Properties

Label 175.4.b.f.99.1
Level $175$
Weight $4$
Character 175.99
Analytic conductor $10.325$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(99,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.99");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 64x^{6} + 1264x^{4} + 8905x^{2} + 14400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.1
Root \(-5.87199i\) of defining polynomial
Character \(\chi\) \(=\) 175.99
Dual form 175.4.b.f.99.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.87199i q^{2} +4.14916i q^{3} -15.7363 q^{4} +20.2147 q^{6} +7.00000i q^{7} +37.6910i q^{8} +9.78444 q^{9} +36.9922 q^{11} -65.2924i q^{12} +61.3165i q^{13} +34.1039 q^{14} +57.7401 q^{16} -44.8345i q^{17} -47.6697i q^{18} +139.701 q^{19} -29.0441 q^{21} -180.226i q^{22} -217.580i q^{23} -156.386 q^{24} +298.733 q^{26} +152.625i q^{27} -110.154i q^{28} +33.8226 q^{29} +124.437 q^{31} +20.2192i q^{32} +153.487i q^{33} -218.433 q^{34} -153.971 q^{36} +237.270i q^{37} -680.620i q^{38} -254.412 q^{39} +195.117 q^{41} +141.503i q^{42} +343.725i q^{43} -582.119 q^{44} -1060.05 q^{46} +16.8224i q^{47} +239.573i q^{48} -49.0000 q^{49} +186.026 q^{51} -964.894i q^{52} -346.965i q^{53} +743.586 q^{54} -263.837 q^{56} +579.641i q^{57} -164.783i q^{58} -135.340 q^{59} +490.414 q^{61} -606.255i q^{62} +68.4911i q^{63} +560.428 q^{64} +747.785 q^{66} +477.969i q^{67} +705.529i q^{68} +902.777 q^{69} +45.2557 q^{71} +368.786i q^{72} -100.781i q^{73} +1155.98 q^{74} -2198.37 q^{76} +258.945i q^{77} +1239.49i q^{78} -880.534 q^{79} -369.085 q^{81} -950.609i q^{82} +1155.03i q^{83} +457.047 q^{84} +1674.62 q^{86} +140.336i q^{87} +1394.27i q^{88} -619.374 q^{89} -429.216 q^{91} +3423.90i q^{92} +516.309i q^{93} +81.9585 q^{94} -83.8929 q^{96} -231.195i q^{97} +238.727i q^{98} +361.948 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 72 q^{4} + 2 q^{6} - 122 q^{9} + 200 q^{11} - 56 q^{14} + 320 q^{16} + 58 q^{19} - 42 q^{21} + 42 q^{24} + 1400 q^{26} - 258 q^{29} + 228 q^{31} - 406 q^{34} + 2202 q^{36} - 1348 q^{39} + 1342 q^{41}+ \cdots - 4766 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 4.87199i − 1.72251i −0.508175 0.861254i \(-0.669680\pi\)
0.508175 0.861254i \(-0.330320\pi\)
\(3\) 4.14916i 0.798507i 0.916841 + 0.399253i \(0.130731\pi\)
−0.916841 + 0.399253i \(0.869269\pi\)
\(4\) −15.7363 −1.96703
\(5\) 0 0
\(6\) 20.2147 1.37543
\(7\) 7.00000i 0.377964i
\(8\) 37.6910i 1.66572i
\(9\) 9.78444 0.362387
\(10\) 0 0
\(11\) 36.9922 1.01396 0.506980 0.861958i \(-0.330762\pi\)
0.506980 + 0.861958i \(0.330762\pi\)
\(12\) − 65.2924i − 1.57069i
\(13\) 61.3165i 1.30817i 0.756423 + 0.654083i \(0.226945\pi\)
−0.756423 + 0.654083i \(0.773055\pi\)
\(14\) 34.1039 0.651047
\(15\) 0 0
\(16\) 57.7401 0.902189
\(17\) − 44.8345i − 0.639646i −0.947477 0.319823i \(-0.896377\pi\)
0.947477 0.319823i \(-0.103623\pi\)
\(18\) − 47.6697i − 0.624214i
\(19\) 139.701 1.68682 0.843408 0.537273i \(-0.180545\pi\)
0.843408 + 0.537273i \(0.180545\pi\)
\(20\) 0 0
\(21\) −29.0441 −0.301807
\(22\) − 180.226i − 1.74656i
\(23\) − 217.580i − 1.97255i −0.165110 0.986275i \(-0.552798\pi\)
0.165110 0.986275i \(-0.447202\pi\)
\(24\) −156.386 −1.33009
\(25\) 0 0
\(26\) 298.733 2.25333
\(27\) 152.625i 1.08788i
\(28\) − 110.154i − 0.743469i
\(29\) 33.8226 0.216576 0.108288 0.994120i \(-0.465463\pi\)
0.108288 + 0.994120i \(0.465463\pi\)
\(30\) 0 0
\(31\) 124.437 0.720952 0.360476 0.932769i \(-0.382614\pi\)
0.360476 + 0.932769i \(0.382614\pi\)
\(32\) 20.2192i 0.111697i
\(33\) 153.487i 0.809655i
\(34\) −218.433 −1.10179
\(35\) 0 0
\(36\) −153.971 −0.712827
\(37\) 237.270i 1.05424i 0.849790 + 0.527121i \(0.176729\pi\)
−0.849790 + 0.527121i \(0.823271\pi\)
\(38\) − 680.620i − 2.90556i
\(39\) −254.412 −1.04458
\(40\) 0 0
\(41\) 195.117 0.743224 0.371612 0.928388i \(-0.378805\pi\)
0.371612 + 0.928388i \(0.378805\pi\)
\(42\) 141.503i 0.519865i
\(43\) 343.725i 1.21901i 0.792781 + 0.609506i \(0.208632\pi\)
−0.792781 + 0.609506i \(0.791368\pi\)
\(44\) −582.119 −1.99450
\(45\) 0 0
\(46\) −1060.05 −3.39773
\(47\) 16.8224i 0.0522085i 0.999659 + 0.0261042i \(0.00831018\pi\)
−0.999659 + 0.0261042i \(0.991690\pi\)
\(48\) 239.573i 0.720404i
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) 186.026 0.510761
\(52\) − 964.894i − 2.57321i
\(53\) − 346.965i − 0.899231i −0.893222 0.449616i \(-0.851561\pi\)
0.893222 0.449616i \(-0.148439\pi\)
\(54\) 743.586 1.87387
\(55\) 0 0
\(56\) −263.837 −0.629584
\(57\) 579.641i 1.34694i
\(58\) − 164.783i − 0.373054i
\(59\) −135.340 −0.298640 −0.149320 0.988789i \(-0.547708\pi\)
−0.149320 + 0.988789i \(0.547708\pi\)
\(60\) 0 0
\(61\) 490.414 1.02936 0.514681 0.857382i \(-0.327911\pi\)
0.514681 + 0.857382i \(0.327911\pi\)
\(62\) − 606.255i − 1.24185i
\(63\) 68.4911i 0.136969i
\(64\) 560.428 1.09459
\(65\) 0 0
\(66\) 747.785 1.39464
\(67\) 477.969i 0.871540i 0.900058 + 0.435770i \(0.143524\pi\)
−0.900058 + 0.435770i \(0.856476\pi\)
