Properties

Label 175.4.a.j.1.4
Level $175$
Weight $4$
Character 175.1
Self dual yes
Analytic conductor $10.325$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(1,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 27x^{3} + 7x^{2} + 120x + 60 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.85474\) of defining polynomial
Character \(\chi\) \(=\) 175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.85474 q^{2} +8.98858 q^{3} +0.149548 q^{4} +25.6601 q^{6} +7.00000 q^{7} -22.4110 q^{8} +53.7945 q^{9} +37.4408 q^{11} +1.34423 q^{12} +3.96370 q^{13} +19.9832 q^{14} -65.1740 q^{16} +51.6780 q^{17} +153.569 q^{18} +25.9323 q^{19} +62.9200 q^{21} +106.884 q^{22} -173.454 q^{23} -201.443 q^{24} +11.3154 q^{26} +240.845 q^{27} +1.04684 q^{28} -245.676 q^{29} -172.074 q^{31} -6.76690 q^{32} +336.539 q^{33} +147.527 q^{34} +8.04488 q^{36} -250.699 q^{37} +74.0300 q^{38} +35.6281 q^{39} -48.8649 q^{41} +179.620 q^{42} -143.612 q^{43} +5.59920 q^{44} -495.167 q^{46} -36.6415 q^{47} -585.822 q^{48} +49.0000 q^{49} +464.511 q^{51} +0.592765 q^{52} +645.286 q^{53} +687.549 q^{54} -156.877 q^{56} +233.094 q^{57} -701.343 q^{58} +395.495 q^{59} +47.5130 q^{61} -491.228 q^{62} +376.562 q^{63} +502.074 q^{64} +960.733 q^{66} +263.189 q^{67} +7.72835 q^{68} -1559.11 q^{69} -268.177 q^{71} -1205.59 q^{72} +199.757 q^{73} -715.680 q^{74} +3.87813 q^{76} +262.085 q^{77} +101.709 q^{78} +473.640 q^{79} +712.399 q^{81} -139.497 q^{82} -72.7028 q^{83} +9.40958 q^{84} -409.975 q^{86} -2208.28 q^{87} -839.086 q^{88} -1552.25 q^{89} +27.7459 q^{91} -25.9398 q^{92} -1546.70 q^{93} -104.602 q^{94} -60.8248 q^{96} +243.338 q^{97} +139.882 q^{98} +2014.11 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 4 q^{2} + 10 q^{3} + 18 q^{4} + 6 q^{6} + 35 q^{7} + 42 q^{8} + 23 q^{9} + 42 q^{11} + 136 q^{12} + 34 q^{13} + 28 q^{14} + 74 q^{16} + 238 q^{17} - 2 q^{18} - 36 q^{19} + 70 q^{21} + 358 q^{22} + 152 q^{23}+ \cdots + 2652 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.85474 1.00930 0.504652 0.863323i \(-0.331621\pi\)
0.504652 + 0.863323i \(0.331621\pi\)
\(3\) 8.98858 1.72985 0.864926 0.501899i \(-0.167365\pi\)
0.864926 + 0.501899i \(0.167365\pi\)
\(4\) 0.149548 0.0186935
\(5\) 0 0
\(6\) 25.6601 1.74595
\(7\) 7.00000 0.377964
\(8\) −22.4110 −0.990436
\(9\) 53.7945 1.99239
\(10\) 0 0
\(11\) 37.4408 1.02626 0.513128 0.858312i \(-0.328487\pi\)
0.513128 + 0.858312i \(0.328487\pi\)
\(12\) 1.34423 0.0323371
\(13\) 3.96370 0.0845641 0.0422821 0.999106i \(-0.486537\pi\)
0.0422821 + 0.999106i \(0.486537\pi\)
\(14\) 19.9832 0.381481
\(15\) 0 0
\(16\) −65.1740 −1.01834
\(17\) 51.6780 0.737279 0.368640 0.929572i \(-0.379824\pi\)
0.368640 + 0.929572i \(0.379824\pi\)
\(18\) 153.569 2.01093
\(19\) 25.9323 0.313120 0.156560 0.987668i \(-0.449960\pi\)
0.156560 + 0.987668i \(0.449960\pi\)
\(20\) 0 0
\(21\) 62.9200 0.653823
\(22\) 106.884 1.03580
\(23\) −173.454 −1.57251 −0.786255 0.617902i \(-0.787983\pi\)
−0.786255 + 0.617902i \(0.787983\pi\)
\(24\) −201.443 −1.71331
\(25\) 0 0
\(26\) 11.3154 0.0853509
\(27\) 240.845 1.71669
\(28\) 1.04684 0.00706549
\(29\) −245.676 −1.57314 −0.786568 0.617503i \(-0.788144\pi\)
−0.786568 + 0.617503i \(0.788144\pi\)
\(30\) 0 0
\(31\) −172.074 −0.996951 −0.498475 0.866904i \(-0.666107\pi\)
−0.498475 + 0.866904i \(0.666107\pi\)
\(32\) −6.76690 −0.0373822
\(33\) 336.539 1.77527
\(34\) 147.527 0.744139
\(35\) 0 0
\(36\) 8.04488 0.0372448
\(37\) −250.699 −1.11391 −0.556954 0.830543i \(-0.688030\pi\)
−0.556954 + 0.830543i \(0.688030\pi\)
\(38\) 74.0300 0.316033
\(39\) 35.6281 0.146283
\(40\) 0 0
\(41\) −48.8649 −0.186132 −0.0930661 0.995660i \(-0.529667\pi\)
−0.0930661 + 0.995660i \(0.529667\pi\)
\(42\) 179.620 0.659906
\(43\) −143.612 −0.509317 −0.254658 0.967031i \(-0.581963\pi\)
−0.254658 + 0.967031i \(0.581963\pi\)
\(44\) 5.59920 0.0191844
\(45\) 0 0
\(46\) −495.167 −1.58714
\(47\) −36.6415 −0.113717 −0.0568587 0.998382i \(-0.518108\pi\)
−0.0568587 + 0.998382i \(0.518108\pi\)
\(48\) −585.822 −1.76159
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 464.511 1.27538
\(52\) 0.592765 0.00158080
\(53\) 645.286 1.67239 0.836196 0.548430i \(-0.184774\pi\)
0.836196 + 0.548430i \(0.184774\pi\)
\(54\) 687.549 1.73266
\(55\) 0 0
\(56\) −156.877 −0.374350
\(57\) 233.094 0.541651
\(58\) −701.343 −1.58777
\(59\) 395.495 0.872696 0.436348 0.899778i \(-0.356272\pi\)
0.436348 + 0.899778i \(0.356272\pi\)
\(60\) 0 0
\(61\) 47.5130 0.0997282 0.0498641 0.998756i \(-0.484121\pi\)
0.0498641 + 0.998756i \(0.484121\pi\)
\(62\) −491.228 −1.00623
\(63\) 376.562 0.753053
\(64\) 502.074 0.980614
\(65\) 0 0
\(66\) 960.733 1.79179
\(67\) 263.189 0.479906 0.239953 0.970785i \(-0.422868\pi\)
0.239953 + 0.970785i \(0.422868\pi\)
\(68\) 7.72835 0.0137824
\(69\) −1559.11 −2.72021
\(70\) 0 0
\(71\) −268.177 −0.448264 −0.224132 0.974559i \(-0.571955\pi\)
