Properties

Label 175.4.a.j.1.1
Level $175$
Weight $4$
Character 175.1
Self dual yes
Analytic conductor $10.325$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(1,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 27x^{3} + 7x^{2} + 120x + 60 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(5.04851\) of defining polynomial
Character \(\chi\) \(=\) 175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.04851 q^{2} +6.52749 q^{3} +8.39045 q^{4} -26.4266 q^{6} +7.00000 q^{7} -1.58074 q^{8} +15.6081 q^{9} +O(q^{10})\) \(q-4.04851 q^{2} +6.52749 q^{3} +8.39045 q^{4} -26.4266 q^{6} +7.00000 q^{7} -1.58074 q^{8} +15.6081 q^{9} +6.78210 q^{11} +54.7685 q^{12} +48.9221 q^{13} -28.3396 q^{14} -60.7239 q^{16} +92.4381 q^{17} -63.1894 q^{18} -125.574 q^{19} +45.6924 q^{21} -27.4574 q^{22} -32.2681 q^{23} -10.3183 q^{24} -198.062 q^{26} -74.3607 q^{27} +58.7332 q^{28} +282.778 q^{29} +205.434 q^{31} +258.488 q^{32} +44.2701 q^{33} -374.237 q^{34} +130.959 q^{36} +190.627 q^{37} +508.388 q^{38} +319.338 q^{39} +123.269 q^{41} -184.986 q^{42} +35.0202 q^{43} +56.9049 q^{44} +130.638 q^{46} +419.030 q^{47} -396.375 q^{48} +49.0000 q^{49} +603.388 q^{51} +410.478 q^{52} -0.365379 q^{53} +301.050 q^{54} -11.0652 q^{56} -819.683 q^{57} -1144.83 q^{58} +328.317 q^{59} -515.707 q^{61} -831.704 q^{62} +109.256 q^{63} -560.699 q^{64} -179.228 q^{66} -828.957 q^{67} +775.597 q^{68} -210.630 q^{69} -496.231 q^{71} -24.6723 q^{72} +701.132 q^{73} -771.757 q^{74} -1053.62 q^{76} +47.4747 q^{77} -1292.84 q^{78} +199.388 q^{79} -906.806 q^{81} -499.056 q^{82} -194.923 q^{83} +383.380 q^{84} -141.780 q^{86} +1845.83 q^{87} -10.7208 q^{88} +137.406 q^{89} +342.454 q^{91} -270.744 q^{92} +1340.97 q^{93} -1696.45 q^{94} +1687.27 q^{96} +220.440 q^{97} -198.377 q^{98} +105.855 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 4 q^{2} + 10 q^{3} + 18 q^{4} + 6 q^{6} + 35 q^{7} + 42 q^{8} + 23 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 5 q + 4 q^{2} + 10 q^{3} + 18 q^{4} + 6 q^{6} + 35 q^{7} + 42 q^{8} + 23 q^{9} + 42 q^{11} + 136 q^{12} + 34 q^{13} + 28 q^{14} + 74 q^{16} + 238 q^{17} - 2 q^{18} - 36 q^{19} + 70 q^{21} + 358 q^{22} + 152 q^{23} - 36 q^{24} - 310 q^{26} + 334 q^{27} + 126 q^{28} - 44 q^{29} + 60 q^{31} + 710 q^{32} + 426 q^{33} - 482 q^{34} - 210 q^{36} + 312 q^{37} + 280 q^{38} - 106 q^{39} - 426 q^{41} + 42 q^{42} + 304 q^{43} + 712 q^{44} + 88 q^{46} + 370 q^{47} - 696 q^{48} + 245 q^{49} + 638 q^{51} - 1156 q^{52} + 976 q^{53} + 498 q^{54} + 294 q^{56} - 588 q^{57} - 2722 q^{58} - 432 q^{59} - 442 q^{61} - 956 q^{62} + 161 q^{63} + 1362 q^{64} + 574 q^{66} - 804 q^{67} - 420 q^{68} - 2404 q^{69} + 440 q^{71} - 3150 q^{72} + 564 q^{73} - 1512 q^{74} - 1336 q^{76} + 294 q^{77} - 2742 q^{78} + 1790 q^{79} - 151 q^{81} - 3480 q^{82} + 1656 q^{83} + 952 q^{84} + 1216 q^{86} - 1674 q^{87} - 1092 q^{88} + 746 q^{89} + 238 q^{91} + 572 q^{92} + 676 q^{93} - 826 q^{94} + 2040 q^{96} + 518 q^{97} + 196 q^{98} + 2652 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.04851 −1.43137 −0.715683 0.698426i \(-0.753884\pi\)
