Properties

Label 175.4.a.j.1.2
Level $175$
Weight $4$
Character 175.1
Self dual yes
Analytic conductor $10.325$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(1,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 27x^{3} + 7x^{2} + 120x + 60 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.67516\) of defining polynomial
Character \(\chi\) \(=\) 175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.67516 q^{2} -2.49396 q^{3} -5.19383 q^{4} +4.17779 q^{6} +7.00000 q^{7} +22.1018 q^{8} -20.7802 q^{9} -57.5880 q^{11} +12.9532 q^{12} -45.5159 q^{13} -11.7261 q^{14} +4.52655 q^{16} +92.0051 q^{17} +34.8101 q^{18} +125.177 q^{19} -17.4577 q^{21} +96.4692 q^{22} +158.496 q^{23} -55.1211 q^{24} +76.2466 q^{26} +119.162 q^{27} -36.3568 q^{28} -40.1708 q^{29} +49.5590 q^{31} -184.397 q^{32} +143.622 q^{33} -154.123 q^{34} +107.929 q^{36} +231.307 q^{37} -209.692 q^{38} +113.515 q^{39} +169.556 q^{41} +29.2445 q^{42} -147.428 q^{43} +299.102 q^{44} -265.507 q^{46} -67.0327 q^{47} -11.2890 q^{48} +49.0000 q^{49} -229.457 q^{51} +236.402 q^{52} +268.647 q^{53} -199.615 q^{54} +154.713 q^{56} -312.187 q^{57} +67.2926 q^{58} -240.843 q^{59} +90.4579 q^{61} -83.0194 q^{62} -145.461 q^{63} +272.683 q^{64} -240.591 q^{66} -406.498 q^{67} -477.859 q^{68} -395.283 q^{69} +330.782 q^{71} -459.279 q^{72} +546.255 q^{73} -387.477 q^{74} -650.149 q^{76} -403.116 q^{77} -190.156 q^{78} -25.3087 q^{79} +263.879 q^{81} -284.034 q^{82} +376.255 q^{83} +90.6725 q^{84} +246.965 q^{86} +100.184 q^{87} -1272.80 q^{88} +1026.44 q^{89} -318.612 q^{91} -823.203 q^{92} -123.598 q^{93} +112.291 q^{94} +459.879 q^{96} -942.660 q^{97} -82.0829 q^{98} +1196.69 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 4 q^{2} + 10 q^{3} + 18 q^{4} + 6 q^{6} + 35 q^{7} + 42 q^{8} + 23 q^{9} + 42 q^{11} + 136 q^{12} + 34 q^{13} + 28 q^{14} + 74 q^{16} + 238 q^{17} - 2 q^{18} - 36 q^{19} + 70 q^{21} + 358 q^{22} + 152 q^{23}+ \cdots + 2652 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.67516 −0.592259 −0.296130 0.955148i \(-0.595696\pi\)
−0.296130 + 0.955148i \(0.595696\pi\)
\(3\) −2.49396 −0.479963 −0.239982 0.970777i \(-0.577141\pi\)
−0.239982 + 0.970777i \(0.577141\pi\)
\(4\) −5.19383 −0.649229
\(5\) 0 0
\(6\) 4.17779 0.284263
\(7\) 7.00000 0.377964
\(8\) 22.1018 0.976771
\(9\) −20.7802 −0.769635
\(10\) 0 0
\(11\) −57.5880 −1.57849 −0.789247 0.614076i \(-0.789529\pi\)
−0.789247 + 0.614076i \(0.789529\pi\)
\(12\) 12.9532 0.311606
\(13\) −45.5159 −0.971066 −0.485533 0.874218i \(-0.661374\pi\)
−0.485533 + 0.874218i \(0.661374\pi\)
\(14\) −11.7261 −0.223853
\(15\) 0 0
\(16\) 4.52655 0.0707273
\(17\) 92.0051 1.31262 0.656309 0.754492i \(-0.272117\pi\)
0.656309 + 0.754492i \(0.272117\pi\)
\(18\) 34.8101 0.455824
\(19\) 125.177 1.51145 0.755726 0.654888i \(-0.227284\pi\)
0.755726 + 0.654888i \(0.227284\pi\)
\(20\) 0 0
\(21\) −17.4577 −0.181409
\(22\) 96.4692 0.934878
\(23\) 158.496 1.43690 0.718451 0.695578i \(-0.244851\pi\)
0.718451 + 0.695578i \(0.244851\pi\)
\(24\) −55.1211 −0.468814
\(25\) 0 0
\(26\) 76.2466 0.575123
\(27\) 119.162 0.849360
\(28\) −36.3568 −0.245386
\(29\) −40.1708 −0.257225 −0.128613 0.991695i \(-0.541052\pi\)
−0.128613 + 0.991695i \(0.541052\pi\)
\(30\) 0 0
\(31\) 49.5590 0.287131 0.143566 0.989641i \(-0.454143\pi\)
0.143566 + 0.989641i \(0.454143\pi\)
\(32\) −184.397 −1.01866
\(33\) 143.622 0.757619
\(34\) −154.123 −0.777410
\(35\) 0 0
\(36\) 107.929 0.499670
\(37\) 231.307 1.02775 0.513874 0.857866i \(-0.328210\pi\)
0.513874 + 0.857866i \(0.328210\pi\)
\(38\) −209.692 −0.895171
\(39\) 113.515 0.466076
\(40\) 0 0
\(41\) 169.556 0.645859 0.322929 0.946423i \(-0.395332\pi\)
0.322929 + 0.946423i \(0.395332\pi\)
\(42\) 29.2445 0.107441
\(43\) −147.428 −0.522849 −0.261425 0.965224i \(-0.584192\pi\)
−0.261425 + 0.965224i \(0.584192\pi\)
\(44\) 299.102 1.02480
\(45\) 0 0
\(46\) −265.507 −0.851018
\(47\) −67.0327 −0.208037 −0.104018 0.994575i \(-0.533170\pi\)
−0.104018 + 0.994575i \(0.533170\pi\)
\(48\) −11.2890 −0.0339465
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −229.457 −0.630008
\(52\) 236.402 0.630444
\(53\) 268.647 0.696254 0.348127 0.937447i \(-0.386818\pi\)
0.348127 + 0.937447i \(0.386818\pi\)
\(54\) −199.615 −0.503041
\(55\) 0 0
\(56\) 154.713 0.369185
\(57\) −312.187 −0.725441
\(58\) 67.2926 0.152344
\(59\) −240.843 −0.531442 −0.265721 0.964050i \(-0.585610\pi\)
−0.265721 + 0.964050i \(0.585610\pi\)
\(60\) 0 0
\(61\) 90.4579 0.189868 0.0949340 0.995484i \(-0.469736\pi\)
0.0949340 + 0.995484i \(0.469736\pi\)
\(62\) −83.0194 −0.170056
\(63\) −145.461 −0.290895
\(64\) 272.683 0.532583
\(65\) 0 0
\(66\) −240.591 −0.448707
\(67\) −406.498 −0.741218 −0.370609 0.928789i \(-0.620851\pi\)
−0.370609 + 0.928789i \(0.620851\pi\)
\(68\) −477.859 −0.852190
\(69\) −395.283 −0.689660
\(70\) 0 0
\(71\) 330.782 0.552910 0.276455 0.961027i \(-0.410840\pi\)
