Properties

Label 175.4.b.e.99.1
Level $175$
Weight $4$
Character 175.99
Analytic conductor $10.325$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(99,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.99");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.3299353600.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 34x^{4} + 289x^{2} + 196 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.1
Root \(-3.62456i\) of defining polynomial
Character \(\chi\) \(=\) 175.99
Dual form 175.4.b.e.99.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.62456i q^{2} +8.38660i q^{3} -13.3866 q^{4} +38.7844 q^{6} +7.00000i q^{7} +24.9107i q^{8} -43.3350 q^{9} -30.1117 q^{11} -112.268i q^{12} -88.9295i q^{13} +32.3720 q^{14} +8.10818 q^{16} -4.73699i q^{17} +200.405i q^{18} -124.818 q^{19} -58.7062 q^{21} +139.253i q^{22} -20.2680i q^{23} -208.916 q^{24} -411.260 q^{26} -136.995i q^{27} -93.7062i q^{28} -134.088 q^{29} -2.03767 q^{31} +161.788i q^{32} -252.534i q^{33} -21.9065 q^{34} +580.108 q^{36} -141.137i q^{37} +577.228i q^{38} +745.816 q^{39} +95.2784 q^{41} +271.490i q^{42} +298.646i q^{43} +403.093 q^{44} -93.7305 q^{46} -129.054i q^{47} +68.0000i q^{48} -49.0000 q^{49} +39.7272 q^{51} +1190.46i q^{52} -388.429i q^{53} -633.542 q^{54} -174.375 q^{56} -1046.80i q^{57} +620.098i q^{58} -838.501 q^{59} +389.422 q^{61} +9.42333i q^{62} -303.345i q^{63} +813.067 q^{64} -1167.86 q^{66} +697.794i q^{67} +63.4122i q^{68} +169.979 q^{69} -523.450 q^{71} -1079.50i q^{72} -66.4684i q^{73} -652.699 q^{74} +1670.89 q^{76} -210.782i q^{77} -3449.07i q^{78} +526.982 q^{79} -21.1236 q^{81} -440.621i q^{82} -70.0265i q^{83} +785.876 q^{84} +1381.11 q^{86} -1124.54i q^{87} -750.101i q^{88} +9.27925 q^{89} +622.506 q^{91} +271.319i q^{92} -17.0891i q^{93} -596.817 q^{94} -1356.85 q^{96} -4.19493i q^{97} +226.604i q^{98} +1304.89 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 26 q^{4} + 48 q^{6} - 162 q^{9} - 148 q^{11} + 42 q^{14} - 158 q^{16} - 336 q^{19} + 28 q^{21} - 840 q^{24} - 892 q^{26} - 664 q^{29} + 640 q^{31} - 1164 q^{34} + 362 q^{36} + 1964 q^{39} + 724 q^{41}+ \cdots + 6976 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 4.62456i − 1.63503i −0.575907 0.817515i \(-0.695351\pi\)
0.575907 0.817515i \(-0.304649\pi\)
\(3\) 8.38660i 1.61400i 0.590551 + 0.807001i \(0.298911\pi\)
−0.590551 + 0.807001i \(0.701089\pi\)
\(4\) −13.3866 −1.67332
\(5\) 0 0
\(6\) 38.7844 2.63894
\(7\) 7.00000i 0.377964i
\(8\) 24.9107i 1.10091i
\(9\) −43.3350 −1.60500
\(10\) 0 0
\(11\) −30.1117 −0.825364 −0.412682 0.910875i \(-0.635408\pi\)
−0.412682 + 0.910875i \(0.635408\pi\)
\(12\) − 112.268i − 2.70075i
\(13\) − 88.9295i − 1.89728i −0.316362 0.948639i \(-0.602461\pi\)
0.316362 0.948639i \(-0.397539\pi\)
\(14\) 32.3720 0.617983
\(15\) 0 0
\(16\) 8.10818 0.126690
\(17\) − 4.73699i − 0.0675817i −0.999429 0.0337909i \(-0.989242\pi\)
0.999429 0.0337909i \(-0.0107580\pi\)
\(18\) 200.405i 2.62422i
\(19\) −124.818 −1.50711 −0.753557 0.657382i \(-0.771664\pi\)
−0.753557 + 0.657382i \(0.771664\pi\)
\(20\) 0 0
\(21\) −58.7062 −0.610035
\(22\) 139.253i 1.34950i
\(23\) − 20.2680i − 0.183746i −0.995771 0.0918731i \(-0.970715\pi\)
0.995771 0.0918731i \(-0.0292854\pi\)
\(24\) −208.916 −1.77686
\(25\) 0 0
\(26\) −411.260 −3.10211
\(27\) − 136.995i − 0.976470i
\(28\) − 93.7062i − 0.632457i
\(29\) −134.088 −0.858603 −0.429301 0.903161i \(-0.641240\pi\)
−0.429301 + 0.903161i \(0.641240\pi\)
\(30\) 0 0
\(31\) −2.03767 −0.0118057 −0.00590284 0.999983i \(-0.501879\pi\)
−0.00590284 + 0.999983i \(0.501879\pi\)
\(32\) 161.788i 0.893764i
\(33\) − 252.534i − 1.33214i
\(34\) −21.9065 −0.110498
\(35\) 0 0
\(36\) 580.108 2.68568
\(37\) − 141.137i − 0.627104i −0.949571 0.313552i \(-0.898481\pi\)
0.949571 0.313552i \(-0.101519\pi\)
\(38\) 577.228i 2.46418i
\(39\) 745.816 3.06221
\(40\) 0 0
\(41\) 95.2784 0.362927 0.181463 0.983398i \(-0.441917\pi\)
0.181463 + 0.983398i \(0.441917\pi\)
\(42\) 271.490i 0.997426i
\(43\) 298.646i 1.05914i 0.848266 + 0.529571i \(0.177647\pi\)
−0.848266 + 0.529571i \(0.822353\pi\)
\(44\) 403.093 1.38110
\(45\) 0 0
\(46\) −93.7305 −0.300431
\(47\) − 129.054i − 0.400519i −0.979743 0.200260i \(-0.935821\pi\)
0.979743 0.200260i \(-0.0641786\pi\)
\(48\) 68.0000i 0.204478i
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) 39.7272 0.109077
\(52\) 1190.46i 3.17476i
\(53\) − 388.429i − 1.00669i −0.864084 0.503347i \(-0.832102\pi\)
0.864084 0.503347i \(-0.167898\pi\)
\(54\) −633.542 −1.59656
\(55\) 0 0
\(56\) −174.375 −0.416103
\(57\) − 1046.80i − 2.43248i
\(58\) 620.098i 1.40384i
\(59\) −838.501 −1.85023 −0.925114 0.379688i \(-0.876031\pi\)
−0.925114 + 0.379688i \(0.876031\pi\)
\(60\) 0 0
\(61\) 389.422 0.817384 0.408692 0.912672i \(-0.365985\pi\)
0.408692 + 0.912672i \(0.365985\pi\)
\(62\) 9.42333i 0.0193027i
\(63\) − 303.345i − 0.606633i
\(64\) 813.067 1.58802
\(65\) 0 0
\(66\) −1167.86 −2.17809
\(67\) 697.794i 1.27237i 0.771534 + 0.636187i \(0.219490\pi\)
−0.771534 + 0.636187i \(0.780510\pi\)
