990658 + 0.136372i \(0.956456\pi\)
\(338\) 15693.4i 2.52546i
\(339\) −380.331 −0.0609344
\(340\) 0 0
\(341\) 10440.9 1.65808
\(342\) 4400.55i 0.695773i
\(343\) 343.000i 0.0539949i
\(344\) 8554.87 1.34084
\(345\) 0 0
\(346\) 12713.9 1.97544
\(347\) − 5955.18i − 0.921299i −0.887582 0.460649i \(-0.847617\pi\)
0.887582 0.460649i \(-0.152383\pi\)
\(348\) 15472.6i 2.38339i
\(349\) −6876.59 −1.05471 −0.527357 0.849644i \(-0.676817\pi\)
−0.527357 + 0.849644i \(0.676817\pi\)
\(350\) 0 0
\(351\) −5927.81 −0.901433
\(352\) − 10578.5i − 1.60181i
\(353\) 1395.95i 0.210479i 0.994447 + 0.105239i \(0.0335609\pi\)
−0.994447 + 0.105239i \(0.966439\pi\)
\(354\) −5974.90 −0.897069
\(355\) 0 0
\(356\) 16524.5 2.46011
\(357\) 3225.20i 0.478139i
\(358\) 1127.50i 0.166453i
\(359\) 382.988 0.0563046 0.0281523 0.999604i \(-0.491038\pi\)
0.0281523 + 0.999604i \(0.491038\pi\)
\(360\) 0 0
\(361\) −2567.44 −0.374316
\(362\) − 9412.85i − 1.36665i
\(363\) 10296.8i 1.48881i
\(364\) −6616.73 −0.952777
\(365\) 0 0
\(366\) −4766.43 −0.680725
\(367\) 10178.4i 1.44771i 0.689951 + 0.723856i \(0.257632\pi\)
−0.689951 + 0.723856i \(0.742368\pi\)
\(368\) − 830.094i − 0.117586i
\(369\) −3212.65 −0.453235
\(370\) 0 0
\(371\) 4090.56 0.572430
\(372\) 15692.0i 2.18708i
\(373\) − 2991.00i − 0.415196i −0.978214 0.207598i \(-0.933435\pi\)
0.978214 0.207598i \(-0.0665645\pi\)
\(374\) −17471.8 −2.41563
\(375\) 0 0
\(376\) −2352.00 −0.322594
\(377\) − 14321.5i − 1.95648i
\(378\) − 2501.90i − 0.340433i
\(379\) −7400.66 −1.00302 −0.501512 0.865150i \(-0.667223\pi\)
−0.501512 + 0.865150i \(0.667223\pi\)
\(380\) 0 0
\(381\) 12040.3 1.61901
\(382\) 5682.27i 0.761074i
\(383\) − 10769.6i − 1.43682i −0.695622 0.718408i \(-0.744871\pi\)
0.695622 0.718408i \(-0.255129\pi\)
\(384\) 14349.5 1.90695
\(385\) 0 0
\(386\) 7265.75 0.958075
\(387\) 6117.81i 0.803580i
\(388\) − 16521.5i − 2.16173i
\(389\) 11193.3 1.45893 0.729466 0.684017i \(-0.239769\pi\)
0.729466 + 0.684017i \(0.239769\pi\)
\(390\) 0 0
\(391\) −8955.74 −1.15834
\(392\) − 1014.91i − 0.130766i
\(393\) 5012.36i 0.643359i
\(394\) −10641.1 −1.36063
\(395\) 0 0
\(396\) −10064.5 −1.27717
\(397\) − 10371.9i − 1.31121i −0.755104 0.655605i \(-0.772414\pi\)
0.755104 0.655605i \(-0.227586\pi\)
\(398\) − 9040.88i − 1.13864i
\(399\) 2965.21 0.372046
\(400\) 0 0
\(401\) 5402.20 0.672751 0.336375 0.941728i \(-0.390799\pi\)
0.336375 + 0.941728i \(0.390799\pi\)
\(402\) − 14003.7i − 1.73741i
\(403\) − 14524.5i − 1.79533i
\(404\) 5042.44 0.620967
\(405\) 0 0
\(406\) 6044.53 0.738879
\(407\) 6200.17i 0.755113i
\(408\) − 9543.07i − 1.15797i
\(409\) 12829.9 1.55110 0.775549 0.631288i \(-0.217473\pi\)
0.775549 + 0.631288i \(0.217473\pi\)
\(410\) 0 0
\(411\) −6646.97 −0.797739
\(412\) − 3667.64i − 0.438572i
\(413\) 1426.24i 0.169929i
\(414\) −8442.91 −1.00229
\(415\) 0 0
\(416\) −14716.0 −1.73440
\(417\) 6658.02i 0.781882i
\(418\) 16063.4i 1.87964i
\(419\) −5620.85 −0.655362 −0.327681 0.944788i \(-0.606267\pi\)
−0.327681 + 0.944788i \(0.606267\pi\)
\(420\) 0 0
