Properties

Label 175.4.b.d.99.1
Level $175$
Weight $4$
Character 175.99
Analytic conductor $10.325$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(99,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.99");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{41})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 21x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.1
Root \(-3.70156i\) of defining polynomial
Character \(\chi\) \(=\) 175.99
Dual form 175.4.b.d.99.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.70156i q^{2} -5.70156i q^{3} -5.70156 q^{4} -21.1047 q^{6} -7.00000i q^{7} -8.50781i q^{8} -5.50781 q^{9} -60.0156 q^{11} +32.5078i q^{12} +0.387503i q^{13} -25.9109 q^{14} -77.1047 q^{16} +35.4922i q^{17} +20.3875i q^{18} +6.08907 q^{19} -39.9109 q^{21} +222.152i q^{22} -31.5078i q^{23} -48.5078 q^{24} +1.43437 q^{26} -122.539i q^{27} +39.9109i q^{28} +292.942 q^{29} +130.303 q^{31} +217.345i q^{32} +342.183i q^{33} +131.377 q^{34} +31.4031 q^{36} -219.989i q^{37} -22.5391i q^{38} +2.20937 q^{39} -447.795 q^{41} +147.733i q^{42} +210.020i q^{43} +342.183 q^{44} -116.628 q^{46} -457.769i q^{47} +439.617i q^{48} -49.0000 q^{49} +202.361 q^{51} -2.20937i q^{52} +144.334i q^{53} -453.586 q^{54} -59.5547 q^{56} -34.7172i q^{57} -1084.34i q^{58} -767.328 q^{59} +667.884 q^{61} -482.325i q^{62} +38.5547i q^{63} +187.680 q^{64} +1266.61 q^{66} +77.4593i q^{67} -202.361i q^{68} -179.644 q^{69} -906.573 q^{71} +46.8594i q^{72} -1029.72i q^{73} -814.303 q^{74} -34.7172 q^{76} +420.109i q^{77} -8.17813i q^{78} +690.764 q^{79} -847.375 q^{81} +1657.54i q^{82} -979.408i q^{83} +227.555 q^{84} +777.403 q^{86} -1670.23i q^{87} +510.602i q^{88} +910.927 q^{89} +2.71252 q^{91} +179.644i q^{92} -742.931i q^{93} -1694.46 q^{94} +1239.21 q^{96} -11.1751i q^{97} +181.377i q^{98} +330.555 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 10 q^{4} - 46 q^{6} + 42 q^{9} - 112 q^{11} - 14 q^{14} - 270 q^{16} + 114 q^{19} - 70 q^{21} - 130 q^{24} - 276 q^{26} + 826 q^{29} - 324 q^{31} - 102 q^{34} + 100 q^{36} - 68 q^{39} - 1010 q^{41}+ \cdots + 874 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 3.70156i − 1.30870i −0.756192 0.654350i \(-0.772942\pi\)
0.756192 0.654350i \(-0.227058\pi\)
\(3\) − 5.70156i − 1.09727i −0.836063 0.548633i \(-0.815148\pi\)
0.836063 0.548633i \(-0.184852\pi\)
\(4\) −5.70156 −0.712695
\(5\) 0 0
\(6\) −21.1047 −1.43599
\(7\) − 7.00000i − 0.377964i
\(8\) − 8.50781i − 0.375996i
\(9\) −5.50781 −0.203993
\(10\) 0 0
\(11\) −60.0156 −1.64504 −0.822518 0.568739i \(-0.807431\pi\)
−0.822518 + 0.568739i \(0.807431\pi\)
\(12\) 32.5078i 0.782016i
\(13\) 0.387503i 0.00826723i 0.999991 + 0.00413362i \(0.00131577\pi\)
−0.999991 + 0.00413362i \(0.998684\pi\)
\(14\) −25.9109 −0.494642
\(15\) 0 0
\(16\) −77.1047 −1.20476
\(17\) 35.4922i 0.506360i 0.967419 + 0.253180i \(0.0814765\pi\)
−0.967419 + 0.253180i \(0.918524\pi\)
\(18\) 20.3875i 0.266966i
\(19\) 6.08907 0.0735225 0.0367612 0.999324i \(-0.488296\pi\)
0.0367612 + 0.999324i \(0.488296\pi\)
\(20\) 0 0
\(21\) −39.9109 −0.414728
\(22\) 222.152i 2.15286i
\(23\) − 31.5078i − 0.285645i −0.989748 0.142822i \(-0.954382\pi\)
0.989748 0.142822i \(-0.0456178\pi\)
\(24\) −48.5078 −0.412567
\(25\) 0 0
\(26\) 1.43437 0.0108193
\(27\) − 122.539i − 0.873432i
\(28\) 39.9109i 0.269373i
\(29\) 292.942 1.87579 0.937896 0.346915i \(-0.112771\pi\)
0.937896 + 0.346915i \(0.112771\pi\)
\(30\) 0 0
\(31\) 130.303 0.754940 0.377470 0.926022i \(-0.376794\pi\)
0.377470 + 0.926022i \(0.376794\pi\)
\(32\) 217.345i 1.20067i
\(33\) 342.183i 1.80504i
\(34\) 131.377 0.662673
\(35\) 0 0
\(36\) 31.4031 0.145385
\(37\) − 219.989i − 0.977459i −0.872435 0.488729i \(-0.837461\pi\)
0.872435 0.488729i \(-0.162539\pi\)
\(38\) − 22.5391i − 0.0962189i
\(39\) 2.20937 0.00907135
\(40\) 0 0
\(41\) −447.795 −1.70570 −0.852852 0.522153i \(-0.825129\pi\)
−0.852852 + 0.522153i \(0.825129\pi\)
\(42\) 147.733i 0.542754i
\(43\) 210.020i 0.744832i 0.928066 + 0.372416i \(0.121471\pi\)
−0.928066 + 0.372416i \(0.878529\pi\)
\(44\) 342.183 1.17241
\(45\) 0 0
\(46\) −116.628 −0.373823
\(47\) − 457.769i − 1.42069i −0.703854 0.710345i \(-0.748539\pi\)
0.703854 0.710345i \(-0.251461\pi\)
\(48\) 439.617i 1.32194i
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) 202.361 0.555612
\(52\) − 2.20937i − 0.00589202i
\(53\) 144.334i 0.374073i 0.982353 + 0.187036i \(0.0598882\pi\)
−0.982353 + 0.187036i \(0.940112\pi\)
\(54\) −453.586 −1.14306
\(55\) 0 0
\(56\) −59.5547 −0.142113
\(57\) − 34.7172i − 0.0806737i
\(58\) − 1084.34i − 2.45485i
\(59\) −767.328 −1.69318 −0.846590 0.532246i \(-0.821348\pi\)
−0.846590 + 0.532246i \(0.821348\pi\)
\(60\) 0 0
\(61\) 667.884 1.40187 0.700933 0.713227i \(-0.252767\pi\)
0.700933 + 0.713227i \(0.252767\pi\)
\(62\) − 482.325i − 0.987989i
\(63\) 38.5547i 0.0771021i
\(64\) 187.680 0.366562
\(65\) 0 0
\(66\) 1266.61 2.36226
\(67\) 77.4593i 0.141241i 0.997503 + 0.0706206i \(0.0224980\pi\)