−0.715683 + 0.698426i \(0.753884\pi\)
\(3\) 6.52749 1.25622 0.628108 0.778127i \(-0.283830\pi\)
0.628108 + 0.778127i \(0.283830\pi\)
\(4\) 8.39045 1.04881
\(5\) 0 0
\(6\) −26.4266 −1.79810
\(7\) 7.00000 0.377964
\(8\) −1.58074 −0.0698597
\(9\) 15.6081 0.578076
\(10\) 0 0
\(11\) 6.78210 0.185898 0.0929491 0.995671i \(-0.470371\pi\)
0.0929491 + 0.995671i \(0.470371\pi\)
\(12\) 54.7685 1.31753
\(13\) 48.9221 1.04373 0.521867 0.853027i \(-0.325236\pi\)
0.521867 + 0.853027i \(0.325236\pi\)
\(14\) −28.3396 −0.541005
\(15\) 0 0
\(16\) −60.7239 −0.948812
\(17\) 92.4381 1.31880 0.659398 0.751794i \(-0.270811\pi\)
0.659398 + 0.751794i \(0.270811\pi\)
\(18\) −63.1894 −0.827438
\(19\) −125.574 −1.51625 −0.758123 0.652112i \(-0.773883\pi\)
−0.758123 + 0.652112i \(0.773883\pi\)
\(20\) 0 0
\(21\) 45.6924 0.474805
\(22\) −27.4574 −0.266088
\(23\) −32.2681 −0.292538 −0.146269 0.989245i \(-0.546726\pi\)
−0.146269 + 0.989245i \(0.546726\pi\)
\(24\) −10.3183 −0.0877588
\(25\) 0 0
\(26\) −198.062 −1.49396
\(27\) −74.3607 −0.530027
\(28\) 58.7332 0.396412
\(29\) 282.778 1.81071 0.905354 0.424659i \(-0.139606\pi\)
0.905354 + 0.424659i \(0.139606\pi\)
\(30\) 0 0
\(31\) 205.434 1.19023 0.595115 0.803641i \(-0.297107\pi\)
0.595115 + 0.803641i \(0.297107\pi\)
\(32\) 258.488 1.42796
\(33\) 44.2701 0.233528
\(34\) −374.237 −1.88768
\(35\) 0 0
\(36\) 130.959 0.606290
\(37\) 190.627 0.846998 0.423499 0.905897i \(-0.360802\pi\)
0.423499 + 0.905897i \(0.360802\pi\)
\(38\) 508.388 2.17030
\(39\) 319.338 1.31115
\(40\) 0 0
\(41\) 123.269 0.469546 0.234773 0.972050i \(-0.424565\pi\)
0.234773 + 0.972050i \(0.424565\pi\)
\(42\) −184.986 −0.679619
\(43\) 35.0202 0.124198 0.0620991 0.998070i \(-0.480221\pi\)
0.0620991 + 0.998070i \(0.480221\pi\)
\(44\) 56.9049 0.194971
\(45\) 0 0
\(46\) 130.638 0.418728
\(47\) 419.030 1.30046 0.650231 0.759736i \(-0.274672\pi\)
0.650231 + 0.759736i \(0.274672\pi\)
\(48\) −396.375 −1.19191
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 603.388 1.65669
\(52\) 410.478 1.09467
\(53\) −0.365379 −0.000946956 0 −0.000473478 1.00000i \(-0.500151\pi\)
−0.000473478 1.00000i \(0.500151\pi\)
\(54\) 301.050 0.758662
\(55\) 0 0
\(56\) −11.0652 −0.0264045
\(57\) −819.683 −1.90473
\(58\) −1144.83 −2.59178
\(59\) 328.317 0.724461 0.362231 0.932088i \(-0.382015\pi\)
0.362231 + 0.932088i \(0.382015\pi\)
\(60\) 0 0
\(61\) −515.707 −1.08245 −0.541226 0.840877i \(-0.682040\pi\)
−0.541226 + 0.840877i \(0.682040\pi\)
\(62\) −831.704 −1.70365
\(63\) 109.256 0.218492
\(64\) −560.699 −1.09511
\(65\) 0 0
\(66\) −179.228 −0.334264
\(67\) −828.957 −1.51154 −0.755770 0.654837i \(-0.772737\pi\)
−0.755770 + 0.654837i \(0.772737\pi\)
\(68\) 775.597 1.38316
\(69\) −210.630 −0.367490
\(70\) 0 0
\(71\) −496.231 −0.829462 −0.414731 0.909944i \(-0.636124\pi\)
−0.414731 + 0.909944i \(0.636124\pi\)
\(72\) −24.6723 −0.0403842
\(73\) 701.132 1.12413 0.562064 0.827094i \(-0.310008\pi\)
0.562064 + 0.827094i \(0.310008\pi\)