0.276455 + 0.961027i \(0.410840\pi\)
\(72\) −459.279 −0.751758
\(73\) 546.255 0.875812 0.437906 0.899021i \(-0.355720\pi\)
0.437906 + 0.899021i \(0.355720\pi\)
\(74\) −387.477 −0.608693
\(75\) 0 0
\(76\) −650.149 −0.981279
\(77\) −403.116 −0.596615
\(78\) −190.156 −0.276038
\(79\) −25.3087 −0.0360436 −0.0180218 0.999838i \(-0.505737\pi\)
−0.0180218 + 0.999838i \(0.505737\pi\)
\(80\) 0 0
\(81\) 263.879 0.361974
\(82\) −284.034 −0.382516
\(83\) 376.255 0.497582 0.248791 0.968557i \(-0.419967\pi\)
0.248791 + 0.968557i \(0.419967\pi\)
\(84\) 90.6725 0.117776
\(85\) 0 0
\(86\) 246.965 0.309662
\(87\) 100.184 0.123459
\(88\) −1272.80 −1.54183
\(89\) 1026.44 1.22250 0.611248 0.791439i \(-0.290668\pi\)
0.611248 + 0.791439i \(0.290668\pi\)
\(90\) 0 0
\(91\) −318.612 −0.367028
\(92\) −823.203 −0.932878
\(93\) −123.598 −0.137812
\(94\) 112.291 0.123212
\(95\) 0 0
\(96\) 459.879 0.488919
\(97\) −942.660 −0.986728 −0.493364 0.869823i \(-0.664233\pi\)
−0.493364 + 0.869823i \(0.664233\pi\)
\(98\) −82.0829 −0.0846085
\(99\) 1196.69 1.21487
\(100\) 0 0
\(101\) −604.617 −0.595659 −0.297830 0.954619i \(-0.596263\pi\)
−0.297830 + 0.954619i \(0.596263\pi\)
\(102\) 384.378 0.373128
\(103\) −300.967 −0.287914 −0.143957 0.989584i \(-0.545983\pi\)
−0.143957 + 0.989584i \(0.545983\pi\)
\(104\) −1005.98 −0.948509
\(105\) 0 0
\(106\) −450.027 −0.412363
\(107\) 1511.66 1.36577 0.682886 0.730525i \(-0.260724\pi\)
0.682886 + 0.730525i \(0.260724\pi\)
\(108\) −618.907 −0.551429
\(109\) −1767.09 −1.55281 −0.776406 0.630233i \(-0.782959\pi\)
−0.776406 + 0.630233i \(0.782959\pi\)
\(110\) 0 0
\(111\) −576.871 −0.493281
\(112\) 31.6858 0.0267324
\(113\) 1045.27 0.870182 0.435091 0.900387i \(-0.356716\pi\)
0.435091 + 0.900387i \(0.356716\pi\)
\(114\) 522.963 0.429649
\(115\) 0 0
\(116\) 208.640 0.166998
\(117\) 945.828 0.747366
\(118\) 403.451 0.314751
\(119\) 644.036 0.496123
\(120\) 0 0
\(121\) 1985.38 1.49164
\(122\) −151.532 −0.112451
\(123\) −422.866 −0.309988
\(124\) −257.401 −0.186414
\(125\) 0 0
\(126\) 243.671 0.172285
\(127\) 260.727 0.182171 0.0910857 0.995843i \(-0.470966\pi\)
0.0910857 + 0.995843i \(0.470966\pi\)
\(128\) 1018.39 0.703233
\(129\) 367.679 0.250948
\(130\) 0 0
\(131\) −723.522 −0.482553 −0.241276 0.970456i \(-0.577566\pi\)
−0.241276 + 0.970456i \(0.577566\pi\)
\(132\) −745.950 −0.491868
\(133\) 876.240 0.571275
\(134\) 680.950 0.438993
\(135\) 0 0
\(136\) 2033.48 1.28213
\(137\) 773.693 0.482490 0.241245 0.970464i \(-0.422444\pi\)
0.241245 + 0.970464i \(0.422444\pi\)
\(138\) 662.164 0.408457
\(139\) −2952.97 −1.80192 −0.900961 0.433899i \(-0.857137\pi\)
−0.900961 + 0.433899i \(0.857137\pi\)
\(140\) 0 0
\(141\) 167.177 0.0998499
\(142\) −554.114 −0.327466
\(143\) 2621.17 1.53282
\(144\) −94.0624 −0.0544343
\(145\) 0 0
\(146\) −915.066 −0.518708
\(147\) −122.204 −0.0685662
\(148\) −1201.37 −0.667244
\(149\) 2514.00 1.38225 0.691124 0.722736i \(-0.257116\pi\)
0.691124 + 0.722736i \(0.257116\pi\)
\(150\) 0 0
\(151\) 101.052 0.0544605 0.0272302 0.999629i \(-0.491331\pi\)
0.0272302 + 0.999629i \(0.491331\pi\)
\(152\) 2766.64 1.47634
\(153\) −1911.88 −1.01024
\(154\) 675.285 0.353351
\(155\) 0 0
\(156\) −589.578 −0.302590
\(157\) 2338.35 1.18867 0.594333 0.804219i \(-0.297416\pi\)
0.594333 + 0.804219i \(0.297416\pi\)
\(158\) 42.3961 0.0213472
\(159\) −669.995 −0.334176
\(160\) 0 0
\(161\) 1109.47 0.543098
\(162\) −442.040 −0.214383
\(163\) −1325.20 −0.636798 −0.318399 0.947957i \(-0.603145\pi\)
−0.318399 + 0.947957i \(0.603145\pi\)
\(164\) −880.646 −0.419310
\(165\) 0 0
\(166\) −630.288 −0.294698
\(167\) 2086.20 0.966675 0.483338 0.875434i \(-0.339424\pi\)
0.483338 + 0.875434i \(0.339424\pi\)
\(168\) −385.847 −0.177195
\(169\) −125.299 −0.0570317
\(170\) 0 0
\(171\) −2601.20 −1.16327
\(172\) 765.715 0.339449
\(173\) 1918.19 0.842990 0.421495 0.906831i \(-0.361505\pi\)
0.421495 + 0.906831i \(0.361505\pi\)
\(174\) −167.825 −0.0731195
\(175\) 0 0
\(176\) −260.675 −0.111643
\(177\) 600.652 0.255072
\(178\) −1719.45 −0.724035
\(179\) 629.046 0.262665 0.131333 0.991338i \(-0.458074\pi\)
0.131333 + 0.991338i \(0.458074\pi\)
\(180\) 0 0
\(181\) −2800.85 −1.15020 −0.575099 0.818084i \(-0.695036\pi\)
−0.575099 + 0.818084i \(0.695036\pi\)
\(182\) 533.726 0.217376
\(183\) −225.599 −0.0911296
\(184\) 3503.05 1.40352
\(185\) 0 0
\(186\) 207.047 0.0816207
\(187\) −5298.39 −2.07196
\(188\) 348.157 0.135063
\(189\) 834.133 0.321028
\(190\) 0 0
\(191\) 740.255 0.280434 0.140217 0.990121i \(-0.455220\pi\)
0.140217 + 0.990121i \(0.455220\pi\)
\(192\) −680.060 −0.255620
\(193\) 4082.57 1.52264 0.761321 0.648375i \(-0.224551\pi\)
0.761321 + 0.648375i \(0.224551\pi\)
\(194\) 1579.11 0.584399
\(195\) 0 0
\(196\) −254.498 −0.0927470
\(197\) 3414.89 1.23503 0.617515 0.786559i \(-0.288140\pi\)
0.617515 + 0.786559i \(0.288140\pi\)
\(198\) −2004.65 −0.719515
\(199\) −3392.44 −1.20846 −0.604231 0.796809i \(-0.706520\pi\)