\(68\) 63.4122i 0.113086i
\(69\) 169.979 0.296567
\(70\) 0 0
\(71\) −523.450 −0.874959 −0.437479 0.899228i \(-0.644129\pi\)
−0.437479 + 0.899228i \(0.644129\pi\)
\(72\) − 1079.50i − 1.76695i
\(73\) − 66.4684i − 0.106569i −0.998579 0.0532845i \(-0.983031\pi\)
0.998579 0.0532845i \(-0.0169690\pi\)
\(74\) −652.699 −1.02533
\(75\) 0 0
\(76\) 1670.89 2.52189
\(77\) − 210.782i − 0.311958i
\(78\) − 3449.07i − 5.00680i
\(79\) 526.982 0.750508 0.375254 0.926922i \(-0.377556\pi\)
0.375254 + 0.926922i \(0.377556\pi\)
\(80\) 0 0
\(81\) −21.1236 −0.0289762
\(82\) − 440.621i − 0.593396i
\(83\) − 70.0265i − 0.0926074i −0.998927 0.0463037i \(-0.985256\pi\)
0.998927 0.0463037i \(-0.0147442\pi\)
\(84\) 785.876 1.02079
\(85\) 0 0
\(86\) 1381.11 1.73173
\(87\) − 1124.54i − 1.38579i
\(88\) − 750.101i − 0.908649i
\(89\) 9.27925 0.0110517 0.00552584 0.999985i \(-0.498241\pi\)
0.00552584 + 0.999985i \(0.498241\pi\)
\(90\) 0 0
\(91\) 622.506 0.717103
\(92\) 271.319i 0.307467i
\(93\) − 17.0891i − 0.0190544i
\(94\) −596.817 −0.654861
\(95\) 0 0
\(96\) −1356.85 −1.44254
\(97\) − 4.19493i − 0.00439104i −0.999998 0.00219552i \(-0.999301\pi\)
0.999998 0.00219552i \(-0.000698856\pi\)
\(98\) 226.604i 0.233576i
\(99\) 1304.89 1.32471
\(100\) 0 0
\(101\) −865.844 −0.853016 −0.426508 0.904484i \(-0.640256\pi\)
−0.426508 + 0.904484i \(0.640256\pi\)
\(102\) − 183.721i − 0.178344i
\(103\) 1166.12i 1.11554i 0.829995 + 0.557771i \(0.188343\pi\)
−0.829995 + 0.557771i \(0.811657\pi\)
\(104\) 2215.29 2.08872
\(105\) 0 0
\(106\) −1796.31 −1.64598
\(107\) 56.9652i 0.0514676i 0.999669 + 0.0257338i \(0.00819223\pi\)
−0.999669 + 0.0257338i \(0.991808\pi\)
\(108\) 1833.90i 1.63395i
\(109\) 1358.89 1.19411 0.597055 0.802200i \(-0.296337\pi\)
0.597055 + 0.802200i \(0.296337\pi\)
\(110\) 0 0
\(111\) 1183.66 1.01215
\(112\) 56.7572i 0.0478844i
\(113\) − 436.038i − 0.363000i −0.983391 0.181500i \(-0.941905\pi\)
0.983391 0.181500i \(-0.0580952\pi\)
\(114\) −4840.98 −3.97719
\(115\) 0 0
\(116\) 1794.98 1.43672
\(117\) 3853.76i 3.04513i
\(118\) 3877.70i 3.02518i
\(119\) 33.1590 0.0255435
\(120\) 0 0
\(121\) −424.288 −0.318774
\(122\) − 1800.91i − 1.33645i
\(123\) 799.062i 0.585764i
\(124\) 27.2775 0.0197547
\(125\) 0 0
\(126\) −1402.84 −0.991863
\(127\) 1186.69i 0.829144i 0.910017 + 0.414572i \(0.136069\pi\)
−0.910017 + 0.414572i \(0.863931\pi\)
\(128\) − 2465.77i − 1.70270i
\(129\) −2504.62 −1.70946
\(130\) 0 0
\(131\) 1034.56 0.689997 0.344999 0.938603i \(-0.387879\pi\)
0.344999 + 0.938603i \(0.387879\pi\)
\(132\) 3380.57i 2.22910i
\(133\) − 873.725i − 0.569636i
\(134\) 3226.99 2.08037
\(135\) 0 0
\(136\) 118.002 0.0744011
\(137\) 646.219i 0.402994i 0.979489 + 0.201497i \(0.0645806\pi\)
−0.979489 + 0.201497i \(0.935419\pi\)
\(138\) − 786.080i − 0.484895i
\(139\) −506.484 −0.309061 −0.154530 0.987988i \(-0.549386\pi\)
−0.154530 + 0.987988i \(0.549386\pi\)
\(140\) 0 0
\(141\) 1082.32 0.646439
\(142\) 2420.73i 1.43058i
\(143\) 2677.81i 1.56594i
\(144\) −351.368 −0.203338
\(145\) 0 0
\(146\) −307.387 −0.174244
\(147\) − 410.943i − 0.230572i
\(148\) 1889.35i 1.04935i
\(149\) 1828.12 1.00513 0.502567 0.864538i \(-0.332389\pi\)
0.502567 + 0.864538i \(0.332389\pi\)
\(150\) 0 0
\(151\) 2975.17 1.60342 0.801708 0.597716i \(-0.203925\pi\)
0.801708 + 0.597716i \(0.203925\pi\)
\(152\) − 3109.29i − 1.65919i
\(153\) 205.278i 0.108469i
\(154\) −974.773 −0.510061
\(155\) 0 0
\(156\) −9983.93 −5.12407
\(157\) − 2131.74i − 1.08364i −0.840495 0.541820i \(-0.817736\pi\)
0.840495 0.541820i \(-0.182264\pi\)
\(158\) − 2437.06i − 1.22710i
\(159\) 3257.59 1.62481
\(160\) 0 0
\(161\) 141.876 0.0694495
\(162\) 97.6876i 0.0473769i
\(163\) 593.939i 0.285404i 0.989766 + 0.142702i \(0.0455791\pi\)
−0.989766 + 0.142702i \(0.954421\pi\)
\(164\) −1275.45 −0.607294
\(165\) 0 0
\(166\) −323.842 −0.151416
\(167\) − 2936.30i − 1.36059i −0.732941 0.680293i \(-0.761853\pi\)
0.732941 0.680293i \(-0.238147\pi\)
\(168\) − 1462.41i − 0.671591i
\(169\) −5711.45 −2.59966
\(170\) 0 0
\(171\) 5408.98 2.41892
\(172\) − 3997.85i − 1.77229i
\(173\) − 2347.31i − 1.03158i −0.856716 0.515788i \(-0.827499\pi\)
0.856716 0.515788i \(-0.172501\pi\)
\(174\) −5200.51 −2.26580
\(175\) 0 0
\(176\) −244.151 −0.104566
\(177\) − 7032.17i − 2.98627i
\(178\) − 42.9125i − 0.0180698i
\(179\) −3036.56 −1.26795 −0.633975 0.773354i \(-0.718578\pi\)
−0.633975 + 0.773354i \(0.718578\pi\)
\(180\) 0 0
\(181\) −899.776 −0.369502 −0.184751 0.982785i \(-0.559148\pi\)
−0.184751 + 0.982785i \(0.559148\pi\)
\(182\) − 2878.82i − 1.17249i
\(183\) 3265.93i 1.31926i
\(184\) 504.888 0.202287
\(185\) 0 0
\(186\) −79.0297 −0.0311545
\(187\) 142.639i 0.0557796i
\(188\) 1727.59i 0.670199i
\(189\) 958.964 0.369071
\(190\) 0 0
\(191\) 416.168 0.157659 0.0788294 0.996888i \(-0.474882\pi\)
0.0788294 + 0.996888i \(0.474882\pi\)
\(192\) 6818.86i 2.56307i
\(193\) 5181.05i 1.93233i 0.257922 + 0.966166i \(0.416962\pi\)
−0.257922 + 0.966166i \(0.583038\pi\)
\(194\) −19.3997 −0.00717948
\(195\) 0 0