−0.997503 + 0.0706206i \(0.977502\pi\)
\(68\) − 202.361i − 0.360880i
\(69\) −179.644 −0.313428
\(70\) 0 0
\(71\) −906.573 −1.51536 −0.757679 0.652627i \(-0.773667\pi\)
−0.757679 + 0.652627i \(0.773667\pi\)
\(72\) 46.8594i 0.0767005i
\(73\) − 1029.72i − 1.65095i −0.564436 0.825477i \(-0.690906\pi\)
0.564436 0.825477i \(-0.309094\pi\)
\(74\) −814.303 −1.27920
\(75\) 0 0
\(76\) −34.7172 −0.0523991
\(77\) 420.109i 0.621765i
\(78\) − 8.17813i − 0.0118717i
\(79\) 690.764 0.983760 0.491880 0.870663i \(-0.336310\pi\)
0.491880 + 0.870663i \(0.336310\pi\)
\(80\) 0 0
\(81\) −847.375 −1.16238
\(82\) 1657.54i 2.23225i
\(83\) − 979.408i − 1.29523i −0.761968 0.647614i \(-0.775767\pi\)
0.761968 0.647614i \(-0.224233\pi\)
\(84\) 227.555 0.295574
\(85\) 0 0
\(86\) 777.403 0.974762
\(87\) − 1670.23i − 2.05824i
\(88\) 510.602i 0.618526i
\(89\) 910.927 1.08492 0.542461 0.840081i \(-0.317493\pi\)
0.542461 + 0.840081i \(0.317493\pi\)
\(90\) 0 0
\(91\) 2.71252 0.00312472
\(92\) 179.644i 0.203578i
\(93\) − 742.931i − 0.828370i
\(94\) −1694.46 −1.85926
\(95\) 0 0
\(96\) 1239.21 1.31746
\(97\) − 11.1751i − 0.0116975i −0.999983 0.00584876i \(-0.998138\pi\)
0.999983 0.00584876i \(-0.00186173\pi\)
\(98\) 181.377i 0.186957i
\(99\) 330.555 0.335576
\(100\) 0 0
\(101\) 675.850 0.665837 0.332919 0.942956i \(-0.391967\pi\)
0.332919 + 0.942956i \(0.391967\pi\)
\(102\) − 749.052i − 0.727129i
\(103\) − 1528.88i − 1.46257i −0.682071 0.731286i \(-0.738921\pi\)
0.682071 0.731286i \(-0.261079\pi\)
\(104\) 3.29680 0.00310844
\(105\) 0 0
\(106\) 534.263 0.489549
\(107\) − 701.595i − 0.633886i −0.948445 0.316943i \(-0.897344\pi\)
0.948445 0.316943i \(-0.102656\pi\)
\(108\) 698.664i 0.622491i
\(109\) 597.130 0.524722 0.262361 0.964970i \(-0.415499\pi\)
0.262361 + 0.964970i \(0.415499\pi\)
\(110\) 0 0
\(111\) −1254.28 −1.07253
\(112\) 539.733i 0.455357i
\(113\) 88.1187i 0.0733585i 0.999327 + 0.0366792i \(0.0116780\pi\)
−0.999327 + 0.0366792i \(0.988322\pi\)
\(114\) −128.508 −0.105578
\(115\) 0 0
\(116\) −1670.23 −1.33687
\(117\) − 2.13429i − 0.00168646i
\(118\) 2840.31i 2.21586i
\(119\) 248.445 0.191386
\(120\) 0 0
\(121\) 2270.87 1.70614
\(122\) − 2472.22i − 1.83462i
\(123\) 2553.13i 1.87161i
\(124\) −742.931 −0.538042
\(125\) 0 0
\(126\) 142.713 0.100904
\(127\) 2119.35i 1.48080i 0.672166 + 0.740401i \(0.265364\pi\)
−0.672166 + 0.740401i \(0.734636\pi\)
\(128\) 1044.05i 0.720955i
\(129\) 1197.44 0.817279
\(130\) 0 0
\(131\) −264.294 −0.176271 −0.0881353 0.996109i \(-0.528091\pi\)
−0.0881353 + 0.996109i \(0.528091\pi\)
\(132\) − 1950.98i − 1.28644i
\(133\) − 42.6235i − 0.0277889i
\(134\) 286.720 0.184842
\(135\) 0 0
\(136\) 301.961 0.190389
\(137\) − 468.227i − 0.291995i −0.989285 0.145997i \(-0.953361\pi\)
0.989285 0.145997i \(-0.0466391\pi\)
\(138\) 664.962i 0.410184i
\(139\) −956.908 −0.583913 −0.291956 0.956432i \(-0.594306\pi\)
−0.291956 + 0.956432i \(0.594306\pi\)
\(140\) 0 0
\(141\) −2610.00 −1.55888
\(142\) 3355.74i 1.98315i
\(143\) − 23.2562i − 0.0135999i
\(144\) 424.678 0.245763
\(145\) 0 0
\(146\) −3811.57 −2.16060
\(147\) 279.377i 0.156752i
\(148\) 1254.28i 0.696630i
\(149\) 382.967 0.210563 0.105282 0.994442i \(-0.466426\pi\)
0.105282 + 0.994442i \(0.466426\pi\)
\(150\) 0 0
\(151\) 1302.98 0.702218 0.351109 0.936335i \(-0.385805\pi\)
0.351109 + 0.936335i \(0.385805\pi\)
\(152\) − 51.8046i − 0.0276441i
\(153\) − 195.484i − 0.103294i
\(154\) 1555.06 0.813704
\(155\) 0 0
\(156\) −12.5969 −0.00646511
\(157\) 3203.32i 1.62836i 0.580610 + 0.814182i \(0.302814\pi\)
−0.580610 + 0.814182i \(0.697186\pi\)
\(158\) − 2556.91i − 1.28745i
\(159\) 822.931 0.410457
\(160\) 0 0
\(161\) −220.555 −0.107964
\(162\) 3136.61i 1.52121i
\(163\) 1368.81i 0.657752i 0.944373 + 0.328876i \(0.106670\pi\)
−0.944373 + 0.328876i \(0.893330\pi\)
\(164\) 2553.13 1.21565
\(165\) 0 0
\(166\) −3625.34 −1.69507
\(167\) − 3073.34i − 1.42409i −0.702136 0.712043i \(-0.747770\pi\)
0.702136 0.712043i \(-0.252230\pi\)
\(168\) 339.555i 0.155936i
\(169\) 2196.85 0.999932
\(170\) 0 0
\(171\) −33.5374 −0.0149981
\(172\) − 1197.44i − 0.530839i
\(173\) − 2402.16i − 1.05568i −0.849343 0.527841i \(-0.823002\pi\)
0.849343 0.527841i \(-0.176998\pi\)
\(174\) −6182.45 −2.69362
\(175\) 0 0
\(176\) 4627.49 1.98187
\(177\) 4374.97i 1.85787i
\(178\) − 3371.85i − 1.41984i
\(179\) 1146.25 0.478628 0.239314 0.970942i \(-0.423077\pi\)
0.239314 + 0.970942i \(0.423077\pi\)
\(180\) 0 0
\(181\) −475.847 −0.195411 −0.0977056 0.995215i \(-0.531150\pi\)
−0.0977056 + 0.995215i \(0.531150\pi\)
\(182\) − 10.0406i − 0.00408932i
\(183\) − 3807.98i − 1.53822i
\(184\) −268.062 −0.107401
\(185\) 0 0
\(186\) −2750.01 −1.08409
\(187\) − 2130.09i − 0.832980i
\(188\) 2610.00i 1.01252i
\(189\) −857.773 −0.330126
\(190\) 0 0
\(191\) 990.003 0.375048 0.187524 0.982260i \(-0.439954\pi\)
0.187524 + 0.982260i \(0.439954\pi\)
\(192\) − 1070.07i − 0.402216i
\(193\) 1392.88i 0.519492i 0.965677 + 0.259746i \(0.0836389\pi\)
−0.965677 + 0.259746i \(0.916361\pi\)