−0.224132 + 0.974559i \(0.571955\pi\)
\(72\) −1205.59 −1.97333
\(73\) 199.757 0.320271 0.160136 0.987095i \(-0.448807\pi\)
0.160136 + 0.987095i \(0.448807\pi\)
\(74\) −715.680 −1.12427
\(75\) 0 0
\(76\) 3.87813 0.00585331
\(77\) 262.085 0.387888
\(78\) 101.709 0.147644
\(79\) 473.640 0.674540 0.337270 0.941408i \(-0.390497\pi\)
0.337270 + 0.941408i \(0.390497\pi\)
\(80\) 0 0
\(81\) 712.399 0.977227
\(82\) −139.497 −0.187864
\(83\) −72.7028 −0.0961466 −0.0480733 0.998844i \(-0.515308\pi\)
−0.0480733 + 0.998844i \(0.515308\pi\)
\(84\) 9.40958 0.0122223
\(85\) 0 0
\(86\) −409.975 −0.514055
\(87\) −2208.28 −2.72129
\(88\) −839.086 −1.01644
\(89\) −1552.25 −1.84874 −0.924369 0.381500i \(-0.875408\pi\)
−0.924369 + 0.381500i \(0.875408\pi\)
\(90\) 0 0
\(91\) 27.7459 0.0319622
\(92\) −25.9398 −0.0293958
\(93\) −1546.70 −1.72458
\(94\) −104.602 −0.114775
\(95\) 0 0
\(96\) −60.8248 −0.0646657
\(97\) 243.338 0.254714 0.127357 0.991857i \(-0.459351\pi\)
0.127357 + 0.991857i \(0.459351\pi\)
\(98\) 139.882 0.144186
\(99\) 2014.11 2.04470
\(100\) 0 0
\(101\) −1539.34 −1.51653 −0.758265 0.651946i \(-0.773953\pi\)
−0.758265 + 0.651946i \(0.773953\pi\)
\(102\) 1326.06 1.28725
\(103\) 948.628 0.907486 0.453743 0.891133i \(-0.350088\pi\)
0.453743 + 0.891133i \(0.350088\pi\)
\(104\) −88.8306 −0.0837554
\(105\) 0 0
\(106\) 1842.12 1.68795
\(107\) 863.983 0.780602 0.390301 0.920687i \(-0.372371\pi\)
0.390301 + 0.920687i \(0.372371\pi\)
\(108\) 36.0179 0.0320910
\(109\) 886.319 0.778844 0.389422 0.921060i \(-0.372675\pi\)
0.389422 + 0.921060i \(0.372675\pi\)
\(110\) 0 0
\(111\) −2253.42 −1.92690
\(112\) −456.218 −0.384898
\(113\) 765.957 0.637657 0.318828 0.947812i \(-0.396711\pi\)
0.318828 + 0.947812i \(0.396711\pi\)
\(114\) 665.424 0.546690
\(115\) 0 0
\(116\) −36.7405 −0.0294075
\(117\) 213.226 0.168485
\(118\) 1129.04 0.880816
\(119\) 361.746 0.278665
\(120\) 0 0
\(121\) 70.8116 0.0532018
\(122\) 135.637 0.100656
\(123\) −439.226 −0.321981
\(124\) −25.7334 −0.0186365
\(125\) 0 0
\(126\) 1074.99 0.760059
\(127\) 505.042 0.352876 0.176438 0.984312i \(-0.443543\pi\)
0.176438 + 0.984312i \(0.443543\pi\)
\(128\) 1487.43 1.02712
\(129\) −1290.87 −0.881043
\(130\) 0 0
\(131\) 672.930 0.448811 0.224405 0.974496i \(-0.427956\pi\)
0.224405 + 0.974496i \(0.427956\pi\)
\(132\) 50.3289 0.0331861
\(133\) 181.526 0.118348
\(134\) 751.337 0.484371
\(135\) 0 0
\(136\) −1158.16 −0.730228
\(137\) 1552.28 0.968032 0.484016 0.875059i \(-0.339178\pi\)
0.484016 + 0.875059i \(0.339178\pi\)
\(138\) −4450.85 −2.74552
\(139\) −1072.02 −0.654154 −0.327077 0.944998i \(-0.606064\pi\)
−0.327077 + 0.944998i \(0.606064\pi\)
\(140\) 0 0
\(141\) −329.355 −0.196714
\(142\) −765.575 −0.452434
\(143\) 148.404 0.0867845
\(144\) −3506.01 −2.02894
\(145\) 0 0
\(146\) 570.255 0.323251
\(147\) 440.440 0.247122
\(148\) −37.4915 −0.0208229
\(149\) 645.936 0.355149 0.177574 0.984107i \(-0.443175\pi\)
0.177574 + 0.984107i \(0.443175\pi\)
\(150\) 0 0
\(151\) 243.194 0.131065 0.0655326 0.997850i \(-0.479125\pi\)
0.0655326 + 0.997850i \(0.479125\pi\)
\(152\) −581.169 −0.310125
\(153\) 2779.99 1.46895
\(154\) 748.186 0.391497
\(155\) 0 0
\(156\) 5.32811 0.00273455
\(157\) −1552.56 −0.789223 −0.394611 0.918848i \(-0.629121\pi\)
−0.394611 + 0.918848i \(0.629121\pi\)
\(158\) 1352.12 0.680815
\(159\) 5800.20 2.89299
\(160\) 0 0
\(161\) −1214.18 −0.594353
\(162\) 2033.71 0.986319
\(163\) 2553.65 1.22710 0.613550 0.789656i \(-0.289741\pi\)
0.613550 + 0.789656i \(0.289741\pi\)
\(164\) −7.30766 −0.00347947
\(165\) 0 0
\(166\) −207.548 −0.0970411
\(167\) 3573.14 1.65568 0.827839 0.560966i \(-0.189570\pi\)
0.827839 + 0.560966i \(0.189570\pi\)
\(168\) −1410.10 −0.647570
\(169\) −2181.29 −0.992849
\(170\) 0 0
\(171\) 1395.01 0.623856
\(172\) −21.4769 −0.00952093
\(173\) 2234.71 0.982090 0.491045 0.871134i \(-0.336615\pi\)
0.491045 + 0.871134i \(0.336615\pi\)
\(174\) −6304.07 −2.74661
\(175\) 0 0
\(176\) −2440.17 −1.04508
\(177\) 3554.94 1.50964
\(178\) −4431.26 −1.86594
\(179\) −1830.53 −0.764361 −0.382180 0.924088i \(-0.624827\pi\)
−0.382180 + 0.924088i \(0.624827\pi\)
\(180\) 0 0
\(181\) 2437.22 1.00087 0.500433 0.865775i \(-0.333174\pi\)
0.500433 + 0.865775i \(0.333174\pi\)
\(182\) 79.2075 0.0322596
\(183\) 427.075 0.172515
\(184\) 3887.29 1.55747
\(185\) 0 0
\(186\) −4415.44 −1.74062
\(187\) 1934.86 0.756638
\(188\) −5.47968 −0.00212578
\(189\) 1685.91 0.648847
\(190\) 0 0
\(191\) 5079.50 1.92429 0.962145 0.272538i \(-0.0878632\pi\)
0.962145 + 0.272538i \(0.0878632\pi\)
\(192\) 4512.93 1.69632
\(193\) −2805.09 −1.04619 −0.523095 0.852274i \(-0.675223\pi\)
−0.523095 + 0.852274i \(0.675223\pi\)
\(194\) 694.667 0.257084
\(195\) 0 0
\(196\) 7.32786 0.00267050
\(197\) −3107.79 −1.12396 −0.561982 0.827149i \(-0.689961\pi\)
−0.561982 + 0.827149i \(0.689961\pi\)
\(198\) 5749.76 2.06373
\(199\) −2145.63 −0.764321 −0.382161 0.924096i \(-0.624820\pi\)