−0.604231 + 0.796809i \(0.706520\pi\)
\(200\) 0 0
\(201\) 1013.79 0.355757
\(202\) 1012.83 0.352785
\(203\) −281.196 −0.0972220
\(204\) 1191.76 0.409020
\(205\) 0 0
\(206\) 504.169 0.170520
\(207\) −3293.58 −1.10589
\(208\) −206.030 −0.0686809
\(209\) −7208.70 −2.38582
\(210\) 0 0
\(211\) 3398.04 1.10867 0.554337 0.832292i \(-0.312972\pi\)
0.554337 + 0.832292i \(0.312972\pi\)
\(212\) −1395.31 −0.452029
\(213\) −824.958 −0.265376
\(214\) −2532.28 −0.808892
\(215\) 0 0
\(216\) 2633.69 0.829630
\(217\) 346.913 0.108525
\(218\) 2960.16 0.919667
\(219\) −1362.34 −0.420358
\(220\) 0 0
\(221\) −4187.70 −1.27464
\(222\) 966.353 0.292150
\(223\) 182.611 0.0548365 0.0274183 0.999624i \(-0.491271\pi\)
0.0274183 + 0.999624i \(0.491271\pi\)
\(224\) −1290.78 −0.385017
\(225\) 0 0
\(226\) −1750.99 −0.515373
\(227\) −3152.33 −0.921707 −0.460854 0.887476i \(-0.652457\pi\)
−0.460854 + 0.887476i \(0.652457\pi\)
\(228\) 1621.45 0.470977
\(229\) 6012.35 1.73497 0.867483 0.497466i \(-0.165736\pi\)
0.867483 + 0.497466i \(0.165736\pi\)
\(230\) 0 0
\(231\) 1005.36 0.286353
\(232\) −887.848 −0.251250
\(233\) −940.660 −0.264484 −0.132242 0.991217i \(-0.542218\pi\)
−0.132242 + 0.991217i \(0.542218\pi\)
\(234\) −1584.42 −0.442635
\(235\) 0 0
\(236\) 1250.90 0.345027
\(237\) 63.1188 0.0172996
\(238\) −1078.86 −0.293833
\(239\) 5158.82 1.39622 0.698109 0.715991i \(-0.254025\pi\)
0.698109 + 0.715991i \(0.254025\pi\)
\(240\) 0 0
\(241\) −463.836 −0.123976 −0.0619882 0.998077i \(-0.519744\pi\)
−0.0619882 + 0.998077i \(0.519744\pi\)
\(242\) −3325.83 −0.883440
\(243\) −3875.47 −1.02309
\(244\) −469.823 −0.123268
\(245\) 0 0
\(246\) 708.370 0.183594
\(247\) −5697.55 −1.46772
\(248\) 1095.34 0.280461
\(249\) −938.365 −0.238821
\(250\) 0 0
\(251\) 2290.25 0.575934 0.287967 0.957640i \(-0.407021\pi\)
0.287967 + 0.957640i \(0.407021\pi\)
\(252\) 755.501 0.188857
\(253\) −9127.48 −2.26814
\(254\) −436.760 −0.107893
\(255\) 0 0
\(256\) −3887.43 −0.949079
\(257\) −802.202 −0.194708 −0.0973541 0.995250i \(-0.531038\pi\)
−0.0973541 + 0.995250i \(0.531038\pi\)
\(258\) −615.922 −0.148627
\(259\) 1619.15 0.388452
\(260\) 0 0
\(261\) 834.756 0.197970
\(262\) 1212.02 0.285796
\(263\) −286.978 −0.0672845 −0.0336423 0.999434i \(-0.510711\pi\)
−0.0336423 + 0.999434i \(0.510711\pi\)
\(264\) 3174.31 0.740020
\(265\) 0 0
\(266\) −1467.84 −0.338343
\(267\) −2559.90 −0.586753
\(268\) 2111.28 0.481221
\(269\) 3561.22 0.807180 0.403590 0.914940i \(-0.367762\pi\)
0.403590 + 0.914940i \(0.367762\pi\)
\(270\) 0 0
\(271\) 1928.81 0.432349 0.216175 0.976355i \(-0.430642\pi\)
0.216175 + 0.976355i \(0.430642\pi\)
\(272\) 416.466 0.0928380
\(273\) 794.605 0.176160
\(274\) −1296.06 −0.285759
\(275\) 0 0
\(276\) 2053.04 0.447747
\(277\) 6588.69 1.42916 0.714578 0.699556i \(-0.246619\pi\)
0.714578 + 0.699556i \(0.246619\pi\)
\(278\) 4946.70 1.06721
\(279\) −1029.84 −0.220986
\(280\) 0 0
\(281\) 815.552 0.173138 0.0865689 0.996246i \(-0.472410\pi\)
0.0865689 + 0.996246i \(0.472410\pi\)
\(282\) −280.049 −0.0591371
\(283\) −6513.49 −1.36815 −0.684076 0.729411i \(-0.739794\pi\)
−0.684076 + 0.729411i \(0.739794\pi\)
\(284\) −1718.03 −0.358965
\(285\) 0 0
\(286\) −4390.89 −0.907828
\(287\) 1186.89 0.244112
\(288\) 3831.80 0.783997
\(289\) 3551.94 0.722967
\(290\) 0 0
\(291\) 2350.96 0.473593
\(292\) −2837.16 −0.568603
\(293\) 435.520 0.0868373 0.0434186 0.999057i \(-0.486175\pi\)
0.0434186 + 0.999057i \(0.486175\pi\)
\(294\) 204.712 0.0406089
\(295\) 0 0
\(296\) 5112.31 1.00387
\(297\) −6862.29 −1.34071
\(298\) −4211.36 −0.818650
\(299\) −7214.10 −1.39533
\(300\) 0 0
\(301\) −1031.99 −0.197618
\(302\) −169.279 −0.0322547
\(303\) 1507.89 0.285895
\(304\) 566.620 0.106901
\(305\) 0 0
\(306\) 3202.71 0.598323
\(307\) −4915.99 −0.913910 −0.456955 0.889490i \(-0.651060\pi\)
−0.456955 + 0.889490i \(0.651060\pi\)
\(308\) 2093.72 0.387340
\(309\) 750.601 0.138188
\(310\) 0 0
\(311\) −1831.11 −0.333868 −0.166934 0.985968i \(-0.553387\pi\)
−0.166934 + 0.985968i \(0.553387\pi\)
\(312\) 2508.89 0.455249
\(313\) −2442.96 −0.441163 −0.220582 0.975369i \(-0.570796\pi\)
−0.220582 + 0.975369i \(0.570796\pi\)
\(314\) −3917.11 −0.703998
\(315\) 0 0
\(316\) 131.449 0.0234006
\(317\) 1666.19 0.295214 0.147607 0.989046i \(-0.452843\pi\)
0.147607 + 0.989046i \(0.452843\pi\)
\(318\) 1122.35 0.197919
\(319\) 2313.36 0.406029
\(320\) 0 0
\(321\) −3770.02 −0.655521
\(322\) −1858.55 −0.321655
\(323\) 11516.9 1.98396
\(324\) −1370.54 −0.235004
\(325\) 0 0
\(326\) 2219.93 0.377149
\(327\) 4407.05 0.745292
\(328\) 3747.50 0.630856
\(329\) −469.229 −0.0786305
\(330\) 0 0
\(331\) −5466.38 −0.907732 −0.453866 0.891070i \(-0.649956\pi\)
−0.453866 + 0.891070i \(0.649956\pi\)
\(332\) −1954.20 −0.323045
\(333\) −4806.60 −0.790991
\(334\) −3494.72 −0.572522
\(335\) 0 0
\(336\) −79.0233 −0.0128306
\(337\) 10650.5 1.72157 0.860784 0.508970i \(-0.169973\pi\)