\(421\) −2177.11 −0.252033 −0.126017 0.992028i \(-0.540219\pi\)
−0.126017 + 0.992028i \(0.540219\pi\)
\(422\) 26541.9i 3.06171i
\(423\) − 1681.98i − 0.193335i
\(424\) −12103.6 −1.38633
\(425\) 0 0
\(426\) 24113.7 2.74252
\(427\) 1137.77i 0.128947i
\(428\) − 275.967i − 0.0311668i
\(429\) 26296.8 2.95949
\(430\) 0 0
\(431\) 10396.4 1.16190 0.580950 0.813939i \(-0.302681\pi\)
0.580950 + 0.813939i \(0.302681\pi\)
\(432\) − 520.497i − 0.0579686i
\(433\) 11875.6i 1.31803i 0.752129 + 0.659015i \(0.229027\pi\)
−0.752129 + 0.659015i \(0.770973\pi\)
\(434\) 6130.24 0.678021
\(435\) 0 0
\(436\) −217.435 −0.0238836
\(437\) 8233.81i 0.901320i
\(438\) − 23430.4i − 2.55605i
\(439\) −640.369 −0.0696200 −0.0348100 0.999394i \(-0.511083\pi\)
−0.0348100 + 0.999394i \(0.511083\pi\)
\(440\) 0 0
\(441\) 725.785 0.0783701
\(442\) 24305.5i 2.61560i
\(443\) − 854.852i − 0.0916823i −0.998949 0.0458411i \(-0.985403\pi\)
0.998949 0.0458411i \(-0.0145968\pi\)
\(444\) −9318.50 −0.996028
\(445\) 0 0
\(446\) −7798.46 −0.827954
\(447\) − 9147.56i − 0.967930i
\(448\) − 5841.21i − 0.616008i
\(449\) −3427.44 −0.360247 −0.180123 0.983644i \(-0.557650\pi\)
−0.180123 + 0.983644i \(0.557650\pi\)
\(450\) 0 0
\(451\) −11727.2 −1.22442
\(452\) − 739.176i − 0.0769202i
\(453\) 13546.5i 1.40501i
\(454\) 25786.6 2.66569
\(455\) 0 0
\(456\) −8773.79 −0.901032
\(457\) − 1709.31i − 0.174963i −0.996166 0.0874814i \(-0.972118\pi\)
0.996166 0.0874814i \(-0.0278818\pi\)
\(458\) − 14001.7i − 1.42851i
\(459\) −5615.56 −0.571050
\(460\) 0 0
\(461\) 2251.18 0.227436 0.113718 0.993513i \(-0.463724\pi\)
0.113718 + 0.993513i \(0.463724\pi\)
\(462\) 11098.9i 1.11768i
\(463\) − 3200.80i − 0.321282i −0.987013 0.160641i \(-0.948644\pi\)
0.987013 0.160641i \(-0.0513562\pi\)
\(464\) 1257.51 0.125816
\(465\) 0 0
\(466\) 18129.3 1.80219
\(467\) − 5477.39i − 0.542748i −0.962474 0.271374i \(-0.912522\pi\)
0.962474 0.271374i \(-0.0874780\pi\)
\(468\) 14000.9i 1.38289i
\(469\) −3342.74 −0.329112
\(470\) 0 0
\(471\) −4587.75 −0.448816
\(472\) − 4220.11i − 0.411538i
\(473\) 22332.0i 2.17088i
\(474\) 13726.6 1.33014
\(475\) 0 0
\(476\) −6268.19 −0.603576
\(477\) − 8655.60i − 0.830844i
\(478\) − 20407.0i − 1.95271i
\(479\) 14182.0 1.35280 0.676399 0.736535i \(-0.263539\pi\)
0.676399 + 0.736535i \(0.263539\pi\)
\(480\) 0 0
\(481\) 8625.20 0.817620
\(482\) − 16477.2i − 1.55709i
\(483\) 5689.07i 0.535946i
\(484\) −20011.8 −1.87940
\(485\) 0 0
\(486\) −17021.7 −1.58872
\(487\) 5320.83i 0.495092i 0.968876 + 0.247546i \(0.0796242\pi\)
−0.968876 + 0.247546i \(0.920376\pi\)
\(488\) − 3366.56i − 0.312289i
\(489\) −21184.8 −1.95912
\(490\) 0 0
\(491\) −6574.80 −0.604311 −0.302155 0.953259i \(-0.597706\pi\)
−0.302155 + 0.953259i \(0.597706\pi\)
\(492\) − 17625.3i − 1.61506i
\(493\) − 13567.1i − 1.23941i
\(494\) 22346.2 2.03523
\(495\) 0 0
\(496\) 1275.34 0.115453
\(497\) − 5756.06i − 0.519506i
\(498\) − 9100.49i − 0.818881i
\(499\) 1507.68 0.135256 0.0676282 0.997711i \(-0.478457\pi\)
0.0676282 + 0.997711i \(0.478457\pi\)
\(500\) 0 0
\(501\) 18497.8 1.64955