−0.382161 + 0.924096i \(0.624820\pi\)
\(200\) 0 0
\(201\) 2365.70 0.830166
\(202\) −4394.41 −1.53064
\(203\) −1719.73 −0.594590
\(204\) 69.4669 0.0238414
\(205\) 0 0
\(206\) 2708.09 0.915929
\(207\) −9330.89 −3.13305
\(208\) −258.331 −0.0861154
\(209\) 970.925 0.321341
\(210\) 0 0
\(211\) 2837.45 0.925772 0.462886 0.886418i \(-0.346814\pi\)
0.462886 + 0.886418i \(0.346814\pi\)
\(212\) 96.5013 0.0312629
\(213\) −2410.53 −0.775430
\(214\) 2466.45 0.787864
\(215\) 0 0
\(216\) −5397.57 −1.70027
\(217\) −1204.52 −0.376812
\(218\) 2530.21 0.786089
\(219\) 1795.53 0.554022
\(220\) 0 0
\(221\) 204.836 0.0623474
\(222\) −6432.94 −1.94482
\(223\) −4741.40 −1.42380 −0.711901 0.702280i \(-0.752166\pi\)
−0.711901 + 0.702280i \(0.752166\pi\)
\(224\) −47.3683 −0.0141291
\(225\) 0 0
\(226\) 2186.61 0.643589
\(227\) −960.790 −0.280925 −0.140462 0.990086i \(-0.544859\pi\)
−0.140462 + 0.990086i \(0.544859\pi\)
\(228\) 34.8589 0.0101254
\(229\) 744.006 0.214696 0.107348 0.994222i \(-0.465764\pi\)
0.107348 + 0.994222i \(0.465764\pi\)
\(230\) 0 0
\(231\) 2355.78 0.670990
\(232\) 5505.86 1.55809
\(233\) 1550.56 0.435968 0.217984 0.975952i \(-0.430052\pi\)
0.217984 + 0.975952i \(0.430052\pi\)
\(234\) 608.704 0.170052
\(235\) 0 0
\(236\) 59.1456 0.0163138
\(237\) 4257.35 1.16685
\(238\) 1032.69 0.281258
\(239\) 2775.00 0.751045 0.375523 0.926813i \(-0.377463\pi\)
0.375523 + 0.926813i \(0.377463\pi\)
\(240\) 0 0
\(241\) −2550.20 −0.681630 −0.340815 0.940130i \(-0.610703\pi\)
−0.340815 + 0.940130i \(0.610703\pi\)
\(242\) 202.149 0.0536968
\(243\) −99.3558 −0.0262291
\(244\) 7.10549 0.00186427
\(245\) 0 0
\(246\) −1253.88 −0.324977
\(247\) 102.788 0.0264787
\(248\) 3856.36 0.987416
\(249\) −653.494 −0.166319
\(250\) 0 0
\(251\) −2933.00 −0.737568 −0.368784 0.929515i \(-0.620226\pi\)
−0.368784 + 0.929515i \(0.620226\pi\)
\(252\) 56.3141 0.0140772
\(253\) −6494.26 −1.61380
\(254\) 1441.76 0.356159
\(255\) 0 0
\(256\) 229.626 0.0560611
\(257\) 2725.22 0.661459 0.330729 0.943726i \(-0.392705\pi\)
0.330729 + 0.943726i \(0.392705\pi\)
\(258\) −3685.09 −0.889240
\(259\) −1754.89 −0.421018
\(260\) 0 0
\(261\) −13216.0 −3.13430
\(262\) 1921.04 0.452986
\(263\) 3027.26 0.709767 0.354884 0.934910i \(-0.384520\pi\)
0.354884 + 0.934910i \(0.384520\pi\)
\(264\) −7542.19 −1.75829
\(265\) 0 0
\(266\) 518.210 0.119449
\(267\) −13952.5 −3.19804
\(268\) 39.3595 0.00897114
\(269\) −1442.46 −0.326946 −0.163473 0.986548i \(-0.552270\pi\)
−0.163473 + 0.986548i \(0.552270\pi\)
\(270\) 0 0
\(271\) −6464.45 −1.44903 −0.724516 0.689258i \(-0.757937\pi\)
−0.724516 + 0.689258i \(0.757937\pi\)
\(272\) −3368.06 −0.750804
\(273\) 249.396 0.0552900
\(274\) 4431.36 0.977038
\(275\) 0 0
\(276\) −233.162 −0.0508503
\(277\) −876.614 −0.190147 −0.0950733 0.995470i \(-0.530309\pi\)
−0.0950733 + 0.995470i \(0.530309\pi\)
\(278\) −3060.33 −0.660240
\(279\) −9256.66 −1.98631
\(280\) 0 0
\(281\) 6252.19 1.32731 0.663655 0.748038i \(-0.269004\pi\)
0.663655 + 0.748038i \(0.269004\pi\)
\(282\) −940.224 −0.198544
\(283\) −2250.07 −0.472625 −0.236312 0.971677i \(-0.575939\pi\)
−0.236312 + 0.971677i \(0.575939\pi\)
\(284\) −40.1054 −0.00837963
\(285\) 0 0
\(286\) 423.655 0.0875919
\(287\) −342.054 −0.0703513
\(288\) −364.022 −0.0744799
\(289\) −2242.39 −0.456419
\(290\) 0 0
\(291\) 2187.26 0.440617
\(292\) 29.8733 0.00598700
\(293\) 5917.86 1.17995 0.589975 0.807422i \(-0.299138\pi\)
0.589975 + 0.807422i \(0.299138\pi\)
\(294\) 1257.34 0.249421
\(295\) 0 0
\(296\) 5618.41 1.10325
\(297\) 9017.41 1.76176
\(298\) 1843.98 0.358453
\(299\) −687.522 −0.132978
\(300\) 0 0
\(301\) −1005.28 −0.192504
\(302\) 694.256 0.132284
\(303\) −13836.4 −2.62337
\(304\) −1690.11 −0.318864
\(305\) 0 0
\(306\) 7936.16 1.48261
\(307\) −9458.47 −1.75838 −0.879191 0.476469i \(-0.841916\pi\)
−0.879191 + 0.476469i \(0.841916\pi\)
\(308\) 39.1944 0.00725100
\(309\) 8526.81 1.56982
\(310\) 0 0
\(311\) −7576.78 −1.38148 −0.690739 0.723104i \(-0.742715\pi\)
−0.690739 + 0.723104i \(0.742715\pi\)
\(312\) −798.461 −0.144884
\(313\) 9172.41 1.65641 0.828204 0.560427i \(-0.189363\pi\)
0.828204 + 0.560427i \(0.189363\pi\)
\(314\) −4432.16 −0.796565
\(315\) 0 0
\(316\) 70.8320 0.0126095
\(317\) 3077.94 0.545345 0.272672 0.962107i \(-0.412092\pi\)
0.272672 + 0.962107i \(0.412092\pi\)
\(318\) 16558.1 2.91991
\(319\) −9198.31 −1.61444
\(320\) 0 0
\(321\) 7765.98 1.35033
\(322\) −3466.17 −0.599882
\(323\) 1340.13 0.230857
\(324\) 106.538 0.0182678
\(325\) 0 0
\(326\) 7290.01 1.23852
\(327\) 7966.75 1.34728
\(328\) 1095.11 0.184352
\(329\) −256.491 −0.0429811
\(330\) 0 0
\(331\) 3234.50 0.537113 0.268557 0.963264i \(-0.413453\pi\)
0.268557 + 0.963264i \(0.413453\pi\)
\(332\) −10.8726 −0.00179732
\(333\) −13486.2 −2.21934
\(334\) 10200.4 1.67108
\(335\) 0 0
\(336\) −4100.75 −0.665817
\(337\) 3777.84 0.610658 0.305329 0.952247i \(-0.401234\pi\)
0.305329 + 0.952247i \(0.401234\pi\)