0.860784 + 0.508970i \(0.169973\pi\)
\(338\) 209.896 0.0337776
\(339\) −2606.86 −0.417655
\(340\) 0 0
\(341\) −2854.01 −0.453235
\(342\) 4357.43 0.688956
\(343\) 343.000 0.0539949
\(344\) −3258.42 −0.510704
\(345\) 0 0
\(346\) −3213.28 −0.499269
\(347\) 4019.13 0.621782 0.310891 0.950446i \(-0.399373\pi\)
0.310891 + 0.950446i \(0.399373\pi\)
\(348\) −520.341 −0.0801529
\(349\) 10544.9 1.61735 0.808674 0.588256i \(-0.200185\pi\)
0.808674 + 0.588256i \(0.200185\pi\)
\(350\) 0 0
\(351\) −5423.76 −0.824784
\(352\) 10619.1 1.60795
\(353\) 2959.98 0.446300 0.223150 0.974784i \(-0.428366\pi\)
0.223150 + 0.974784i \(0.428366\pi\)
\(354\) −1006.19 −0.151069
\(355\) 0 0
\(356\) −5331.14 −0.793680
\(357\) −1606.20 −0.238121
\(358\) −1053.75 −0.155566
\(359\) 2170.17 0.319045 0.159523 0.987194i \(-0.449005\pi\)
0.159523 + 0.987194i \(0.449005\pi\)
\(360\) 0 0
\(361\) 8810.30 1.28449
\(362\) 4691.88 0.681215
\(363\) −4951.46 −0.715934
\(364\) 1654.82 0.238285
\(365\) 0 0
\(366\) 377.914 0.0539724
\(367\) −1252.20 −0.178105 −0.0890523 0.996027i \(-0.528384\pi\)
−0.0890523 + 0.996027i \(0.528384\pi\)
\(368\) 717.441 0.101628
\(369\) −3523.40 −0.497076
\(370\) 0 0
\(371\) 1880.53 0.263159
\(372\) 641.949 0.0894718
\(373\) 4646.02 0.644938 0.322469 0.946580i \(-0.395487\pi\)
0.322469 + 0.946580i \(0.395487\pi\)
\(374\) 8875.66 1.22714
\(375\) 0 0
\(376\) −1481.54 −0.203204
\(377\) 1828.41 0.249783
\(378\) −1397.31 −0.190132
\(379\) 1434.84 0.194466 0.0972331 0.995262i \(-0.469001\pi\)
0.0972331 + 0.995262i \(0.469001\pi\)
\(380\) 0 0
\(381\) −650.242 −0.0874355
\(382\) −1240.05 −0.166090
\(383\) −13216.7 −1.76330 −0.881649 0.471905i \(-0.843566\pi\)
−0.881649 + 0.471905i \(0.843566\pi\)
\(384\) −2539.82 −0.337526
\(385\) 0 0
\(386\) −6838.97 −0.901799
\(387\) 3063.57 0.402403
\(388\) 4896.02 0.640612
\(389\) −7755.01 −1.01078 −0.505391 0.862890i \(-0.668652\pi\)
−0.505391 + 0.862890i \(0.668652\pi\)
\(390\) 0 0
\(391\) 14582.5 1.88610
\(392\) 1082.99 0.139539
\(393\) 1804.44 0.231607
\(394\) −5720.49 −0.731457
\(395\) 0 0
\(396\) −6215.40 −0.788726
\(397\) −3560.83 −0.450158 −0.225079 0.974341i \(-0.572264\pi\)
−0.225079 + 0.974341i \(0.572264\pi\)
\(398\) 5682.89 0.715723
\(399\) −2185.31 −0.274191
\(400\) 0 0
\(401\) −5430.61 −0.676288 −0.338144 0.941094i \(-0.609799\pi\)
−0.338144 + 0.941094i \(0.609799\pi\)
\(402\) −1698.26 −0.210701
\(403\) −2255.73 −0.278823
\(404\) 3140.28 0.386719
\(405\) 0 0
\(406\) 471.048 0.0575806
\(407\) −13320.5 −1.62229
\(408\) −5071.42 −0.615374
\(409\) −9698.79 −1.17255 −0.586277 0.810111i \(-0.699407\pi\)
−0.586277 + 0.810111i \(0.699407\pi\)
\(410\) 0 0
\(411\) −1929.56 −0.231577
\(412\) 1563.17 0.186922
\(413\) −1685.90 −0.200866
\(414\) 5517.27 0.654974
\(415\) 0 0
\(416\) 8393.01 0.989186
\(417\) 7364.58 0.864856
\(418\) 12075.7 1.41302
\(419\) 13830.9 1.61261 0.806307 0.591498i \(-0.201463\pi\)
0.806307 + 0.591498i \(0.201463\pi\)
\(420\) 0 0
\(421\) 16703.0 1.93362 0.966810 0.255498i \(-0.0822393\pi\)
0.966810 + 0.255498i \(0.0822393\pi\)
\(422\) −5692.26 −0.656623
\(423\) 1392.95 0.160112
\(424\) 5937.58 0.680081
\(425\) 0 0
\(426\) 1381.94 0.157172
\(427\) 633.205 0.0717634
\(428\) −7851.31 −0.886699
\(429\) −6537.10 −0.735698
\(430\) 0 0
\(431\) 8174.07 0.913530 0.456765 0.889588i \(-0.349008\pi\)
0.456765 + 0.889588i \(0.349008\pi\)
\(432\) 539.392 0.0600729
\(433\) 14222.8 1.57853 0.789267 0.614051i \(-0.210461\pi\)
0.789267 + 0.614051i \(0.210461\pi\)
\(434\) −581.136 −0.0642752
\(435\) 0 0
\(436\) 9177.96 1.00813
\(437\) 19840.1 2.17181
\(438\) 2282.14 0.248961
\(439\) 5537.38 0.602016 0.301008 0.953622i \(-0.402677\pi\)
0.301008 + 0.953622i \(0.402677\pi\)
\(440\) 0 0
\(441\) −1018.23 −0.109948
\(442\) 7015.07 0.754916
\(443\) 3974.09 0.426218 0.213109 0.977028i \(-0.431641\pi\)
0.213109 + 0.977028i \(0.431641\pi\)
\(444\) 2996.17 0.320252
\(445\) 0 0
\(446\) −305.903 −0.0324774
\(447\) −6269.82 −0.663428
\(448\) 1908.78 0.201298
\(449\) −15243.1 −1.60216 −0.801078 0.598559i \(-0.795740\pi\)
−0.801078 + 0.598559i \(0.795740\pi\)
\(450\) 0 0
\(451\) −9764.40 −1.01948
\(452\) −5428.95 −0.564947
\(453\) −252.021 −0.0261390
\(454\) 5280.67 0.545890
\(455\) 0 0
\(456\) −6899.89 −0.708590
\(457\) −10768.9 −1.10229 −0.551145 0.834410i \(-0.685809\pi\)
−0.551145 + 0.834410i \(0.685809\pi\)
\(458\) −10071.7 −1.02755
\(459\) 10963.5 1.11489
\(460\) 0 0
\(461\) −332.605 −0.0336029 −0.0168015 0.999859i \(-0.505348\pi\)
−0.0168015 + 0.999859i \(0.505348\pi\)
\(462\) −1684.13 −0.169595
\(463\) −8205.35 −0.823618 −0.411809 0.911270i \(-0.635103\pi\)
−0.411809 + 0.911270i \(0.635103\pi\)
\(464\) −181.835 −0.0181929
\(465\) 0 0
\(466\) 1575.76 0.156643
\(467\) −167.628 −0.0166100 −0.00830501 0.999966i \(-0.502644\pi\)
−0.00830501 + 0.999966i \(0.502644\pi\)
\(468\) −4912.47 −0.485212
\(469\) −2845.49 −0.280154
\(470\) 0 0
\(471\) −5831.75 −0.570515