\(194\) −41.3653 −0.0153085
\(195\) 0 0
\(196\) 279.377 0.101814
\(197\) 3583.39i 1.29597i 0.761653 + 0.647985i \(0.224388\pi\)
−0.761653 + 0.647985i \(0.775612\pi\)
\(198\) − 1223.57i − 0.439168i
\(199\) −623.947 −0.222263 −0.111132 0.993806i \(-0.535448\pi\)
−0.111132 + 0.993806i \(0.535448\pi\)
\(200\) 0 0
\(201\) 441.639 0.154979
\(202\) − 2501.70i − 0.871381i
\(203\) − 2050.60i − 0.708983i
\(204\) −1153.77 −0.395982
\(205\) 0 0
\(206\) −5659.24 −1.91407
\(207\) 173.539i 0.0582696i
\(208\) − 29.8783i − 0.00996004i
\(209\) −365.439 −0.120947
\(210\) 0 0
\(211\) 2266.48 0.739482 0.369741 0.929135i \(-0.379446\pi\)
0.369741 + 0.929135i \(0.379446\pi\)
\(212\) − 822.931i − 0.266600i
\(213\) 5168.88i 1.66275i
\(214\) −2597.00 −0.829566
\(215\) 0 0
\(216\) −1042.54 −0.328406
\(217\) − 912.122i − 0.285340i
\(218\) − 2210.31i − 0.686703i
\(219\) −5871.01 −1.81154
\(220\) 0 0
\(221\) −13.7533 −0.00418620
\(222\) 4642.80i 1.40362i
\(223\) 2118.67i 0.636217i 0.948054 + 0.318108i \(0.103048\pi\)
−0.948054 + 0.318108i \(0.896952\pi\)
\(224\) 1521.42 0.453812
\(225\) 0 0
\(226\) 326.177 0.0960042
\(227\) − 2790.62i − 0.815948i −0.912994 0.407974i \(-0.866235\pi\)
0.912994 0.407974i \(-0.133765\pi\)
\(228\) 197.942i 0.0574958i
\(229\) 5813.77 1.67766 0.838832 0.544390i \(-0.183239\pi\)
0.838832 + 0.544390i \(0.183239\pi\)
\(230\) 0 0
\(231\) 2395.28 0.682242
\(232\) − 2492.30i − 0.705290i
\(233\) 1936.18i 0.544392i 0.962242 + 0.272196i \(0.0877499\pi\)
−0.962242 + 0.272196i \(0.912250\pi\)
\(234\) −7.90022 −0.00220707
\(235\) 0 0
\(236\) 4374.97 1.20672
\(237\) − 3938.43i − 1.07945i
\(238\) − 919.636i − 0.250467i
\(239\) 2755.79 0.745845 0.372923 0.927862i \(-0.378356\pi\)
0.372923 + 0.927862i \(0.378356\pi\)
\(240\) 0 0
\(241\) −4025.23 −1.07588 −0.537942 0.842982i \(-0.680798\pi\)
−0.537942 + 0.842982i \(0.680798\pi\)
\(242\) − 8405.78i − 2.23283i
\(243\) 1522.81i 0.402009i
\(244\) −3807.98 −0.999103
\(245\) 0 0
\(246\) 9450.58 2.44938
\(247\) 2.35953i 0 0.000607827i
\(248\) − 1108.59i − 0.283854i
\(249\) −5584.15 −1.42121
\(250\) 0 0
\(251\) 7166.64 1.80221 0.901104 0.433602i \(-0.142758\pi\)
0.901104 + 0.433602i \(0.142758\pi\)
\(252\) − 219.822i − 0.0549503i
\(253\) 1890.96i 0.469896i
\(254\) 7844.90 1.93792
\(255\) 0 0
\(256\) 5366.07 1.31008
\(257\) − 647.756i − 0.157221i −0.996905 0.0786107i \(-0.974952\pi\)
0.996905 0.0786107i \(-0.0250484\pi\)
\(258\) − 4432.41i − 1.06957i
\(259\) −1539.92 −0.369445
\(260\) 0 0
\(261\) −1613.47 −0.382649
\(262\) 978.300i 0.230685i
\(263\) − 6131.33i − 1.43754i −0.695246 0.718771i \(-0.744705\pi\)
0.695246 0.718771i \(-0.255295\pi\)
\(264\) 2911.23 0.678688
\(265\) 0 0
\(266\) −157.773 −0.0363673
\(267\) − 5193.70i − 1.19045i
\(268\) − 441.639i − 0.100662i
\(269\) 975.631 0.221135 0.110567 0.993869i \(-0.464733\pi\)
0.110567 + 0.993869i \(0.464733\pi\)
\(270\) 0 0
\(271\) 4672.83 1.04743 0.523716 0.851893i \(-0.324545\pi\)
0.523716 + 0.851893i \(0.324545\pi\)
\(272\) − 2736.61i − 0.610043i
\(273\) − 15.4656i − 0.00342865i
\(274\) −1733.17 −0.382134
\(275\) 0 0
\(276\) 1024.25 0.223379
\(277\) − 2390.16i − 0.518451i −0.965817 0.259226i \(-0.916533\pi\)
0.965817 0.259226i \(-0.0834673\pi\)
\(278\) 3542.05i 0.764166i
\(279\) −717.685 −0.154002
\(280\) 0 0
\(281\) −3321.28 −0.705092 −0.352546 0.935794i \(-0.614684\pi\)
−0.352546 + 0.935794i \(0.614684\pi\)
\(282\) 9661.07i 2.04010i
\(283\) 8260.15i 1.73504i 0.497406 + 0.867518i \(0.334286\pi\)
−0.497406 + 0.867518i \(0.665714\pi\)
\(284\) 5168.88 1.07999
\(285\) 0 0
\(286\) −86.0844 −0.0177982
\(287\) 3134.57i 0.644696i
\(288\) − 1197.10i − 0.244929i
\(289\) 3653.30 0.743600
\(290\) 0 0
\(291\) −63.7155 −0.0128353
\(292\) 5871.01i 1.17663i
\(293\) − 628.249i − 0.125265i −0.998037 0.0626326i \(-0.980050\pi\)
0.998037 0.0626326i \(-0.0199496\pi\)
\(294\) 1034.13 0.205142
\(295\) 0 0
\(296\) −1871.63 −0.367520
\(297\) 7354.26i 1.43683i
\(298\) − 1417.58i − 0.275564i
\(299\) 12.2094 0.00236149
\(300\) 0 0
\(301\) 1470.14 0.281520
\(302\) − 4823.06i − 0.918993i
\(303\) − 3853.40i − 0.730601i
\(304\) −469.495 −0.0885770
\(305\) 0 0
\(306\) −723.597 −0.135181
\(307\) − 25.2045i − 0.00468565i −0.999997 0.00234283i \(-0.999254\pi\)
0.999997 0.00234283i \(-0.000745745\pi\)
\(308\) − 2395.28i − 0.443129i
\(309\) −8716.99 −1.60483
\(310\) 0 0
\(311\) −9436.18 −1.72050 −0.860252 0.509870i \(-0.829694\pi\)
−0.860252 + 0.509870i \(0.829694\pi\)
\(312\) − 18.7969i − 0.00341079i
\(313\) − 2778.60i − 0.501776i −0.968016 0.250888i \(-0.919277\pi\)
0.968016 0.250888i \(-0.0807225\pi\)
\(314\) 11857.3 2.13104
\(315\) 0 0
\(316\) −3938.43 −0.701121
\(317\) 2980.21i 0.528030i 0.964519 + 0.264015i \(0.0850468\pi\)
−0.964519 + 0.264015i \(0.914953\pi\)
\(318\) − 3046.13i − 0.537165i
\(319\) −17581.1 −3.08575
\(320\) 0 0
\(321\) −4000.19 −0.695541
\(322\) 816.397i 0.141292i
\(323\) 216.114i 0.0372289i
\(324\) 4831.36 0.828423
\(325\) 0 0
\(326\) 5066.74 0.860800
\(327\) − 3404.57i − 0.575759i