\(68\) 705.529i 1.25820i
\(69\) 902.777 1.57510
\(70\) 0 0
\(71\) 45.2557 0.0756460 0.0378230 0.999284i \(-0.487958\pi\)
0.0378230 + 0.999284i \(0.487958\pi\)
\(72\) 368.786i 0.603636i
\(73\) − 100.781i − 0.161583i −0.996731 0.0807913i \(-0.974255\pi\)
0.996731 0.0807913i \(-0.0257447\pi\)
\(74\) 1155.98 1.81594
\(75\) 0 0
\(76\) −2198.37 −3.31803
\(77\) 258.945i 0.383241i
\(78\) 1239.49i 1.79930i
\(79\) −880.534 −1.25402 −0.627012 0.779010i \(-0.715722\pi\)
−0.627012 + 0.779010i \(0.715722\pi\)
\(80\) 0 0
\(81\) −369.085 −0.506289
\(82\) − 950.609i − 1.28021i
\(83\) 1155.03i 1.52748i 0.645525 + 0.763739i \(0.276638\pi\)
−0.645525 + 0.763739i \(0.723362\pi\)
\(84\) 457.047 0.593665
\(85\) 0 0
\(86\) 1674.62 2.09976
\(87\) 140.336i 0.172937i
\(88\) 1394.27i 1.68898i
\(89\) −619.374 −0.737680 −0.368840 0.929493i \(-0.620245\pi\)
−0.368840 + 0.929493i \(0.620245\pi\)
\(90\) 0 0
\(91\) −429.216 −0.494440
\(92\) 3423.90i 3.88007i
\(93\) 516.309i 0.575685i
\(94\) 81.9585 0.0899295
\(95\) 0 0
\(96\) −83.8929 −0.0891904
\(97\) − 231.195i − 0.242003i −0.992652 0.121001i \(-0.961389\pi\)
0.992652 0.121001i \(-0.0386105\pi\)
\(98\) 238.727i 0.246073i
\(99\) 361.948 0.367446
\(100\) 0 0
\(101\) 1875.99 1.84820 0.924101 0.382149i \(-0.124816\pi\)
0.924101 + 0.382149i \(0.124816\pi\)
\(102\) − 906.316i − 0.879791i
\(103\) − 1855.94i − 1.77545i −0.460377 0.887723i \(-0.652286\pi\)
0.460377 0.887723i \(-0.347714\pi\)
\(104\) −2311.08 −2.17904
\(105\) 0 0
\(106\) −1690.41 −1.54893
\(107\) − 218.016i − 0.196976i −0.995138 0.0984879i \(-0.968599\pi\)
0.995138 0.0984879i \(-0.0314006\pi\)
\(108\) − 2401.74i − 2.13989i
\(109\) −847.217 −0.744484 −0.372242 0.928136i \(-0.621411\pi\)
−0.372242 + 0.928136i \(0.621411\pi\)
\(110\) 0 0
\(111\) −984.473 −0.841820
\(112\) 404.181i 0.340995i
\(113\) − 1430.05i − 1.19051i −0.803537 0.595254i \(-0.797051\pi\)
0.803537 0.595254i \(-0.202949\pi\)
\(114\) 2824.00 2.32011
\(115\) 0 0
\(116\) −532.242 −0.426012
\(117\) 599.948i 0.474062i
\(118\) 659.374i 0.514409i
\(119\) 313.842 0.241763
\(120\) 0 0
\(121\) 37.4229 0.0281164
\(122\) − 2389.29i − 1.77308i
\(123\) 809.573i 0.593470i
\(124\) −1958.17 −1.41814
\(125\) 0 0
\(126\) 333.688 0.235931
\(127\) − 1732.84i − 1.21075i −0.795941 0.605374i \(-0.793024\pi\)
0.795941 0.605374i \(-0.206976\pi\)
\(128\) − 2568.65i − 1.77374i
\(129\) −1426.17 −0.973390
\(130\) 0 0
\(131\) −2429.76 −1.62052 −0.810262 0.586068i \(-0.800675\pi\)
−0.810262 + 0.586068i \(0.800675\pi\)
\(132\) − 2415.31i − 1.59262i
\(133\) 977.904i 0.637557i
\(134\) 2328.66 1.50123
\(135\) 0 0
\(136\) 1689.86 1.06547
\(137\) 1452.84i 0.906018i 0.891506 + 0.453009i \(0.149649\pi\)
−0.891506 + 0.453009i \(0.850351\pi\)
\(138\) − 4398.32i − 2.71311i
\(139\) −2927.47 −1.78637 −0.893183 0.449693i \(-0.851533\pi\)
−0.893183 + 0.449693i \(0.851533\pi\)
\(140\) 0 0
\(141\) −69.7989 −0.0416888
\(142\) − 220.485i − 0.130301i
\(143\) 2268.23i 1.32643i
\(144\) 564.954 0.326941
\(145\) 0 0
\(146\) −491.004 −0.278327
\(147\) − 203.309i − 0.114072i
\(148\) − 3733.75i − 2.07373i
\(149\) −901.724 −0.495786 −0.247893 0.968787i \(-0.579738\pi\)
−0.247893 + 0.968787i \(0.579738\pi\)
\(150\) 0 0
\(151\) −1357.63 −0.731669 −0.365834 0.930680i \(-0.619216\pi\)
−0.365834 + 0.930680i \(0.619216\pi\)
\(152\) 5265.46i 2.80977i
\(153\) − 438.681i − 0.231799i
\(154\) 1261.58 0.660136
\(155\) 0 0
\(156\) 4003.50 2.05472
\(157\) − 2318.72i − 1.17869i −0.807883 0.589343i \(-0.799387\pi\)
0.807883 0.589343i \(-0.200613\pi\)
\(158\) 4289.95i 2.16006i
\(159\) 1439.61 0.718042
\(160\) 0 0
\(161\) 1523.06 0.745554
\(162\) 1798.18i 0.872087i
\(163\) 1577.42i 0.757996i 0.925397 + 0.378998i \(0.123731\pi\)
−0.925397 + 0.378998i \(0.876269\pi\)
\(164\) −3070.42 −1.46195
\(165\) 0 0
\(166\) 5627.28 2.63109
\(167\) 1038.02i 0.480982i 0.970651 + 0.240491i \(0.0773085\pi\)
−0.970651 + 0.240491i \(0.922691\pi\)
\(168\) − 1094.70i − 0.502728i
\(169\) −1562.72 −0.711296
\(170\) 0 0
\(171\) 1366.89 0.611280
\(172\) − 5408.95i − 2.39784i
\(173\) 482.641i 0.212107i 0.994360 + 0.106054i \(0.0338215\pi\)
−0.994360 + 0.106054i \(0.966178\pi\)
\(174\) 683.714 0.297886
\(175\) 0 0
\(176\) 2135.93 0.914784
\(177\) − 561.547i − 0.238466i
\(178\) 3017.58i 1.27066i
\(179\) −2407.19 −1.00515 −0.502575 0.864534i \(-0.667614\pi\)
−0.502575 + 0.864534i \(0.667614\pi\)
\(180\) 0 0
\(181\) 532.600 0.218717 0.109359 0.994002i \(-0.465120\pi\)
0.109359 + 0.994002i \(0.465120\pi\)
\(182\) 2091.13i 0.851677i
\(183\) 2034.81i 0.821952i
\(184\) 8200.83 3.28572
\(185\) 0 0
\(186\) 2515.45 0.991622
\(187\) − 1658.53i − 0.648575i
\(188\) − 264.722i − 0.102696i
\(189\) −1068.37 −0.411178
\(190\) 0 0
\(191\) 336.675 0.127544 0.0637721 0.997964i \(-0.479687\pi\)
0.0637721 + 0.997964i \(0.479687\pi\)
\(192\) 2325.31i 0.874035i
\(193\) − 22.7366i − 0.00847988i −0.999991 0.00423994i \(-0.998650\pi\)
0.999991 0.00423994i \(-0.00134962\pi\)