\(472\) −5323.06 −0.519097
\(473\) 8490.07 0.825315
\(474\) −105.734 −0.0102459
\(475\) 0 0
\(476\) −3345.01 −0.322098
\(477\) −5582.52 −0.535862
\(478\) −8641.86 −0.826924
\(479\) 6628.58 0.632292 0.316146 0.948711i \(-0.397611\pi\)
0.316146 + 0.948711i \(0.397611\pi\)
\(480\) 0 0
\(481\) −10528.2 −0.998010
\(482\) 777.001 0.0734262
\(483\) −2766.98 −0.260667
\(484\) −10311.7 −0.968419
\(485\) 0 0
\(486\) 6492.05 0.605937
\(487\) −20641.6 −1.92065 −0.960327 0.278875i \(-0.910039\pi\)
−0.960327 + 0.278875i \(0.910039\pi\)
\(488\) 1999.28 0.185458
\(489\) 3305.01 0.305640
\(490\) 0 0
\(491\) −16710.8 −1.53594 −0.767972 0.640484i \(-0.778734\pi\)
−0.767972 + 0.640484i \(0.778734\pi\)
\(492\) 2196.30 0.201253
\(493\) −3695.92 −0.337639
\(494\) 9544.32 0.869270
\(495\) 0 0
\(496\) 224.331 0.0203080
\(497\) 2315.47 0.208980
\(498\) 1571.91 0.141444
\(499\) −13728.7 −1.23162 −0.615812 0.787893i \(-0.711172\pi\)
−0.615812 + 0.787893i \(0.711172\pi\)
\(500\) 0 0
\(501\) −5202.90 −0.463969
\(502\) −3836.54 −0.341102
\(503\) −19523.7 −1.73065 −0.865326 0.501209i \(-0.832889\pi\)
−0.865326 + 0.501209i \(0.832889\pi\)
\(504\) −3214.95 −0.284138
\(505\) 0 0
\(506\) 15290.0 1.34333
\(507\) 312.490 0.0273731
\(508\) −1354.17 −0.118271
\(509\) −8688.17 −0.756574 −0.378287 0.925688i \(-0.623487\pi\)
−0.378287 + 0.925688i \(0.623487\pi\)
\(510\) 0 0
\(511\) 3823.78 0.331026
\(512\) −1635.04 −0.141131
\(513\) 14916.3 1.28377
\(514\) 1343.82 0.115318
\(515\) 0 0
\(516\) −1909.66 −0.162923
\(517\) 3860.28 0.328385
\(518\) −2712.34 −0.230064
\(519\) −4783.89 −0.404604
\(520\) 0 0
\(521\) 6771.36 0.569402 0.284701 0.958616i \(-0.408106\pi\)
0.284701 + 0.958616i \(0.408106\pi\)
\(522\) −1398.35 −0.117249
\(523\) −1365.89 −0.114200 −0.0570998 0.998368i \(-0.518185\pi\)
−0.0570998 + 0.998368i \(0.518185\pi\)
\(524\) 3757.85 0.313287
\(525\) 0 0
\(526\) 480.735 0.0398499
\(527\) 4559.68 0.376894
\(528\) 650.113 0.0535844
\(529\) 12954.0 1.06469
\(530\) 0 0
\(531\) 5004.75 0.409016
\(532\) −4551.04 −0.370888
\(533\) −7717.51 −0.627171
\(534\) 4288.24 0.347510
\(535\) 0 0
\(536\) −8984.34 −0.724001
\(537\) −1568.82 −0.126070
\(538\) −5965.62 −0.478060
\(539\) −2821.81 −0.225499
\(540\) 0 0
\(541\) −23250.1 −1.84769 −0.923844 0.382770i \(-0.874970\pi\)
−0.923844 + 0.382770i \(0.874970\pi\)
\(542\) −3231.06 −0.256063
\(543\) 6985.22 0.552052
\(544\) −16965.5 −1.33711
\(545\) 0 0
\(546\) −1331.09 −0.104332
\(547\) −11552.7 −0.903033 −0.451516 0.892263i \(-0.649117\pi\)
−0.451516 + 0.892263i \(0.649117\pi\)
\(548\) −4018.43 −0.313246
\(549\) −1879.73 −0.146129
\(550\) 0 0
\(551\) −5028.47 −0.388784
\(552\) −8736.48 −0.673640
\(553\) −177.161 −0.0136232
\(554\) −11037.1 −0.846430
\(555\) 0 0
\(556\) 15337.2 1.16986
\(557\) −16406.2 −1.24803 −0.624014 0.781413i \(-0.714499\pi\)
−0.624014 + 0.781413i \(0.714499\pi\)
\(558\) 1725.16 0.130881
\(559\) 6710.31 0.507721
\(560\) 0 0
\(561\) 13214.0 0.994465
\(562\) −1366.18 −0.102542
\(563\) 13631.9 1.02045 0.510227 0.860040i \(-0.329561\pi\)
0.510227 + 0.860040i \(0.329561\pi\)
\(564\) −868.289 −0.0648255
\(565\) 0 0
\(566\) 10911.2 0.810300
\(567\) 1847.15 0.136813
\(568\) 7310.88 0.540067
\(569\) −3086.83 −0.227428 −0.113714 0.993514i \(-0.536275\pi\)
−0.113714 + 0.993514i \(0.536275\pi\)
\(570\) 0 0
\(571\) −3258.06 −0.238784 −0.119392 0.992847i \(-0.538095\pi\)
−0.119392 + 0.992847i \(0.538095\pi\)
\(572\) −13613.9 −0.995152
\(573\) −1846.17 −0.134598
\(574\) −1988.24 −0.144577
\(575\) 0 0
\(576\) −5666.39 −0.409895
\(577\) 23758.4 1.71417 0.857083 0.515178i \(-0.172274\pi\)
0.857083 + 0.515178i \(0.172274\pi\)
\(578\) −5950.07 −0.428184
\(579\) −10181.8 −0.730812
\(580\) 0 0
\(581\) 2633.78 0.188068
\(582\) −3938.23 −0.280490
\(583\) −15470.8 −1.09903
\(584\) 12073.2 0.855468
\(585\) 0 0
\(586\) −729.566 −0.0514302
\(587\) 596.893 0.0419701 0.0209850 0.999780i \(-0.493320\pi\)
0.0209850 + 0.999780i \(0.493320\pi\)
\(588\) 634.708 0.0445151
\(589\) 6203.66 0.433985
\(590\) 0 0
\(591\) −8516.60 −0.592768
\(592\) 1047.02 0.0726898
\(593\) 19496.3 1.35012 0.675058 0.737765i \(-0.264119\pi\)
0.675058 + 0.737765i \(0.264119\pi\)
\(594\) 11495.5 0.794047
\(595\) 0 0
\(596\) −13057.3 −0.897396
\(597\) 8460.62 0.580017
\(598\) 12084.8 0.826395
\(599\) 3797.02 0.259001 0.129501 0.991579i \(-0.458663\pi\)
0.129501 + 0.991579i \(0.458663\pi\)
\(600\) 0 0
\(601\) 5789.33 0.392931 0.196466 0.980511i \(-0.437054\pi\)
0.196466 + 0.980511i \(0.437054\pi\)
\(602\) 1728.76 0.117041
\(603\) 8447.09 0.570468
\(604\) −524.850 −0.0353573
\(605\) 0 0
\(606\) −2525.96 −0.169324
\(607\) 18536.4 1.23949 0.619745 0.784803i \(-0.287236\pi\)
0.619745 + 0.784803i \(0.287236\pi\)
\(608\) −23082.3 −1.53966
\(609\) 701.291 0.0466630
\(610\) 0 0
\(611\) 3051.06 0.202017
\(612\) 9929.98 0.655876
\(613\) 2163.47 0.142548 0.0712738 0.997457i \(-0.477294\pi\)
0.0712738 + 0.997457i \(0.477294\pi\)