\(74\) −771.757 −1.21236
\(75\) 0 0
\(76\) −1053.62 −1.59025
\(77\) 47.4747 0.0702629
\(78\) −1292.84 −1.87674
\(79\) 199.388 0.283961 0.141981 0.989869i \(-0.454653\pi\)
0.141981 + 0.989869i \(0.454653\pi\)
\(80\) 0 0
\(81\) −906.806 −1.24390
\(82\) −499.056 −0.672092
\(83\) −194.923 −0.257778 −0.128889 0.991659i \(-0.541141\pi\)
−0.128889 + 0.991659i \(0.541141\pi\)
\(84\) 383.380 0.497978
\(85\) 0 0
\(86\) −141.780 −0.177773
\(87\) 1845.83 2.27464
\(88\) −10.7208 −0.0129868
\(89\) 137.406 0.163651 0.0818257 0.996647i \(-0.473925\pi\)
0.0818257 + 0.996647i \(0.473925\pi\)
\(90\) 0 0
\(91\) 342.454 0.394494
\(92\) −270.744 −0.306815
\(93\) 1340.97 1.49518
\(94\) −1696.45 −1.86144
\(95\) 0 0
\(96\) 1687.27 1.79382
\(97\) 220.440 0.230745 0.115372 0.993322i \(-0.463194\pi\)
0.115372 + 0.993322i \(0.463194\pi\)
\(98\) −198.377 −0.204481
\(99\) 105.855 0.107463
\(100\) 0 0
\(101\) −591.358 −0.582597 −0.291298 0.956632i \(-0.594087\pi\)
−0.291298 + 0.956632i \(0.594087\pi\)
\(102\) −2442.83 −2.37133
\(103\) −476.494 −0.455829 −0.227914 0.973681i \(-0.573191\pi\)
−0.227914 + 0.973681i \(0.573191\pi\)
\(104\) −77.3332 −0.0729149
\(105\) 0 0
\(106\) 1.47924 0.00135544
\(107\) −225.584 −0.203813 −0.101907 0.994794i \(-0.532494\pi\)
−0.101907 + 0.994794i \(0.532494\pi\)
\(108\) −623.920 −0.555895
\(109\) −1627.65 −1.43028 −0.715142 0.698979i \(-0.753638\pi\)
−0.715142 + 0.698979i \(0.753638\pi\)
\(110\) 0 0
\(111\) 1244.32 1.06401
\(112\) −425.068 −0.358617
\(113\) 357.040 0.297235 0.148617 0.988895i \(-0.452518\pi\)
0.148617 + 0.988895i \(0.452518\pi\)
\(114\) 3318.50 2.72636
\(115\) 0 0
\(116\) 2372.63 1.89908
\(117\) 763.579 0.603358
\(118\) −1329.19 −1.03697
\(119\) 647.067 0.498458
\(120\) 0 0
\(121\) −1285.00 −0.965442
\(122\) 2087.85 1.54938
\(123\) 804.637 0.589851
\(124\) 1723.69 1.24832
\(125\) 0 0
\(126\) −442.326 −0.312742
\(127\) −1728.25 −1.20754 −0.603771 0.797158i \(-0.706336\pi\)
−0.603771 + 0.797158i \(0.706336\pi\)
\(128\) 202.094 0.139553
\(129\) 228.594 0.156020
\(130\) 0 0
\(131\) 1461.19 0.974543 0.487272 0.873250i \(-0.337992\pi\)
0.487272 + 0.873250i \(0.337992\pi\)
\(132\) 371.446 0.244926
\(133\) −879.018 −0.573087
\(134\) 3356.04 2.16357
\(135\) 0 0
\(136\) −146.121 −0.0921306
\(137\) 1892.96 1.18049 0.590243 0.807226i \(-0.299032\pi\)
0.590243 + 0.807226i \(0.299032\pi\)
\(138\) 852.737 0.526013
\(139\) −1715.03 −1.04652 −0.523262 0.852172i \(-0.675285\pi\)
−0.523262 + 0.852172i \(0.675285\pi\)
\(140\) 0 0
\(141\) 2735.21 1.63366
\(142\) 2009.00 1.18726
\(143\) 331.794 0.194028
\(144\) −947.783 −0.548486
\(145\) 0 0
\(146\) −2838.54 −1.60904
\(147\) 319.847 0.179459
\(148\) 1599.45 0.888337
\(149\) −2798.32 −1.53857 −0.769286 0.638904i \(-0.779388\pi\)
−0.769286 + 0.638904i \(0.779388\pi\)
\(150\) 0 0
\(151\) −2867.49 −1.54538 −0.772692 0.634781i \(-0.781090\pi\)
−0.772692 + 0.634781i \(0.781090\pi\)
\(152\) 198.500 0.105924
\(153\) 1442.78 0.762365
\(154\) −192.202 −0.100572
\(155\) 0 0
\(156\) 2679.39 1.37515