\(194\) −1126.38 −0.416852
\(195\) 0 0
\(196\) 771.077 0.281005
\(197\) − 1085.33i − 0.392520i −0.980552 0.196260i \(-0.937120\pi\)
0.980552 0.196260i \(-0.0628796\pi\)
\(198\) − 1763.41i − 0.632928i
\(199\) 2630.28 0.936963 0.468482 0.883473i \(-0.344801\pi\)
0.468482 + 0.883473i \(0.344801\pi\)
\(200\) 0 0
\(201\) −1983.17 −0.695931
\(202\) − 9139.82i − 3.18354i
\(203\) 236.758i 0.0818580i
\(204\) −2927.35 −1.00469
\(205\) 0 0
\(206\) −9042.11 −3.05822
\(207\) − 2128.90i − 0.714826i
\(208\) 3540.42i 1.18021i
\(209\) 5167.83 1.71037
\(210\) 0 0
\(211\) 614.178 0.200388 0.100194 0.994968i \(-0.468054\pi\)
0.100194 + 0.994968i \(0.468054\pi\)
\(212\) 5459.93i 1.76882i
\(213\) 187.773i 0.0604039i
\(214\) −1062.17 −0.339292
\(215\) 0 0
\(216\) −5752.58 −1.81210
\(217\) 871.057i 0.272494i
\(218\) 4127.63i 1.28238i
\(219\) 418.157 0.129025
\(220\) 0 0
\(221\) 2749.10 0.836762
\(222\) 4796.34i 1.45004i
\(223\) − 1930.30i − 0.579651i −0.957079 0.289826i \(-0.906403\pi\)
0.957079 0.289826i \(-0.0935973\pi\)
\(224\) −141.535 −0.0422173
\(225\) 0 0
\(226\) −6967.17 −2.05066
\(227\) 765.365i 0.223784i 0.993720 + 0.111892i \(0.0356911\pi\)
−0.993720 + 0.111892i \(0.964309\pi\)
\(228\) − 9121.39i − 2.64947i
\(229\) 5712.66 1.64849 0.824243 0.566237i \(-0.191601\pi\)
0.824243 + 0.566237i \(0.191601\pi\)
\(230\) 0 0
\(231\) −1074.41 −0.306021
\(232\) 1274.81i 0.360756i
\(233\) 864.418i 0.243047i 0.992589 + 0.121523i \(0.0387779\pi\)
−0.992589 + 0.121523i \(0.961222\pi\)
\(234\) 2922.94 0.816575
\(235\) 0 0
\(236\) 2129.74 0.587435
\(237\) − 3653.48i − 1.00135i
\(238\) − 1529.03i − 0.416439i
\(239\) 1816.64 0.491669 0.245834 0.969312i \(-0.420938\pi\)
0.245834 + 0.969312i \(0.420938\pi\)
\(240\) 0 0
\(241\) −2354.53 −0.629330 −0.314665 0.949203i \(-0.601892\pi\)
−0.314665 + 0.949203i \(0.601892\pi\)
\(242\) − 182.324i − 0.0484307i
\(243\) 2589.47i 0.683600i
\(244\) −7717.28 −2.02479
\(245\) 0 0
\(246\) 3944.23 1.02226
\(247\) 8565.96i 2.20664i
\(248\) 4690.15i 1.20091i
\(249\) −4792.39 −1.21970
\(250\) 0 0
\(251\) −2983.66 −0.750306 −0.375153 0.926963i \(-0.622410\pi\)
−0.375153 + 0.926963i \(0.622410\pi\)
\(252\) − 1077.79i − 0.269423i
\(253\) − 8048.78i − 2.00009i
\(254\) −8442.39 −2.08552
\(255\) 0 0
\(256\) −8030.99 −1.96069
\(257\) − 5121.50i − 1.24307i −0.783385 0.621537i \(-0.786508\pi\)
0.783385 0.621537i \(-0.213492\pi\)
\(258\) 6948.29i 1.67667i
\(259\) −1660.89 −0.398466
\(260\) 0 0
\(261\) 330.935 0.0784843
\(262\) 11837.7i 2.79137i
\(263\) − 4663.66i − 1.09344i −0.837317 0.546718i \(-0.815877\pi\)
0.837317 0.546718i \(-0.184123\pi\)
\(264\) −5785.07 −1.34866
\(265\) 0 0
\(266\) 4764.34 1.09820
\(267\) − 2569.88i − 0.589043i
\(268\) − 7521.45i − 1.71435i
\(269\) −5018.86 −1.13757 −0.568783 0.822488i \(-0.692586\pi\)
−0.568783 + 0.822488i \(0.692586\pi\)
\(270\) 0 0
\(271\) −2512.66 −0.563222 −0.281611 0.959529i \(-0.590869\pi\)
−0.281611 + 0.959529i \(0.590869\pi\)
\(272\) − 2588.75i − 0.577081i
\(273\) − 1780.89i − 0.394814i
\(274\) 7078.21 1.56062
\(275\) 0 0
\(276\) −14206.3 −3.09827
\(277\) 6286.82i 1.36368i 0.731503 + 0.681839i \(0.238819\pi\)
−0.731503 + 0.681839i \(0.761181\pi\)
\(278\) 14262.6i 3.07703i
\(279\) 1217.54 0.261263
\(280\) 0 0
\(281\) 8804.33 1.86912 0.934560 0.355807i \(-0.115794\pi\)
0.934560 + 0.355807i \(0.115794\pi\)
\(282\) 340.059i 0.0718093i
\(283\) − 485.298i − 0.101936i −0.998700 0.0509681i \(-0.983769\pi\)
0.998700 0.0509681i \(-0.0162307\pi\)
\(284\) −712.157 −0.148798
\(285\) 0 0
\(286\) 11050.8 2.28478
\(287\) 1365.82i 0.280912i
\(288\) 197.834i 0.0404773i
\(289\) 2902.86 0.590854
\(290\) 0 0
\(291\) 959.265 0.193241
\(292\) 1585.92i 0.317838i
\(293\) − 4004.48i − 0.798444i −0.916854 0.399222i \(-0.869280\pi\)
0.916854 0.399222i \(-0.130720\pi\)
\(294\) −990.519 −0.196491
\(295\) 0 0
\(296\) −8942.96 −1.75608
\(297\) 5645.92i 1.10306i
\(298\) 4393.19i 0.853995i
\(299\) 13341.3 2.58042
\(300\) 0 0
\(301\) −2406.07 −0.460743
\(302\) 6614.33i 1.26031i
\(303\) 7783.81i 1.47580i
\(304\) 8066.32 1.52183
\(305\) 0 0
\(306\) −2137.25 −0.399276
\(307\) 3154.13i 0.586370i 0.956056 + 0.293185i \(0.0947152\pi\)
−0.956056 + 0.293185i \(0.905285\pi\)
\(308\) − 4074.84i − 0.753848i
\(309\) 7700.59 1.41771
\(310\) 0 0
\(311\) −1738.29 −0.316944 −0.158472 0.987363i \(-0.550657\pi\)
−0.158472 + 0.987363i \(0.550657\pi\)
\(312\) − 9589.06i − 1.73998i
\(313\) − 5092.30i − 0.919597i −0.888023 0.459799i \(-0.847922\pi\)
0.888023 0.459799i \(-0.152078\pi\)
\(314\) −11296.8 −2.03030
\(315\) 0 0
\(316\) 13856.3 2.46671
\(317\) − 4874.67i − 0.863686i −0.901949 0.431843i \(-0.857863\pi\)
0.901949 0.431843i \(-0.142137\pi\)
\(318\) − 7013.78i − 1.23683i
\(319\) 1251.17 0.219600
\(320\) 0 0
\(321\) 904.584 0.157287
\(322\) − 7420.35i − 1.28422i
\(323\) − 6263.41i − 1.07896i
\(324\) 5808.02 0.995888
\(325\) 0 0
\(326\) 7685.19 1.30565
\(327\) − 3515.24i − 0.594475i
\(328\) 7354.17i 1.23801i