\(196\) 655.943 0.239046
\(197\) 1452.34i 0.525255i 0.964897 + 0.262627i \(0.0845890\pi\)
−0.964897 + 0.262627i \(0.915411\pi\)
\(198\) − 6034.54i − 2.16594i
\(199\) 1277.23 0.454978 0.227489 0.973781i \(-0.426948\pi\)
0.227489 + 0.973781i \(0.426948\pi\)
\(200\) 0 0
\(201\) −5852.12 −2.05361
\(202\) 4004.15i 1.39471i
\(203\) − 938.615i − 0.324521i
\(204\) −531.813 −0.182521
\(205\) 0 0
\(206\) 5392.78 1.82395
\(207\) 878.312i 0.294913i
\(208\) − 721.056i − 0.240367i
\(209\) 3758.47 1.24392
\(210\) 0 0
\(211\) −3259.09 −1.06334 −0.531670 0.846951i \(-0.678436\pi\)
−0.531670 + 0.846951i \(0.678436\pi\)
\(212\) 5199.74i 1.68453i
\(213\) − 4389.96i − 1.41218i
\(214\) 263.439 0.0841511
\(215\) 0 0
\(216\) 3412.63 1.07500
\(217\) − 14.2637i − 0.00446213i
\(218\) − 6284.27i − 1.95241i
\(219\) 557.444 0.172002
\(220\) 0 0
\(221\) −421.258 −0.128221
\(222\) − 5473.92i − 1.65489i
\(223\) − 4373.35i − 1.31328i −0.754205 0.656639i \(-0.771977\pi\)
0.754205 0.656639i \(-0.228023\pi\)
\(224\) −1132.52 −0.337811
\(225\) 0 0
\(226\) −2016.48 −0.593516
\(227\) − 61.1145i − 0.0178692i −0.999960 0.00893461i \(-0.997156\pi\)
0.999960 0.00893461i \(-0.00284401\pi\)
\(228\) 14013.0i 4.07034i
\(229\) −3019.41 −0.871302 −0.435651 0.900116i \(-0.643482\pi\)
−0.435651 + 0.900116i \(0.643482\pi\)
\(230\) 0 0
\(231\) 1767.74 0.503501
\(232\) − 3340.22i − 0.945241i
\(233\) 3531.17i 0.992851i 0.868079 + 0.496426i \(0.165354\pi\)
−0.868079 + 0.496426i \(0.834646\pi\)
\(234\) 17822.0 4.97888
\(235\) 0 0
\(236\) 11224.7 3.09603
\(237\) 4419.58i 1.21132i
\(238\) − 153.346i − 0.0417644i
\(239\) −2282.62 −0.617785 −0.308893 0.951097i \(-0.599958\pi\)
−0.308893 + 0.951097i \(0.599958\pi\)
\(240\) 0 0
\(241\) −2215.68 −0.592217 −0.296109 0.955154i \(-0.595689\pi\)
−0.296109 + 0.955154i \(0.595689\pi\)
\(242\) 1962.15i 0.521205i
\(243\) − 3876.02i − 1.02324i
\(244\) −5213.04 −1.36775
\(245\) 0 0
\(246\) 3695.31 0.957742
\(247\) 11100.0i 2.85941i
\(248\) − 50.7597i − 0.0129970i
\(249\) 587.284 0.149468
\(250\) 0 0
\(251\) −3082.55 −0.775174 −0.387587 0.921833i \(-0.626691\pi\)
−0.387587 + 0.921833i \(0.626691\pi\)
\(252\) 4060.76i 1.01509i
\(253\) 610.302i 0.151658i
\(254\) 5487.90 1.35568
\(255\) 0 0
\(256\) −4898.58 −1.19594
\(257\) − 6032.40i − 1.46417i −0.681215 0.732083i \(-0.738548\pi\)
0.681215 0.732083i \(-0.261452\pi\)
\(258\) 11582.8i 2.79501i
\(259\) 987.962 0.237023
\(260\) 0 0
\(261\) 5810.69 1.37806
\(262\) − 4784.37i − 1.12817i
\(263\) − 5923.81i − 1.38889i −0.719546 0.694445i \(-0.755650\pi\)
0.719546 0.694445i \(-0.244350\pi\)
\(264\) 6290.80 1.46656
\(265\) 0 0
\(266\) −4040.60 −0.931372
\(267\) 77.8213i 0.0178374i
\(268\) − 9341.09i − 2.12910i
\(269\) −3252.80 −0.737273 −0.368637 0.929574i \(-0.620175\pi\)
−0.368637 + 0.929574i \(0.620175\pi\)
\(270\) 0 0
\(271\) −6246.26 −1.40012 −0.700061 0.714083i \(-0.746844\pi\)
−0.700061 + 0.714083i \(0.746844\pi\)
\(272\) − 38.4084i − 0.00856195i
\(273\) 5220.71i 1.15741i
\(274\) 2988.48 0.658907
\(275\) 0 0
\(276\) −2275.44 −0.496252
\(277\) − 1572.17i − 0.341020i −0.985356 0.170510i \(-0.945459\pi\)
0.985356 0.170510i \(-0.0545415\pi\)
\(278\) 2342.27i 0.505324i
\(279\) 88.3024 0.0189481
\(280\) 0 0
\(281\) −7846.03 −1.66567 −0.832837 0.553518i \(-0.813285\pi\)
−0.832837 + 0.553518i \(0.813285\pi\)
\(282\) − 5005.26i − 1.05695i
\(283\) − 6265.58i − 1.31608i −0.752984 0.658039i \(-0.771386\pi\)
0.752984 0.658039i \(-0.228614\pi\)
\(284\) 7007.21 1.46409
\(285\) 0 0
\(286\) 12383.7 2.56037
\(287\) 666.949i 0.137173i
\(288\) − 7011.10i − 1.43449i
\(289\) 4890.56 0.995433
\(290\) 0 0
\(291\) 35.1812 0.00708714
\(292\) 889.785i 0.178325i
\(293\) 7264.99i 1.44855i 0.689511 + 0.724276i \(0.257826\pi\)
−0.689511 + 0.724276i \(0.742174\pi\)
\(294\) −1900.43 −0.376992
\(295\) 0 0
\(296\) 3515.83 0.690382
\(297\) 4125.14i 0.805943i
\(298\) − 8454.24i − 1.64343i
\(299\) −1802.42 −0.348617
\(300\) 0 0
\(301\) −2090.52 −0.400318
\(302\) − 13758.9i − 2.62163i
\(303\) − 7261.48i − 1.37677i
\(304\) −1012.05 −0.190937
\(305\) 0 0
\(306\) 949.319 0.177350
\(307\) 1328.32i 0.246943i 0.992348 + 0.123471i \(0.0394027\pi\)
−0.992348 + 0.123471i \(0.960597\pi\)
\(308\) 2821.65i 0.522008i
\(309\) −9779.75 −1.80049
\(310\) 0 0
\(311\) 4868.68 0.887709 0.443855 0.896099i \(-0.353611\pi\)
0.443855 + 0.896099i \(0.353611\pi\)
\(312\) 18578.8i 3.37120i
\(313\) − 7733.39i − 1.39654i −0.715835 0.698270i \(-0.753954\pi\)
0.715835 0.698270i \(-0.246046\pi\)
\(314\) −9858.37 −1.77178
\(315\) 0 0
\(316\) −7054.49 −1.25584
\(317\) − 8175.03i − 1.44844i −0.689569 0.724220i \(-0.742200\pi\)
0.689569 0.724220i \(-0.257800\pi\)
\(318\) − 15065.0i − 2.65661i
\(319\) 4037.61 0.708660
\(320\) 0 0
\(321\) −477.744 −0.0830688
\(322\) − 656.114i − 0.113552i
\(323\) 591.261i 0.101853i
\(324\) 282.774 0.0484865
\(325\) 0 0
\(326\) 2746.71 0.466644
\(327\) 11396.5i 1.92729i
\(328\) 2373.45i 0.399548i
\(329\) 903.375 0.151382
\(330\) 0 0
\(331\) −2040.76 −0.338884 −0.169442 0.985540i \(-0.554197\pi\)