\(328\) 3809.76i 0.641337i
\(329\) −3204.38 −0.536970
\(330\) 0 0
\(331\) 2588.16 0.429782 0.214891 0.976638i \(-0.431060\pi\)
0.214891 + 0.976638i \(0.431060\pi\)
\(332\) 5584.15i 0.923103i
\(333\) 1211.66i 0.199395i
\(334\) −11376.2 −1.86370
\(335\) 0 0
\(336\) 3077.32 0.499648
\(337\) − 5284.64i − 0.854221i −0.904199 0.427110i \(-0.859532\pi\)
0.904199 0.427110i \(-0.140468\pi\)
\(338\) − 8131.78i − 1.30861i
\(339\) 502.414 0.0804938
\(340\) 0 0
\(341\) −7820.22 −1.24190
\(342\) 124.141i 0.0196280i
\(343\) 343.000i 0.0539949i
\(344\) 1786.81 0.280054
\(345\) 0 0
\(346\) −8891.75 −1.38157
\(347\) 11787.7i 1.82363i 0.410606 + 0.911813i \(0.365317\pi\)
−0.410606 + 0.911813i \(0.634683\pi\)
\(348\) 9522.91i 1.46690i
\(349\) −8765.61 −1.34445 −0.672224 0.740347i \(-0.734661\pi\)
−0.672224 + 0.740347i \(0.734661\pi\)
\(350\) 0 0
\(351\) 47.4843 0.00722086
\(352\) − 13044.1i − 1.97515i
\(353\) 8578.29i 1.29342i 0.762737 + 0.646709i \(0.223855\pi\)
−0.762737 + 0.646709i \(0.776145\pi\)
\(354\) 16194.2 2.43139
\(355\) 0 0
\(356\) −5193.70 −0.773218
\(357\) − 1416.53i − 0.210001i
\(358\) − 4242.90i − 0.626380i
\(359\) −3730.38 −0.548417 −0.274209 0.961670i \(-0.588416\pi\)
−0.274209 + 0.961670i \(0.588416\pi\)
\(360\) 0 0
\(361\) −6821.92 −0.994594
\(362\) 1761.38i 0.255735i
\(363\) − 12947.5i − 1.87209i
\(364\) −15.4656 −0.00222697
\(365\) 0 0
\(366\) −14095.5 −2.01307
\(367\) 515.769i 0.0733594i 0.999327 + 0.0366797i \(0.0116781\pi\)
−0.999327 + 0.0366797i \(0.988322\pi\)
\(368\) 2429.40i 0.344134i
\(369\) 2466.37 0.347952
\(370\) 0 0
\(371\) 1010.34 0.141386
\(372\) 4235.87i 0.590375i
\(373\) 10922.0i 1.51614i 0.652173 + 0.758071i \(0.273858\pi\)
−0.652173 + 0.758071i \(0.726142\pi\)
\(374\) −7884.64 −1.09012
\(375\) 0 0
\(376\) −3894.61 −0.534173
\(377\) 113.516i 0.0155076i
\(378\) 3175.10i 0.432036i
\(379\) 8403.14 1.13889 0.569446 0.822029i \(-0.307158\pi\)
0.569446 + 0.822029i \(0.307158\pi\)
\(380\) 0 0
\(381\) 12083.6 1.62483
\(382\) − 3664.56i − 0.490825i
\(383\) − 3030.68i − 0.404336i −0.979351 0.202168i \(-0.935201\pi\)
0.979351 0.202168i \(-0.0647986\pi\)
\(384\) 5952.74 0.791080
\(385\) 0 0
\(386\) 5155.85 0.679859
\(387\) − 1156.75i − 0.151941i
\(388\) 63.7155i 0.00833677i
\(389\) −1403.25 −0.182899 −0.0914497 0.995810i \(-0.529150\pi\)
−0.0914497 + 0.995810i \(0.529150\pi\)
\(390\) 0 0
\(391\) 1118.28 0.144639
\(392\) 416.883i 0.0537137i
\(393\) 1506.89i 0.193416i
\(394\) 13264.1 1.69604
\(395\) 0 0
\(396\) −1884.68 −0.239163
\(397\) − 55.9118i − 0.00706835i −0.999994 0.00353417i \(-0.998875\pi\)
0.999994 0.00353417i \(-0.00112497\pi\)
\(398\) 2309.58i 0.290876i
\(399\) −243.020 −0.0304918
\(400\) 0 0
\(401\) −3730.18 −0.464529 −0.232264 0.972653i \(-0.574613\pi\)
−0.232264 + 0.972653i \(0.574613\pi\)
\(402\) − 1634.75i − 0.202821i
\(403\) 50.4928i 0.00624126i
\(404\) −3853.40 −0.474539
\(405\) 0 0
\(406\) −7590.41 −0.927846
\(407\) 13202.8i 1.60795i
\(408\) − 1721.65i − 0.208908i
\(409\) 1968.50 0.237985 0.118993 0.992895i \(-0.462033\pi\)
0.118993 + 0.992895i \(0.462033\pi\)
\(410\) 0 0
\(411\) −2669.62 −0.320396
\(412\) 8716.99i 1.04237i
\(413\) 5371.30i 0.639962i
\(414\) 642.366 0.0762574
\(415\) 0 0
\(416\) −84.2220 −0.00992625
\(417\) 5455.87i 0.640708i
\(418\) 1352.70i 0.158283i
\(419\) 13208.4 1.54003 0.770015 0.638026i \(-0.220249\pi\)
0.770015 + 0.638026i \(0.220249\pi\)
\(420\) 0 0
\(421\) −7485.74 −0.866586 −0.433293 0.901253i \(-0.642648\pi\)
−0.433293 + 0.901253i \(0.642648\pi\)
\(422\) − 8389.50i − 0.967760i
\(423\) 2521.30i 0.289811i
\(424\) 1227.97 0.140650
\(425\) 0 0
\(426\) 19132.9 2.17604
\(427\) − 4675.19i − 0.529856i
\(428\) 4000.19i 0.451767i
\(429\) −132.597 −0.0149227
\(430\) 0 0
\(431\) 10623.4 1.18726 0.593631 0.804737i \(-0.297694\pi\)
0.593631 + 0.804737i \(0.297694\pi\)
\(432\) 9448.34i 1.05228i
\(433\) 7268.73i 0.806727i 0.915040 + 0.403364i \(0.132159\pi\)
−0.915040 + 0.403364i \(0.867841\pi\)
\(434\) −3376.28 −0.373425
\(435\) 0 0
\(436\) −3404.57 −0.373967
\(437\) − 191.853i − 0.0210013i
\(438\) 21731.9i 2.37076i
\(439\) 743.352 0.0808161 0.0404080 0.999183i \(-0.487134\pi\)
0.0404080 + 0.999183i \(0.487134\pi\)
\(440\) 0 0
\(441\) 269.883 0.0291419
\(442\) 50.9088i 0.00547847i
\(443\) 10857.8i 1.16449i 0.813013 + 0.582246i \(0.197826\pi\)
−0.813013 + 0.582246i \(0.802174\pi\)
\(444\) 7151.36 0.764389
\(445\) 0 0
\(446\) 7842.37 0.832617
\(447\) − 2183.51i − 0.231044i
\(448\) − 1313.76i − 0.138547i
\(449\) 11162.9 1.17329 0.586645 0.809844i \(-0.300448\pi\)
0.586645 + 0.809844i \(0.300448\pi\)
\(450\) 0 0
\(451\) 26874.7 2.80594
\(452\) − 502.414i − 0.0522822i
\(453\) − 7429.02i − 0.770520i
\(454\) −10329.7 −1.06783
\(455\) 0 0
\(456\) −295.367 −0.0303330
\(457\) − 13451.0i − 1.37683i −0.725318 0.688414i \(-0.758307\pi\)
0.725318 0.688414i \(-0.241693\pi\)
\(458\) − 21520.0i − 2.19556i
\(459\) 4349.18 0.442271
\(460\) 0 0
\(461\) −9139.46 −0.923356 −0.461678 0.887048i \(-0.652752\pi\)