\(329\) −117.757 −0.0197329
\(330\) 0 0
\(331\) −2448.46 −0.406585 −0.203292 0.979118i \(-0.565164\pi\)
−0.203292 + 0.979118i \(0.565164\pi\)
\(332\) − 18175.8i − 3.00460i
\(333\) 2321.56i 0.382043i
\(334\) 5057.20 0.828496
\(335\) 0 0
\(336\) −1677.01 −0.272287
\(337\) − 6271.50i − 1.01374i −0.862023 0.506870i \(-0.830803\pi\)
0.862023 0.506870i \(-0.169197\pi\)
\(338\) 7613.54i 1.22521i
\(339\) 5933.50 0.950629
\(340\) 0 0
\(341\) 4603.19 0.731017
\(342\) − 6659.48i − 1.05293i
\(343\) − 343.000i − 0.0539949i
\(344\) −12955.3 −2.03054
\(345\) 0 0
\(346\) 2351.42 0.365356
\(347\) 417.338i 0.0645645i 0.999479 + 0.0322822i \(0.0102775\pi\)
−0.999479 + 0.0322822i \(0.989722\pi\)
\(348\) − 2208.36i − 0.340174i
\(349\) −5971.08 −0.915829 −0.457915 0.888996i \(-0.651403\pi\)
−0.457915 + 0.888996i \(0.651403\pi\)
\(350\) 0 0
\(351\) −9358.42 −1.42312
\(352\) 747.954i 0.113256i
\(353\) 12012.6i 1.81124i 0.424089 + 0.905620i \(0.360594\pi\)
−0.424089 + 0.905620i \(0.639406\pi\)
\(354\) −2735.85 −0.410759
\(355\) 0 0
\(356\) 9746.64 1.45104
\(357\) 1302.18i 0.193050i
\(358\) 11727.8i 1.73138i
\(359\) −6312.46 −0.928020 −0.464010 0.885830i \(-0.653590\pi\)
−0.464010 + 0.885830i \(0.653590\pi\)
\(360\) 0 0
\(361\) 12657.3 1.84535
\(362\) − 2594.82i − 0.376743i
\(363\) 155.274i 0.0224511i
\(364\) 6754.26 0.972580
\(365\) 0 0
\(366\) 9913.55 1.41582
\(367\) 12228.6i 1.73932i 0.493652 + 0.869659i \(0.335662\pi\)
−0.493652 + 0.869659i \(0.664338\pi\)
\(368\) − 12563.1i − 1.77961i
\(369\) 1909.11 0.269335
\(370\) 0 0
\(371\) 2428.75 0.339877
\(372\) − 8124.77i − 1.13239i
\(373\) − 7876.24i − 1.09334i −0.837348 0.546671i \(-0.815895\pi\)
0.837348 0.546671i \(-0.184105\pi\)
\(374\) −8080.33 −1.11718
\(375\) 0 0
\(376\) −634.053 −0.0869649
\(377\) 2073.89i 0.283317i
\(378\) 5205.10i 0.708258i
\(379\) −5992.79 −0.812214 −0.406107 0.913826i \(-0.633114\pi\)
−0.406107 + 0.913826i \(0.633114\pi\)
\(380\) 0 0
\(381\) 7189.85 0.966790
\(382\) − 1640.28i − 0.219696i
\(383\) − 7373.61i − 0.983743i −0.870668 0.491872i \(-0.836313\pi\)
0.870668 0.491872i \(-0.163687\pi\)
\(384\) 10657.7 1.41634
\(385\) 0 0
\(386\) −110.772 −0.0146067
\(387\) 3363.15i 0.441754i
\(388\) 3638.14i 0.476028i
\(389\) −1896.88 −0.247238 −0.123619 0.992330i \(-0.539450\pi\)
−0.123619 + 0.992330i \(0.539450\pi\)
\(390\) 0 0
\(391\) −9755.12 −1.26173
\(392\) − 1846.86i − 0.237961i
\(393\) − 10081.5i − 1.29400i
\(394\) −5287.71 −0.676119
\(395\) 0 0
\(396\) −5695.71 −0.722778
\(397\) − 791.156i − 0.100018i −0.998749 0.0500088i \(-0.984075\pi\)
0.998749 0.0500088i \(-0.0159249\pi\)
\(398\) − 12814.7i − 1.61393i
\(399\) −4057.49 −0.509094
\(400\) 0 0
\(401\) 4410.55 0.549258 0.274629 0.961550i \(-0.411445\pi\)
0.274629 + 0.961550i \(0.411445\pi\)
\(402\) 9661.99i 1.19875i
\(403\) 7630.03i 0.943124i
\(404\) −29521.1 −3.63548
\(405\) 0 0
\(406\) 1153.48 0.141001
\(407\) 8777.14i 1.06896i
\(408\) 7011.51i 0.850787i
\(409\) 4403.73 0.532397 0.266199 0.963918i \(-0.414232\pi\)
0.266199 + 0.963918i \(0.414232\pi\)
\(410\) 0 0
\(411\) −6028.07 −0.723461
\(412\) 29205.5i 3.49236i
\(413\) − 947.379i − 0.112875i
\(414\) −10372.0 −1.23129
\(415\) 0 0
\(416\) −1239.77 −0.146117
\(417\) − 12146.6i − 1.42643i
\(418\) − 25177.6i − 2.94612i
\(419\) 14272.6 1.66411 0.832057 0.554691i \(-0.187163\pi\)
0.832057 + 0.554691i \(0.187163\pi\)
\(420\) 0 0
\(421\) −15530.4 −1.79788 −0.898939 0.438074i \(-0.855661\pi\)
−0.898939 + 0.438074i \(0.855661\pi\)
\(422\) − 2992.27i − 0.345169i
\(423\) 164.598i 0.0189197i
\(424\) 13077.5 1.49787
\(425\) 0 0
\(426\) 914.830 0.104046
\(427\) 3432.90i 0.389062i
\(428\) 3430.76i 0.387458i
\(429\) −9411.27 −1.05916
\(430\) 0 0
\(431\) −5260.75 −0.587938 −0.293969 0.955815i \(-0.594976\pi\)
−0.293969 + 0.955815i \(0.594976\pi\)
\(432\) 8812.56i 0.981469i
\(433\) − 6610.65i − 0.733690i −0.930282 0.366845i \(-0.880438\pi\)
0.930282 0.366845i \(-0.119562\pi\)
\(434\) 4243.78 0.469373
\(435\) 0 0
\(436\) 13332.0 1.46442
\(437\) − 30396.1i − 3.32733i
\(438\) − 2037.26i − 0.222246i
\(439\) 8870.46 0.964383 0.482191 0.876066i \(-0.339841\pi\)
0.482191 + 0.876066i \(0.339841\pi\)
\(440\) 0 0
\(441\) −479.438 −0.0517695
\(442\) − 13393.6i − 1.44133i
\(443\) 13221.8i 1.41802i 0.705196 + 0.709012i \(0.250859\pi\)
−0.705196 + 0.709012i \(0.749141\pi\)
\(444\) 15491.9 1.65589
\(445\) 0 0
\(446\) −9404.38 −0.998454
\(447\) − 3741.40i − 0.395889i
\(448\) 3923.00i 0.413715i
\(449\) −4192.70 −0.440681 −0.220341 0.975423i \(-0.570717\pi\)
−0.220341 + 0.975423i \(0.570717\pi\)
\(450\) 0 0
\(451\) 7217.82 0.753600
\(452\) 22503.6i 2.34177i
\(453\) − 5633.01i − 0.584243i
\(454\) 3728.85 0.385470
\(455\) 0 0
\(456\) −21847.3 −2.24362
\(457\) − 4701.78i − 0.481270i −0.970616 0.240635i \(-0.922644\pi\)
0.970616 0.240635i \(-0.0773556\pi\)
\(458\) − 27832.0i − 2.83953i
\(459\) 6842.86 0.695855
\(460\) 0 0
\(461\) −1949.82 −0.196989 −0.0984946 0.995138i \(-0.531403\pi\)