−0.169442 + 0.985540i \(0.554197\pi\)
\(332\) 937.417i 0.154962i
\(333\) 6116.19i 1.00650i
\(334\) −13579.1 −2.22460
\(335\) 0 0
\(336\) −476.000 −0.0772855
\(337\) 7349.73i 1.18803i 0.804455 + 0.594013i \(0.202457\pi\)
−0.804455 + 0.594013i \(0.797543\pi\)
\(338\) 26413.0i 4.25052i
\(339\) 3656.87 0.585882
\(340\) 0 0
\(341\) 61.3576 0.00974399
\(342\) − 25014.2i − 3.95500i
\(343\) − 343.000i − 0.0539949i
\(344\) −7439.47 −1.16602
\(345\) 0 0
\(346\) −10855.3 −1.68666
\(347\) − 12069.9i − 1.86728i −0.358207 0.933642i \(-0.616612\pi\)
0.358207 0.933642i \(-0.383388\pi\)
\(348\) 15053.8i 2.31887i
\(349\) 4484.96 0.687892 0.343946 0.938989i \(-0.388236\pi\)
0.343946 + 0.938989i \(0.388236\pi\)
\(350\) 0 0
\(351\) −12182.9 −1.85263
\(352\) − 4871.72i − 0.737681i
\(353\) 12762.5i 1.92430i 0.272517 + 0.962151i \(0.412144\pi\)
−0.272517 + 0.962151i \(0.587856\pi\)
\(354\) −32520.7 −4.88264
\(355\) 0 0
\(356\) −124.218 −0.0184930
\(357\) 278.091i 0.0412272i
\(358\) 14042.8i 2.07314i
\(359\) 2419.42 0.355689 0.177844 0.984059i \(-0.443088\pi\)
0.177844 + 0.984059i \(0.443088\pi\)
\(360\) 0 0
\(361\) 8720.49 1.27139
\(362\) 4161.07i 0.604147i
\(363\) − 3558.33i − 0.514501i
\(364\) −8333.24 −1.19995
\(365\) 0 0
\(366\) 15103.5 2.15703
\(367\) − 7129.74i − 1.01409i −0.861921 0.507043i \(-0.830739\pi\)
0.861921 0.507043i \(-0.169261\pi\)
\(368\) − 164.336i − 0.0232789i
\(369\) −4128.89 −0.582497
\(370\) 0 0
\(371\) 2719.00 0.380495
\(372\) 228.765i 0.0318842i
\(373\) − 11596.9i − 1.60983i −0.593391 0.804914i \(-0.702211\pi\)
0.593391 0.804914i \(-0.297789\pi\)
\(374\) 659.642 0.0912013
\(375\) 0 0
\(376\) 3214.81 0.440934
\(377\) 11924.4i 1.62901i
\(378\) − 4434.79i − 0.603442i
\(379\) 12770.8 1.73085 0.865424 0.501040i \(-0.167049\pi\)
0.865424 + 0.501040i \(0.167049\pi\)
\(380\) 0 0
\(381\) −9952.25 −1.33824
\(382\) − 1924.59i − 0.257777i
\(383\) − 7470.10i − 0.996617i −0.867000 0.498308i \(-0.833955\pi\)
0.867000 0.498308i \(-0.166045\pi\)
\(384\) 20679.4 2.74816
\(385\) 0 0
\(386\) 23960.1 3.15942
\(387\) − 12941.8i − 1.69992i
\(388\) 56.1558i 0.00734763i
\(389\) −8749.77 −1.14044 −0.570220 0.821492i \(-0.693142\pi\)
−0.570220 + 0.821492i \(0.693142\pi\)
\(390\) 0 0
\(391\) −96.0092 −0.0124179
\(392\) − 1220.62i − 0.157272i
\(393\) 8676.41i 1.11366i
\(394\) 6716.46 0.858808
\(395\) 0 0
\(396\) −17468.0 −2.21667
\(397\) 5375.25i 0.679537i 0.940509 + 0.339769i \(0.110349\pi\)
−0.940509 + 0.339769i \(0.889651\pi\)
\(398\) − 5906.65i − 0.743903i
\(399\) 7327.58 0.919393
\(400\) 0 0
\(401\) 7361.33 0.916727 0.458363 0.888765i \(-0.348436\pi\)
0.458363 + 0.888765i \(0.348436\pi\)
\(402\) 27063.5i 3.35772i
\(403\) 181.209i 0.0223987i
\(404\) 11590.7 1.42737
\(405\) 0 0
\(406\) −4340.68 −0.530602
\(407\) 4249.88i 0.517589i
\(408\) 989.632i 0.120084i
\(409\) 2612.45 0.315837 0.157919 0.987452i \(-0.449522\pi\)
0.157919 + 0.987452i \(0.449522\pi\)
\(410\) 0 0
\(411\) −5419.57 −0.650433
\(412\) − 15610.3i − 1.86667i
\(413\) − 5869.51i − 0.699321i
\(414\) 4061.81 0.482191
\(415\) 0 0
\(416\) 14387.8 1.69572
\(417\) − 4247.68i − 0.498824i
\(418\) − 17381.3i − 2.03384i
\(419\) −4398.21 −0.512808 −0.256404 0.966570i \(-0.582538\pi\)
−0.256404 + 0.966570i \(0.582538\pi\)
\(420\) 0 0
\(421\) 9723.32 1.12562 0.562810 0.826587i \(-0.309720\pi\)
0.562810 + 0.826587i \(0.309720\pi\)
\(422\) 15071.9i 1.73859i
\(423\) 5592.54i 0.642833i
\(424\) 9676.01 1.10828
\(425\) 0 0
\(426\) −20301.7 −2.30896
\(427\) 2725.96i 0.308942i
\(428\) − 762.570i − 0.0861220i
\(429\) −22457.7 −2.52744
\(430\) 0 0
\(431\) −14314.5 −1.59978 −0.799892 0.600144i \(-0.795110\pi\)
−0.799892 + 0.600144i \(0.795110\pi\)
\(432\) − 1110.78i − 0.123709i
\(433\) 2373.62i 0.263438i 0.991287 + 0.131719i \(0.0420497\pi\)
−0.991287 + 0.131719i \(0.957950\pi\)
\(434\) −65.9633 −0.00729572
\(435\) 0 0
\(436\) −18190.9 −1.99813
\(437\) 2529.80i 0.276927i
\(438\) − 2577.93i − 0.281229i
\(439\) 9533.46 1.03646 0.518231 0.855240i \(-0.326591\pi\)
0.518231 + 0.855240i \(0.326591\pi\)
\(440\) 0 0
\(441\) 2123.41 0.229286
\(442\) 1948.14i 0.209646i
\(443\) − 6647.94i − 0.712987i −0.934298 0.356493i \(-0.883972\pi\)
0.934298 0.356493i \(-0.116028\pi\)
\(444\) −15845.2 −1.69365
\(445\) 0 0
\(446\) −20224.8 −2.14725
\(447\) 15331.7i 1.62229i
\(448\) 5691.47i 0.600215i
\(449\) 768.256 0.0807489 0.0403744 0.999185i \(-0.487145\pi\)
0.0403744 + 0.999185i \(0.487145\pi\)
\(450\) 0 0
\(451\) −2868.99 −0.299547
\(452\) 5837.06i 0.607416i
\(453\) 24951.5i 2.58791i
\(454\) −282.628 −0.0292167
\(455\) 0 0
\(456\) 26076.4 2.67794
\(457\) − 3323.50i − 0.340190i −0.985428 0.170095i \(-0.945593\pi\)
0.985428 0.170095i \(-0.0544074\pi\)
\(458\) 13963.5i 1.42461i
\(459\) −648.944 −0.0659915
\(460\) 0 0
\(461\) −18840.7 −1.90347 −0.951733 0.306926i \(-0.900700\pi\)
−0.951733 + 0.306926i \(0.900700\pi\)
\(462\) − 8175.03i − 0.823240i
\(463\) 10759.1i 1.07995i 0.841679 + 0.539977i \(0.181567\pi\)
−0.841679 + 0.539977i \(0.818433\pi\)