\(502\) 5492.95i 0.488371i
\(503\) − 8782.24i − 0.778491i −0.921134 0.389245i \(-0.872736\pi\)
0.921134 0.389245i \(-0.127264\pi\)
\(504\) −2147.53 −0.189799
\(505\) 0 0
\(506\) −30819.4 −2.70768
\(507\) − 22375.9i − 1.96005i
\(508\) 23400.4i 2.04375i
\(509\) −12696.6 −1.10563 −0.552815 0.833304i \(-0.686447\pi\)
−0.552815 + 0.833304i \(0.686447\pi\)
\(510\) 0 0
\(511\) −5592.95 −0.484183
\(512\) − 2386.50i − 0.205995i
\(513\) 5162.88i 0.444341i
\(514\) 28234.7 2.42291
\(515\) 0 0
\(516\) −33563.7 −2.86349
\(517\) − 6139.76i − 0.522295i
\(518\) 3640.36i 0.308781i
\(519\) −18127.6 −1.53317
\(520\) 0 0
\(521\) −10434.7 −0.877455 −0.438727 0.898620i \(-0.644571\pi\)
−0.438727 + 0.898620i \(0.644571\pi\)
\(522\) − 12790.2i − 1.07243i
\(523\) − 8403.03i − 0.702560i −0.936270 0.351280i \(-0.885746\pi\)
0.936270 0.351280i \(-0.114254\pi\)
\(524\) −9741.55 −0.812140
\(525\) 0 0
\(526\) −3434.78 −0.284722
\(527\) − 13759.4i − 1.13733i
\(528\) 2309.02i 0.190317i
\(529\) −3630.43 −0.298384
\(530\) 0 0
\(531\) 3017.91 0.246640
\(532\) 5762.91i 0.469650i
\(533\) 16314.0i 1.32577i
\(534\) −38559.4 −3.12477
\(535\) 0 0
\(536\) 9890.85 0.797052
\(537\) − 1607.61i − 0.129187i
\(538\) 7939.11i 0.636207i
\(539\) 2649.35 0.211717
\(540\) 0 0
\(541\) 8349.66 0.663549 0.331775 0.943359i \(-0.392353\pi\)
0.331775 + 0.943359i \(0.392353\pi\)
\(542\) − 20189.6i − 1.60004i
\(543\) 13421.0i 1.06068i
\(544\) −13940.8 −1.09873
\(545\) 0 0
\(546\) 15439.9 1.21020
\(547\) − 12185.7i − 0.952509i −0.879308 0.476254i \(-0.841994\pi\)
0.879308 0.476254i \(-0.158006\pi\)
\(548\) − 12918.4i − 1.00702i
\(549\) 2407.51 0.187159
\(550\) 0 0
\(551\) −12473.4 −0.964402
\(552\) − 16833.4i − 1.29797i
\(553\) − 3276.61i − 0.251963i
\(554\) 34882.6 2.67512
\(555\) 0 0
\(556\) −12939.9 −0.987004
\(557\) 540.209i 0.0410940i 0.999789 + 0.0205470i \(0.00654078\pi\)
−0.999789 + 0.0205470i \(0.993459\pi\)
\(558\) − 12971.5i − 0.984103i
\(559\) 31066.6 2.35058
\(560\) 0 0
\(561\) 24911.6 1.87481
\(562\) 902.639i 0.0677501i
\(563\) − 1949.26i − 0.145917i −0.997335 0.0729587i \(-0.976756\pi\)
0.997335 0.0729587i \(-0.0232441\pi\)
\(564\) 9227.71 0.688930
\(565\) 0 0
\(566\) −3624.94 −0.269200
\(567\) 6366.70i 0.471563i
\(568\) 17031.6i 1.25815i
\(569\) −9487.28 −0.698994 −0.349497 0.936938i \(-0.613647\pi\)
−0.349497 + 0.936938i \(0.613647\pi\)
\(570\) 0 0
\(571\) −20172.3 −1.47843 −0.739215 0.673470i \(-0.764803\pi\)
−0.739215 + 0.673470i \(0.764803\pi\)
\(572\) 51108.0i 3.73590i
\(573\) − 8101.87i − 0.590681i
\(574\) −6885.50 −0.500689
\(575\) 0 0
\(576\) −12360.0 −0.894094
\(577\) − 12937.3i − 0.933423i −0.884410 0.466712i \(-0.845439\pi\)
0.884410 0.466712i \(-0.154561\pi\)
\(578\) 744.254i 0.0535586i
\(579\) −10359.6 −0.743577
\(580\) 0 0
\(581\) −2172.33 −0.155118
\(582\) 38552.2i 2.74578i
\(583\) − 31595.7i − 2.24453i
\(584\) 16549.0 1.17261
\(585\) 0 0
\(586\) 14978.3 1.05588
\(587\) 6489.43i 0.456299i 0.973626 + 0.228149i \(0.0732674\pi\)
−0.973626 + 0.228149i \(0.926733\pi\)