−0.0984946 + 0.995138i \(0.531403\pi\)
\(462\) 5234.50i 0.527123i
\(463\) − 7315.85i − 0.734333i −0.930155 0.367166i \(-0.880328\pi\)
0.930155 0.367166i \(-0.119672\pi\)
\(464\) 1952.92 0.195392
\(465\) 0 0
\(466\) 4211.43 0.418650
\(467\) − 1897.54i − 0.188025i −0.995571 0.0940126i \(-0.970031\pi\)
0.995571 0.0940126i \(-0.0299694\pi\)
\(468\) − 9440.94i − 0.932495i
\(469\) −3345.78 −0.329411
\(470\) 0 0
\(471\) 9620.74 0.941189
\(472\) − 5101.10i − 0.497451i
\(473\) 12715.1i 1.23603i
\(474\) −17799.7 −1.72483
\(475\) 0 0
\(476\) −4938.70 −0.475557
\(477\) − 3394.85i − 0.325869i
\(478\) − 8850.66i − 0.846903i
\(479\) −10534.4 −1.00486 −0.502429 0.864619i \(-0.667560\pi\)
−0.502429 + 0.864619i \(0.667560\pi\)
\(480\) 0 0
\(481\) −14548.6 −1.37912
\(482\) 11471.2i 1.08403i
\(483\) 6319.44i 0.595330i
\(484\) −588.897 −0.0553058
\(485\) 0 0
\(486\) 12615.9 1.17751
\(487\) 11937.0i 1.11071i 0.831614 + 0.555355i \(0.187417\pi\)
−0.831614 + 0.555355i \(0.812583\pi\)
\(488\) 18484.2i 1.71463i
\(489\) −6544.99 −0.605265
\(490\) 0 0
\(491\) 100.060 0.00919683 0.00459841 0.999989i \(-0.498536\pi\)
0.00459841 + 0.999989i \(0.498536\pi\)
\(492\) − 12739.7i − 1.16737i
\(493\) − 1516.42i − 0.138532i
\(494\) 41733.3 3.80095
\(495\) 0 0
\(496\) 7184.99 0.650435
\(497\) 316.790i 0.0285915i
\(498\) 23348.5i 2.10095i
\(499\) 15611.7 1.40055 0.700275 0.713874i \(-0.253061\pi\)
0.700275 + 0.713874i \(0.253061\pi\)
\(500\) 0 0
\(501\) −4306.90 −0.384068
\(502\) 14536.3i 1.29241i
\(503\) − 2270.39i − 0.201256i −0.994924 0.100628i \(-0.967915\pi\)
0.994924 0.100628i \(-0.0320852\pi\)
\(504\) −2581.50 −0.228153
\(505\) 0 0
\(506\) −39213.6 −3.44517
\(507\) − 6483.97i − 0.567975i
\(508\) 27268.5i 2.38158i
\(509\) 2579.79 0.224651 0.112325 0.993671i \(-0.464170\pi\)
0.112325 + 0.993671i \(0.464170\pi\)
\(510\) 0 0
\(511\) 705.467 0.0610725
\(512\) 18577.7i 1.60357i
\(513\) 21321.8i 1.83505i
\(514\) −24951.9 −2.14121
\(515\) 0 0
\(516\) 22442.6 1.91469
\(517\) 622.297i 0.0529373i
\(518\) 8091.84i 0.686361i
\(519\) −2002.56 −0.169369
\(520\) 0 0
\(521\) 12793.9 1.07584 0.537918 0.842997i \(-0.319211\pi\)
0.537918 + 0.842997i \(0.319211\pi\)
\(522\) − 1612.31i − 0.135190i
\(523\) 11273.4i 0.942548i 0.881987 + 0.471274i \(0.156206\pi\)
−0.881987 + 0.471274i \(0.843794\pi\)
\(524\) 38235.3 3.18763
\(525\) 0 0
\(526\) −22721.3 −1.88345
\(527\) − 5579.07i − 0.461154i
\(528\) 8862.33i 0.730461i
\(529\) −35174.2 −2.89095
\(530\) 0 0
\(531\) −1324.22 −0.108223
\(532\) − 15388.6i − 1.25410i
\(533\) 11963.9i 0.972260i
\(534\) −12520.4 −1.01463
\(535\) 0 0
\(536\) −18015.1 −1.45175
\(537\) − 9987.83i − 0.802619i
\(538\) 24451.8i 1.95947i
\(539\) −1812.62 −0.144852
\(540\) 0 0
\(541\) 10282.9 0.817183 0.408591 0.912717i \(-0.366020\pi\)
0.408591 + 0.912717i \(0.366020\pi\)
\(542\) 12241.6i 0.970154i
\(543\) 2209.85i 0.174647i
\(544\) 906.520 0.0714462
\(545\) 0 0
\(546\) −8676.46 −0.680070
\(547\) − 2160.94i − 0.168912i −0.996427 0.0844562i \(-0.973085\pi\)
0.996427 0.0844562i \(-0.0269153\pi\)
\(548\) − 22862.3i − 1.78217i
\(549\) 4798.42 0.373027
\(550\) 0 0
\(551\) 4725.04 0.365324
\(552\) 34026.6i 2.62367i
\(553\) − 6163.74i − 0.473976i
\(554\) 30629.3 2.34895
\(555\) 0 0
\(556\) 46067.5 3.51384
\(557\) 15648.4i 1.19038i 0.803585 + 0.595190i \(0.202923\pi\)
−0.803585 + 0.595190i \(0.797077\pi\)
\(558\) − 5931.86i − 0.450028i
\(559\) −21076.0 −1.59467
\(560\) 0 0
\(561\) 6881.51 0.517892
\(562\) − 42894.6i − 3.21957i
\(563\) 21951.6i 1.64325i 0.570031 + 0.821623i \(0.306931\pi\)
−0.570031 + 0.821623i \(0.693069\pi\)
\(564\) 1098.37 0.0820033
\(565\) 0 0
\(566\) −2364.36 −0.175586
\(567\) − 2583.59i − 0.191359i
\(568\) 1705.74i 0.126005i
\(569\) −14019.2 −1.03289 −0.516445 0.856321i \(-0.672745\pi\)
−0.516445 + 0.856321i \(0.672745\pi\)
\(570\) 0 0
\(571\) −21706.3 −1.59086 −0.795430 0.606045i \(-0.792755\pi\)
−0.795430 + 0.606045i \(0.792755\pi\)
\(572\) − 35693.5i − 2.60913i
\(573\) 1396.92i 0.101845i
\(574\) 6654.26 0.483874
\(575\) 0 0
\(576\) 5483.48 0.396664
\(577\) 12569.0i 0.906853i 0.891294 + 0.453427i \(0.149799\pi\)
−0.891294 + 0.453427i \(0.850201\pi\)
\(578\) − 14142.7i − 1.01775i
\(579\) 94.3379 0.00677124
\(580\) 0 0
\(581\) −8085.19 −0.577332
\(582\) − 4673.53i − 0.332859i
\(583\) − 12835.0i − 0.911785i
\(584\) 3798.54 0.269152
\(585\) 0 0
\(586\) −19509.8 −1.37533
\(587\) − 1330.20i − 0.0935322i −0.998906 0.0467661i \(-0.985108\pi\)
0.998906 0.0467661i \(-0.0148915\pi\)
\(588\) 3199.33i 0.224384i
\(589\) 17383.9 1.21611
\(590\) 0 0
\(591\) 4503.20 0.313430
\(592\) 13700.0i 0.951126i
\(593\) − 9866.91i − 0.683281i −0.939831 0.341640i \(-0.889018\pi\)
0.939831 0.341640i \(-0.110982\pi\)
\(594\) 27506.9 1.90003
\(595\) 0 0
\(596\) 14189.8 0.975228
\(597\) 10913.5i 0.748172i
\(598\) − 64998.6i − 4.44480i
\(599\) −4185.17 −0.285478 −0.142739 0.989760i \(-0.545591\pi\)
−0.142739 + 0.989760i \(0.545591\pi\)
\(600\) 0 0