\(464\) −1087.21 −0.108777
\(465\) 0 0
\(466\) 16330.1 1.62334
\(467\) 7441.70i 0.737390i 0.929550 + 0.368695i \(0.120195\pi\)
−0.929550 + 0.368695i \(0.879805\pi\)
\(468\) − 51588.7i − 5.09549i
\(469\) −4884.56 −0.480913
\(470\) 0 0
\(471\) 17878.0 1.74899
\(472\) − 20887.6i − 2.03693i
\(473\) − 8992.73i − 0.874178i
\(474\) 20438.7 1.98055
\(475\) 0 0
\(476\) −443.885 −0.0427426
\(477\) 16832.6i 1.61574i
\(478\) 10556.1i 1.01010i
\(479\) −5691.97 −0.542949 −0.271475 0.962446i \(-0.587511\pi\)
−0.271475 + 0.962446i \(0.587511\pi\)
\(480\) 0 0
\(481\) −12551.3 −1.18979
\(482\) 10246.5i 0.968293i
\(483\) 1189.85i 0.112092i
\(484\) 5679.77 0.533412
\(485\) 0 0
\(486\) −17924.9 −1.67302
\(487\) − 2020.25i − 0.187980i −0.995573 0.0939899i \(-0.970038\pi\)
0.995573 0.0939899i \(-0.0299621\pi\)
\(488\) 9700.77i 0.899863i
\(489\) −4981.12 −0.460642
\(490\) 0 0
\(491\) 7636.02 0.701851 0.350925 0.936403i \(-0.385867\pi\)
0.350925 + 0.936403i \(0.385867\pi\)
\(492\) − 10696.7i − 0.980173i
\(493\) 635.173i 0.0580259i
\(494\) 51332.6 4.67523
\(495\) 0 0
\(496\) −16.5218 −0.00149567
\(497\) − 3664.15i − 0.330703i
\(498\) − 2715.93i − 0.244385i
\(499\) −6284.56 −0.563799 −0.281900 0.959444i \(-0.590964\pi\)
−0.281900 + 0.959444i \(0.590964\pi\)
\(500\) 0 0
\(501\) 24625.6 2.19599
\(502\) 14255.4i 1.26743i
\(503\) − 11310.9i − 1.00264i −0.865262 0.501319i \(-0.832848\pi\)
0.865262 0.501319i \(-0.167152\pi\)
\(504\) 7556.52 0.667846
\(505\) 0 0
\(506\) 2822.38 0.247965
\(507\) − 47899.7i − 4.19586i
\(508\) − 15885.7i − 1.38743i
\(509\) −10712.7 −0.932876 −0.466438 0.884554i \(-0.654463\pi\)
−0.466438 + 0.884554i \(0.654463\pi\)
\(510\) 0 0
\(511\) 465.279 0.0402793
\(512\) 2927.65i 0.252705i
\(513\) 17099.4i 1.47165i
\(514\) −27897.2 −2.39396
\(515\) 0 0
\(516\) 33528.4 2.86047
\(517\) 3886.02i 0.330574i
\(518\) − 4568.89i − 0.387540i
\(519\) 19685.9 1.66496
\(520\) 0 0
\(521\) 17721.9 1.49023 0.745116 0.666935i \(-0.232394\pi\)
0.745116 + 0.666935i \(0.232394\pi\)
\(522\) − 26871.9i − 2.25317i
\(523\) − 237.193i − 0.0198312i −0.999951 0.00991562i \(-0.996844\pi\)
0.999951 0.00991562i \(-0.00315629\pi\)
\(524\) −13849.2 −1.15459
\(525\) 0 0
\(526\) −27395.0 −2.27088
\(527\) 9.65243i 0 0.000797849i
\(528\) − 2047.59i − 0.168769i
\(529\) 11756.2 0.966237
\(530\) 0 0
\(531\) 36336.4 2.96962
\(532\) 11696.2i 0.953185i
\(533\) − 8473.06i − 0.688572i
\(534\) 359.890 0.0291647
\(535\) 0 0
\(536\) −17382.5 −1.40077
\(537\) − 25466.4i − 2.04647i
\(538\) 15042.8i 1.20546i
\(539\) 1475.47 0.117909
\(540\) 0 0
\(541\) −5352.94 −0.425399 −0.212699 0.977118i \(-0.568226\pi\)
−0.212699 + 0.977118i \(0.568226\pi\)
\(542\) 28886.2i 2.28924i
\(543\) − 7546.06i − 0.596376i
\(544\) 766.391 0.0604021
\(545\) 0 0
\(546\) 24143.5 1.89239
\(547\) − 192.162i − 0.0150206i −0.999972 0.00751030i \(-0.997609\pi\)
0.999972 0.00751030i \(-0.00239063\pi\)
\(548\) − 8650.67i − 0.674340i
\(549\) −16875.6 −1.31190
\(550\) 0 0
\(551\) 16736.5 1.29401
\(552\) 4234.29i 0.326492i
\(553\) 3688.87i 0.283665i
\(554\) −7270.60 −0.557578
\(555\) 0 0
\(556\) 6780.10 0.517159
\(557\) − 4850.62i − 0.368990i −0.982833 0.184495i \(-0.940935\pi\)
0.982833 0.184495i \(-0.0590649\pi\)
\(558\) − 408.360i − 0.0309808i
\(559\) 26558.4 2.00949
\(560\) 0 0
\(561\) −1196.25 −0.0900283
\(562\) 36284.4i 2.72343i
\(563\) − 9699.11i − 0.726055i −0.931778 0.363027i \(-0.881743\pi\)
0.931778 0.363027i \(-0.118257\pi\)
\(564\) −14488.6 −1.08170
\(565\) 0 0
\(566\) −28975.6 −2.15183
\(567\) − 147.865i − 0.0109520i
\(568\) − 13039.5i − 0.963247i
\(569\) −3109.53 −0.229100 −0.114550 0.993417i \(-0.536543\pi\)
−0.114550 + 0.993417i \(0.536543\pi\)
\(570\) 0 0
\(571\) −14476.2 −1.06097 −0.530483 0.847695i \(-0.677990\pi\)
−0.530483 + 0.847695i \(0.677990\pi\)
\(572\) − 35846.8i − 2.62033i
\(573\) 3490.23i 0.254461i
\(574\) 3084.35 0.224283
\(575\) 0 0
\(576\) −35234.2 −2.54877
\(577\) − 2208.23i − 0.159323i −0.996822 0.0796617i \(-0.974616\pi\)
0.996822 0.0796617i \(-0.0253840\pi\)
\(578\) − 22616.7i − 1.62756i
\(579\) −43451.4 −3.11879
\(580\) 0 0
\(581\) 490.186 0.0350023
\(582\) − 162.698i − 0.0115877i
\(583\) 11696.2i 0.830889i
\(584\) 1655.77 0.117322
\(585\) 0 0
\(586\) 33597.4 2.36843
\(587\) − 23988.7i − 1.68675i −0.537327 0.843374i \(-0.680566\pi\)
0.537327 0.843374i \(-0.319434\pi\)
\(588\) 5501.13i 0.385821i
\(589\) 254.338 0.0177925
\(590\) 0 0
\(591\) −12180.2 −0.847762
\(592\) − 1144.37i − 0.0794480i
\(593\) 15869.4i 1.09895i 0.835511 + 0.549474i \(0.185172\pi\)
−0.835511 + 0.549474i \(0.814828\pi\)
\(594\) 19077.0 1.31774
\(595\) 0 0
\(596\) −24472.2 −1.68192
\(597\) 10711.6i 0.734335i
\(598\) 8335.41i 0.570000i
\(599\) 15236.6 1.03932 0.519660 0.854373i \(-0.326059\pi\)
0.519660 + 0.854373i \(0.326059\pi\)
\(600\) 0 0
\(601\) 12258.8 0.832026 0.416013 0.909359i \(-0.363427\pi\)
0.416013 + 0.909359i \(0.363427\pi\)
\(602\) 9667.75i 0.654532i
\(603\) − 30238.9i − 2.04216i
\(604\) −39827.4 −2.68303
\(605\) 0 0
\(606\) −33581.2 −2.25106