−0.461678 + 0.887048i \(0.652752\pi\)
\(462\) − 8866.28i − 0.892850i
\(463\) − 13122.5i − 1.31718i −0.752504 0.658588i \(-0.771154\pi\)
0.752504 0.658588i \(-0.228846\pi\)
\(464\) −22587.2 −2.25988
\(465\) 0 0
\(466\) 7166.89 0.712446
\(467\) − 11921.2i − 1.18126i −0.806943 0.590629i \(-0.798880\pi\)
0.806943 0.590629i \(-0.201120\pi\)
\(468\) 12.1688i 0.00120193i
\(469\) 542.215 0.0533842
\(470\) 0 0
\(471\) 18264.0 1.78675
\(472\) 6528.28i 0.636628i
\(473\) − 12604.5i − 1.22528i
\(474\) −14578.4 −1.41267
\(475\) 0 0
\(476\) −1416.53 −0.136400
\(477\) − 794.966i − 0.0763082i
\(478\) − 10200.7i − 0.976088i
\(479\) −825.281 −0.0787224 −0.0393612 0.999225i \(-0.512532\pi\)
−0.0393612 + 0.999225i \(0.512532\pi\)
\(480\) 0 0
\(481\) 85.2464 0.00808088
\(482\) 14899.6i 1.40801i
\(483\) 1257.51i 0.118465i
\(484\) −12947.5 −1.21596
\(485\) 0 0
\(486\) 5636.76 0.526108
\(487\) 6678.32i 0.621404i 0.950507 + 0.310702i \(0.100564\pi\)
−0.950507 + 0.310702i \(0.899436\pi\)
\(488\) − 5682.23i − 0.527096i
\(489\) 7804.36 0.721729
\(490\) 0 0
\(491\) −3098.65 −0.284807 −0.142403 0.989809i \(-0.545483\pi\)
−0.142403 + 0.989809i \(0.545483\pi\)
\(492\) − 14556.8i − 1.33389i
\(493\) 10397.2i 0.949827i
\(494\) 8.73395 0.000795464 0
\(495\) 0 0
\(496\) −10047.0 −0.909522
\(497\) 6346.01i 0.572752i
\(498\) 20670.1i 1.85994i
\(499\) 2265.10 0.203206 0.101603 0.994825i \(-0.467603\pi\)
0.101603 + 0.994825i \(0.467603\pi\)
\(500\) 0 0
\(501\) −17522.8 −1.56260
\(502\) − 26527.8i − 2.35855i
\(503\) − 9980.43i − 0.884703i −0.896842 0.442351i \(-0.854144\pi\)
0.896842 0.442351i \(-0.145856\pi\)
\(504\) 328.016 0.0289901
\(505\) 0 0
\(506\) 6999.51 0.614953
\(507\) − 12525.5i − 1.09719i
\(508\) − 12083.6i − 1.05536i
\(509\) 4956.16 0.431588 0.215794 0.976439i \(-0.430766\pi\)
0.215794 + 0.976439i \(0.430766\pi\)
\(510\) 0 0
\(511\) −7208.04 −0.624002
\(512\) − 11510.4i − 0.993541i
\(513\) − 746.148i − 0.0642169i
\(514\) −2397.71 −0.205756
\(515\) 0 0
\(516\) −6827.30 −0.582471
\(517\) 27473.3i 2.33709i
\(518\) 5700.12i 0.483492i
\(519\) −13696.1 −1.15836
\(520\) 0 0
\(521\) 3442.97 0.289519 0.144759 0.989467i \(-0.453759\pi\)
0.144759 + 0.989467i \(0.453759\pi\)
\(522\) 5972.36i 0.500772i
\(523\) − 11109.9i − 0.928878i −0.885605 0.464439i \(-0.846256\pi\)
0.885605 0.464439i \(-0.153744\pi\)
\(524\) 1506.89 0.125627
\(525\) 0 0
\(526\) −22695.5 −1.88131
\(527\) 4624.74i 0.382271i
\(528\) − 26383.9i − 2.17464i
\(529\) 11174.3 0.918407
\(530\) 0 0
\(531\) 4226.30 0.345397
\(532\) 243.020i 0.0198050i
\(533\) − 173.522i − 0.0141015i
\(534\) −19224.8 −1.55794
\(535\) 0 0
\(536\) 659.009 0.0531061
\(537\) − 6535.39i − 0.525182i
\(538\) − 3611.36i − 0.289399i
\(539\) 2940.77 0.235005
\(540\) 0 0
\(541\) 3680.65 0.292502 0.146251 0.989248i \(-0.453279\pi\)
0.146251 + 0.989248i \(0.453279\pi\)
\(542\) − 17296.8i − 1.37078i
\(543\) 2713.07i 0.214418i
\(544\) −7714.06 −0.607974
\(545\) 0 0
\(546\) −57.2469 −0.00448707
\(547\) − 14657.4i − 1.14572i −0.819655 0.572858i \(-0.805835\pi\)
0.819655 0.572858i \(-0.194165\pi\)
\(548\) 2669.62i 0.208103i
\(549\) −3678.58 −0.285971
\(550\) 0 0
\(551\) 1783.74 0.137913
\(552\) 1528.37i 0.117848i
\(553\) − 4835.35i − 0.371826i
\(554\) −8847.33 −0.678497
\(555\) 0 0
\(556\) 5455.87 0.416152
\(557\) 6547.61i 0.498081i 0.968493 + 0.249040i \(0.0801152\pi\)
−0.968493 + 0.249040i \(0.919885\pi\)
\(558\) 2656.55i 0.201543i
\(559\) −81.3835 −0.00615770
\(560\) 0 0
\(561\) −12144.8 −0.914001
\(562\) 12293.9i 0.922754i
\(563\) − 11983.3i − 0.897047i −0.893771 0.448523i \(-0.851950\pi\)
0.893771 0.448523i \(-0.148050\pi\)
\(564\) 14881.1 1.11100
\(565\) 0 0
\(566\) 30575.5 2.27064
\(567\) 5931.62i 0.439338i
\(568\) 7712.95i 0.569768i
\(569\) −19164.8 −1.41200 −0.706002 0.708210i \(-0.749503\pi\)
−0.706002 + 0.708210i \(0.749503\pi\)
\(570\) 0 0
\(571\) 14618.8 1.07142 0.535708 0.844403i \(-0.320045\pi\)
0.535708 + 0.844403i \(0.320045\pi\)
\(572\) 132.597i 0.00969258i
\(573\) − 5644.57i − 0.411527i
\(574\) 11602.8 0.843713
\(575\) 0 0
\(576\) −1033.70 −0.0747760
\(577\) − 12446.8i − 0.898033i −0.893523 0.449017i \(-0.851774\pi\)
0.893523 0.449017i \(-0.148226\pi\)
\(578\) − 13522.9i − 0.973149i
\(579\) 7941.62 0.570021
\(580\) 0 0
\(581\) −6855.85 −0.489550
\(582\) 235.847i 0.0167976i
\(583\) − 8662.32i − 0.615363i
\(584\) −8760.66 −0.620752
\(585\) 0 0
\(586\) −2325.50 −0.163935
\(587\) 7467.53i 0.525073i 0.964922 + 0.262537i \(0.0845590\pi\)
−0.964922 + 0.262537i \(0.915441\pi\)
\(588\) − 1592.88i − 0.111717i
\(589\) 793.424 0.0555050
\(590\) 0 0
\(591\) 20430.9 1.42202
\(592\) 16962.2i 1.17760i
\(593\) 26703.9i 1.84924i 0.380892 + 0.924619i \(0.375617\pi\)
−0.380892 + 0.924619i \(0.624383\pi\)
\(594\) 27222.2 1.88037
\(595\) 0 0
\(596\) −2183.51 −0.150067
\(597\) 3557.47i 0.243882i
\(598\) − 45.1938i − 0.00309048i
\(599\) −6896.60 −0.470430 −0.235215 0.971943i \(-0.575579\pi\)
−0.235215 + 0.971943i \(0.575579\pi\)
\(600\) 0 0