\(338\) −6227.02 −1.00209
\(339\) 6884.87 1.10305
\(340\) 0 0
\(341\) −6442.60 −1.02313
\(342\) 3982.41 0.629660
\(343\) 343.000 0.0539949
\(344\) 3218.49 0.504446
\(345\) 0 0
\(346\) 6379.51 0.991227
\(347\) 8244.08 1.27540 0.637702 0.770283i \(-0.279885\pi\)
0.637702 + 0.770283i \(0.279885\pi\)
\(348\) −330.245 −0.0508706
\(349\) 7173.78 1.10030 0.550148 0.835067i \(-0.314571\pi\)
0.550148 + 0.835067i \(0.314571\pi\)
\(350\) 0 0
\(351\) 954.637 0.145170
\(352\) −253.358 −0.0383637
\(353\) 4191.51 0.631987 0.315994 0.948761i \(-0.397662\pi\)
0.315994 + 0.948761i \(0.397662\pi\)
\(354\) 10148.4 1.52368
\(355\) 0 0
\(356\) −232.136 −0.0345594
\(357\) 3251.58 0.482050
\(358\) −5225.70 −0.771472
\(359\) −3136.29 −0.461078 −0.230539 0.973063i \(-0.574049\pi\)
−0.230539 + 0.973063i \(0.574049\pi\)
\(360\) 0 0
\(361\) −6186.52 −0.901956
\(362\) 6957.62 1.01018
\(363\) 636.496 0.0920313
\(364\) 4.14936 0.000597487 0
\(365\) 0 0
\(366\) 1219.19 0.174120
\(367\) −1723.30 −0.245110 −0.122555 0.992462i \(-0.539109\pi\)
−0.122555 + 0.992462i \(0.539109\pi\)
\(368\) 11304.7 1.60136
\(369\) −2628.67 −0.370848
\(370\) 0 0
\(371\) 4517.00 0.632105
\(372\) −231.307 −0.0322384
\(373\) 2818.55 0.391258 0.195629 0.980678i \(-0.437325\pi\)
0.195629 + 0.980678i \(0.437325\pi\)
\(374\) 5523.53 0.763677
\(375\) 0 0
\(376\) 821.174 0.112630
\(377\) −973.788 −0.133031
\(378\) 4812.84 0.654884
\(379\) −10466.1 −1.41849 −0.709246 0.704961i \(-0.750964\pi\)
−0.709246 + 0.704961i \(0.750964\pi\)
\(380\) 0 0
\(381\) 4539.61 0.610423
\(382\) 14500.6 1.94219
\(383\) −258.055 −0.0344282 −0.0172141 0.999852i \(-0.505480\pi\)
−0.0172141 + 0.999852i \(0.505480\pi\)
\(384\) 13369.9 1.77677
\(385\) 0 0
\(386\) −8007.81 −1.05592
\(387\) −7725.54 −1.01476
\(388\) 36.3908 0.00476150
\(389\) 4573.87 0.596156 0.298078 0.954542i \(-0.403654\pi\)
0.298078 + 0.954542i \(0.403654\pi\)
\(390\) 0 0
\(391\) −8963.77 −1.15938
\(392\) −1098.14 −0.141491
\(393\) 6048.69 0.776376
\(394\) −8871.94 −1.13442
\(395\) 0 0
\(396\) 301.206 0.0382227
\(397\) 3624.55 0.458215 0.229107 0.973401i \(-0.426419\pi\)
0.229107 + 0.973401i \(0.426419\pi\)
\(398\) −6125.23 −0.771432
\(399\) 1631.66 0.204725
\(400\) 0 0
\(401\) 6358.32 0.791819 0.395910 0.918289i \(-0.370429\pi\)
0.395910 + 0.918289i \(0.370429\pi\)
\(402\) 6753.45 0.837890
\(403\) −682.052 −0.0843063
\(404\) −230.205 −0.0283493
\(405\) 0 0
\(406\) −4909.40 −0.600121
\(407\) −9386.35 −1.14316
\(408\) −10410.2 −1.26319
\(409\) −6536.39 −0.790228 −0.395114 0.918632i \(-0.629295\pi\)
−0.395114 + 0.918632i \(0.629295\pi\)
\(410\) 0 0
\(411\) 13952.8 1.67455
\(412\) 141.866 0.0169641
\(413\) 2768.47 0.329848
\(414\) −26637.3 −3.16220
\(415\) 0 0
\(416\) −26.8220 −0.00316119
\(417\) −9635.91 −1.13159
\(418\) 2771.74 0.324331
\(419\) 6333.56 0.738460 0.369230 0.929338i \(-0.379621\pi\)
0.369230 + 0.929338i \(0.379621\pi\)
\(420\) 0 0
\(421\) −8139.62 −0.942282 −0.471141 0.882058i \(-0.656158\pi\)
−0.471141 + 0.882058i \(0.656158\pi\)
\(422\) 8100.18 0.934385
\(423\) −1971.11 −0.226569
\(424\) −14461.5 −1.65640
\(425\) 0 0
\(426\) −6881.43 −0.782645
\(427\) 332.591 0.0376937
\(428\) 129.207 0.0145922
\(429\) 1333.94 0.150124
\(430\) 0 0
\(431\) −14367.6 −1.60571 −0.802856 0.596173i \(-0.796687\pi\)
−0.802856 + 0.596173i \(0.796687\pi\)
\(432\) −15696.8 −1.74818
\(433\) −8399.05 −0.932176 −0.466088 0.884738i \(-0.654337\pi\)
−0.466088 + 0.884738i \(0.654337\pi\)
\(434\) −3438.59 −0.380318
\(435\) 0 0
\(436\) 132.547 0.0145593
\(437\) −4498.07 −0.492384
\(438\) 5125.78 0.559176
\(439\) −17860.8 −1.94180 −0.970901 0.239482i \(-0.923022\pi\)
−0.970901 + 0.239482i \(0.923022\pi\)
\(440\) 0 0
\(441\) 2635.93 0.284627
\(442\) 584.754 0.0629274
\(443\) 1901.57 0.203942 0.101971 0.994787i \(-0.467485\pi\)
0.101971 + 0.994787i \(0.467485\pi\)
\(444\) −336.996 −0.0360205
\(445\) 0 0
\(446\) −13535.5 −1.43705
\(447\) 5806.05 0.614355
\(448\) 3514.52 0.370637
\(449\) −5185.68 −0.545050 −0.272525 0.962149i \(-0.587859\pi\)
−0.272525 + 0.962149i \(0.587859\pi\)
\(450\) 0 0
\(451\) −1829.54 −0.191019
\(452\) 114.548 0.0119201
\(453\) 2185.97 0.226723
\(454\) −2742.81 −0.283538
\(455\) 0 0
\(456\) −5223.88 −0.536471
\(457\) −11198.8 −1.14630 −0.573149 0.819451i \(-0.694278\pi\)
−0.573149 + 0.819451i \(0.694278\pi\)
\(458\) 2123.94 0.216693
\(459\) 12446.4 1.26568
\(460\) 0 0
\(461\) 17270.7 1.74485 0.872427 0.488744i \(-0.162545\pi\)
0.872427 + 0.488744i \(0.162545\pi\)
\(462\) 6725.13 0.677232
\(463\) 385.660 0.0387109 0.0193554 0.999813i \(-0.493839\pi\)
0.0193554 + 0.999813i \(0.493839\pi\)
\(464\) 16011.7 1.60199
\(465\) 0 0
\(466\) 4426.44 0.440024
\(467\) 5035.36 0.498947 0.249474 0.968382i \(-0.419742\pi\)
0.249474 + 0.968382i \(0.419742\pi\)
\(468\) 31.8875 0.00314957
\(469\) 1842.33 0.181387
\(470\) 0 0
\(471\) −13955.3 −1.36524
\(472\) −8863.45 −0.864350