\(614\) 8235.08 0.541272
\(615\) 0 0
\(616\) −8909.59 −0.582756
\(617\) 22964.9 1.49843 0.749215 0.662327i \(-0.230431\pi\)
0.749215 + 0.662327i \(0.230431\pi\)
\(618\) −1257.38 −0.0818433
\(619\) −1386.67 −0.0900401 −0.0450200 0.998986i \(-0.514335\pi\)
−0.0450200 + 0.998986i \(0.514335\pi\)
\(620\) 0 0
\(621\) 18886.7 1.22045
\(622\) 3067.41 0.197736
\(623\) 7185.06 0.462060
\(624\) 513.831 0.0329643
\(625\) 0 0
\(626\) 4092.35 0.261283
\(627\) 17978.2 1.14510
\(628\) −12145.0 −0.771716
\(629\) 21281.4 1.34904
\(630\) 0 0
\(631\) 5969.39 0.376605 0.188303 0.982111i \(-0.439701\pi\)
0.188303 + 0.982111i \(0.439701\pi\)
\(632\) −559.367 −0.0352064
\(633\) −8474.57 −0.532123
\(634\) −2791.14 −0.174843
\(635\) 0 0
\(636\) 3479.84 0.216957
\(637\) −2230.28 −0.138724
\(638\) −3875.25 −0.240474
\(639\) −6873.70 −0.425539
\(640\) 0 0
\(641\) 30367.1 1.87118 0.935592 0.353084i \(-0.114867\pi\)
0.935592 + 0.353084i \(0.114867\pi\)
\(642\) 6315.40 0.388238
\(643\) 28592.2 1.75360 0.876802 0.480851i \(-0.159672\pi\)
0.876802 + 0.480851i \(0.159672\pi\)
\(644\) −5762.42 −0.352595
\(645\) 0 0
\(646\) −19292.7 −1.17502
\(647\) −14507.9 −0.881555 −0.440778 0.897616i \(-0.645297\pi\)
−0.440778 + 0.897616i \(0.645297\pi\)
\(648\) 5832.21 0.353566
\(649\) 13869.7 0.838877
\(650\) 0 0
\(651\) −865.188 −0.0520882
\(652\) 6882.89 0.413428
\(653\) 6999.85 0.419488 0.209744 0.977756i \(-0.432737\pi\)
0.209744 + 0.977756i \(0.432737\pi\)
\(654\) −7382.53 −0.441406
\(655\) 0 0
\(656\) 767.504 0.0456799
\(657\) −11351.3 −0.674056
\(658\) 786.035 0.0465696
\(659\) 7308.92 0.432041 0.216020 0.976389i \(-0.430692\pi\)
0.216020 + 0.976389i \(0.430692\pi\)
\(660\) 0 0
\(661\) −30097.2 −1.77102 −0.885512 0.464617i \(-0.846192\pi\)
−0.885512 + 0.464617i \(0.846192\pi\)
\(662\) 9157.07 0.537613
\(663\) 10444.0 0.611779
\(664\) 8315.91 0.486024
\(665\) 0 0
\(666\) 8051.83 0.468472
\(667\) −6366.92 −0.369608
\(668\) −10835.4 −0.627594
\(669\) −455.425 −0.0263195
\(670\) 0 0
\(671\) −5209.29 −0.299706
\(672\) 3219.16 0.184794
\(673\) −5400.26 −0.309309 −0.154654 0.987969i \(-0.549426\pi\)
−0.154654 + 0.987969i \(0.549426\pi\)
\(674\) −17841.3 −1.01962
\(675\) 0 0
\(676\) 650.781 0.0370267
\(677\) 6431.09 0.365091 0.182546 0.983197i \(-0.441566\pi\)
0.182546 + 0.983197i \(0.441566\pi\)
\(678\) 4366.91 0.247360
\(679\) −6598.62 −0.372948
\(680\) 0 0
\(681\) 7861.79 0.442385
\(682\) 4780.92 0.268433
\(683\) −20865.8 −1.16897 −0.584486 0.811404i \(-0.698704\pi\)
−0.584486 + 0.811404i \(0.698704\pi\)
\(684\) 13510.2 0.755227
\(685\) 0 0
\(686\) −574.581 −0.0319790
\(687\) −14994.6 −0.832720
\(688\) −667.339 −0.0369797
\(689\) −12227.7 −0.676109
\(690\) 0 0
\(691\) 18450.3 1.01575 0.507873 0.861432i \(-0.330432\pi\)
0.507873 + 0.861432i \(0.330432\pi\)
\(692\) −9962.76 −0.547294
\(693\) 8376.81 0.459176
\(694\) −6732.70 −0.368256
\(695\) 0 0
\(696\) 2214.26 0.120591
\(697\) 15600.0 0.847766
\(698\) −17664.4 −0.957890
\(699\) 2345.97 0.126942
\(700\) 0 0
\(701\) 12639.3 0.680996 0.340498 0.940245i \(-0.389404\pi\)
0.340498 + 0.940245i \(0.389404\pi\)
\(702\) 9085.69 0.488486
\(703\) 28954.4 1.55339
\(704\) −15703.3 −0.840680
\(705\) 0 0
\(706\) −4958.45 −0.264325
\(707\) −4232.32 −0.225138
\(708\) −3119.69 −0.165600
\(709\) −23126.8 −1.22503 −0.612514 0.790460i \(-0.709842\pi\)
−0.612514 + 0.790460i \(0.709842\pi\)
\(710\) 0 0
\(711\) 525.918 0.0277404
\(712\) 22686.1 1.19410
\(713\) 7854.92 0.412579
\(714\) 2690.65 0.141029
\(715\) 0 0
\(716\) −3267.16 −0.170530
\(717\) −12865.9 −0.670134
\(718\) −3635.39 −0.188957
\(719\) −24093.1 −1.24968 −0.624841 0.780752i \(-0.714836\pi\)
−0.624841 + 0.780752i \(0.714836\pi\)
\(720\) 0 0
\(721\) −2106.77 −0.108821
\(722\) −14758.7 −0.760750
\(723\) 1156.79 0.0595041
\(724\) 14547.2 0.746741
\(725\) 0 0
\(726\) 8294.49 0.424019
\(727\) 35983.4 1.83570 0.917849 0.396931i \(-0.129925\pi\)
0.917849 + 0.396931i \(0.129925\pi\)
\(728\) −7041.89 −0.358503
\(729\) 2540.55 0.129073
\(730\) 0 0
\(731\) −13564.1 −0.686302
\(732\) 1171.72 0.0591640
\(733\) −1451.50 −0.0731413 −0.0365706 0.999331i \(-0.511643\pi\)
−0.0365706 + 0.999331i \(0.511643\pi\)
\(734\) 2097.64 0.105484
\(735\) 0 0
\(736\) −29226.3 −1.46371
\(737\) 23409.4 1.17001
\(738\) 5902.27 0.294398
\(739\) −5891.67 −0.293273 −0.146636 0.989190i \(-0.546845\pi\)
−0.146636 + 0.989190i \(0.546845\pi\)
\(740\) 0 0
\(741\) 14209.5 0.704451
\(742\) −3150.19 −0.155859
\(743\) 7438.65 0.367292 0.183646 0.982992i \(-0.441210\pi\)
0.183646 + 0.982992i \(0.441210\pi\)
\(744\) −2731.75 −0.134611
\(745\) 0 0
\(746\) −7782.84 −0.381970
\(747\) −7818.64 −0.382957
\(748\) 27518.9 1.34518
\(749\) 10581.6 0.516214
\(750\) 0 0
\(751\) 20272.4 0.985018 0.492509 0.870307i \(-0.336080\pi\)
0.492509 + 0.870307i \(0.336080\pi\)
\(752\) −303.427 −0.0147139
\(753\) −5711.80 −0.276427
\(754\) −3062.89 −0.147936
\(755\) 0 0