\(157\) −783.696 −0.398381 −0.199190 0.979961i \(-0.563831\pi\)
−0.199190 + 0.979961i \(0.563831\pi\)
\(158\) −807.226 −0.406452
\(159\) −2.38501 −0.00118958
\(160\) 0 0
\(161\) −225.877 −0.110569
\(162\) 3671.22 1.78048
\(163\) 2416.93 1.16140 0.580702 0.814116i \(-0.302778\pi\)
0.580702 + 0.814116i \(0.302778\pi\)
\(164\) 1034.28 0.492463
\(165\) 0 0
\(166\) 789.149 0.368975
\(167\) −704.424 −0.326407 −0.163204 0.986592i \(-0.552183\pi\)
−0.163204 + 0.986592i \(0.552183\pi\)
\(168\) −72.2280 −0.0331697
\(169\) 196.369 0.0893803
\(170\) 0 0
\(171\) −1959.97 −0.876506
\(172\) 293.835 0.130260
\(173\) −1398.49 −0.614598 −0.307299 0.951613i \(-0.599425\pi\)
−0.307299 + 0.951613i \(0.599425\pi\)
\(174\) −7472.85 −3.25584
\(175\) 0 0
\(176\) −411.836 −0.176382
\(177\) 2143.08 0.910079
\(178\) −556.289 −0.234245
\(179\) 368.688 0.153950 0.0769749 0.997033i \(-0.475474\pi\)
0.0769749 + 0.997033i \(0.475474\pi\)
\(180\) 0 0
\(181\) −315.621 −0.129613 −0.0648064 0.997898i \(-0.520643\pi\)
−0.0648064 + 0.997898i \(0.520643\pi\)
\(182\) −1386.43 −0.564665
\(183\) −3366.27 −1.35979
\(184\) 51.0076 0.0204366
\(185\) 0 0
\(186\) −5428.94 −2.14016
\(187\) 626.924 0.245162
\(188\) 3515.85 1.36393
\(189\) −520.525 −0.200331
\(190\) 0 0
\(191\) −151.629 −0.0574424 −0.0287212 0.999587i \(-0.509143\pi\)
−0.0287212 + 0.999587i \(0.509143\pi\)
\(192\) −3659.95 −1.37570
\(193\) −690.689 −0.257600 −0.128800 0.991671i \(-0.541113\pi\)
−0.128800 + 0.991671i \(0.541113\pi\)
\(194\) −892.453 −0.330280
\(195\) 0 0
\(196\) 411.132 0.149829
\(197\) −834.136 −0.301674 −0.150837 0.988559i \(-0.548197\pi\)
−0.150837 + 0.988559i \(0.548197\pi\)
\(198\) −428.557 −0.153819
\(199\) 387.269 0.137954 0.0689769 0.997618i \(-0.478027\pi\)
0.0689769 + 0.997618i \(0.478027\pi\)
\(200\) 0 0
\(201\) −5411.00 −1.89882
\(202\) 2394.12 0.833909
\(203\) 1979.44 0.684383
\(204\) 5062.70 1.73755
\(205\) 0 0
\(206\) 1929.09 0.652457
\(207\) −503.643 −0.169109
\(208\) −2970.74 −0.990307
\(209\) −851.656 −0.281867
\(210\) 0 0
\(211\) 3070.54 1.00182 0.500912 0.865498i \(-0.332998\pi\)
0.500912 + 0.865498i \(0.332998\pi\)
\(212\) −3.06570 −0.000993174 0
\(213\) −3239.14 −1.04198
\(214\) 913.278 0.291731
\(215\) 0 0
\(216\) 117.545 0.0370275
\(217\) 1438.04 0.449865
\(218\) 6589.58 2.04726
\(219\) 4576.63 1.41215
\(220\) 0 0
\(221\) 4522.26 1.37647
\(222\) −5037.63 −1.52299
\(223\) 1004.46 0.301631 0.150816 0.988562i \(-0.451810\pi\)
0.150816 + 0.988562i \(0.451810\pi\)
\(224\) 1809.41 0.539716
\(225\) 0 0
\(226\) −1445.48 −0.425451
\(227\) −5374.22 −1.57136 −0.785681 0.618631i \(-0.787687\pi\)
−0.785681 + 0.618631i \(0.787687\pi\)
\(228\) −6877.51 −1.99769
\(229\) 3650.97 1.05355 0.526775 0.850005i \(-0.323401\pi\)
0.526775 + 0.850005i \(0.323401\pi\)
\(230\) 0 0
\(231\) 309.890 0.0882653
\(232\) −446.999 −0.126495
\(233\) 4582.88 1.28856 0.644280 0.764789i \(-0.277157\pi\)
0.644280 + 0.764789i \(0.277157\pi\)
\(234\) −3091.36 −0.863625
\(235\) 0 0
\(236\) 2754.73 0.759820
\(237\) 1301.50 0.356716
\(238\) −2619.66 −0.713476