\(473\) −5376.94 −0.522689
\(474\) 12153.6 1.17771
\(475\) 0 0
\(476\) 54.0985 0.00520924
\(477\) 34712.8 3.33206
\(478\) 7921.91 0.758033
\(479\) −8681.99 −0.828163 −0.414082 0.910240i \(-0.635897\pi\)
−0.414082 + 0.910240i \(0.635897\pi\)
\(480\) 0 0
\(481\) −993.695 −0.0941967
\(482\) −7280.16 −0.687972
\(483\) −10913.8 −1.02814
\(484\) 10.5898 0.000994530 0
\(485\) 0 0
\(486\) −283.635 −0.0264731
\(487\) 890.476 0.0828569 0.0414284 0.999141i \(-0.486809\pi\)
0.0414284 + 0.999141i \(0.486809\pi\)
\(488\) −1064.81 −0.0987744
\(489\) 22953.7 2.12270
\(490\) 0 0
\(491\) 1562.48 0.143613 0.0718063 0.997419i \(-0.477124\pi\)
0.0718063 + 0.997419i \(0.477124\pi\)
\(492\) −65.6855 −0.00601897
\(493\) −12696.1 −1.15984
\(494\) 293.433 0.0267250
\(495\) 0 0
\(496\) 11214.8 1.01524
\(497\) −1877.24 −0.169428
\(498\) −1865.56 −0.167867
\(499\) 8234.33 0.738716 0.369358 0.929287i \(-0.379578\pi\)
0.369358 + 0.929287i \(0.379578\pi\)
\(500\) 0 0
\(501\) 32117.5 2.86408
\(502\) −8372.97 −0.744430
\(503\) 72.5340 0.00642969 0.00321484 0.999995i \(-0.498977\pi\)
0.00321484 + 0.999995i \(0.498977\pi\)
\(504\) −8439.13 −0.745850
\(505\) 0 0
\(506\) −18539.4 −1.62881
\(507\) −19606.7 −1.71748
\(508\) 75.5281 0.00659649
\(509\) 7793.44 0.678660 0.339330 0.940667i \(-0.389800\pi\)
0.339330 + 0.940667i \(0.389800\pi\)
\(510\) 0 0
\(511\) 1398.30 0.121051
\(512\) −11243.9 −0.970537
\(513\) 6245.65 0.537529
\(514\) 7779.81 0.667612
\(515\) 0 0
\(516\) −193.047 −0.0164698
\(517\) −1371.89 −0.116703
\(518\) −5009.76 −0.424935
\(519\) 20086.8 1.69887
\(520\) 0 0
\(521\) 4645.42 0.390633 0.195316 0.980740i \(-0.437427\pi\)
0.195316 + 0.980740i \(0.437427\pi\)
\(522\) −37728.4 −3.16346
\(523\) 8783.88 0.734402 0.367201 0.930142i \(-0.380316\pi\)
0.367201 + 0.930142i \(0.380316\pi\)
\(524\) 100.636 0.00838986
\(525\) 0 0
\(526\) 8642.04 0.716371
\(527\) −8892.46 −0.735031
\(528\) −21933.6 −1.80784
\(529\) 17919.4 1.47279
\(530\) 0 0
\(531\) 21275.5 1.73875
\(532\) 27.1469 0.00221234
\(533\) −193.686 −0.0157401
\(534\) −39830.7 −3.22780
\(535\) 0 0
\(536\) −5898.34 −0.475316
\(537\) −16453.9 −1.32223
\(538\) −4117.86 −0.329988
\(539\) 1834.60 0.146608
\(540\) 0 0
\(541\) −7054.13 −0.560593 −0.280296 0.959913i \(-0.590433\pi\)
−0.280296 + 0.959913i \(0.590433\pi\)
\(542\) −18454.3 −1.46251
\(543\) 21907.1 1.73135
\(544\) −349.700 −0.0275611
\(545\) 0 0
\(546\) 711.962 0.0558043
\(547\) −5776.83 −0.451553 −0.225776 0.974179i \(-0.572492\pi\)
−0.225776 + 0.974179i \(0.572492\pi\)
\(548\) 232.141 0.0180959
\(549\) 2555.94 0.198697
\(550\) 0 0
\(551\) −6370.95 −0.492580
\(552\) 34941.2 2.69419
\(553\) 3315.48 0.254952
\(554\) −2502.51 −0.191916
\(555\) 0 0
\(556\) −160.318 −0.0122284
\(557\) 20562.6 1.56421 0.782106 0.623145i \(-0.214146\pi\)
0.782106 + 0.623145i \(0.214146\pi\)
\(558\) −26425.4 −2.00479
\(559\) −569.235 −0.0430699
\(560\) 0 0
\(561\) 17391.7 1.30887
\(562\) 17848.4 1.33966
\(563\) −24009.5 −1.79730 −0.898650 0.438666i \(-0.855451\pi\)
−0.898650 + 0.438666i \(0.855451\pi\)
\(564\) −49.2545 −0.00367729
\(565\) 0 0
\(566\) −6423.37 −0.477022
\(567\) 4986.79 0.369357
\(568\) 6010.11 0.443977
\(569\) −24157.5 −1.77985 −0.889925 0.456107i \(-0.849243\pi\)
−0.889925 + 0.456107i \(0.849243\pi\)
\(570\) 0 0
\(571\) −706.993 −0.0518157 −0.0259078 0.999664i \(-0.508248\pi\)
−0.0259078 + 0.999664i \(0.508248\pi\)
\(572\) 22.1936 0.00162231
\(573\) 45657.4 3.32874
\(574\) −976.477 −0.0710059
\(575\) 0 0
\(576\) 27008.9 1.95377
\(577\) 16057.2 1.15853 0.579265 0.815139i \(-0.303340\pi\)
0.579265 + 0.815139i \(0.303340\pi\)
\(578\) −6401.44 −0.460665
\(579\) −25213.8 −1.80976
\(580\) 0 0
\(581\) −508.919 −0.0363400
\(582\) 6244.07 0.444717
\(583\) 24160.0 1.71630
\(584\) −4476.76 −0.317208
\(585\) 0 0
\(586\) 16894.0 1.19093
\(587\) 8605.63 0.605098 0.302549 0.953134i \(-0.402162\pi\)
0.302549 + 0.953134i \(0.402162\pi\)
\(588\) 65.8671 0.00461958
\(589\) −4462.28 −0.312165
\(590\) 0 0
\(591\) −27934.6 −1.94429
\(592\) 16339.0 1.13434
\(593\) −20355.6 −1.40962 −0.704809 0.709397i \(-0.748967\pi\)
−0.704809 + 0.709397i \(0.748967\pi\)
\(594\) 25742.4 1.77815
\(595\) 0 0
\(596\) 96.5986 0.00663898
\(597\) −19286.2 −1.32216
\(598\) −1962.70 −0.134215
\(599\) 22635.7 1.54402 0.772010 0.635610i \(-0.219251\pi\)
0.772010 + 0.635610i \(0.219251\pi\)
\(600\) 0 0
\(601\) −22553.8 −1.53077 −0.765383 0.643575i \(-0.777450\pi\)
−0.765383 + 0.643575i \(0.777450\pi\)
\(602\) −2869.83 −0.194295
\(603\) 14158.1 0.956159
\(604\) 36.3692 0.00245007
\(605\) 0 0
\(606\) −39499.4 −2.64778
\(607\) −17534.2 −1.17248 −0.586238 0.810139i \(-0.699392\pi\)
−0.586238 + 0.810139i \(0.699392\pi\)
\(608\) −175.481 −0.0117051
\(609\) −15458.0 −1.02855
\(610\) 0 0
\(611\) −145.236 −0.00961641
\(612\) 415.743 0.0274598
\(613\) −10445.5 −0.688238 −0.344119 0.938926i \(-0.611822\pi\)
−0.344119 + 0.938926i \(0.611822\pi\)