\(588\) 3981.82i 0.279265i
\(589\) −12650.3 −0.884968
\(590\) 0 0
\(591\) 15172.2 1.05601
\(592\) 757.345i 0.0525789i
\(593\) − 16803.6i − 1.16364i −0.813317 0.581821i \(-0.802340\pi\)
0.813317 0.581821i \(-0.197660\pi\)
\(594\) −19324.8 −1.33486
\(595\) 0 0
\(596\) 17778.3 1.22186
\(597\) 12890.6i 0.883716i
\(598\) 42873.5i 2.93182i
\(599\) −19139.6 −1.30554 −0.652772 0.757554i \(-0.726394\pi\)
−0.652772 + 0.757554i \(0.726394\pi\)
\(600\) 0 0
\(601\) 14304.0 0.970838 0.485419 0.874282i \(-0.338667\pi\)
0.485419 + 0.874282i \(0.338667\pi\)
\(602\) 13112.0i 0.887715i
\(603\) 7073.21i 0.477684i
\(604\) −26327.7 −1.77361
\(605\) 0 0
\(606\) −11766.3 −0.788738
\(607\) 2018.10i 0.134946i 0.997721 + 0.0674730i \(0.0214936\pi\)
−0.997721 + 0.0674730i \(0.978506\pi\)
\(608\) 12817.1i 0.854935i
\(609\) −8618.39 −0.573456
\(610\) 0 0
\(611\) −8541.17 −0.565530
\(612\) 13263.4i 0.876050i
\(613\) 21479.4i 1.41524i 0.706592 + 0.707621i \(0.250232\pi\)
−0.706592 + 0.707621i \(0.749768\pi\)
\(614\) 39129.6 2.57189
\(615\) 0 0
\(616\) −7839.19 −0.512743
\(617\) 5856.83i 0.382151i 0.981575 + 0.191075i \(0.0611975\pi\)
−0.981575 + 0.191075i \(0.938803\pi\)
\(618\) 8558.31i 0.557065i
\(619\) 17619.3 1.14407 0.572035 0.820229i \(-0.306154\pi\)
0.572035 + 0.820229i \(0.306154\pi\)
\(620\) 0 0
\(621\) −9905.53 −0.640089
\(622\) 22224.7i 1.43269i
\(623\) 9204.30i 0.591914i
\(624\) 3212.13 0.206071
\(625\) 0 0
\(626\) −41334.1 −2.63904
\(627\) − 22903.5i − 1.45882i
\(628\) − 8916.31i − 0.566560i
\(629\) 8170.87 0.517955
\(630\) 0 0
\(631\) 26395.7 1.66529 0.832643 0.553810i \(-0.186827\pi\)
0.832643 + 0.553810i \(0.186827\pi\)
\(632\) 9695.19i 0.610212i
\(633\) − 37843.9i − 2.37624i
\(634\) 36384.3 2.27919
\(635\) 0 0
\(636\) 47486.6 2.96064
\(637\) − 3685.58i − 0.229243i
\(638\) − 46688.3i − 2.89719i
\(639\) −12179.8 −0.754029
\(640\) 0 0
\(641\) 3209.30 0.197753 0.0988764 0.995100i \(-0.468475\pi\)
0.0988764 + 0.995100i \(0.468475\pi\)
\(642\) 643.959i 0.0395873i
\(643\) − 1762.48i − 0.108096i −0.998538 0.0540478i \(-0.982788\pi\)
0.998538 0.0540478i \(-0.0172123\pi\)
\(644\) −11056.7 −0.676548
\(645\) 0 0
\(646\) 21169.1 1.28930
\(647\) 24372.7i 1.48098i 0.672070 + 0.740488i \(0.265405\pi\)
−0.672070 + 0.740488i \(0.734595\pi\)
\(648\) − 18838.5i − 1.14205i
\(649\) 11016.3 0.666301
\(650\) 0 0
\(651\) −8740.60 −0.526223
\(652\) − 41172.8i − 2.47308i
\(653\) 6389.97i 0.382938i 0.981499 + 0.191469i \(0.0613252\pi\)
−0.981499 + 0.191469i \(0.938675\pi\)
\(654\) 507.377 0.0303364
\(655\) 0 0
\(656\) −1432.47 −0.0852567
\(657\) 11834.6i 0.702760i
\(658\) − 3604.90i − 0.213577i
\(659\) 6111.68 0.361270 0.180635 0.983550i \(-0.442185\pi\)
0.180635 + 0.983550i \(0.442185\pi\)
\(660\) 0 0
\(661\) 16391.1 0.964510 0.482255 0.876031i \(-0.339818\pi\)
0.482255 + 0.876031i \(0.339818\pi\)
\(662\) 6047.92i 0.355074i
\(663\) − 34655.2i − 2.03001i
\(664\) 6427.72 0.375669
\(665\) 0 0
\(666\) 7702.98 0.448175
\(667\) − 23931.6i − 1.38926i
\(668\) 35950.6i 2.08229i
\(669\) 11119.2 0.642588
\(670\) 0 0