\(239\) 696.769 0.188578 0.0942892 0.995545i \(-0.469942\pi\)
0.0942892 + 0.995545i \(0.469942\pi\)
\(240\) 0 0
\(241\) 5082.82 1.35856 0.679281 0.733878i \(-0.262292\pi\)
0.679281 + 0.733878i \(0.262292\pi\)
\(242\) 5202.35 1.38190
\(243\) −3911.42 −1.03258
\(244\) −4327.02 −1.13528
\(245\) 0 0
\(246\) −3257.58 −0.844292
\(247\) −6143.34 −1.58256
\(248\) −324.739 −0.0831490
\(249\) −1272.36 −0.323825
\(250\) 0 0
\(251\) −1207.32 −0.303606 −0.151803 0.988411i \(-0.548508\pi\)
−0.151803 + 0.988411i \(0.548508\pi\)
\(252\) 916.711 0.229156
\(253\) −218.846 −0.0543822
\(254\) 6996.86 1.72843
\(255\) 0 0
\(256\) 3667.41 0.895363
\(257\) 510.936 0.124013 0.0620064 0.998076i \(-0.480250\pi\)
0.0620064 + 0.998076i \(0.480250\pi\)
\(258\) −925.464 −0.223321
\(259\) 1334.39 0.320135
\(260\) 0 0
\(261\) 4413.61 1.04673
\(262\) −5915.67 −1.39493
\(263\) 2269.04 0.531997 0.265998 0.963974i \(-0.414298\pi\)
0.265998 + 0.963974i \(0.414298\pi\)
\(264\) −69.9796 −0.0163142
\(265\) 0 0
\(266\) 3558.72 0.820297
\(267\) 896.913 0.205581
\(268\) −6955.32 −1.58531
\(269\) −7836.10 −1.77612 −0.888058 0.459731i \(-0.847946\pi\)
−0.888058 + 0.459731i \(0.847946\pi\)
\(270\) 0 0
\(271\) 1466.28 0.328673 0.164336 0.986404i \(-0.447452\pi\)
0.164336 + 0.986404i \(0.447452\pi\)
\(272\) −5613.21 −1.25129
\(273\) 2235.37 0.495570
\(274\) −7663.67 −1.68971
\(275\) 0 0
\(276\) −1767.28 −0.385426
\(277\) 4154.17 0.901083 0.450542 0.892755i \(-0.351231\pi\)
0.450542 + 0.892755i \(0.351231\pi\)
\(278\) 6943.32 1.49796
\(279\) 3206.43 0.688044
\(280\) 0 0
\(281\) −3490.40 −0.740996 −0.370498 0.928833i \(-0.620813\pi\)
−0.370498 + 0.928833i \(0.620813\pi\)
\(282\) −11073.5 −2.33837
\(283\) −3125.29 −0.656464 −0.328232 0.944597i \(-0.606453\pi\)
−0.328232 + 0.944597i \(0.606453\pi\)
\(284\) −4163.60 −0.869945
\(285\) 0 0
\(286\) −1343.27 −0.277725
\(287\) 862.883 0.177472
\(288\) 4034.49 0.825467
\(289\) 3631.80 0.739223
\(290\) 0 0
\(291\) 1438.92 0.289865
\(292\) 5882.81 1.17899
\(293\) −1447.69 −0.288652 −0.144326 0.989530i \(-0.546101\pi\)
−0.144326 + 0.989530i \(0.546101\pi\)
\(294\) −1294.90 −0.256872
\(295\) 0 0
\(296\) −301.333 −0.0591710
\(297\) −504.322 −0.0985310
\(298\) 11329.0 2.20226
\(299\) −1578.62 −0.305332
\(300\) 0 0
\(301\) 245.141 0.0469425
\(302\) 11609.1 2.21201
\(303\) −3860.08 −0.731867
\(304\) 7625.35 1.43863
\(305\) 0 0
\(306\) −5841.11 −1.09122
\(307\) 1591.43 0.295856 0.147928 0.988998i \(-0.452740\pi\)
0.147928 + 0.988998i \(0.452740\pi\)
\(308\) 398.334 0.0736922
\(309\) −3110.31 −0.572619
\(310\) 0 0
\(311\) −8584.92 −1.56529 −0.782647 0.622466i \(-0.786131\pi\)
−0.782647 + 0.622466i \(0.786131\pi\)
\(312\) −504.792 −0.0915968
\(313\) −7210.05 −1.30203 −0.651016 0.759064i \(-0.725657\pi\)
−0.651016 + 0.759064i \(0.725657\pi\)
\(314\) 3172.80 0.570228
\(315\) 0 0
\(316\) 1672.96 0.297820
\(317\) 7787.24 1.37973 0.689865 0.723938i \(-0.257670\pi\)
0.689865 + 0.723938i \(0.257670\pi\)
\(318\) 9.65573 0.00170272
\(319\) 1917.83 0.336607
\(320\) 0 0