\(601\) 10599.8 0.719426 0.359713 0.933063i \(-0.382875\pi\)
0.359713 + 0.933063i \(0.382875\pi\)
\(602\) 11722.4i 0.793634i
\(603\) 4676.66i 0.315834i
\(604\) 21364.0 1.43922
\(605\) 0 0
\(606\) 37922.6 2.54208
\(607\) − 13290.1i − 0.888679i −0.895858 0.444340i \(-0.853438\pi\)
0.895858 0.444340i \(-0.146562\pi\)
\(608\) 2824.64i 0.188412i
\(609\) −982.349 −0.0653642
\(610\) 0 0
\(611\) −1031.49 −0.0682973
\(612\) 6903.20i 0.455957i
\(613\) − 21327.1i − 1.40521i −0.711579 0.702606i \(-0.752020\pi\)
0.711579 0.702606i \(-0.247980\pi\)
\(614\) 15366.9 1.01003
\(615\) 0 0
\(616\) −9759.92 −0.638374
\(617\) 13741.6i 0.896622i 0.893878 + 0.448311i \(0.147974\pi\)
−0.893878 + 0.448311i \(0.852026\pi\)
\(618\) − 37517.2i − 2.44201i
\(619\) −19444.3 −1.26257 −0.631285 0.775551i \(-0.717472\pi\)
−0.631285 + 0.775551i \(0.717472\pi\)
\(620\) 0 0
\(621\) 33208.1 2.14589
\(622\) 8468.94i 0.545938i
\(623\) − 4335.62i − 0.278817i
\(624\) −14689.8 −0.942407
\(625\) 0 0
\(626\) −24809.6 −1.58401
\(627\) 21442.2i 1.36574i
\(628\) 36488.0i 2.31852i
\(629\) 10637.9 0.674341
\(630\) 0 0
\(631\) −27425.6 −1.73026 −0.865130 0.501547i \(-0.832764\pi\)
−0.865130 + 0.501547i \(0.832764\pi\)
\(632\) − 33188.2i − 2.08886i
\(633\) 2548.33i 0.160011i
\(634\) −23749.3 −1.48771
\(635\) 0 0
\(636\) −22654.1 −1.41241
\(637\) − 3004.51i − 0.186881i
\(638\) − 6095.70i − 0.378262i
\(639\) 442.802 0.0274131
\(640\) 0 0
\(641\) −10053.8 −0.619502 −0.309751 0.950818i \(-0.600246\pi\)
−0.309751 + 0.950818i \(0.600246\pi\)
\(642\) − 4407.12i − 0.270927i
\(643\) 4044.18i 0.248036i 0.992280 + 0.124018i \(0.0395780\pi\)
−0.992280 + 0.124018i \(0.960422\pi\)
\(644\) −23967.3 −1.46653
\(645\) 0 0
\(646\) −30515.3 −1.85853
\(647\) 1486.90i 0.0903491i 0.998979 + 0.0451746i \(0.0143844\pi\)
−0.998979 + 0.0451746i \(0.985616\pi\)
\(648\) − 13911.2i − 0.843338i
\(649\) −5006.52 −0.302809
\(650\) 0 0
\(651\) −3614.16 −0.217588
\(652\) − 24822.8i − 1.49100i
\(653\) − 4269.30i − 0.255851i −0.991784 0.127925i \(-0.959168\pi\)
0.991784 0.127925i \(-0.0408318\pi\)
\(654\) −17126.2 −1.02399
\(655\) 0 0
\(656\) 11266.1 0.670528
\(657\) − 986.086i − 0.0585554i
\(658\) 573.710i 0.0339902i
\(659\) −1607.29 −0.0950094 −0.0475047 0.998871i \(-0.515127\pi\)
−0.0475047 + 0.998871i \(0.515127\pi\)
\(660\) 0 0
\(661\) 8001.31 0.470824 0.235412 0.971896i \(-0.424356\pi\)
0.235412 + 0.971896i \(0.424356\pi\)
\(662\) 11928.9i 0.700345i
\(663\) 11406.5i 0.668160i
\(664\) −43534.1 −2.54436
\(665\) 0 0
\(666\) 11310.6 0.658073
\(667\) − 7359.14i − 0.427207i
\(668\) − 16334.5i − 0.946109i
\(669\) 8009.12 0.462855
\(670\) 0 0
\(671\) 18141.5 1.04373
\(672\) − 587.250i − 0.0337108i
\(673\) − 3347.96i − 0.191760i −0.995393 0.0958800i \(-0.969433\pi\)
0.995393 0.0958800i \(-0.0305665\pi\)
\(674\) −30554.7 −1.74617
\(675\) 0 0
\(676\) 24591.4 1.39914
\(677\) − 7.91810i 0 0.000449508i −1.00000 0.000224754i \(-0.999928\pi\)
1.00000 0.000224754i \(-7.15415e-5\pi\)
\(678\) − 28907.9i − 1.63747i
\(679\) 1618.36 0.0914684
\(680\) 0 0
\(681\) −3175.62 −0.178693
\(682\) − 22426.7i − 1.25918i
\(683\) − 32136.0i − 1.80036i −0.435513 0.900182i \(-0.643433\pi\)
0.435513 0.900182i \(-0.356567\pi\)
\(684\) −21509.8 −1.20241
\(685\) 0 0
\(686\) −1671.09 −0.0930067
\(687\) 23702.8i 1.31633i
\(688\) 19846.7i 1.09978i
\(689\) 21274.7 1.17634
\(690\) 0 0
\(691\) −6196.84 −0.341156 −0.170578 0.985344i \(-0.554563\pi\)
−0.170578 + 0.985344i \(0.554563\pi\)
\(692\) − 7594.98i − 0.417222i
\(693\) 2533.64i 0.138881i
\(694\) 2033.27 0.111213
\(695\) 0 0
\(696\) −5289.39 −0.288066
\(697\) − 8747.99i − 0.475400i
\(698\) 29091.0i 1.57752i
\(699\) −3586.61 −0.194075
\(700\) 0 0
\(701\) 1651.38 0.0889755 0.0444878 0.999010i \(-0.485834\pi\)
0.0444878 + 0.999010i \(0.485834\pi\)
\(702\) 45594.1i 2.45134i
\(703\) 33146.8i 1.77831i
\(704\) 20731.5 1.10987
\(705\) 0 0
\(706\) 58525.4 3.11988
\(707\) 13132.0i 0.698555i
\(708\) 8836.66i 0.469071i
\(709\) −15399.8 −0.815728 −0.407864 0.913043i \(-0.633726\pi\)
−0.407864 + 0.913043i \(0.633726\pi\)
\(710\) 0 0
\(711\) −8615.53 −0.454441
\(712\) − 23344.8i − 1.22877i
\(713\) − 27075.0i − 1.42211i
\(714\) 6344.21 0.332530
\(715\) 0 0
\(716\) 37880.2 1.97716
\(717\) 7537.54i 0.392601i
\(718\) 30754.3i 1.59852i
\(719\) −3507.31 −0.181920 −0.0909600 0.995855i \(-0.528994\pi\)
−0.0909600 + 0.995855i \(0.528994\pi\)
\(720\) 0 0
\(721\) 12991.6 0.671056
\(722\) − 61666.0i − 3.17863i
\(723\) − 9769.32i − 0.502524i
\(724\) −8381.14 −0.430225
\(725\) 0 0
\(726\) 756.492 0.0386722
\(727\) 22516.7i 1.14869i 0.818613 + 0.574346i \(0.194744\pi\)
−0.818613 + 0.574346i \(0.805256\pi\)
\(728\) − 16177.6i − 0.823600i
\(729\) −20709.4 −1.05215
\(730\) 0 0
\(731\) 15410.7 0.779736
\(732\) − 32020.3i − 1.61681i
\(733\) 10964.7i 0.552509i 0.961084 + 0.276255i \(0.0890933\pi\)
−0.961084 + 0.276255i \(0.910907\pi\)
\(734\) 59577.8 2.99599
\(735\) 0 0
\(736\) 4399.31 0.220327