\(671\) 8788.20 0.505611
\(672\) 8855.83i 0.508365i
\(673\) − 13055.9i − 0.747799i −0.927469 0.373900i \(-0.878020\pi\)
0.927469 0.373900i \(-0.121980\pi\)
\(674\) 7652.20 0.437317
\(675\) 0 0
\(676\) 43487.6 2.47426
\(677\) 3154.53i 0.179082i 0.995983 + 0.0895410i \(0.0285400\pi\)
−0.995983 + 0.0895410i \(0.971460\pi\)
\(678\) 1724.84i 0.0977022i
\(679\) 9202.60 0.520123
\(680\) 0 0
\(681\) −36766.9 −2.06888
\(682\) − 47350.4i − 2.65856i
\(683\) 17282.7i 0.968233i 0.875004 + 0.484117i \(0.160859\pi\)
−0.875004 + 0.484117i \(0.839141\pi\)
\(684\) 12194.3 0.681666
\(685\) 0 0
\(686\) 1555.54 0.0865754
\(687\) 19963.8i 1.10869i
\(688\) 2727.83i 0.151159i
\(689\) −43953.6 −2.43033
\(690\) 0 0
\(691\) 26838.3 1.47753 0.738766 0.673961i \(-0.235409\pi\)
0.738766 + 0.673961i \(0.235409\pi\)
\(692\) − 35231.1i − 1.93538i
\(693\) − 5606.01i − 0.307294i
\(694\) −27007.3 −1.47721
\(695\) 0 0
\(696\) 25501.0 1.38881
\(697\) 15454.6i 0.839866i
\(698\) 31186.0i 1.69113i
\(699\) −25849.0 −1.39871
\(700\) 0 0
\(701\) −8374.52 −0.451214 −0.225607 0.974218i \(-0.572437\pi\)
−0.225607 + 0.974218i \(0.572437\pi\)
\(702\) 26883.2i 1.44536i
\(703\) − 7512.21i − 0.403028i
\(704\) −45117.9 −2.41540
\(705\) 0 0
\(706\) 6330.79 0.337482
\(707\) 2808.68i 0.149408i
\(708\) 16556.9i 0.878881i
\(709\) −11929.4 −0.631902 −0.315951 0.948775i \(-0.602324\pi\)
−0.315951 + 0.948775i \(0.602324\pi\)
\(710\) 0 0
\(711\) −6933.28 −0.365708
\(712\) − 27234.7i − 1.43352i
\(713\) − 24270.9i − 1.27483i
\(714\) 14626.6 0.766648
\(715\) 0 0
\(716\) 3124.40 0.163078
\(717\) 29096.6i 1.51553i
\(718\) − 1736.89i − 0.0902788i
\(719\) 23392.3 1.21333 0.606666 0.794957i \(-0.292507\pi\)
0.606666 + 0.794957i \(0.292507\pi\)
\(720\) 0 0
\(721\) 2042.91 0.105523
\(722\) 11643.6i 0.600179i
\(723\) 23493.4i 1.20848i
\(724\) −26083.8 −1.33894
\(725\) 0 0
\(726\) 46696.8 2.38717
\(727\) − 10659.8i − 0.543810i −0.962324 0.271905i \(-0.912346\pi\)
0.962324 0.271905i \(-0.0876536\pi\)
\(728\) 10905.3i 0.555188i
\(729\) −287.476 −0.0146053
\(730\) 0 0
\(731\) 29430.1 1.48907
\(732\) 13208.2i 0.666923i
\(733\) 23919.1i 1.20528i 0.798011 + 0.602642i \(0.205885\pi\)
−0.798011 + 0.602642i \(0.794115\pi\)
\(734\) 46160.2 2.32126
\(735\) 0 0
\(736\) −24590.9 −1.23157
\(737\) 25819.5i 1.29047i
\(738\) 14569.7i 0.726717i
\(739\) −34535.1 −1.71907 −0.859536 0.511074i \(-0.829248\pi\)
−0.859536 + 0.511074i \(0.829248\pi\)
\(740\) 0 0
\(741\) −31861.6 −1.57957
\(742\) − 18551.1i − 0.917833i
\(743\) 17526.8i 0.865403i 0.901537 + 0.432702i \(0.142440\pi\)
−0.901537 + 0.432702i \(0.857560\pi\)
\(744\) 25862.6 1.27442
\(745\) 0 0
\(746\) −13564.5 −0.665725
\(747\) 4596.63i 0.225143i
\(748\) 48415.9i 2.36666i
\(749\) 153.716 0.00749889
\(750\) 0 0
\(751\) 18534.3 0.900565 0.450283 0.892886i \(-0.351323\pi\)
0.450283 + 0.892886i \(0.351323\pi\)
\(752\) − 749.966i − 0.0363676i
\(753\) − 7831.94i − 0.379033i
\(754\) −64949.2 −3.13702
\(755\) 0 0
\(756\) −6932.96 −0.333531
\(757\) 9309.64i 0.446981i 0.974706 + 0.223491i \(0.0717452\pi\)