\(614\) −27001.5 −1.77474
\(615\) 0 0
\(616\) −5873.60 −0.384179
\(617\) 13218.9 0.862516 0.431258 0.902229i \(-0.358070\pi\)
0.431258 + 0.902229i \(0.358070\pi\)
\(618\) 24341.8 1.58442
\(619\) 23438.9 1.52195 0.760976 0.648780i \(-0.224720\pi\)
0.760976 + 0.648780i \(0.224720\pi\)
\(620\) 0 0
\(621\) −41775.5 −2.69951
\(622\) −21629.8 −1.39433
\(623\) −10865.7 −0.698757
\(624\) −2322.02 −0.148967
\(625\) 0 0
\(626\) 26184.9 1.67182
\(627\) 8727.23 0.555873
\(628\) −232.183 −0.0147534
\(629\) −12955.6 −0.821262
\(630\) 0 0
\(631\) −874.004 −0.0551403 −0.0275702 0.999620i \(-0.508777\pi\)
−0.0275702 + 0.999620i \(0.508777\pi\)
\(632\) −10614.7 −0.668089
\(633\) 25504.6 1.60145
\(634\) 8786.72 0.550419
\(635\) 0 0
\(636\) 867.410 0.0540802
\(637\) 194.222 0.0120806
\(638\) −26258.8 −1.62946
\(639\) −14426.4 −0.893116
\(640\) 0 0
\(641\) 23977.0 1.47743 0.738715 0.674017i \(-0.235433\pi\)
0.738715 + 0.674017i \(0.235433\pi\)
\(642\) 22169.9 1.36289
\(643\) −27698.0 −1.69876 −0.849380 0.527782i \(-0.823024\pi\)
−0.849380 + 0.527782i \(0.823024\pi\)
\(644\) −181.579 −0.0111106
\(645\) 0 0
\(646\) 3825.72 0.233004
\(647\) −10965.1 −0.666282 −0.333141 0.942877i \(-0.608109\pi\)
−0.333141 + 0.942877i \(0.608109\pi\)
\(648\) −15965.6 −0.967881
\(649\) 14807.6 0.895610
\(650\) 0 0
\(651\) −10826.9 −0.651829
\(652\) 381.894 0.0229388
\(653\) −12336.2 −0.739285 −0.369642 0.929174i \(-0.620520\pi\)
−0.369642 + 0.929174i \(0.620520\pi\)
\(654\) 22743.0 1.35982
\(655\) 0 0
\(656\) 3184.72 0.189547
\(657\) 10745.8 0.638105
\(658\) −732.215 −0.0433810
\(659\) −25275.6 −1.49408 −0.747040 0.664779i \(-0.768526\pi\)
−0.747040 + 0.664779i \(0.768526\pi\)
\(660\) 0 0
\(661\) −4447.92 −0.261731 −0.130865 0.991400i \(-0.541776\pi\)
−0.130865 + 0.991400i \(0.541776\pi\)
\(662\) 9233.67 0.542110
\(663\) 1841.19 0.107852
\(664\) 1629.34 0.0952270
\(665\) 0 0
\(666\) −38499.7 −2.23999
\(667\) 42613.6 2.47377
\(668\) 534.357 0.0309505
\(669\) −42618.5 −2.46297
\(670\) 0 0
\(671\) 1778.92 0.102347
\(672\) −425.774 −0.0244413
\(673\) 30358.9 1.73885 0.869427 0.494061i \(-0.164488\pi\)
0.869427 + 0.494061i \(0.164488\pi\)
\(674\) 10784.7 0.616340
\(675\) 0 0
\(676\) −326.208 −0.0185599
\(677\) 6916.48 0.392647 0.196324 0.980539i \(-0.437100\pi\)
0.196324 + 0.980539i \(0.437100\pi\)
\(678\) 19654.5 1.11331
\(679\) 1703.37 0.0962728
\(680\) 0 0
\(681\) −8636.14 −0.485958
\(682\) −18392.0 −1.03265
\(683\) 4532.72 0.253938 0.126969 0.991907i \(-0.459475\pi\)
0.126969 + 0.991907i \(0.459475\pi\)
\(684\) 208.622 0.0116621
\(685\) 0 0
\(686\) 979.176 0.0544973
\(687\) 6687.56 0.371392
\(688\) 9359.77 0.518660
\(689\) 2557.72 0.141424
\(690\) 0 0
\(691\) 27235.2 1.49939 0.749694 0.661785i \(-0.230201\pi\)
0.749694 + 0.661785i \(0.230201\pi\)
\(692\) 334.197 0.0183587
\(693\) 14098.8 0.772825
\(694\) 23534.7 1.28727
\(695\) 0 0
\(696\) 49489.8 2.69527
\(697\) −2525.24 −0.137231
\(698\) 20479.3 1.11053
\(699\) 13937.3 0.754160
\(700\) 0 0
\(701\) −17144.3 −0.923726 −0.461863 0.886951i \(-0.652819\pi\)
−0.461863 + 0.886951i \(0.652819\pi\)
\(702\) 2725.24 0.146521
\(703\) −6501.19 −0.348787
\(704\) 18798.1 1.00636
\(705\) 0 0
\(706\) 11965.7 0.637867
\(707\) −10775.3 −0.573195
\(708\) 531.635 0.0282204
\(709\) 16724.1 0.885877 0.442939 0.896552i \(-0.353936\pi\)
0.442939 + 0.896552i \(0.353936\pi\)
\(710\) 0 0
\(711\) 25479.2 1.34395
\(712\) 34787.4 1.83106
\(713\) 29847.0 1.56771
\(714\) 9282.42 0.486535
\(715\) 0 0
\(716\) −273.753 −0.0142886
\(717\) 24943.3 1.29920
\(718\) −8953.30 −0.465368
\(719\) 4308.66 0.223485 0.111743 0.993737i \(-0.464357\pi\)
0.111743 + 0.993737i \(0.464357\pi\)
\(720\) 0 0
\(721\) 6640.39 0.342997
\(722\) −17660.9 −0.910347
\(723\) −22922.7 −1.17912
\(724\) 364.481 0.0187097
\(725\) 0 0
\(726\) 1817.03 0.0928875
\(727\) −29435.6 −1.50166 −0.750830 0.660496i \(-0.770346\pi\)
−0.750830 + 0.660496i \(0.770346\pi\)
\(728\) −621.814 −0.0316566
\(729\) −20127.8 −1.02260
\(730\) 0 0
\(731\) −7421.58 −0.375509
\(732\) 63.8683 0.00322492
\(733\) −6587.69 −0.331954 −0.165977 0.986130i \(-0.553078\pi\)
−0.165977 + 0.986130i \(0.553078\pi\)
\(734\) −4919.57 −0.247390
\(735\) 0 0
\(736\) 1173.75 0.0587839
\(737\) 9854.01 0.492506
\(738\) −7504.16 −0.374298
\(739\) 3684.46 0.183404 0.0917018 0.995787i \(-0.470769\pi\)
0.0917018 + 0.995787i \(0.470769\pi\)
\(740\) 0 0
\(741\) 923.917 0.0458042
\(742\) 12894.9 0.637986
\(743\) 12271.9 0.605940 0.302970 0.953000i \(-0.402022\pi\)
0.302970 + 0.953000i \(0.402022\pi\)
\(744\) 34663.2 1.70808
\(745\) 0 0
\(746\) 8046.24 0.394898
\(747\) −3911.01 −0.191561
\(748\) 289.355 0.0141442
\(749\) 6047.88 0.295040
\(750\) 0 0
\(751\) −30871.0 −1.50000 −0.749999 0.661439i \(-0.769946\pi\)
−0.749999 + 0.661439i \(0.769946\pi\)
\(752\) 2388.08 0.115803
\(753\) −26363.5 −1.27588
\(754\) −2779.91 −0.134269
\(755\) 0 0
\(756\) 252.125 0.0121292