\(321\) −1472.49 −0.256033
\(322\) 914.465 0.158264
\(323\) −11607.8 −1.99962
\(324\) −7608.51 −1.30461
\(325\) 0 0
\(326\) −9784.98 −1.66239
\(327\) −10624.5 −1.79674
\(328\) −194.857 −0.0328023
\(329\) 2933.21 0.491529
\(330\) 0 0
\(331\) −1729.78 −0.287243 −0.143621 0.989633i \(-0.545875\pi\)
−0.143621 + 0.989633i \(0.545875\pi\)
\(332\) −1635.49 −0.270359
\(333\) 2975.32 0.489630
\(334\) 2851.87 0.467208
\(335\) 0 0
\(336\) −2774.62 −0.450500
\(337\) −7815.06 −1.26325 −0.631623 0.775276i \(-0.717611\pi\)
−0.631623 + 0.775276i \(0.717611\pi\)
\(338\) −795.000 −0.127936
\(339\) 2330.57 0.373391
\(340\) 0 0
\(341\) 1393.28 0.221262
\(342\) 7934.95 1.25460
\(343\) 343.000 0.0539949
\(344\) −55.3579 −0.00867645
\(345\) 0 0
\(346\) 5661.82 0.879714
\(347\) −2359.77 −0.365070 −0.182535 0.983199i \(-0.558430\pi\)
−0.182535 + 0.983199i \(0.558430\pi\)
\(348\) 15487.3 2.38565
\(349\) 3212.73 0.492761 0.246380 0.969173i \(-0.420759\pi\)
0.246380 + 0.969173i \(0.420759\pi\)
\(350\) 0 0
\(351\) −3637.88 −0.553207
\(352\) 1753.09 0.265454
\(353\) 5582.04 0.841649 0.420824 0.907142i \(-0.361741\pi\)
0.420824 + 0.907142i \(0.361741\pi\)
\(354\) −8676.30 −1.30266
\(355\) 0 0
\(356\) 1152.90 0.171639
\(357\) 4223.72 0.626171
\(358\) −1492.64 −0.220358
\(359\) −10630.6 −1.56285 −0.781425 0.623999i \(-0.785507\pi\)
−0.781425 + 0.623999i \(0.785507\pi\)
\(360\) 0 0
\(361\) 8909.84 1.29900
\(362\) 1277.80 0.185523
\(363\) −8387.84 −1.21280
\(364\) 2873.35 0.413748
\(365\) 0 0
\(366\) 13628.4 1.94636
\(367\) −4514.69 −0.642139 −0.321070 0.947056i \(-0.604042\pi\)
−0.321070 + 0.947056i \(0.604042\pi\)
\(368\) 1959.45 0.277563
\(369\) 1923.99 0.271434
\(370\) 0 0
\(371\) −2.55765 −0.000357916 0
\(372\) 11251.3 1.56816
\(373\) −11445.8 −1.58885 −0.794426 0.607361i \(-0.792228\pi\)
−0.794426 + 0.607361i \(0.792228\pi\)
\(374\) −2538.11 −0.350916
\(375\) 0 0
\(376\) −662.378 −0.0908499
\(377\) 13834.1 1.88990
\(378\) 2107.35 0.286747
\(379\) 8146.48 1.10411 0.552054 0.833809i \(-0.313844\pi\)
0.552054 + 0.833809i \(0.313844\pi\)
\(380\) 0 0
\(381\) −11281.2 −1.51693
\(382\) 613.872 0.0822210
\(383\) 5261.56 0.701967 0.350983 0.936382i \(-0.385847\pi\)
0.350983 + 0.936382i \(0.385847\pi\)
\(384\) 1319.17 0.175308
\(385\) 0 0
\(386\) 2796.26 0.368720
\(387\) 546.597 0.0717961
\(388\) 1849.59 0.242007
\(389\) 13207.1 1.72141 0.860706 0.509103i \(-0.170023\pi\)
0.860706 + 0.509103i \(0.170023\pi\)
\(390\) 0 0
\(391\) −2982.80 −0.385798
\(392\) −77.4564 −0.00997995
\(393\) 9537.93 1.22424
\(394\) 3377.01 0.431805
\(395\) 0 0
\(396\) 888.175 0.112708
\(397\) 5663.15 0.715933 0.357967 0.933734i \(-0.383470\pi\)
0.357967 + 0.933734i \(0.383470\pi\)
\(398\) −1567.86 −0.197462
\(399\) −5737.78 −0.719920
\(400\) 0 0
\(401\) −11989.0 −1.49302 −0.746512 0.665372i \(-0.768273\pi\)
−0.746512 + 0.665372i \(0.768273\pi\)
\(402\) 21906.5 2.71790
\(403\) 10050.3 1.24228
\(404\) −4961.76 −0.611031
\(405\) 0 0
\(406\) −8013.80 −0.979602
\(407\) 1292.85 0.157455
\(408\) −953.802 −0.115736