\(737\) 17681.1i 0.883707i
\(738\) − 9301.17i − 0.463931i
\(739\) −3029.33 −0.150793 −0.0753963 0.997154i \(-0.524022\pi\)
−0.0753963 + 0.997154i \(0.524022\pi\)
\(740\) 0 0
\(741\) −35541.6 −1.76201
\(742\) − 11832.9i − 0.585442i
\(743\) 8921.04i 0.440486i 0.975445 + 0.220243i \(0.0706850\pi\)
−0.975445 + 0.220243i \(0.929315\pi\)
\(744\) −19460.2 −0.958932
\(745\) 0 0
\(746\) −38373.0 −1.88329
\(747\) 11301.3i 0.553537i
\(748\) 26099.1i 1.27577i
\(749\) 1526.11 0.0744498
\(750\) 0 0
\(751\) −6202.64 −0.301382 −0.150691 0.988581i \(-0.548150\pi\)
−0.150691 + 0.988581i \(0.548150\pi\)
\(752\) 971.326i 0.0471019i
\(753\) − 12379.7i − 0.599124i
\(754\) 10104.0 0.488016
\(755\) 0 0
\(756\) 16812.2 0.808801
\(757\) − 12099.3i − 0.580922i −0.956887 0.290461i \(-0.906191\pi\)
0.956887 0.290461i \(-0.0938086\pi\)
\(758\) 29196.8i 1.39905i
\(759\) 33395.7 1.59708
\(760\) 0 0
\(761\) 29332.7 1.39725 0.698626 0.715487i \(-0.253795\pi\)
0.698626 + 0.715487i \(0.253795\pi\)
\(762\) − 35028.9i − 1.66530i
\(763\) − 5930.52i − 0.281388i
\(764\) −5298.01 −0.250884
\(765\) 0 0
\(766\) −35924.1 −1.69451
\(767\) − 8298.57i − 0.390670i
\(768\) − 33321.9i − 1.56563i
\(769\) 13280.1 0.622748 0.311374 0.950287i \(-0.399211\pi\)
0.311374 + 0.950287i \(0.399211\pi\)
\(770\) 0 0
\(771\) 21249.9 0.992604
\(772\) 357.789i 0.0166802i
\(773\) − 11248.1i − 0.523370i −0.965153 0.261685i \(-0.915722\pi\)
0.965153 0.261685i \(-0.0842781\pi\)
\(774\) 16385.3 0.760925
\(775\) 0 0
\(776\) 8713.96 0.403110
\(777\) − 6891.31i − 0.318178i
\(778\) 9241.57i 0.425869i
\(779\) 27258.0 1.25368
\(780\) 0 0
\(781\) 1674.11 0.0767021
\(782\) 47526.8i 2.17335i
\(783\) 5162.17i 0.235608i
\(784\) −2829.26 −0.128884
\(785\) 0 0
\(786\) −49116.7 −2.22893
\(787\) − 436.193i − 0.0197568i −0.999951 0.00987839i \(-0.996856\pi\)
0.999951 0.00987839i \(-0.00314444\pi\)
\(788\) 17079.0i 0.772100i
\(789\) 19350.3 0.873116
\(790\) 0 0
\(791\) 10010.3 0.449970
\(792\) 13642.2i 0.612063i
\(793\) 30070.5i 1.34657i
\(794\) −3854.50 −0.172281
\(795\) 0 0
\(796\) −41390.8 −1.84304
\(797\) − 24034.0i − 1.06816i −0.845433 0.534082i \(-0.820657\pi\)
0.845433 0.534082i \(-0.179343\pi\)
\(798\) 19768.0i 0.876918i
\(799\) 754.224 0.0333949
\(800\) 0 0
\(801\) −6060.23 −0.267325
\(802\) − 21488.1i − 0.946101i
\(803\) − 3728.11i − 0.163838i
\(804\) 31207.7 1.36892
\(805\) 0 0
\(806\) 37173.4 1.62454
\(807\) − 20824.1i − 0.908354i
\(808\) 70708.1i 3.07859i
\(809\) −16188.0 −0.703509 −0.351754 0.936092i \(-0.614415\pi\)
−0.351754 + 0.936092i \(0.614415\pi\)
\(810\) 0 0
\(811\) 3732.42 0.161607 0.0808033 0.996730i \(-0.474251\pi\)
0.0808033 + 0.996730i \(0.474251\pi\)
\(812\) − 3725.69i − 0.161018i
\(813\) − 10425.4i − 0.449737i
\(814\) 42762.1 1.84129
\(815\) 0 0
\(816\) 10741.1 0.460803
\(817\) 48018.6i 2.05625i
\(818\) − 21454.9i − 0.917058i
\(819\) −4199.64 −0.179178
\(820\) 0 0
\(821\) 37226.4 1.58247 0.791237 0.611510i \(-0.209438\pi\)
0.791237 + 0.611510i \(0.209438\pi\)
\(822\) 29368.7i 1.24617i
\(823\) − 21355.7i − 0.904511i −0.891888 0.452256i \(-0.850620\pi\)
0.891888 0.452256i \(-0.149380\pi\)
\(824\) 69952.2 2.95740
\(825\) 0 0
\(826\) −4615.62 −0.194428
\(827\) − 18852.9i − 0.792718i −0.918096 0.396359i \(-0.870274\pi\)
0.918096 0.396359i \(-0.129726\pi\)
\(828\) 33501.0i 1.40609i
\(829\) 43227.9 1.81106 0.905528 0.424286i \(-0.139475\pi\)
0.905528 + 0.424286i \(0.139475\pi\)
\(830\) 0 0
\(831\) −26085.1 −1.08891
\(832\) 34363.5i 1.43190i
\(833\) 2196.89i 0.0913779i
\(834\) −59177.9 −2.45703
\(835\) 0 0
\(836\) −81322.4 −3.36435
\(837\) 18992.1i 0.784306i
\(838\) − 69536.1i − 2.86645i
\(839\) −30311.3 −1.24727 −0.623637 0.781714i \(-0.714346\pi\)
−0.623637 + 0.781714i \(0.714346\pi\)
\(840\) 0 0
\(841\) −23245.0 −0.953095
\(842\) 75664.0i 3.09686i
\(843\) 36530.6i 1.49250i
\(844\) −9664.88 −0.394169
\(845\) 0 0
\(846\) 801.918 0.0325893
\(847\) 261.960i 0.0106270i
\(848\) − 20033.8i − 0.811276i
\(849\) 2013.58 0.0813968
\(850\) 0 0
\(851\) 51625.3 2.07955
\(852\) − 2954.85i − 0.118816i
\(853\) 22797.0i 0.915071i 0.889191 + 0.457535i \(0.151268\pi\)
−0.889191 + 0.457535i \(0.848732\pi\)
\(854\) 16725.0 0.670162
\(855\) 0 0
\(856\) 8217.25 0.328107
\(857\) − 11280.3i − 0.449625i −0.974402 0.224813i \(-0.927823\pi\)
0.974402 0.224813i \(-0.0721770\pi\)
\(858\) 45851.6i 1.82442i
\(859\) −43369.3 −1.72263 −0.861315 0.508071i \(-0.830359\pi\)
−0.861315 + 0.508071i \(0.830359\pi\)
\(860\) 0 0
\(861\) −5667.01 −0.224310
\(862\) 25630.3i 1.01273i
\(863\) − 9846.22i − 0.388377i −0.980964 0.194189i \(-0.937793\pi\)
0.980964 0.194189i \(-0.0622074\pi\)
\(864\) −3085.95 −0.121512
\(865\) 0 0
\(866\) −32207.0 −1.26379
\(867\) 12044.5i 0.471801i
\(868\) − 13707.2i − 0.536005i
\(869\) −32572.9 −1.27153
\(870\) 0 0
\(871\) −29307.4 −1.14012
\(872\) − 31932.5i − 1.24010i
\(873\) − 2262.11i − 0.0876985i
\(874\) −148090. −5.73136
\(875\) 0 0
\(876\) −6580.23 −0.253796