\(757\) 11442.1 0.549368 0.274684 0.961535i \(-0.411427\pi\)
0.274684 + 0.961535i \(0.411427\pi\)
\(758\) −29878.1 −1.43169
\(759\) −58374.2 −2.79163
\(760\) 0 0
\(761\) 14423.3 0.687048 0.343524 0.939144i \(-0.388379\pi\)
0.343524 + 0.939144i \(0.388379\pi\)
\(762\) 12959.4 0.616102
\(763\) 6204.23 0.294375
\(764\) 759.630 0.0359718
\(765\) 0 0
\(766\) −736.681 −0.0347485
\(767\) 1567.63 0.0737988
\(768\) 2064.01 0.0969775
\(769\) 26772.8 1.25546 0.627731 0.778430i \(-0.283984\pi\)
0.627731 + 0.778430i \(0.283984\pi\)
\(770\) 0 0
\(771\) 24495.9 1.14423
\(772\) −419.496 −0.0195570
\(773\) 27669.3 1.28745 0.643724 0.765258i \(-0.277389\pi\)
0.643724 + 0.765258i \(0.277389\pi\)
\(774\) −22054.4 −1.02420
\(775\) 0 0
\(776\) −5453.45 −0.252278
\(777\) −15774.0 −0.728299
\(778\) 13057.2 0.601702
\(779\) −1267.18 −0.0582816
\(780\) 0 0
\(781\) −10040.7 −0.460034
\(782\) −25589.2 −1.17017
\(783\) −59169.8 −2.70058
\(784\) −3193.53 −0.145478
\(785\) 0 0
\(786\) 17267.4 0.783599
\(787\) −10934.5 −0.495263 −0.247632 0.968854i \(-0.579652\pi\)
−0.247632 + 0.968854i \(0.579652\pi\)
\(788\) −464.765 −0.0210109
\(789\) 27210.8 1.22779
\(790\) 0 0
\(791\) 5361.70 0.241012
\(792\) −45138.2 −2.02515
\(793\) 188.328 0.00843343
\(794\) 10347.2 0.462478
\(795\) 0 0
\(796\) −320.876 −0.0142879
\(797\) −31967.3 −1.42075 −0.710376 0.703823i \(-0.751475\pi\)
−0.710376 + 0.703823i \(0.751475\pi\)
\(798\) 4657.97 0.206629
\(799\) −1893.56 −0.0838415
\(800\) 0 0
\(801\) −83502.3 −3.68341
\(802\) 18151.4 0.799186
\(803\) 7479.06 0.328680
\(804\) 353.786 0.0155187
\(805\) 0 0
\(806\) −1947.08 −0.0850906
\(807\) −12965.7 −0.565568
\(808\) 34498.1 1.50203
\(809\) −17924.8 −0.778989 −0.389495 0.921029i \(-0.627350\pi\)
−0.389495 + 0.921029i \(0.627350\pi\)
\(810\) 0 0
\(811\) 28541.4 1.23579 0.617895 0.786261i \(-0.287986\pi\)
0.617895 + 0.786261i \(0.287986\pi\)
\(812\) −257.183 −0.0111150
\(813\) −58106.2 −2.50661
\(814\) −26795.6 −1.15379
\(815\) 0 0
\(816\) −30274.1 −1.29878
\(817\) −3724.19 −0.159477
\(818\) −18659.7 −0.797580
\(819\) 1492.58 0.0636812
\(820\) 0 0
\(821\) 18878.6 0.802517 0.401259 0.915965i \(-0.368573\pi\)
0.401259 + 0.915965i \(0.368573\pi\)
\(822\) 39831.6 1.69013
\(823\) 46589.1 1.97326 0.986631 0.162971i \(-0.0521078\pi\)
0.986631 + 0.162971i \(0.0521078\pi\)
\(824\) −21259.7 −0.898807
\(825\) 0 0
\(826\) 7903.26 0.332917
\(827\) 14649.8 0.615989 0.307994 0.951388i \(-0.400342\pi\)
0.307994 + 0.951388i \(0.400342\pi\)
\(828\) −1395.42 −0.0585678
\(829\) −34408.0 −1.44154 −0.720771 0.693173i \(-0.756212\pi\)
−0.720771 + 0.693173i \(0.756212\pi\)
\(830\) 0 0
\(831\) −7879.51 −0.328926
\(832\) 1990.07 0.0829248
\(833\) 2532.22 0.105326
\(834\) −27508.0 −1.14212
\(835\) 0 0
\(836\) 145.200 0.00600700
\(837\) −41443.2 −1.71145
\(838\) 18080.7 0.745331
\(839\) 25934.2 1.06716 0.533580 0.845749i \(-0.320846\pi\)
0.533580 + 0.845749i \(0.320846\pi\)
\(840\) 0 0
\(841\) 35967.9 1.47476
\(842\) −23236.5 −0.951048
\(843\) 56198.3 2.29605
\(844\) 424.335 0.0173060
\(845\) 0 0
\(846\) −5627.02 −0.228677
\(847\) 495.681 0.0201084
\(848\) −42055.9 −1.70307
\(849\) −20224.9 −0.817571
\(850\) 0 0
\(851\) 43484.8 1.75163
\(852\) −360.490 −0.0144955
\(853\) −48456.3 −1.94503 −0.972516 0.232836i \(-0.925199\pi\)
−0.972516 + 0.232836i \(0.925199\pi\)
\(854\) 949.462 0.0380444
\(855\) 0 0
\(856\) −19362.7 −0.773136
\(857\) 36273.9 1.44585 0.722924 0.690928i \(-0.242798\pi\)
0.722924 + 0.690928i \(0.242798\pi\)
\(858\) 3808.06 0.151521
\(859\) 28067.2 1.11483 0.557415 0.830234i \(-0.311793\pi\)
0.557415 + 0.830234i \(0.311793\pi\)
\(860\) 0 0
\(861\) −3074.58 −0.121697
\(862\) −41015.7 −1.62065
\(863\) −8330.92 −0.328607 −0.164303 0.986410i \(-0.552538\pi\)
−0.164303 + 0.986410i \(0.552538\pi\)
\(864\) −1629.77 −0.0641736
\(865\) 0 0
\(866\) −23977.1 −0.940849
\(867\) −20155.9 −0.789538
\(868\) −180.134 −0.00704395
\(869\) 17733.4 0.692251
\(870\) 0 0
\(871\) 1043.20 0.0405828
\(872\) −19863.3 −0.771395
\(873\) 13090.3 0.507489
\(874\) −12840.8 −0.496965
\(875\) 0 0
\(876\) 268.519 0.0103566
\(877\) −16469.6 −0.634137 −0.317068 0.948403i \(-0.602698\pi\)
−0.317068 + 0.948403i \(0.602698\pi\)
\(878\) −50988.0 −1.95987
\(879\) 53193.1 2.04114
\(880\) 0 0
\(881\) −46635.9 −1.78343 −0.891715 0.452597i \(-0.850498\pi\)
−0.891715 + 0.452597i \(0.850498\pi\)
\(882\) 7524.90 0.287275
\(883\) 14075.8 0.536453 0.268227 0.963356i \(-0.413562\pi\)
0.268227 + 0.963356i \(0.413562\pi\)
\(884\) 30.6329 0.00116549
\(885\) 0 0
\(886\) 5428.48 0.205839
\(887\) 26222.9 0.992649 0.496324 0.868137i \(-0.334683\pi\)
0.496324 + 0.868137i \(0.334683\pi\)
\(888\) 50501.5 1.90847
\(889\) 3535.29 0.133374
\(890\) 0 0
\(891\) 26672.8 1.00289
\(892\) −709.069 −0.0266159
\(893\) −950.199 −0.0356072
\(894\) 16574.8 0.620070
\(895\) 0 0
\(896\) 10412.0 0.388215
\(897\) −6179.84 −0.230032