\(409\) 5249.67 0.634669 0.317334 0.948314i \(-0.397212\pi\)
0.317334 + 0.948314i \(0.397212\pi\)
\(410\) 0 0
\(411\) 12356.3 1.48294
\(412\) −3998.00 −0.478076
\(413\) 2298.22 0.273821
\(414\) 2039.00 0.242057
\(415\) 0 0
\(416\) 12645.7 1.49041
\(417\) −11194.8 −1.31466
\(418\) 3447.94 0.403455
\(419\) −14948.9 −1.74297 −0.871484 0.490424i \(-0.836842\pi\)
−0.871484 + 0.490424i \(0.836842\pi\)
\(420\) 0 0
\(421\) 5840.31 0.676103 0.338051 0.941128i \(-0.390232\pi\)
0.338051 + 0.941128i \(0.390232\pi\)
\(422\) −12431.1 −1.43398
\(423\) 6540.24 0.751767
\(424\) 0.577571 6.61540e−5 0
\(425\) 0 0
\(426\) 13113.7 1.49146
\(427\) −3609.95 −0.409128
\(428\) −1892.75 −0.213760
\(429\) 2165.78 0.243741
\(430\) 0 0
\(431\) 7439.21 0.831402 0.415701 0.909501i \(-0.363536\pi\)
0.415701 + 0.909501i \(0.363536\pi\)
\(432\) 4515.48 0.502896
\(433\) 877.657 0.0974077 0.0487038 0.998813i \(-0.484491\pi\)
0.0487038 + 0.998813i \(0.484491\pi\)
\(434\) −5821.93 −0.643920
\(435\) 0 0
\(436\) −13656.8 −1.50009
\(437\) 4052.04 0.443559
\(438\) −18528.5 −2.02130
\(439\) −10855.8 −1.18023 −0.590114 0.807320i \(-0.700917\pi\)
−0.590114 + 0.807320i \(0.700917\pi\)
\(440\) 0 0
\(441\) 764.795 0.0825823
\(442\) −18308.4 −1.97023
\(443\) 10797.0 1.15798 0.578988 0.815336i \(-0.303448\pi\)
0.578988 + 0.815336i \(0.303448\pi\)
\(444\) 10440.4 1.11594
\(445\) 0 0
\(446\) −4066.58 −0.431745
\(447\) −18266.0 −1.93278
\(448\) −3924.89 −0.413914
\(449\) 8621.70 0.906198 0.453099 0.891460i \(-0.350318\pi\)
0.453099 + 0.891460i \(0.350318\pi\)
\(450\) 0 0
\(451\) 836.023 0.0872878
\(452\) 2995.73 0.311742
\(453\) −18717.5 −1.94134
\(454\) 21757.6 2.24919
\(455\) 0 0
\(456\) 1295.71 0.133064
\(457\) 3785.90 0.387520 0.193760 0.981049i \(-0.437932\pi\)
0.193760 + 0.981049i \(0.437932\pi\)
\(458\) −14781.0 −1.50801
\(459\) −6873.76 −0.698997
\(460\) 0 0
\(461\) 5760.18 0.581948 0.290974 0.956731i \(-0.406021\pi\)
0.290974 + 0.956731i \(0.406021\pi\)
\(462\) −1254.59 −0.126340
\(463\) −10760.9 −1.08014 −0.540068 0.841621i \(-0.681602\pi\)
−0.540068 + 0.841621i \(0.681602\pi\)
\(464\) −17171.4 −1.71802
\(465\) 0 0
\(466\) −18553.9 −1.84440
\(467\) −2153.58 −0.213395 −0.106698 0.994292i \(-0.534028\pi\)
−0.106698 + 0.994292i \(0.534028\pi\)
\(468\) 6406.77 0.632806
\(469\) −5802.70 −0.571309
\(470\) 0 0
\(471\) −5115.57 −0.500452
\(472\) −518.985 −0.0506106
\(473\) 237.510 0.0230882
\(474\) −5269.15 −0.510591
\(475\) 0 0
\(476\) 5429.18 0.522786
\(477\) −5.70286 −0.000547413 0
\(478\) −2820.88 −0.269924
\(479\) −6890.26 −0.657253 −0.328626 0.944460i \(-0.606586\pi\)
−0.328626 + 0.944460i \(0.606586\pi\)
\(480\) 0 0
\(481\) 9325.88 0.884041
\(482\) −20577.9 −1.94460
\(483\) −1474.41 −0.138898
\(484\) −10781.8 −1.01256
\(485\) 0 0
\(486\) 15835.4 1.47801
\(487\) 19006.4 1.76850 0.884251 0.467011i \(-0.154669\pi\)
0.884251 + 0.467011i \(0.154669\pi\)
\(488\) 815.201 0.0756197
\(489\) 15776.5 1.45897
\(490\) 0 0
\(491\) 4530.05 0.416371 0.208186 0.978089i \(-0.433244\pi\)
0.208186 + 0.978089i \(0.433244\pi\)