\(607\) 23487.2i 1.57054i 0.619155 + 0.785269i \(0.287475\pi\)
−0.619155 + 0.785269i \(0.712525\pi\)
\(608\) − 20194.1i − 1.34700i
\(609\) 7871.78 0.523778
\(610\) 0 0
\(611\) −11476.7 −0.759896
\(612\) − 2747.97i − 0.181503i
\(613\) 22305.3i 1.46966i 0.678251 + 0.734830i \(0.262738\pi\)
−0.678251 + 0.734830i \(0.737262\pi\)
\(614\) 6142.92 0.403759
\(615\) 0 0
\(616\) 5250.71 0.343437
\(617\) 3285.91i 0.214402i 0.994237 + 0.107201i \(0.0341888\pi\)
−0.994237 + 0.107201i \(0.965811\pi\)
\(618\) 45227.1i 2.94385i
\(619\) 11613.1 0.754069 0.377035 0.926199i \(-0.376944\pi\)
0.377035 + 0.926199i \(0.376944\pi\)
\(620\) 0 0
\(621\) −2776.61 −0.179423
\(622\) − 22515.5i − 1.45143i
\(623\) 64.9548i 0.00417714i
\(624\) 6047.21 0.387952
\(625\) 0 0
\(626\) −35763.5 −2.28338
\(627\) 31520.8i 2.00769i
\(628\) 28536.7i 1.81328i
\(629\) −668.567 −0.0423808
\(630\) 0 0
\(631\) 6890.91 0.434743 0.217372 0.976089i \(-0.430252\pi\)
0.217372 + 0.976089i \(0.430252\pi\)
\(632\) 13127.5i 0.826238i
\(633\) − 27332.7i − 1.71623i
\(634\) −37805.9 −2.36824
\(635\) 0 0
\(636\) −43608.1 −2.71883
\(637\) 4357.55i 0.271040i
\(638\) − 18672.2i − 1.15868i
\(639\) 22683.7 1.40431
\(640\) 0 0
\(641\) 18769.3 1.15654 0.578269 0.815846i \(-0.303728\pi\)
0.578269 + 0.815846i \(0.303728\pi\)
\(642\) 2209.36i 0.135820i
\(643\) 3142.30i 0.192722i 0.995346 + 0.0963609i \(0.0307203\pi\)
−0.995346 + 0.0963609i \(0.969280\pi\)
\(644\) −1899.23 −0.116212
\(645\) 0 0
\(646\) 2734.33 0.166533
\(647\) 19038.1i 1.15683i 0.815744 + 0.578413i \(0.196328\pi\)
−0.815744 + 0.578413i \(0.803672\pi\)
\(648\) − 526.204i − 0.0319000i
\(649\) 25248.7 1.52711
\(650\) 0 0
\(651\) 119.624 0.00720188
\(652\) − 7950.82i − 0.477574i
\(653\) 20538.6i 1.23084i 0.788199 + 0.615420i \(0.211014\pi\)
−0.788199 + 0.615420i \(0.788986\pi\)
\(654\) 52703.6 3.15119
\(655\) 0 0
\(656\) 772.534 0.0459793
\(657\) 2880.41i 0.171043i
\(658\) − 4177.72i − 0.247514i
\(659\) 937.046 0.0553902 0.0276951 0.999616i \(-0.491183\pi\)
0.0276951 + 0.999616i \(0.491183\pi\)
\(660\) 0 0
\(661\) 21116.5 1.24257 0.621283 0.783586i \(-0.286612\pi\)
0.621283 + 0.783586i \(0.286612\pi\)
\(662\) 9437.65i 0.554085i
\(663\) − 3532.92i − 0.206949i
\(664\) 1744.41 0.101952
\(665\) 0 0
\(666\) 28284.7 1.64566
\(667\) 2717.69i 0.157765i
\(668\) 39307.1i 2.27670i
\(669\) 36677.5 2.11963
\(670\) 0 0
\(671\) −11726.2 −0.674640
\(672\) − 9497.98i − 0.545227i
\(673\) − 13825.9i − 0.791903i −0.918271 0.395952i \(-0.870415\pi\)
0.918271 0.395952i \(-0.129585\pi\)
\(674\) 33989.3 1.94246
\(675\) 0 0
\(676\) 76456.9 4.35008
\(677\) − 16928.4i − 0.961021i −0.876989 0.480510i \(-0.840451\pi\)
0.876989 0.480510i \(-0.159549\pi\)
\(678\) − 16911.4i − 0.957935i
\(679\) 29.3645 0.00165966
\(680\) 0 0
\(681\) 512.543 0.0288409
\(682\) − 283.752i − 0.0159317i
\(683\) 13817.3i 0.774091i 0.922061 + 0.387045i \(0.126504\pi\)
−0.922061 + 0.387045i \(0.873496\pi\)
\(684\) −72407.8 −4.04763
\(685\) 0 0
\(686\) −1586.23 −0.0882833
\(687\) − 25322.6i − 1.40628i
\(688\) 2421.47i 0.134183i
\(689\) −34542.8 −1.90998
\(690\) 0 0
\(691\) −23671.6 −1.30320 −0.651600 0.758563i \(-0.725902\pi\)
−0.651600 + 0.758563i \(0.725902\pi\)
\(692\) 31422.5i 1.72616i
\(693\) 9134.22i 0.500693i
\(694\) −55818.2 −3.05307
\(695\) 0 0
\(696\) 28013.0 1.52562
\(697\) − 451.333i − 0.0245272i
\(698\) − 20741.0i − 1.12472i
\(699\) −29614.5 −1.60246
\(700\) 0 0
\(701\) −17009.7 −0.916472 −0.458236 0.888831i \(-0.651519\pi\)
−0.458236 + 0.888831i \(0.651519\pi\)
\(702\) 56340.6i 3.02911i
\(703\) 17616.5i 0.945117i
\(704\) −24482.8 −1.31070
\(705\) 0 0
\(706\) 59020.9 3.14629
\(707\) − 6060.91i − 0.322410i
\(708\) 94136.8i 4.99700i
\(709\) −22038.9 −1.16740 −0.583701 0.811969i \(-0.698396\pi\)
−0.583701 + 0.811969i \(0.698396\pi\)
\(710\) 0 0
\(711\) −22836.8 −1.20456
\(712\) 231.152i 0.0121669i
\(713\) 41.2994i 0.00216925i
\(714\) 1286.05 0.0674078
\(715\) 0 0
\(716\) 40649.2 2.12169
\(717\) − 19143.4i − 0.997106i
\(718\) − 11188.8i − 0.581562i
\(719\) −7287.44 −0.377991 −0.188996 0.981978i \(-0.560523\pi\)
−0.188996 + 0.981978i \(0.560523\pi\)
\(720\) 0 0
\(721\) −8162.82 −0.421636
\(722\) − 40328.5i − 2.07877i
\(723\) − 18582.0i − 0.955839i
\(724\) 12044.9 0.618297
\(725\) 0 0
\(726\) −16455.7 −0.841225
\(727\) − 29676.7i − 1.51396i −0.653438 0.756980i \(-0.726674\pi\)
0.653438 0.756980i \(-0.273326\pi\)
\(728\) 15507.0i 0.789463i
\(729\) 31936.3 1.62253
\(730\) 0 0
\(731\) 1414.68 0.0715786
\(732\) − 43719.7i − 2.20755i
\(733\) − 23111.8i − 1.16460i −0.812974 0.582300i \(-0.802153\pi\)
0.812974 0.582300i \(-0.197847\pi\)
\(734\) −32971.9 −1.65806
\(735\) 0 0
\(736\) 3279.12 0.164226
\(737\) − 21011.7i − 1.05017i
\(738\) 19094.3i 0.952400i
\(739\) 31171.4 1.55164 0.775818 0.630957i \(-0.217338\pi\)
0.775818 + 0.630957i \(0.217338\pi\)
\(740\) 0 0
\(741\) −93091.1 −4.61510
\(742\) − 12574.2i − 0.622120i
\(743\) 31324.4i 1.54668i 0.633993 + 0.773338i \(0.281415\pi\)
−0.633993 + 0.773338i \(0.718585\pi\)