−0.974706 + 0.223491i \(0.928255\pi\)
\(758\) 33562.7i 1.60825i
\(759\) 43942.7 2.10148
\(760\) 0 0
\(761\) −2968.41 −0.141399 −0.0706996 0.997498i \(-0.522523\pi\)
−0.0706996 + 0.997498i \(0.522523\pi\)
\(762\) − 54604.0i − 2.59592i
\(763\) − 121.113i − 0.00574653i
\(764\) 15746.0 0.745643
\(765\) 0 0
\(766\) −48841.1 −2.30379
\(767\) − 15325.1i − 0.721457i
\(768\) − 21910.1i − 1.02944i
\(769\) 34932.9 1.63812 0.819060 0.573708i \(-0.194495\pi\)
0.819060 + 0.573708i \(0.194495\pi\)
\(770\) 0 0
\(771\) −40257.5 −1.88046
\(772\) − 20134.0i − 0.938650i
\(773\) − 13595.4i − 0.632591i −0.948661 0.316295i \(-0.897561\pi\)
0.948661 0.316295i \(-0.102439\pi\)
\(774\) 27744.9 1.28846
\(775\) 0 0
\(776\) −27229.7 −1.25965
\(777\) − 5190.49i − 0.239650i
\(778\) − 50762.9i − 2.33925i
\(779\) 14208.8 0.653510
\(780\) 0 0
\(781\) −44460.1 −2.03701
\(782\) 40615.2i 1.85728i
\(783\) − 15005.9i − 0.684888i
\(784\) 323.616 0.0147420
\(785\) 0 0
\(786\) 22731.6 1.03156
\(787\) 14228.1i 0.644444i 0.946664 + 0.322222i \(0.104430\pi\)
−0.946664 + 0.322222i \(0.895570\pi\)
\(788\) 29487.3i 1.33305i
\(789\) 4897.36 0.220977
\(790\) 0 0
\(791\) 411.728 0.0185074
\(792\) 16587.7i 0.744213i
\(793\) − 12225.5i − 0.547465i
\(794\) −47037.5 −2.10239
\(795\) 0 0
\(796\) −25053.0 −1.11555
\(797\) − 11442.3i − 0.508539i −0.967133 0.254270i \(-0.918165\pi\)
0.967133 0.254270i \(-0.0818351\pi\)
\(798\) − 13447.5i − 0.596538i
\(799\) −8091.26 −0.358258
\(800\) 0 0
\(801\) 19476.2 0.859125
\(802\) − 24499.5i − 1.07869i
\(803\) 43200.3i 1.89851i
\(804\) −38805.2 −1.70218
\(805\) 0 0
\(806\) −65870.2 −2.87863
\(807\) − 11319.7i − 0.493770i
\(808\) − 8310.63i − 0.361840i
\(809\) −22732.9 −0.987944 −0.493972 0.869478i \(-0.664455\pi\)
−0.493972 + 0.869478i \(0.664455\pi\)
\(810\) 0 0
\(811\) −29768.2 −1.28890 −0.644452 0.764644i \(-0.722915\pi\)
−0.644452 + 0.764644i \(0.722915\pi\)
\(812\) − 16749.9i − 0.723898i
\(813\) 28786.7i 1.24181i
\(814\) 28118.4 1.21075
\(815\) 0 0
\(816\) 3042.93 0.130544
\(817\) − 27057.7i − 1.15867i
\(818\) − 58185.0i − 2.48703i
\(819\) −7798.65 −0.332731
\(820\) 0 0
\(821\) 6408.35 0.272416 0.136208 0.990680i \(-0.456509\pi\)
0.136208 + 0.990680i \(0.456509\pi\)
\(822\) 30144.6i 1.27909i
\(823\) − 20876.0i − 0.884194i −0.896967 0.442097i \(-0.854235\pi\)
0.896967 0.442097i \(-0.145765\pi\)
\(824\) −6044.78 −0.255558
\(825\) 0 0
\(826\) 6468.13 0.272464
\(827\) 41650.1i 1.75129i 0.482955 + 0.875645i \(0.339563\pi\)
−0.482955 + 0.875645i \(0.660437\pi\)
\(828\) 23396.0i 0.981964i
\(829\) −17194.7 −0.720380 −0.360190 0.932879i \(-0.617288\pi\)
−0.360190 + 0.932879i \(0.617288\pi\)
\(830\) 0 0
\(831\) −49736.1 −2.07621
\(832\) 62764.5i 2.61535i
\(833\) − 3491.44i − 0.145223i
\(834\) 30194.8 1.25367
\(835\) 0 0
\(836\) 44513.0 1.84153
\(837\) − 15218.7i − 0.628477i
\(838\) 25491.1i 1.05081i
\(839\) −40583.7 −1.66997 −0.834985 0.550273i \(-0.814524\pi\)
−0.834985 + 0.550273i \(0.814524\pi\)
\(840\) 0 0
\(841\) 11865.0 0.486489
\(842\) 9873.42i 0.404110i