\(601\) 18156.5 1.23231 0.616154 0.787626i \(-0.288690\pi\)
0.616154 + 0.787626i \(0.288690\pi\)
\(602\) − 5441.82i − 0.368425i
\(603\) − 426.631i − 0.0288122i
\(604\) −7429.02 −0.500468
\(605\) 0 0
\(606\) −14263.6 −0.956137
\(607\) 2074.50i 0.138717i 0.997592 + 0.0693587i \(0.0220953\pi\)
−0.997592 + 0.0693587i \(0.977905\pi\)
\(608\) 1323.43i 0.0882766i
\(609\) −11691.6 −0.777943
\(610\) 0 0
\(611\) 177.387 0.0117452
\(612\) 1114.57i 0.0736171i
\(613\) 12159.4i 0.801162i 0.916261 + 0.400581i \(0.131192\pi\)
−0.916261 + 0.400581i \(0.868808\pi\)
\(614\) −93.2959 −0.00613211
\(615\) 0 0
\(616\) 3574.21 0.233781
\(617\) 4359.84i 0.284474i 0.989833 + 0.142237i \(0.0454295\pi\)
−0.989833 + 0.142237i \(0.954570\pi\)
\(618\) 32266.5i 2.10024i
\(619\) 29046.6 1.88608 0.943038 0.332684i \(-0.107954\pi\)
0.943038 + 0.332684i \(0.107954\pi\)
\(620\) 0 0
\(621\) −3860.94 −0.249491
\(622\) 34928.6i 2.25162i
\(623\) − 6376.49i − 0.410062i
\(624\) −170.353 −0.0109288
\(625\) 0 0
\(626\) −10285.2 −0.656674
\(627\) 2083.57i 0.132711i
\(628\) − 18264.0i − 1.16053i
\(629\) 7807.89 0.494946
\(630\) 0 0
\(631\) −14708.4 −0.927946 −0.463973 0.885849i \(-0.653577\pi\)
−0.463973 + 0.885849i \(0.653577\pi\)
\(632\) − 5876.89i − 0.369889i
\(633\) − 12922.5i − 0.811408i
\(634\) 11031.4 0.691033
\(635\) 0 0
\(636\) −4691.99 −0.292531
\(637\) − 18.9876i − 0.00118103i
\(638\) 65077.6i 4.03832i
\(639\) 4993.23 0.309123
\(640\) 0 0
\(641\) −24048.7 −1.48185 −0.740925 0.671588i \(-0.765612\pi\)
−0.740925 + 0.671588i \(0.765612\pi\)
\(642\) 14806.9i 0.910255i
\(643\) 19196.1i 1.17732i 0.808380 + 0.588661i \(0.200345\pi\)
−0.808380 + 0.588661i \(0.799655\pi\)
\(644\) 1257.51 0.0769452
\(645\) 0 0
\(646\) 799.960 0.0487214
\(647\) − 7185.82i − 0.436636i −0.975878 0.218318i \(-0.929943\pi\)
0.975878 0.218318i \(-0.0700571\pi\)
\(648\) 7209.31i 0.437050i
\(649\) 46051.7 2.78534
\(650\) 0 0
\(651\) −5200.52 −0.313094
\(652\) − 7804.36i − 0.468777i
\(653\) 403.329i 0.0241707i 0.999927 + 0.0120854i \(0.00384698\pi\)
−0.999927 + 0.0120854i \(0.996153\pi\)
\(654\) −12602.2 −0.753496
\(655\) 0 0
\(656\) 34527.1 2.05497
\(657\) 5671.50i 0.336783i
\(658\) 11861.2i 0.702733i
\(659\) −20527.9 −1.21343 −0.606716 0.794919i \(-0.707513\pi\)
−0.606716 + 0.794919i \(0.707513\pi\)
\(660\) 0 0
\(661\) −4372.75 −0.257307 −0.128654 0.991690i \(-0.541066\pi\)
−0.128654 + 0.991690i \(0.541066\pi\)
\(662\) − 9580.22i − 0.562456i
\(663\) 78.4155i 0.00459337i
\(664\) −8332.62 −0.487000
\(665\) 0 0
\(666\) 4485.03 0.260948
\(667\) − 9229.97i − 0.535811i
\(668\) 17522.8i 1.01494i
\(669\) 12079.7 0.698099
\(670\) 0 0
\(671\) −40083.5 −2.30612
\(672\) − 8674.45i − 0.497953i
\(673\) − 19902.7i − 1.13996i −0.821659 0.569980i \(-0.806951\pi\)
0.821659 0.569980i \(-0.193049\pi\)
\(674\) −19561.4 −1.11792
\(675\) 0 0
\(676\) −12525.5 −0.712647
\(677\) − 9714.40i − 0.551484i −0.961232 0.275742i \(-0.911076\pi\)
0.961232 0.275742i \(-0.0889235\pi\)
\(678\) − 1859.72i − 0.105342i
\(679\) −78.2257 −0.00442125
\(680\) 0 0
\(681\) −15910.9 −0.895312
\(682\) 28947.0i 1.62528i
\(683\) − 88.0227i − 0.00493132i −0.999997 0.00246566i \(-0.999215\pi\)
0.999997 0.00246566i \(-0.000784845\pi\)
\(684\) 191.216 0.0106891
\(685\) 0 0
\(686\) 1269.64 0.0706631
\(687\) − 33147.6i − 1.84084i
\(688\) − 16193.5i − 0.897345i
\(689\) −55.9300 −0.00309254
\(690\) 0 0
\(691\) 3722.48 0.204934 0.102467 0.994736i \(-0.467326\pi\)
0.102467 + 0.994736i \(0.467326\pi\)
\(692\) 13696.1i 0.752380i
\(693\) − 2313.88i − 0.126836i
\(694\) 43633.0 2.38658
\(695\) 0 0
\(696\) −14210.0 −0.773891
\(697\) − 15893.2i − 0.863700i
\(698\) 32446.5i 1.75948i
\(699\) 11039.2 0.597343
\(700\) 0 0
\(701\) 13167.2 0.709443 0.354722 0.934972i \(-0.384576\pi\)
0.354722 + 0.934972i \(0.384576\pi\)
\(702\) − 175.766i − 0.00944994i
\(703\) − 1339.53i − 0.0718652i
\(704\) −11263.7 −0.603007
\(705\) 0 0
\(706\) 31753.1 1.69270
\(707\) − 4730.95i − 0.251663i
\(708\) − 24944.2i − 1.32409i
\(709\) 14539.6 0.770166 0.385083 0.922882i \(-0.374173\pi\)
0.385083 + 0.922882i \(0.374173\pi\)
\(710\) 0 0
\(711\) −3804.60 −0.200680
\(712\) − 7749.99i − 0.407926i
\(713\) − 4105.57i − 0.215645i
\(714\) −5243.36 −0.274829
\(715\) 0 0
\(716\) −6535.39 −0.341116
\(717\) − 15712.3i − 0.818391i
\(718\) 13808.2i 0.717713i
\(719\) −26509.9 −1.37504 −0.687519 0.726166i \(-0.741300\pi\)
−0.687519 + 0.726166i \(0.741300\pi\)
\(720\) 0 0
\(721\) −10702.1 −0.552800
\(722\) 25251.8i 1.30163i
\(723\) 22950.1i 1.18053i
\(724\) 2713.07 0.139269
\(725\) 0 0
\(726\) −47926.1 −2.45001
\(727\) − 11761.8i − 0.600030i −0.953934 0.300015i \(-0.903008\pi\)
0.953934 0.300015i \(-0.0969918\pi\)
\(728\) − 23.0776i − 0.00117488i
\(729\) −14196.7 −0.721270
\(730\) 0 0
\(731\) −7454.08 −0.377153
\(732\) 21711.5i 1.09628i
\(733\) − 6458.47i − 0.325442i −0.986672 0.162721i \(-0.947973\pi\)
0.986672 0.162721i \(-0.0520270\pi\)
\(734\) 1909.15 0.0960055
\(735\) 0 0
\(736\) 6848.07 0.342967