\(744\) 425.701 0.0209771
\(745\) 0 0
\(746\) −53630.7 −2.63212
\(747\) 3034.60i 0.148635i
\(748\) − 1909.45i − 0.0933373i
\(749\) −398.756 −0.0194529
\(750\) 0 0
\(751\) 4032.20 0.195922 0.0979608 0.995190i \(-0.468768\pi\)
0.0979608 + 0.995190i \(0.468768\pi\)
\(752\) − 1046.39i − 0.0507419i
\(753\) − 25852.1i − 1.25113i
\(754\) 55145.0 2.66348
\(755\) 0 0
\(756\) −12837.3 −0.617575
\(757\) 34263.7i 1.64509i 0.568699 + 0.822546i \(0.307447\pi\)
−0.568699 + 0.822546i \(0.692553\pi\)
\(758\) − 59059.3i − 2.82999i
\(759\) −5118.36 −0.244775
\(760\) 0 0
\(761\) 7265.88 0.346108 0.173054 0.984912i \(-0.444637\pi\)
0.173054 + 0.984912i \(0.444637\pi\)
\(762\) 46024.8i 2.18806i
\(763\) 9512.22i 0.451331i
\(764\) −5571.07 −0.263814
\(765\) 0 0
\(766\) −34546.0 −1.62950
\(767\) 74567.5i 3.51040i
\(768\) − 41082.4i − 1.93025i
\(769\) −38116.2 −1.78739 −0.893695 0.448674i \(-0.851896\pi\)
−0.893695 + 0.448674i \(0.851896\pi\)
\(770\) 0 0
\(771\) 50591.3 2.36317
\(772\) − 69356.6i − 3.23342i
\(773\) − 16158.2i − 0.751838i −0.926652 0.375919i \(-0.877327\pi\)
0.926652 0.375919i \(-0.122673\pi\)
\(774\) −59850.3 −2.77942
\(775\) 0 0
\(776\) 104.498 0.00483412
\(777\) 8285.64i 0.382555i
\(778\) 40463.9i 1.86465i
\(779\) −11892.4 −0.546972
\(780\) 0 0
\(781\) 15761.9 0.722160
\(782\) 444.001i 0.0203036i
\(783\) 18369.3i 0.838400i
\(784\) −397.301 −0.0180986
\(785\) 0 0
\(786\) 40124.6 1.82086
\(787\) 5092.49i 0.230658i 0.993327 + 0.115329i \(0.0367922\pi\)
−0.993327 + 0.115329i \(0.963208\pi\)
\(788\) − 19441.9i − 0.878922i
\(789\) 49680.6 2.24167
\(790\) 0 0
\(791\) 3052.26 0.137201
\(792\) 32505.6i 1.45838i
\(793\) − 34631.1i − 1.55080i
\(794\) 24858.2 1.11106
\(795\) 0 0
\(796\) −17097.8 −0.761326
\(797\) − 34666.2i − 1.54070i −0.637621 0.770350i \(-0.720081\pi\)
0.637621 0.770350i \(-0.279919\pi\)
\(798\) − 33886.9i − 1.50323i
\(799\) −611.326 −0.0270678
\(800\) 0 0
\(801\) −402.116 −0.0177379
\(802\) − 34043.0i − 1.49888i
\(803\) 2001.47i 0.0879582i
\(804\) 78339.9 3.43636
\(805\) 0 0
\(806\) 838.012 0.0366225
\(807\) − 27279.9i − 1.18996i
\(808\) − 21568.7i − 0.939091i
\(809\) −15126.2 −0.657365 −0.328683 0.944440i \(-0.606605\pi\)
−0.328683 + 0.944440i \(0.606605\pi\)
\(810\) 0 0
\(811\) 29416.5 1.27368 0.636840 0.770996i \(-0.280241\pi\)
0.636840 + 0.770996i \(0.280241\pi\)
\(812\) 12564.9i 0.543030i
\(813\) − 52384.9i − 2.25980i
\(814\) 19653.9 0.846274
\(815\) 0 0
\(816\) 322.116 0.0138190
\(817\) − 37276.3i − 1.59625i
\(818\) − 12081.5i − 0.516404i
\(819\) −26976.3 −1.15095
\(820\) 0 0
\(821\) −15334.4 −0.651856 −0.325928 0.945395i \(-0.605677\pi\)
−0.325928 + 0.945395i \(0.605677\pi\)
\(822\) 25063.2i 1.06348i
\(823\) 11003.7i 0.466056i 0.972470 + 0.233028i \(0.0748634\pi\)
−0.972470 + 0.233028i \(0.925137\pi\)
\(824\) −29048.7 −1.22811
\(825\) 0 0
\(826\) −27143.9 −1.14341
\(827\) − 3261.59i − 0.137142i −0.997646 0.0685711i \(-0.978156\pi\)
0.997646 0.0685711i \(-0.0218440\pi\)
\(828\) − 11757.6i − 0.493484i
\(829\) −5163.30 −0.216319 −0.108160 0.994134i \(-0.534496\pi\)
−0.108160 + 0.994134i \(0.534496\pi\)
\(830\) 0 0
\(831\) 13185.1 0.550406
\(832\) − 72305.6i − 3.01292i
\(833\) 232.113i 0.00965453i
\(834\) −19643.7 −0.815593
\(835\) 0 0
\(836\) −50313.1 −2.08148
\(837\) 279.150i 0.0115279i
\(838\) 20339.8i 0.838457i
\(839\) 5641.70 0.232149 0.116075 0.993241i \(-0.462969\pi\)
0.116075 + 0.993241i \(0.462969\pi\)
\(840\) 0 0
\(841\) −6409.46 −0.262801
\(842\) − 44966.1i − 1.84042i
\(843\) − 65801.4i − 2.68840i
\(844\) 43628.1 1.77931
\(845\) 0 0
\(846\) 25863.0 1.05105
\(847\) − 2970.01i − 0.120485i
\(848\) − 3149.45i − 0.127538i
\(849\) 52546.8 2.12415
\(850\) 0 0
\(851\) −2860.57 −0.115228
\(852\) 58766.7i 2.36304i
\(853\) 7799.52i 0.313072i 0.987672 + 0.156536i \(0.0500327\pi\)
−0.987672 + 0.156536i \(0.949967\pi\)
\(854\) 12606.4 0.505130
\(855\) 0 0
\(856\) −1419.04 −0.0566610
\(857\) − 21540.0i − 0.858568i −0.903170 0.429284i \(-0.858766\pi\)
0.903170 0.429284i \(-0.141234\pi\)
\(858\) 103857.i 4.13244i
\(859\) −4447.97 −0.176674 −0.0883370 0.996091i \(-0.528155\pi\)
−0.0883370 + 0.996091i \(0.528155\pi\)
\(860\) 0 0
\(861\) −5593.43 −0.221398
\(862\) 66198.5i 2.61569i
\(863\) 9425.21i 0.371770i 0.982571 + 0.185885i \(0.0595153\pi\)
−0.982571 + 0.185885i \(0.940485\pi\)
\(864\) 22164.2 0.872733
\(865\) 0 0
\(866\) 10977.0 0.430730
\(867\) 41015.2i 1.60663i
\(868\) 190.942i 0.00746659i
\(869\) −15868.3 −0.619442
\(870\) 0 0
\(871\) 62054.5 2.41405
\(872\) 33850.8i 1.31460i
\(873\) 181.787i 0.00704761i
\(874\) 11699.2 0.452783
\(875\) 0 0
\(876\) −7462.27 −0.287816
\(877\) 22346.1i 0.860403i 0.902733 + 0.430201i \(0.141557\pi\)
−0.902733 + 0.430201i \(0.858443\pi\)
\(878\) − 44088.1i − 1.69465i
\(879\) −60928.6 −2.33796
\(880\) 0 0
\(881\) 12074.9 0.461762 0.230881 0.972982i \(-0.425839\pi\)
0.230881 + 0.972982i \(0.425839\pi\)
\(882\) − 9819.87i − 0.374889i
\(883\) 30499.6i 1.16239i 0.813764 + 0.581196i \(0.197415\pi\)
−0.813764 + 0.581196i \(0.802585\pi\)