\(756\) −4332.35 −0.208421
\(757\) −10193.8 −0.489432 −0.244716 0.969595i \(-0.578695\pi\)
−0.244716 + 0.969595i \(0.578695\pi\)
\(758\) −2403.59 −0.115174
\(759\) 22763.6 1.08862
\(760\) 0 0
\(761\) −41117.6 −1.95862 −0.979311 0.202362i \(-0.935138\pi\)
−0.979311 + 0.202362i \(0.935138\pi\)
\(762\) 1089.26 0.0517845
\(763\) −12369.6 −0.586908
\(764\) −3844.76 −0.182066
\(765\) 0 0
\(766\) 22140.2 1.04433
\(767\) 10962.2 0.516065
\(768\) 9695.10 0.455523
\(769\) 11486.6 0.538642 0.269321 0.963050i \(-0.413201\pi\)
0.269321 + 0.963050i \(0.413201\pi\)
\(770\) 0 0
\(771\) 2000.66 0.0934527
\(772\) −21204.2 −0.988544
\(773\) −21799.2 −1.01431 −0.507156 0.861854i \(-0.669303\pi\)
−0.507156 + 0.861854i \(0.669303\pi\)
\(774\) −5131.98 −0.238327
\(775\) 0 0
\(776\) −20834.5 −0.963807
\(777\) −4038.10 −0.186443
\(778\) 12990.9 0.598645
\(779\) 21224.5 0.976185
\(780\) 0 0
\(781\) −19049.1 −0.872765
\(782\) −24428.0 −1.11706
\(783\) −4786.83 −0.218477
\(784\) 221.801 0.0101039
\(785\) 0 0
\(786\) −3022.72 −0.137172
\(787\) −24080.3 −1.09068 −0.545342 0.838214i \(-0.683600\pi\)
−0.545342 + 0.838214i \(0.683600\pi\)
\(788\) −17736.4 −0.801817
\(789\) 715.712 0.0322941
\(790\) 0 0
\(791\) 7316.87 0.328898
\(792\) 26449.0 1.18665
\(793\) −4117.28 −0.184374
\(794\) 5964.96 0.266610
\(795\) 0 0
\(796\) 17619.8 0.784569
\(797\) −17194.3 −0.764184 −0.382092 0.924124i \(-0.624796\pi\)
−0.382092 + 0.924124i \(0.624796\pi\)
\(798\) 3660.74 0.162392
\(799\) −6167.35 −0.273073
\(800\) 0 0
\(801\) −21329.5 −0.940876
\(802\) 9097.15 0.400538
\(803\) −31457.7 −1.38246
\(804\) −5265.46 −0.230968
\(805\) 0 0
\(806\) 3778.71 0.165136
\(807\) −8881.55 −0.387417
\(808\) −13363.1 −0.581823
\(809\) 33349.1 1.44931 0.724656 0.689111i \(-0.241999\pi\)
0.724656 + 0.689111i \(0.241999\pi\)
\(810\) 0 0
\(811\) 4577.87 0.198213 0.0991066 0.995077i \(-0.468402\pi\)
0.0991066 + 0.995077i \(0.468402\pi\)
\(812\) 1460.48 0.0631194
\(813\) −4810.37 −0.207512
\(814\) 22314.0 0.960819
\(815\) 0 0
\(816\) −1038.65 −0.0445588
\(817\) −18454.6 −0.790262
\(818\) 16247.0 0.694455
\(819\) 6620.80 0.282478
\(820\) 0 0
\(821\) −5832.52 −0.247937 −0.123969 0.992286i \(-0.539562\pi\)
−0.123969 + 0.992286i \(0.539562\pi\)
\(822\) 3232.33 0.137154
\(823\) 37974.3 1.60838 0.804192 0.594369i \(-0.202598\pi\)
0.804192 + 0.594369i \(0.202598\pi\)
\(824\) −6651.92 −0.281226
\(825\) 0 0
\(826\) 2824.15 0.118965
\(827\) 15796.2 0.664193 0.332096 0.943245i \(-0.392244\pi\)
0.332096 + 0.943245i \(0.392244\pi\)
\(828\) 17106.3 0.717976
\(829\) −12714.1 −0.532666 −0.266333 0.963881i \(-0.585812\pi\)
−0.266333 + 0.963881i \(0.585812\pi\)
\(830\) 0 0
\(831\) −16431.9 −0.685942
\(832\) −12411.4 −0.517173
\(833\) 4508.25 0.187517
\(834\) −12336.9 −0.512219
\(835\) 0 0
\(836\) 37440.8 1.54894
\(837\) 5905.55 0.243878
\(838\) −23169.0 −0.955085
\(839\) −42924.2 −1.76628 −0.883140 0.469109i \(-0.844575\pi\)
−0.883140 + 0.469109i \(0.844575\pi\)
\(840\) 0 0
\(841\) −22775.3 −0.933835
\(842\) −27980.2 −1.14520
\(843\) −2033.95 −0.0830998
\(844\) −17648.8 −0.719784
\(845\) 0 0
\(846\) −2333.42 −0.0948281
\(847\) 13897.6 0.563788
\(848\) 1216.04 0.0492442
\(849\) 16244.4 0.656662
\(850\) 0 0
\(851\) 36661.3 1.47677
\(852\) 4284.69 0.172290
\(853\) −36172.5 −1.45196 −0.725980 0.687716i \(-0.758613\pi\)
−0.725980 + 0.687716i \(0.758613\pi\)
\(854\) −1060.72 −0.0425025
\(855\) 0 0
\(856\) 33410.4 1.33405
\(857\) −32039.9 −1.27709 −0.638544 0.769586i \(-0.720463\pi\)
−0.638544 + 0.769586i \(0.720463\pi\)
\(858\) 10950.7 0.435724
\(859\) −6798.07 −0.270020 −0.135010 0.990844i \(-0.543107\pi\)
−0.135010 + 0.990844i \(0.543107\pi\)
\(860\) 0 0
\(861\) −2960.06 −0.117165
\(862\) −13692.9 −0.541046
\(863\) −30179.3 −1.19040 −0.595200 0.803577i \(-0.702927\pi\)
−0.595200 + 0.803577i \(0.702927\pi\)
\(864\) −21973.1 −0.865209
\(865\) 0 0
\(866\) −23825.5 −0.934901
\(867\) −8858.39 −0.346997
\(868\) −1801.81 −0.0704578
\(869\) 1457.47 0.0568946
\(870\) 0 0
\(871\) 18502.1 0.719772
\(872\) −39055.9 −1.51674
\(873\) 19588.6 0.759421
\(874\) −33235.4 −1.28627
\(875\) 0 0
\(876\) 7075.76 0.272908
\(877\) −1700.51 −0.0654758 −0.0327379 0.999464i \(-0.510423\pi\)
−0.0327379 + 0.999464i \(0.510423\pi\)
\(878\) −9276.02 −0.356549
\(879\) −1086.17 −0.0416787
\(880\) 0 0
\(881\) 1678.46 0.0641869 0.0320935 0.999485i \(-0.489783\pi\)
0.0320935 + 0.999485i \(0.489783\pi\)
\(882\) 1705.70 0.0651177
\(883\) 10285.8 0.392009 0.196005 0.980603i \(-0.437203\pi\)
0.196005 + 0.980603i \(0.437203\pi\)
\(884\) 21750.2 0.827532
\(885\) 0 0
\(886\) −6657.24 −0.252432
\(887\) −12167.5 −0.460593 −0.230296 0.973121i \(-0.573970\pi\)
−0.230296 + 0.973121i \(0.573970\pi\)
\(888\) −12749.9 −0.481823
\(889\) 1825.09 0.0688543
\(890\) 0 0
\(891\) −15196.3 −0.571374
\(892\) −948.452 −0.0356015
\(893\) −8390.96 −0.314438
\(894\) 10503.0 0.392922
\(895\) 0 0
\(896\) 7128.73 0.265797