\(843\) − 1287.00i − 0.0525819i
\(844\) 73549.7 2.99963
\(845\) 0 0
\(846\) −7627.93 −0.309993
\(847\) − 11146.8i − 0.452192i
\(848\) − 3859.39i − 0.156288i
\(849\) 5168.49 0.208931
\(850\) 0 0
\(851\) 14413.0 0.580576
\(852\) − 66821.0i − 2.68691i
\(853\) 23020.1i 0.924023i 0.886874 + 0.462012i \(0.152872\pi\)
−0.886874 + 0.462012i \(0.847128\pi\)
\(854\) 5159.90 0.206754
\(855\) 0 0
\(856\) −454.832 −0.0181610
\(857\) 18075.5i 0.720476i 0.932861 + 0.360238i \(0.117304\pi\)
−0.932861 + 0.360238i \(0.882696\pi\)
\(858\) − 119259.i − 4.74525i
\(859\) −20308.2 −0.806643 −0.403321 0.915058i \(-0.632144\pi\)
−0.403321 + 0.915058i \(0.632144\pi\)
\(860\) 0 0
\(861\) 9817.46 0.388592
\(862\) − 47148.9i − 1.86299i
\(863\) − 31023.5i − 1.22370i −0.790975 0.611849i \(-0.790426\pi\)
0.790975 0.611849i \(-0.209574\pi\)
\(864\) −15419.3 −0.607148
\(865\) 0 0
\(866\) 53857.2 2.11333
\(867\) − 1061.17i − 0.0415677i
\(868\) − 16987.4i − 0.664274i
\(869\) −25308.7 −0.987963
\(870\) 0 0
\(871\) 35918.1 1.39729
\(872\) 358.363i 0.0139171i
\(873\) − 19472.6i − 0.754924i
\(874\) 37341.2 1.44518
\(875\) 0 0
\(876\) −64927.5 −2.50422
\(877\) 28344.1i 1.09135i 0.837997 + 0.545674i \(0.183726\pi\)
−0.837997 + 0.545674i \(0.816274\pi\)
\(878\) 2904.14i 0.111629i
\(879\) −21356.3 −0.819488
\(880\) 0 0
\(881\) 41264.5 1.57802 0.789010 0.614380i \(-0.210594\pi\)
0.789010 + 0.614380i \(0.210594\pi\)
\(882\) − 3291.51i − 0.125659i
\(883\) − 7995.59i − 0.304726i −0.988325 0.152363i \(-0.951312\pi\)
0.988325 0.152363i \(-0.0486883\pi\)
\(884\) 67352.5 2.56257
\(885\) 0 0
\(886\) −3876.84 −0.147003
\(887\) − 24438.3i − 0.925093i −0.886595 0.462547i \(-0.846936\pi\)
0.886595 0.462547i \(-0.153064\pi\)
\(888\) 15358.2i 0.580390i
\(889\) −13034.2 −0.491737
\(890\) 0 0
\(891\) 49176.8 1.84903
\(892\) 21610.1i 0.811167i
\(893\) 7439.02i 0.278765i
\(894\) −41485.1 −1.55198
\(895\) 0 0
\(896\) −15534.1 −0.579192
\(897\) − 61129.8i − 2.27543i
\(898\) 15543.8i 0.577620i
\(899\) 36768.0 1.36405
\(900\) 0 0
\(901\) −41638.3 −1.53959
\(902\) 53184.0i 1.96323i
\(903\) − 18695.3i − 0.688970i
\(904\) −1218.26 −0.0448218
\(905\) 0 0
\(906\) 61434.7 2.25279
\(907\) − 17241.6i − 0.631201i −0.948892 0.315601i \(-0.897794\pi\)
0.948892 0.315601i \(-0.102206\pi\)
\(908\) − 71456.6i − 2.61164i
\(909\) 5943.15 0.216856
\(910\) 0 0
\(911\) 17407.8 0.633092 0.316546 0.948577i \(-0.397477\pi\)
0.316546 + 0.948577i \(0.397477\pi\)
\(912\) − 2797.64i − 0.101578i
\(913\) 16779.2i 0.608226i
\(914\) −7751.87 −0.280535
\(915\) 0 0
\(916\) −38799.8 −1.39954
\(917\) − 5426.13i − 0.195405i
\(918\) 25467.1i 0.915621i
\(919\) −7704.64 −0.276553 −0.138277 0.990394i \(-0.544156\pi\)
−0.138277 + 0.990394i \(0.544156\pi\)
\(920\) 0 0
\(921\) −55791.6 −1.99609
\(922\) − 10209.3i − 0.364671i
\(923\) 61849.5i 2.20564i
\(924\) 30755.9 1.09501
\(925\) 0 0
\(926\) −14515.9 −0.515144
\(927\) − 4322.78i − 0.153159i
\(928\) − 37252.8i − 1.31776i
\(929\) 48184.3 1.70170 0.850849 0.525411i \(-0.176088\pi\)
0.850849 + 0.525411i \(0.176088\pi\)