\(877\) − 15229.8i − 0.586400i −0.956051 0.293200i \(-0.905280\pi\)
0.956051 0.293200i \(-0.0947202\pi\)
\(878\) − 43216.8i − 1.66116i
\(879\) 16615.2 0.637563
\(880\) 0 0
\(881\) 27891.7 1.06662 0.533311 0.845919i \(-0.320948\pi\)
0.533311 + 0.845919i \(0.320948\pi\)
\(882\) 2335.81i 0.0891734i
\(883\) − 18300.3i − 0.697456i −0.937224 0.348728i \(-0.886614\pi\)
0.937224 0.348728i \(-0.113386\pi\)
\(884\) −43260.6 −1.64594
\(885\) 0 0
\(886\) 64416.3 2.44256
\(887\) − 19104.8i − 0.723197i −0.932334 0.361598i \(-0.882231\pi\)
0.932334 0.361598i \(-0.117769\pi\)
\(888\) − 37105.8i − 1.40224i
\(889\) 12129.9 0.457620
\(890\) 0 0
\(891\) −13653.3 −0.513357
\(892\) 30375.7i 1.14019i
\(893\) 2350.10i 0.0880661i
\(894\) −18228.1 −0.681921
\(895\) 0 0
\(896\) 17980.5 0.670410
\(897\) 55355.2i 2.06048i
\(898\) 20426.8i 0.759077i
\(899\) 4208.78 0.156141
\(900\) 0 0
\(901\) −15556.0 −0.575189
\(902\) − 35165.1i − 1.29808i
\(903\) − 9983.19i − 0.367907i
\(904\) 53899.9 1.98306
\(905\) 0 0
\(906\) −27444.0 −1.00636
\(907\) − 29518.8i − 1.08066i −0.841455 0.540328i \(-0.818300\pi\)
0.841455 0.540328i \(-0.181700\pi\)
\(908\) − 12044.0i − 0.440191i
\(909\) 18355.5 0.669764
\(910\) 0 0
\(911\) −30322.2 −1.10277 −0.551383 0.834253i \(-0.685900\pi\)
−0.551383 + 0.834253i \(0.685900\pi\)
\(912\) 33468.5i 1.21519i
\(913\) 42727.0i 1.54880i
\(914\) −22907.0 −0.828991
\(915\) 0 0
\(916\) −89895.9 −3.24263
\(917\) − 17008.3i − 0.612501i
\(918\) − 33338.3i − 1.19862i
\(919\) 37780.9 1.35612 0.678062 0.735005i \(-0.262820\pi\)
0.678062 + 0.735005i \(0.262820\pi\)
\(920\) 0 0
\(921\) −13087.0 −0.468220
\(922\) 9499.48i 0.339315i
\(923\) 2774.93i 0.0989575i
\(924\) 16907.2 0.601953
\(925\) 0 0
\(926\) −35642.7 −1.26489
\(927\) − 18159.3i − 0.643398i
\(928\) 683.867i 0.0241908i
\(929\) −48493.3 −1.71261 −0.856305 0.516470i \(-0.827246\pi\)
−0.856305 + 0.516470i \(0.827246\pi\)
\(930\) 0 0
\(931\) −6845.33 −0.240974
\(932\) − 13602.7i − 0.478081i
\(933\) − 7212.46i − 0.253082i
\(934\) −9244.81 −0.323875
\(935\) 0 0
\(936\) −22612.7 −0.789656
\(937\) 18661.7i 0.650641i 0.945604 + 0.325320i \(0.105472\pi\)
−0.945604 + 0.325320i \(0.894528\pi\)
\(938\) 16300.6i 0.567413i
\(939\) 21128.8 0.734305
\(940\) 0 0
\(941\) −31270.1 −1.08329 −0.541644 0.840608i \(-0.682198\pi\)
−0.541644 + 0.840608i \(0.682198\pi\)
\(942\) − 46872.1i − 1.62121i
\(943\) − 42453.7i − 1.46605i
\(944\) −7814.53 −0.269429
\(945\) 0 0
\(946\) 61948.0 2.12907
\(947\) − 22405.3i − 0.768823i −0.923162 0.384412i \(-0.874404\pi\)
0.923162 0.384412i \(-0.125596\pi\)
\(948\) 57492.2i 1.96968i
\(949\) 6179.55 0.211377
\(950\) 0 0
\(951\) 20225.8 0.689660
\(952\) 11829.0i 0.402711i
\(953\) − 21777.9i − 0.740247i −0.928983 0.370123i \(-0.879315\pi\)
0.928983 0.370123i \(-0.120685\pi\)
\(954\) −16539.7 −0.561313
\(955\) 0 0
\(956\) −28587.2 −0.967129
\(957\) 5191.32i 0.175352i
\(958\) 51323.3i 1.73088i
\(959\) −10169.9 −0.342442
\(960\) 0 0
\(961\) −14306.5 −0.480229
\(962\) 70880.5i 2.37555i
\(963\) − 2133.16i − 0.0713814i
\(964\) 37051.5 1.23791
\(965\) 0 0
\(966\) 30788.2 1.02546
\(967\) − 14432.2i − 0.479945i −0.970780 0.239973i \(-0.922862\pi\)
0.970780 0.239973i \(-0.0771384\pi\)
\(968\) 1410.51i 0.0468341i
\(969\) 25987.9 0.861561
\(970\) 0 0
\(971\) 6672.57 0.220528 0.110264 0.993902i \(-0.464830\pi\)
0.110264 + 0.993902i \(0.464830\pi\)
\(972\) − 40748.6i − 1.34466i
\(973\) − 20492.3i − 0.675183i
\(974\) 58156.7 1.91321
\(975\) 0 0
\(976\) 28316.5 0.928678
\(977\) − 33300.2i − 1.09045i −0.838290 0.545224i \(-0.816444\pi\)
0.838290 0.545224i \(-0.183556\pi\)
\(978\) 31887.1i 1.04257i
\(979\) −22912.0 −0.747979
\(980\) 0 0
\(981\) −8289.55 −0.269791
\(982\) − 487.491i − 0.0158416i
\(983\) − 17243.3i − 0.559486i −0.960075 0.279743i \(-0.909751\pi\)
0.960075 0.279743i \(-0.0902492\pi\)
\(984\) −30513.6 −0.988557
\(985\) 0 0
\(986\) −7387.99 −0.238622
\(987\) − 488.592i − 0.0157569i
\(988\) − 134796.i − 4.34053i
\(989\) 74787.8 2.40456
\(990\) 0 0
\(991\) −32266.7 −1.03429 −0.517147 0.855897i \(-0.673006\pi\)
−0.517147 + 0.855897i \(0.673006\pi\)
\(992\) 2516.02i 0.0805278i
\(993\) − 10159.1i − 0.324661i
\(994\) 1543.40 0.0492491
\(995\) 0 0
\(996\) 75414.4 2.39919
\(997\) − 14339.8i − 0.455514i −0.973718 0.227757i \(-0.926861\pi\)
0.973718 0.227757i \(-0.0731391\pi\)
\(998\) − 76059.8i − 2.41246i
\(999\) −36213.3 −1.14688
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.4.b.f.99.1 8
5.2 odd 4 175.4.a.g.1.4 4
5.3 odd 4 175.4.a.h.1.1 yes 4
5.4 even 2 inner 175.4.b.f.99.8 8
15.2 even 4 1575.4.a.bl.1.1 4
15.8 even 4 1575.4.a.bg.1.4 4
35.13 even 4 1225.4.a.bd.1.1 4
35.27 even 4 1225.4.a.z.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.4.a.g.1.4 4 5.2 odd 4
175.4.a.h.1.1 yes 4 5.3 odd 4
175.4.b.f.99.1 8 1.1 even 1 trivial
175.4.b.f.99.8 8 5.4 even 2 inner
1225.4.a.z.1.4 4 35.27 even 4
1225.4.a.bd.1.1 4 35.13 even 4
1575.4.a.bg.1.4 4 15.8 even 4
1575.4.a.bl.1.1 4 15.2 even 4