\(897\) 17991.7 0.669705
\(898\) 25534.7 0.948892
\(899\) −1990.83 −0.0738574
\(900\) 0 0
\(901\) 24716.9 0.913916
\(902\) 16356.9 0.603799
\(903\) 2573.75 0.0948496
\(904\) 23102.3 0.849968
\(905\) 0 0
\(906\) 422.176 0.0154811
\(907\) −50766.0 −1.85850 −0.929250 0.369452i \(-0.879545\pi\)
−0.929250 + 0.369452i \(0.879545\pi\)
\(908\) 16372.7 0.598399
\(909\) 12564.0 0.458441
\(910\) 0 0
\(911\) 18451.1 0.671033 0.335517 0.942034i \(-0.391089\pi\)
0.335517 + 0.942034i \(0.391089\pi\)
\(912\) −1413.13 −0.0513085
\(913\) −21667.8 −0.785431
\(914\) 18039.6 0.652841
\(915\) 0 0
\(916\) −31227.1 −1.12639
\(917\) −5064.65 −0.182388
\(918\) −18365.6 −0.660301
\(919\) 393.861 0.0141374 0.00706870 0.999975i \(-0.497750\pi\)
0.00706870 + 0.999975i \(0.497750\pi\)
\(920\) 0 0
\(921\) 12260.3 0.438643
\(922\) 557.167 0.0199016
\(923\) −15055.9 −0.536912
\(924\) −5221.65 −0.185909
\(925\) 0 0
\(926\) 13745.3 0.487795
\(927\) 6254.15 0.221589
\(928\) 7407.39 0.262025
\(929\) 27452.3 0.969517 0.484759 0.874648i \(-0.338907\pi\)
0.484759 + 0.874648i \(0.338907\pi\)
\(930\) 0 0
\(931\) 6133.68 0.215922
\(932\) 4885.63 0.171710
\(933\) 4566.72 0.160244
\(934\) 280.803 0.00983744
\(935\) 0 0
\(936\) 20904.5 0.730006
\(937\) 21608.3 0.753375 0.376688 0.926340i \(-0.377063\pi\)
0.376688 + 0.926340i \(0.377063\pi\)
\(938\) 4766.65 0.165924
\(939\) 6092.64 0.211742
\(940\) 0 0
\(941\) −16708.5 −0.578832 −0.289416 0.957203i \(-0.593461\pi\)
−0.289416 + 0.957203i \(0.593461\pi\)
\(942\) 9769.12 0.337893
\(943\) 26874.0 0.928036
\(944\) −1090.19 −0.0375874
\(945\) 0 0
\(946\) −14222.2 −0.488800
\(947\) 13972.8 0.479466 0.239733 0.970839i \(-0.422940\pi\)
0.239733 + 0.970839i \(0.422940\pi\)
\(948\) −327.828 −0.0112314
\(949\) −24863.3 −0.850471
\(950\) 0 0
\(951\) −4155.42 −0.141692
\(952\) 14234.4 0.484599
\(953\) −11155.9 −0.379197 −0.189598 0.981862i \(-0.560719\pi\)
−0.189598 + 0.981862i \(0.560719\pi\)
\(954\) 9351.63 0.317369
\(955\) 0 0
\(956\) −26794.0 −0.906466
\(957\) −5769.42 −0.194879
\(958\) −11104.0 −0.374481
\(959\) 5415.85 0.182364
\(960\) 0 0
\(961\) −27334.9 −0.917556
\(962\) 17636.4 0.591081
\(963\) −31412.5 −1.05115
\(964\) 2409.09 0.0804891
\(965\) 0 0
\(966\) 4635.15 0.154382
\(967\) −1212.55 −0.0403238 −0.0201619 0.999797i \(-0.506418\pi\)
−0.0201619 + 0.999797i \(0.506418\pi\)
\(968\) 43880.4 1.45699
\(969\) −28722.8 −0.952227
\(970\) 0 0
\(971\) −48832.2 −1.61390 −0.806952 0.590617i \(-0.798885\pi\)
−0.806952 + 0.590617i \(0.798885\pi\)
\(972\) 20128.6 0.664222
\(973\) −20670.8 −0.681063
\(974\) 34578.0 1.13753
\(975\) 0 0
\(976\) 409.462 0.0134289
\(977\) 5939.19 0.194485 0.0972424 0.995261i \(-0.468998\pi\)
0.0972424 + 0.995261i \(0.468998\pi\)
\(978\) −5536.43 −0.181018
\(979\) −59110.5 −1.92970
\(980\) 0 0
\(981\) 36720.4 1.19510
\(982\) 27993.3 0.909677
\(983\) −21863.5 −0.709398 −0.354699 0.934980i \(-0.615417\pi\)
−0.354699 + 0.934980i \(0.615417\pi\)
\(984\) −9346.11 −0.302788
\(985\) 0 0
\(986\) 6191.26 0.199970
\(987\) 1170.24 0.0377397
\(988\) 29592.1 0.952886
\(989\) −23366.7 −0.751283
\(990\) 0 0
\(991\) −44618.5 −1.43023 −0.715113 0.699009i \(-0.753625\pi\)
−0.715113 + 0.699009i \(0.753625\pi\)
\(992\) −9138.55 −0.292489
\(993\) 13632.9 0.435678
\(994\) −3878.80 −0.123771
\(995\) 0 0
\(996\) 4873.71 0.155050
\(997\) −37923.9 −1.20468 −0.602338 0.798241i \(-0.705764\pi\)
−0.602338 + 0.798241i \(0.705764\pi\)
\(998\) 22997.8 0.729441
\(999\) 27563.0 0.872928
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.4.a.j.1.2 5
3.2 odd 2 1575.4.a.bn.1.4 5
5.2 odd 4 35.4.b.a.29.4 10
5.3 odd 4 35.4.b.a.29.7 yes 10
5.4 even 2 175.4.a.i.1.4 5
7.6 odd 2 1225.4.a.bh.1.2 5
15.2 even 4 315.4.d.c.64.7 10
15.8 even 4 315.4.d.c.64.4 10
15.14 odd 2 1575.4.a.bq.1.2 5
20.3 even 4 560.4.g.f.449.7 10
20.7 even 4 560.4.g.f.449.4 10
35.2 odd 12 245.4.j.e.214.4 20
35.3 even 12 245.4.j.f.79.4 20
35.12 even 12 245.4.j.f.214.4 20
35.13 even 4 245.4.b.d.99.7 10
35.17 even 12 245.4.j.f.79.7 20
35.18 odd 12 245.4.j.e.79.4 20
35.23 odd 12 245.4.j.e.214.7 20
35.27 even 4 245.4.b.d.99.4 10
35.32 odd 12 245.4.j.e.79.7 20
35.33 even 12 245.4.j.f.214.7 20
35.34 odd 2 1225.4.a.be.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.b.a.29.4 10 5.2 odd 4
35.4.b.a.29.7 yes 10 5.3 odd 4
175.4.a.i.1.4 5 5.4 even 2
175.4.a.j.1.2 5 1.1 even 1 trivial
245.4.b.d.99.4 10 35.27 even 4
245.4.b.d.99.7 10 35.13 even 4
245.4.j.e.79.4 20 35.18 odd 12
245.4.j.e.79.7 20 35.32 odd 12
245.4.j.e.214.4 20 35.2 odd 12
245.4.j.e.214.7 20 35.23 odd 12
245.4.j.f.79.4 20 35.3 even 12
245.4.j.f.79.7 20 35.17 even 12
245.4.j.f.214.4 20 35.12 even 12
245.4.j.f.214.7 20 35.33 even 12
315.4.d.c.64.4 10 15.8 even 4
315.4.d.c.64.7 10 15.2 even 4
560.4.g.f.449.4 10 20.7 even 4
560.4.g.f.449.7 10 20.3 even 4
1225.4.a.be.1.4 5 35.34 odd 2
1225.4.a.bh.1.2 5 7.6 odd 2
1575.4.a.bn.1.4 5 3.2 odd 2
1575.4.a.bq.1.2 5 15.14 odd 2