\(930\) 0 0
\(931\) −3209.99 −0.113000
\(932\) − 50237.7i − 1.76565i
\(933\) − 31688.4i − 1.11193i
\(934\) −24840.5 −0.870242
\(935\) 0 0
\(936\) 23075.5 0.805818
\(937\) − 23371.6i − 0.814853i −0.913238 0.407427i \(-0.866426\pi\)
0.913238 0.407427i \(-0.133574\pi\)
\(938\) 15159.7i 0.527697i
\(939\) 58934.7 2.04820
\(940\) 0 0
\(941\) 18048.6 0.625258 0.312629 0.949875i \(-0.398790\pi\)
0.312629 + 0.949875i \(0.398790\pi\)
\(942\) 20805.9i 0.719631i
\(943\) 27261.1i 0.941405i
\(944\) 1345.64 0.0463948
\(945\) 0 0
\(946\) 101278. 3.48079
\(947\) − 10346.2i − 0.355022i −0.984119 0.177511i \(-0.943195\pi\)
0.984119 0.177511i \(-0.0568045\pi\)
\(948\) − 38037.6i − 1.30317i
\(949\) 60096.9 2.05567
\(950\) 0 0
\(951\) −51877.3 −1.76891
\(952\) 10330.8i 0.351706i
\(953\) 8691.77i 0.295440i 0.989029 + 0.147720i \(0.0471934\pi\)
−0.989029 + 0.147720i \(0.952807\pi\)
\(954\) −39254.0 −1.33217
\(955\) 0 0
\(956\) −56549.5 −1.91312
\(957\) 66568.9i 2.24856i
\(958\) − 64316.6i − 2.16908i
\(959\) 7195.67 0.242294
\(960\) 0 0
\(961\) 7498.41 0.251701
\(962\) − 39116.2i − 1.31097i
\(963\) − 325.262i − 0.0108841i
\(964\) −45659.6 −1.52552
\(965\) 0 0
\(966\) 25800.5 0.859335
\(967\) − 8971.58i − 0.298352i −0.988811 0.149176i \(-0.952338\pi\)
0.988811 0.149176i \(-0.0476621\pi\)
\(968\) 32982.2i 1.09513i
\(969\) −30183.3 −1.00065
\(970\) 0 0
\(971\) 29275.1 0.967541 0.483771 0.875195i \(-0.339267\pi\)
0.483771 + 0.875195i \(0.339267\pi\)
\(972\) 47168.5i 1.55651i
\(973\) − 7207.64i − 0.237478i
\(974\) 24130.5 0.793831
\(975\) 0 0
\(976\) 1073.47 0.0352059
\(977\) 16477.5i 0.539572i 0.962920 + 0.269786i \(0.0869529\pi\)
−0.962920 + 0.269786i \(0.913047\pi\)
\(978\) 96075.2i 3.14125i
\(979\) 71094.6 2.32093
\(980\) 0 0
\(981\) −256.275 −0.00834071
\(982\) 29817.4i 0.968952i
\(983\) 45912.9i 1.48972i 0.667222 + 0.744859i \(0.267483\pi\)
−0.667222 + 0.744859i \(0.732517\pi\)
\(984\) −29048.9 −0.941104
\(985\) 0 0
\(986\) −61528.0 −1.98727
\(987\) 5139.92i 0.165760i
\(988\) − 61923.2i − 1.99397i
\(989\) 51913.1 1.66910
\(990\) 0 0
\(991\) 46124.8 1.47851 0.739255 0.673426i \(-0.235178\pi\)
0.739255 + 0.673426i \(0.235178\pi\)
\(992\) − 37781.0i − 1.20922i
\(993\) − 8623.22i − 0.275579i
\(994\) −26104.3 −0.832975
\(995\) 0 0
\(996\) −25218.2 −0.802278
\(997\) 30984.5i 0.984240i 0.870527 + 0.492120i \(0.163778\pi\)
−0.870527 + 0.492120i \(0.836222\pi\)
\(998\) − 6837.47i − 0.216870i
\(999\) 9037.42 0.286218
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.4.b.f.99.3 8
5.2 odd 4 175.4.a.h.1.3 yes 4
5.3 odd 4 175.4.a.g.1.2 4
5.4 even 2 inner 175.4.b.f.99.6 8
15.2 even 4 1575.4.a.bg.1.2 4
15.8 even 4 1575.4.a.bl.1.3 4
35.13 even 4 1225.4.a.z.1.2 4
35.27 even 4 1225.4.a.bd.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.4.a.g.1.2 4 5.3 odd 4
175.4.a.h.1.3 yes 4 5.2 odd 4
175.4.b.f.99.3 8 1.1 even 1 trivial
175.4.b.f.99.6 8 5.4 even 2 inner
1225.4.a.z.1.2 4 35.13 even 4
1225.4.a.bd.1.3 4 35.27 even 4
1575.4.a.bg.1.2 4 15.2 even 4
1575.4.a.bl.1.3 4 15.8 even 4