\(884\) 5639.22 0.214556
\(885\) 0 0
\(886\) −30743.8 −1.16576
\(887\) 23344.2i 0.883675i 0.897095 + 0.441838i \(0.145673\pi\)
−0.897095 + 0.441838i \(0.854327\pi\)
\(888\) 29485.8i 1.11428i
\(889\) −8306.80 −0.313387
\(890\) 0 0
\(891\) 636.068 0.0239159
\(892\) 58544.3i 2.19754i
\(893\) 16108.2i 0.603628i
\(894\) 70902.3 2.65249
\(895\) 0 0
\(896\) 17260.4 0.643560
\(897\) − 15116.2i − 0.562669i
\(898\) − 3552.85i − 0.132027i
\(899\) 273.227 0.0101364
\(900\) 0 0
\(901\) −1839.98 −0.0680341
\(902\) 13267.8i 0.489768i
\(903\) − 17532.4i − 0.646113i
\(904\) 10862.0 0.399629
\(905\) 0 0
\(906\) 115390. 4.23132
\(907\) − 15092.5i − 0.552523i −0.961082 0.276262i \(-0.910904\pi\)
0.961082 0.276262i \(-0.0890956\pi\)
\(908\) 818.115i 0.0299010i
\(909\) 37521.3 1.36909
\(910\) 0 0
\(911\) −15207.8 −0.553081 −0.276541 0.961002i \(-0.589188\pi\)
−0.276541 + 0.961002i \(0.589188\pi\)
\(912\) − 8487.61i − 0.308172i
\(913\) 2108.62i 0.0764348i
\(914\) −15369.7 −0.556221
\(915\) 0 0
\(916\) 40419.6 1.45797
\(917\) 7241.90i 0.260794i
\(918\) 3001.08i 0.107898i
\(919\) −24818.1 −0.890831 −0.445415 0.895324i \(-0.646944\pi\)
−0.445415 + 0.895324i \(0.646944\pi\)
\(920\) 0 0
\(921\) −11140.1 −0.398566
\(922\) 87130.0i 3.11223i
\(923\) 46550.1i 1.66004i
\(924\) −23664.0 −0.842521
\(925\) 0 0
\(926\) 49756.3 1.76576
\(927\) − 50533.7i − 1.79045i
\(928\) − 21693.9i − 0.767388i
\(929\) −39906.4 −1.40935 −0.704675 0.709530i \(-0.748907\pi\)
−0.704675 + 0.709530i \(0.748907\pi\)
\(930\) 0 0
\(931\) 6116.07 0.215302
\(932\) − 47270.3i − 1.66136i
\(933\) 40831.7i 1.43276i
\(934\) 34414.6 1.20565
\(935\) 0 0
\(936\) −95999.7 −3.35240
\(937\) 16923.0i 0.590020i 0.955494 + 0.295010i \(0.0953230\pi\)
−0.955494 + 0.295010i \(0.904677\pi\)
\(938\) 22589.0i 0.786307i
\(939\) 64856.8 2.25402
\(940\) 0 0
\(941\) −53014.1 −1.83657 −0.918285 0.395921i \(-0.870426\pi\)
−0.918285 + 0.395921i \(0.870426\pi\)
\(942\) − 82678.1i − 2.85966i
\(943\) − 1931.10i − 0.0666864i
\(944\) −6798.71 −0.234406
\(945\) 0 0
\(946\) −41587.4 −1.42931
\(947\) − 25798.9i − 0.885271i −0.896702 0.442636i \(-0.854043\pi\)
0.896702 0.442636i \(-0.145957\pi\)
\(948\) − 59163.2i − 2.02693i
\(949\) −5911.00 −0.202191
\(950\) 0 0
\(951\) 68560.6 2.33778
\(952\) 826.011i 0.0281210i
\(953\) 17942.7i 0.609885i 0.952371 + 0.304943i \(0.0986373\pi\)
−0.952371 + 0.304943i \(0.901363\pi\)
\(954\) 77843.2 2.64179
\(955\) 0 0
\(956\) 30556.6 1.03375
\(957\) 33861.8i 1.14378i
\(958\) 26322.9i 0.887739i
\(959\) −4523.53 −0.152317
\(960\) 0 0
\(961\) −29786.8 −0.999861
\(962\) 58044.2i 1.94534i
\(963\) − 2468.59i − 0.0826055i
\(964\) 29660.4 0.990971
\(965\) 0 0
\(966\) 5502.56 0.183273
\(967\) 19668.3i 0.654073i 0.945012 + 0.327036i \(0.106050\pi\)
−0.945012 + 0.327036i \(0.893950\pi\)
\(968\) − 10569.3i − 0.350940i
\(969\) −4958.67 −0.164392
\(970\) 0 0
\(971\) 6332.97 0.209304 0.104652 0.994509i \(-0.466627\pi\)
0.104652 + 0.994509i \(0.466627\pi\)
\(972\) 51886.7i 1.71221i
\(973\) − 3545.39i − 0.116814i
\(974\) −9342.76 −0.307353
\(975\) 0 0
\(976\) 3157.51 0.103555
\(977\) − 11334.1i − 0.371145i −0.982631 0.185573i \(-0.940586\pi\)
0.982631 0.185573i \(-0.0594140\pi\)
\(978\) 23035.5i 0.753164i
\(979\) −279.414 −0.00912166
\(980\) 0 0
\(981\) −58887.4 −1.91655
\(982\) − 35313.3i − 1.14755i
\(983\) 37654.3i 1.22175i 0.791725 + 0.610877i \(0.209183\pi\)
−0.791725 + 0.610877i \(0.790817\pi\)
\(984\) −19905.1 −0.644871
\(985\) 0 0
\(986\) 2937.40 0.0948741
\(987\) 7576.24i 0.244331i
\(988\) − 148591.i − 4.78473i
\(989\) 6052.95 0.194613
\(990\) 0 0
\(991\) −53441.5 −1.71304 −0.856522 0.516111i \(-0.827379\pi\)
−0.856522 + 0.516111i \(0.827379\pi\)
\(992\) − 329.671i − 0.0105515i
\(993\) − 17115.1i − 0.546959i
\(994\) −16945.1 −0.540710
\(995\) 0 0
\(996\) −7861.74 −0.250109
\(997\) 37919.3i 1.20453i 0.798296 + 0.602266i \(0.205735\pi\)
−0.798296 + 0.602266i \(0.794265\pi\)
\(998\) 29063.4i 0.921829i
\(999\) −19335.1 −0.612348
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.4.b.e.99.1 6
5.2 odd 4 175.4.a.f.1.3 3
5.3 odd 4 35.4.a.c.1.1 3
5.4 even 2 inner 175.4.b.e.99.6 6
15.2 even 4 1575.4.a.ba.1.1 3
15.8 even 4 315.4.a.p.1.3 3
20.3 even 4 560.4.a.u.1.3 3
35.3 even 12 245.4.e.n.226.3 6
35.13 even 4 245.4.a.l.1.1 3
35.18 odd 12 245.4.e.m.226.3 6
35.23 odd 12 245.4.e.m.116.3 6
35.27 even 4 1225.4.a.y.1.3 3
35.33 even 12 245.4.e.n.116.3 6
40.3 even 4 2240.4.a.bv.1.1 3
40.13 odd 4 2240.4.a.bt.1.3 3
105.83 odd 4 2205.4.a.bm.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.a.c.1.1 3 5.3 odd 4
175.4.a.f.1.3 3 5.2 odd 4
175.4.b.e.99.1 6 1.1 even 1 trivial
175.4.b.e.99.6 6 5.4 even 2 inner
245.4.a.l.1.1 3 35.13 even 4
245.4.e.m.116.3 6 35.23 odd 12
245.4.e.m.226.3 6 35.18 odd 12
245.4.e.n.116.3 6 35.33 even 12
245.4.e.n.226.3 6 35.3 even 12
315.4.a.p.1.3 3 15.8 even 4
560.4.a.u.1.3 3 20.3 even 4
1225.4.a.y.1.3 3 35.27 even 4
1575.4.a.ba.1.1 3 15.2 even 4
2205.4.a.bm.1.3 3 105.83 odd 4
2240.4.a.bt.1.3 3 40.13 odd 4
2240.4.a.bv.1.1 3 40.3 even 4