\(737\) − 4648.77i − 0.232347i
\(738\) − 9129.43i − 0.455364i
\(739\) −33663.0 −1.67566 −0.837830 0.545932i \(-0.816176\pi\)
−0.837830 + 0.545932i \(0.816176\pi\)
\(740\) 0 0
\(741\) 13.4530 0.000666948 0
\(742\) − 3739.84i − 0.185032i
\(743\) − 19979.4i − 0.986506i −0.869886 0.493253i \(-0.835808\pi\)
0.869886 0.493253i \(-0.164192\pi\)
\(744\) −6320.72 −0.311463
\(745\) 0 0
\(746\) 40428.5 1.98417
\(747\) 5394.39i 0.264218i
\(748\) 12144.8i 0.593661i
\(749\) −4911.17 −0.239586
\(750\) 0 0
\(751\) −31850.0 −1.54757 −0.773785 0.633449i \(-0.781639\pi\)
−0.773785 + 0.633449i \(0.781639\pi\)
\(752\) 35296.1i 1.71159i
\(753\) − 40861.1i − 1.97750i
\(754\) 420.186 0.0202948
\(755\) 0 0
\(756\) 4890.65 0.235279
\(757\) 39396.6i 1.89154i 0.324840 + 0.945769i \(0.394690\pi\)
−0.324840 + 0.945769i \(0.605310\pi\)
\(758\) − 31104.7i − 1.49047i
\(759\) 10781.4 0.515601
\(760\) 0 0
\(761\) −7170.87 −0.341582 −0.170791 0.985307i \(-0.554632\pi\)
−0.170791 + 0.985307i \(0.554632\pi\)
\(762\) − 44728.2i − 2.12642i
\(763\) − 4179.91i − 0.198326i
\(764\) −5644.57 −0.267295
\(765\) 0 0
\(766\) −11218.3 −0.529154
\(767\) − 297.342i − 0.0139979i
\(768\) − 30595.0i − 1.43750i
\(769\) −27056.7 −1.26878 −0.634388 0.773015i \(-0.718748\pi\)
−0.634388 + 0.773015i \(0.718748\pi\)
\(770\) 0 0
\(771\) −3693.22 −0.172514
\(772\) − 7941.62i − 0.370240i
\(773\) 40087.8i 1.86527i 0.360815 + 0.932637i \(0.382499\pi\)
−0.360815 + 0.932637i \(0.617501\pi\)
\(774\) −4281.79 −0.198845
\(775\) 0 0
\(776\) −95.0757 −0.00439822
\(777\) 8779.97i 0.405379i
\(778\) 5194.23i 0.239360i
\(779\) −2726.65 −0.125408
\(780\) 0 0
\(781\) 54408.6 2.49282
\(782\) − 4139.39i − 0.189289i
\(783\) − 35896.9i − 1.63838i
\(784\) 3778.13 0.172109
\(785\) 0 0
\(786\) 5577.84 0.253123
\(787\) 23501.4i 1.06447i 0.846598 + 0.532233i \(0.178647\pi\)
−0.846598 + 0.532233i \(0.821353\pi\)
\(788\) − 20430.9i − 0.923632i
\(789\) −34958.1 −1.57737
\(790\) 0 0
\(791\) 616.831 0.0277269
\(792\) − 2812.30i − 0.126175i
\(793\) 258.807i 0.0115896i
\(794\) −206.961 −0.00925035
\(795\) 0 0
\(796\) 3557.47 0.158406
\(797\) 1635.92i 0.0727066i 0.999339 + 0.0363533i \(0.0115742\pi\)
−0.999339 + 0.0363533i \(0.988426\pi\)
\(798\) 899.555i 0.0399046i
\(799\) 16247.2 0.719381
\(800\) 0 0
\(801\) −5017.21 −0.221316
\(802\) 13807.5i 0.607929i
\(803\) 61799.3i 2.71588i
\(804\) −2518.03 −0.110453
\(805\) 0 0
\(806\) 186.902 0.00816794
\(807\) − 5562.62i − 0.242644i
\(808\) − 5750.00i − 0.250352i
\(809\) 33824.6 1.46998 0.734988 0.678080i \(-0.237188\pi\)
0.734988 + 0.678080i \(0.237188\pi\)
\(810\) 0 0
\(811\) −3636.30 −0.157445 −0.0787224 0.996897i \(-0.525084\pi\)
−0.0787224 + 0.996897i \(0.525084\pi\)
\(812\) 11691.6i 0.505289i
\(813\) − 26642.4i − 1.14931i
\(814\) 48870.9 2.10433
\(815\) 0 0
\(816\) −15603.0 −0.669379
\(817\) 1278.83i 0.0547619i
\(818\) − 7286.52i − 0.311451i
\(819\) −14.9401 −0.000637421 0
\(820\) 0 0
\(821\) 2417.39 0.102762 0.0513808 0.998679i \(-0.483638\pi\)
0.0513808 + 0.998679i \(0.483638\pi\)
\(822\) 9881.78i 0.419302i
\(823\) 15752.2i 0.667178i 0.942719 + 0.333589i \(0.108260\pi\)
−0.942719 + 0.333589i \(0.891740\pi\)
\(824\) −13007.4 −0.549920
\(825\) 0 0
\(826\) 19882.2 0.837518
\(827\) − 4850.49i − 0.203952i −0.994787 0.101976i \(-0.967484\pi\)
0.994787 0.101976i \(-0.0325164\pi\)
\(828\) − 989.444i − 0.0415284i
\(829\) −33160.3 −1.38927 −0.694636 0.719362i \(-0.744434\pi\)
−0.694636 + 0.719362i \(0.744434\pi\)
\(830\) 0 0
\(831\) −13627.7 −0.568879
\(832\) 72.7264i 0.00303045i
\(833\) − 1739.12i − 0.0723371i
\(834\) 20195.2 0.838494
\(835\) 0 0
\(836\) 2083.57 0.0861984
\(837\) − 15967.2i − 0.659388i
\(838\) − 48891.7i − 2.01544i
\(839\) −14966.6 −0.615857 −0.307929 0.951409i \(-0.599636\pi\)
−0.307929 + 0.951409i \(0.599636\pi\)
\(840\) 0 0
\(841\) 61426.1 2.51860
\(842\) 27708.9i 1.13410i
\(843\) 18936.5i 0.773674i
\(844\) −12922.5 −0.527025
\(845\) 0 0
\(846\) 9332.76 0.379275
\(847\) − 15896.1i − 0.644861i
\(848\) − 11128.9i − 0.450668i
\(849\) 47095.8 1.90380
\(850\) 0 0
\(851\) −6931.37 −0.279206
\(852\) − 29470.7i − 1.18504i
\(853\) − 5806.35i − 0.233066i −0.993187 0.116533i \(-0.962822\pi\)
0.993187 0.116533i \(-0.0371781\pi\)
\(854\) −17305.5 −0.693422
\(855\) 0 0
\(856\) −5969.04 −0.238338
\(857\) 9191.52i 0.366367i 0.983079 + 0.183183i \(0.0586402\pi\)
−0.983079 + 0.183183i \(0.941360\pi\)
\(858\) 490.816i 0.0195293i
\(859\) −15029.2 −0.596962 −0.298481 0.954416i \(-0.596480\pi\)
−0.298481 + 0.954416i \(0.596480\pi\)
\(860\) 0 0
\(861\) 17871.9 0.707403
\(862\) − 39323.1i − 1.55377i
\(863\) 17147.5i 0.676369i 0.941080 + 0.338185i \(0.109813\pi\)
−0.941080 + 0.338185i \(0.890187\pi\)
\(864\) 26633.3 1.04871
\(865\) 0 0
\(866\) 26905.7 1.05576
\(867\) − 20829.5i − 0.815927i
\(868\) 5200.52i 0.203361i
\(869\) −41456.6 −1.61832
\(870\) 0 0
\(871\) −30.0157 −0.00116767
\(872\) − 5080.27i − 0.197293i
\(873\) 61.5504i 0.00238621i
\(874\) −710.156 −0.0274844
\(875\) 0 0
\(876\) 33473.9 1.29107