\(898\) −14803.8 −0.550121
\(899\) 42274.6 1.56834
\(900\) 0 0
\(901\) 33347.1 1.23302
\(902\) −5222.87 −0.192796
\(903\) −9036.07 −0.333003
\(904\) −17165.9 −0.631558
\(905\) 0 0
\(906\) 6240.37 0.228833
\(907\) −15373.0 −0.562793 −0.281396 0.959592i \(-0.590798\pi\)
−0.281396 + 0.959592i \(0.590798\pi\)
\(908\) −143.685 −0.00525147
\(909\) −82807.8 −3.02152
\(910\) 0 0
\(911\) −21189.3 −0.770619 −0.385310 0.922787i \(-0.625905\pi\)
−0.385310 + 0.922787i \(0.625905\pi\)
\(912\) −15191.7 −0.551587
\(913\) −2722.05 −0.0986710
\(914\) −31969.7 −1.15696
\(915\) 0 0
\(916\) 111.265 0.00401342
\(917\) 4710.51 0.169635
\(918\) 35531.1 1.27745
\(919\) −18364.2 −0.659172 −0.329586 0.944126i \(-0.606909\pi\)
−0.329586 + 0.944126i \(0.606909\pi\)
\(920\) 0 0
\(921\) −85018.2 −3.04174
\(922\) 49303.4 1.76109
\(923\) −1062.97 −0.0379070
\(924\) 352.302 0.0125432
\(925\) 0 0
\(926\) 1100.96 0.0390710
\(927\) 51031.0 1.80807
\(928\) 1662.47 0.0588073
\(929\) 15460.6 0.546011 0.273006 0.962012i \(-0.411982\pi\)
0.273006 + 0.962012i \(0.411982\pi\)
\(930\) 0 0
\(931\) 1270.68 0.0447314
\(932\) 231.883 0.00814978
\(933\) −68104.5 −2.38975
\(934\) 14374.6 0.503589
\(935\) 0 0
\(936\) −4778.60 −0.166873
\(937\) 28824.7 1.00498 0.502488 0.864584i \(-0.332418\pi\)
0.502488 + 0.864584i \(0.332418\pi\)
\(938\) 5259.36 0.183075
\(939\) 82446.9 2.86534
\(940\) 0 0
\(941\) 42172.5 1.46098 0.730492 0.682922i \(-0.239291\pi\)
0.730492 + 0.682922i \(0.239291\pi\)
\(942\) −39838.9 −1.37794
\(943\) 8475.83 0.292695
\(944\) −25776.0 −0.888705
\(945\) 0 0
\(946\) −15349.8 −0.527552
\(947\) 8926.33 0.306301 0.153150 0.988203i \(-0.451058\pi\)
0.153150 + 0.988203i \(0.451058\pi\)
\(948\) 636.679 0.0218126
\(949\) 791.778 0.0270835
\(950\) 0 0
\(951\) 27666.3 0.943366
\(952\) −8107.09 −0.276000
\(953\) −40420.6 −1.37392 −0.686962 0.726693i \(-0.741056\pi\)
−0.686962 + 0.726693i \(0.741056\pi\)
\(954\) 99096.2 3.36306
\(955\) 0 0
\(956\) 414.996 0.0140397
\(957\) −82679.8 −2.79274
\(958\) −24784.8 −0.835868
\(959\) 10866.0 0.365882
\(960\) 0 0
\(961\) −181.408 −0.00608935
\(962\) −2836.74 −0.0950730
\(963\) 46477.6 1.55526
\(964\) −381.378 −0.0127421
\(965\) 0 0
\(966\) −31155.9 −1.03771
\(967\) −33914.1 −1.12782 −0.563910 0.825836i \(-0.690704\pi\)
−0.563910 + 0.825836i \(0.690704\pi\)
\(968\) −1586.96 −0.0526930
\(969\) 12045.8 0.399348
\(970\) 0 0
\(971\) −59339.0 −1.96115 −0.980577 0.196136i \(-0.937161\pi\)
−0.980577 + 0.196136i \(0.937161\pi\)
\(972\) −14.8585 −0.000490315 0
\(973\) −7504.12 −0.247247
\(974\) 2542.08 0.0836277
\(975\) 0 0
\(976\) −3096.62 −0.101558
\(977\) 7032.14 0.230274 0.115137 0.993350i \(-0.463269\pi\)
0.115137 + 0.993350i \(0.463269\pi\)
\(978\) 65526.8 2.14245
\(979\) −58117.3 −1.89728
\(980\) 0 0
\(981\) 47679.1 1.55176
\(982\) 4460.48 0.144949
\(983\) −1703.63 −0.0552772 −0.0276386 0.999618i \(-0.508799\pi\)
−0.0276386 + 0.999618i \(0.508799\pi\)
\(984\) 9843.50 0.318902
\(985\) 0 0
\(986\) −36244.0 −1.17063
\(987\) −2305.49 −0.0743510
\(988\) 15.3718 0.000494980 0
\(989\) 24910.1 0.800906
\(990\) 0 0
\(991\) 12740.3 0.408383 0.204192 0.978931i \(-0.434543\pi\)
0.204192 + 0.978931i \(0.434543\pi\)
\(992\) 1164.41 0.0372682
\(993\) 29073.6 0.929126
\(994\) −5359.03 −0.171004
\(995\) 0 0
\(996\) −97.7290 −0.00310910
\(997\) −16609.6 −0.527615 −0.263808 0.964575i \(-0.584978\pi\)
−0.263808 + 0.964575i \(0.584978\pi\)
\(998\) 23506.9 0.745589
\(999\) −60379.4 −1.91223
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.4.a.j.1.4 5
3.2 odd 2 1575.4.a.bn.1.2 5
5.2 odd 4 35.4.b.a.29.8 yes 10
5.3 odd 4 35.4.b.a.29.3 10
5.4 even 2 175.4.a.i.1.2 5
7.6 odd 2 1225.4.a.bh.1.4 5
15.2 even 4 315.4.d.c.64.3 10
15.8 even 4 315.4.d.c.64.8 10
15.14 odd 2 1575.4.a.bq.1.4 5
20.3 even 4 560.4.g.f.449.1 10
20.7 even 4 560.4.g.f.449.10 10
35.2 odd 12 245.4.j.e.214.8 20
35.3 even 12 245.4.j.f.79.8 20
35.12 even 12 245.4.j.f.214.8 20
35.13 even 4 245.4.b.d.99.3 10
35.17 even 12 245.4.j.f.79.3 20
35.18 odd 12 245.4.j.e.79.8 20
35.23 odd 12 245.4.j.e.214.3 20
35.27 even 4 245.4.b.d.99.8 10
35.32 odd 12 245.4.j.e.79.3 20
35.33 even 12 245.4.j.f.214.3 20
35.34 odd 2 1225.4.a.be.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.b.a.29.3 10 5.3 odd 4
35.4.b.a.29.8 yes 10 5.2 odd 4
175.4.a.i.1.2 5 5.4 even 2
175.4.a.j.1.4 5 1.1 even 1 trivial
245.4.b.d.99.3 10 35.13 even 4
245.4.b.d.99.8 10 35.27 even 4
245.4.j.e.79.3 20 35.32 odd 12
245.4.j.e.79.8 20 35.18 odd 12
245.4.j.e.214.3 20 35.23 odd 12
245.4.j.e.214.8 20 35.2 odd 12
245.4.j.f.79.3 20 35.17 even 12
245.4.j.f.79.8 20 35.3 even 12
245.4.j.f.214.3 20 35.33 even 12
245.4.j.f.214.8 20 35.12 even 12
315.4.d.c.64.3 10 15.2 even 4
315.4.d.c.64.8 10 15.8 even 4
560.4.g.f.449.1 10 20.3 even 4
560.4.g.f.449.10 10 20.7 even 4
1225.4.a.be.1.2 5 35.34 odd 2
1225.4.a.bh.1.4 5 7.6 odd 2
1575.4.a.bn.1.2 5 3.2 odd 2
1575.4.a.bq.1.4 5 15.14 odd 2