\(877\) − 33483.6i − 1.28924i −0.764505 0.644618i \(-0.777016\pi\)
0.764505 0.644618i \(-0.222984\pi\)
\(878\) − 2751.56i − 0.105764i
\(879\) −3582.00 −0.137449
\(880\) 0 0
\(881\) −10695.6 −0.409019 −0.204509 0.978865i \(-0.565560\pi\)
−0.204509 + 0.978865i \(0.565560\pi\)
\(882\) − 998.988i − 0.0381379i
\(883\) − 31934.0i − 1.21706i −0.793530 0.608531i \(-0.791759\pi\)
0.793530 0.608531i \(-0.208241\pi\)
\(884\) 78.4155 0.00298348
\(885\) 0 0
\(886\) 40190.9 1.52397
\(887\) 10655.2i 0.403345i 0.979453 + 0.201672i \(0.0646376\pi\)
−0.979453 + 0.201672i \(0.935362\pi\)
\(888\) 10671.2i 0.403268i
\(889\) 14835.4 0.559690
\(890\) 0 0
\(891\) 50855.7 1.91216
\(892\) − 12079.7i − 0.453429i
\(893\) − 2787.38i − 0.104453i
\(894\) −8082.41 −0.302367
\(895\) 0 0
\(896\) 7308.38 0.272495
\(897\) − 69.6125i − 0.00259119i
\(898\) − 41320.0i − 1.53549i
\(899\) 38171.3 1.41611
\(900\) 0 0
\(901\) −5122.74 −0.189415
\(902\) − 99478.4i − 3.67214i
\(903\) − 8382.11i − 0.308903i
\(904\) 749.697 0.0275825
\(905\) 0 0
\(906\) −27499.0 −1.00838
\(907\) − 20737.2i − 0.759171i −0.925157 0.379585i \(-0.876067\pi\)
0.925157 0.379585i \(-0.123933\pi\)
\(908\) 15910.9i 0.581522i
\(909\) −3722.45 −0.135826
\(910\) 0 0
\(911\) 11734.8 0.426774 0.213387 0.976968i \(-0.431550\pi\)
0.213387 + 0.976968i \(0.431550\pi\)
\(912\) 2676.86i 0.0971926i
\(913\) 58779.8i 2.13070i
\(914\) −49789.7 −1.80185
\(915\) 0 0
\(916\) −33147.6 −1.19566
\(917\) 1850.06i 0.0666240i
\(918\) − 16098.8i − 0.578800i
\(919\) 21922.8 0.786906 0.393453 0.919345i \(-0.371280\pi\)
0.393453 + 0.919345i \(0.371280\pi\)
\(920\) 0 0
\(921\) −143.705 −0.00514141
\(922\) 33830.3i 1.20840i
\(923\) − 351.300i − 0.0125278i
\(924\) −13656.8 −0.486230
\(925\) 0 0
\(926\) −48573.6 −1.72379
\(927\) 8420.77i 0.298354i
\(928\) 63669.6i 2.25222i
\(929\) 36647.7 1.29427 0.647133 0.762377i \(-0.275968\pi\)
0.647133 + 0.762377i \(0.275968\pi\)
\(930\) 0 0
\(931\) −298.364 −0.0105032
\(932\) − 11039.2i − 0.387986i
\(933\) 53801.0i 1.88785i
\(934\) −44127.1 −1.54591
\(935\) 0 0
\(936\) −18.1582 −0.000634101 0
\(937\) 24959.7i 0.870222i 0.900377 + 0.435111i \(0.143291\pi\)
−0.900377 + 0.435111i \(0.856709\pi\)
\(938\) − 2007.04i − 0.0698638i
\(939\) −15842.4 −0.550581
\(940\) 0 0
\(941\) 17086.7 0.591935 0.295968 0.955198i \(-0.404358\pi\)
0.295968 + 0.955198i \(0.404358\pi\)
\(942\) − 67605.2i − 2.33832i
\(943\) 14109.0i 0.487226i
\(944\) 59164.6 2.03988
\(945\) 0 0
\(946\) −46656.3 −1.60352
\(947\) 54034.9i 1.85417i 0.374852 + 0.927085i \(0.377693\pi\)
−0.374852 + 0.927085i \(0.622307\pi\)
\(948\) 22455.2i 0.769316i
\(949\) 399.020 0.0136488
\(950\) 0 0
\(951\) 16991.9 0.579389
\(952\) − 2113.73i − 0.0719603i
\(953\) 24377.9i 0.828622i 0.910135 + 0.414311i \(0.135977\pi\)
−0.910135 + 0.414311i \(0.864023\pi\)
\(954\) −2942.62 −0.0998645
\(955\) 0 0
\(956\) −15712.3 −0.531561
\(957\) 100240.i 3.38588i
\(958\) 3054.83i 0.103024i
\(959\) −3277.59 −0.110364
\(960\) 0 0
\(961\) −12812.1 −0.430066
\(962\) − 315.545i − 0.0105754i
\(963\) 3864.25i 0.129308i
\(964\) 22950.1 0.766777
\(965\) 0 0
\(966\) 4654.74 0.155035
\(967\) − 32668.1i − 1.08639i −0.839607 0.543194i \(-0.817215\pi\)
0.839607 0.543194i \(-0.182785\pi\)
\(968\) − 19320.2i − 0.641502i
\(969\) 1232.19 0.0408500
\(970\) 0 0
\(971\) 24623.2 0.813795 0.406898 0.913474i \(-0.366611\pi\)
0.406898 + 0.913474i \(0.366611\pi\)
\(972\) − 8682.37i − 0.286510i
\(973\) 6698.36i 0.220698i
\(974\) 24720.2 0.813231
\(975\) 0 0
\(976\) −51497.0 −1.68891
\(977\) − 18320.6i − 0.599926i −0.953951 0.299963i \(-0.903026\pi\)
0.953951 0.299963i \(-0.0969743\pi\)
\(978\) − 28888.3i − 0.944526i
\(979\) −54669.8 −1.78473
\(980\) 0 0
\(981\) −3288.88 −0.107040
\(982\) 11469.8i 0.372727i
\(983\) − 2176.33i − 0.0706145i −0.999377 0.0353072i \(-0.988759\pi\)
0.999377 0.0353072i \(-0.0112410\pi\)
\(984\) 21721.6 0.703718
\(985\) 0 0
\(986\) 38485.7 1.24304
\(987\) 18270.0i 0.589199i
\(988\) − 13.4530i 0 0.000433196i
\(989\) 6617.28 0.212758
\(990\) 0 0
\(991\) −21487.2 −0.688761 −0.344381 0.938830i \(-0.611911\pi\)
−0.344381 + 0.938830i \(0.611911\pi\)
\(992\) 28320.8i 0.906437i
\(993\) − 14756.5i − 0.471586i
\(994\) 23490.2 0.749560
\(995\) 0 0
\(996\) 31838.4 1.01289
\(997\) − 19083.0i − 0.606182i −0.952962 0.303091i \(-0.901981\pi\)
0.952962 0.303091i \(-0.0980187\pi\)
\(998\) − 8384.41i − 0.265936i
\(999\) −26957.2 −0.853743
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.4.b.d.99.1 4
5.2 odd 4 175.4.a.e.1.2 yes 2
5.3 odd 4 175.4.a.d.1.1 2
5.4 even 2 inner 175.4.b.d.99.4 4
15.2 even 4 1575.4.a.s.1.1 2
15.8 even 4 1575.4.a.v.1.2 2
35.13 even 4 1225.4.a.r.1.1 2
35.27 even 4 1225.4.a.t.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.4.a.d.1.1 2 5.3 odd 4
175.4.a.e.1.2 yes 2 5.2 odd 4
175.4.b.d.99.1 4 1.1 even 1 trivial
175.4.b.d.99.4 4 5.4 even 2 inner
1225.4.a.r.1.1 2 35.13 even 4
1225.4.a.t.1.2 2 35.27 even 4
1575.4.a.s.1.1 2 15.2 even 4
1575.4.a.v.1.2 2 15.8 even 4