\(492\) 6751.27 0.618639
\(493\) 26139.4 2.38795
\(494\) 24871.4 2.26522
\(495\) 0 0
\(496\) −12474.8 −1.12930
\(497\) −3473.62 −0.313507
\(498\) 5151.16 0.463512
\(499\) 3620.18 0.324773 0.162386 0.986727i \(-0.448081\pi\)
0.162386 + 0.986727i \(0.448081\pi\)
\(500\) 0 0
\(501\) −4598.12 −0.410038
\(502\) 4887.84 0.434571
\(503\) −11761.8 −1.04261 −0.521303 0.853372i \(-0.674554\pi\)
−0.521303 + 0.853372i \(0.674554\pi\)
\(504\) −172.706 −0.0152638
\(505\) 0 0
\(506\) 885.999 0.0778408
\(507\) 1281.79 0.112281
\(508\) −14500.8 −1.26648
\(509\) −5254.47 −0.457564 −0.228782 0.973478i \(-0.573474\pi\)
−0.228782 + 0.973478i \(0.573474\pi\)
\(510\) 0 0
\(511\) 4907.92 0.424880
\(512\) −16464.3 −1.42114
\(513\) 9337.77 0.803651
\(514\) −2068.53 −0.177508
\(515\) 0 0
\(516\) 1918.00 0.163634
\(517\) 2841.90 0.241754
\(518\) −5402.30 −0.458230
\(519\) −9128.64 −0.772067
\(520\) 0 0
\(521\) −15511.8 −1.30439 −0.652193 0.758053i \(-0.726151\pi\)
−0.652193 + 0.758053i \(0.726151\pi\)
\(522\) −17868.6 −1.49825
\(523\) −3814.73 −0.318942 −0.159471 0.987203i \(-0.550979\pi\)
−0.159471 + 0.987203i \(0.550979\pi\)
\(524\) 12260.1 1.02211
\(525\) 0 0
\(526\) −9186.24 −0.761481
\(527\) 18990.0 1.56967
\(528\) −2688.25 −0.221574
\(529\) −11125.8 −0.914422
\(530\) 0 0
\(531\) 5124.39 0.418794
\(532\) −7375.36 −0.601057
\(533\) 6030.58 0.490081
\(534\) −3631.17 −0.294262
\(535\) 0 0
\(536\) 1310.37 0.105596
\(537\) 2406.60 0.193394
\(538\) 31724.5 2.54227
\(539\) 332.323 0.0265569
\(540\) 0 0
\(541\) −4573.77 −0.363478 −0.181739 0.983347i \(-0.558173\pi\)
−0.181739 + 0.983347i \(0.558173\pi\)
\(542\) −5936.26 −0.470451
\(543\) −2060.21 −0.162822
\(544\) 23894.1 1.88318
\(545\) 0 0
\(546\) −9049.91 −0.709341
\(547\) −13327.6 −1.04177 −0.520885 0.853627i \(-0.674398\pi\)
−0.520885 + 0.853627i \(0.674398\pi\)
\(548\) 15882.8 1.23810
\(549\) −8049.19 −0.625740
\(550\) 0 0
\(551\) −35509.5 −2.74548
\(552\) 332.952 0.0256728
\(553\) 1395.72 0.107327
\(554\) −16818.2 −1.28978
\(555\) 0 0
\(556\) −14389.9 −1.09760
\(557\) −12096.1 −0.920155 −0.460077 0.887879i \(-0.652178\pi\)
−0.460077 + 0.887879i \(0.652178\pi\)
\(558\) −12981.3 −0.984842
\(559\) 1713.26 0.129630
\(560\) 0 0
\(561\) 4092.24 0.307976
\(562\) 14130.9 1.06064
\(563\) −22943.6 −1.71751 −0.858755 0.512387i \(-0.828761\pi\)
−0.858755 + 0.512387i \(0.828761\pi\)
\(564\) 22949.6 1.71339
\(565\) 0 0
\(566\) 12652.8 0.939639
\(567\) −6347.64 −0.470152
\(568\) 784.414 0.0579459
\(569\) 485.307 0.0357560 0.0178780 0.999840i \(-0.494309\pi\)
0.0178780 + 0.999840i \(0.494309\pi\)
\(570\) 0 0
\(571\) 12271.8 0.899401 0.449701 0.893179i \(-0.351531\pi\)
0.449701 + 0.893179i \(0.351531\pi\)
\(572\) 2783.90 0.203498
\(573\) −989.756 −0.0721600
\(574\) −3493.39 −0.254027
\(575\) 0 0
\(576\) −8751.42 −0.633060
\(577\) 14122.8 1.01896 0.509478 0.860484i \(-0.329838\pi\)
0.509478 + 0.860484i \(0.329838\pi\)
\(578\) −14703.4 −1.05810
\(579\) −4508.46 −0.323601
\(580\) 0 0
\(581\) −1364.46 −0.0974310
\(582\) −5825.47 −0.414903
\(583\) −2.47804 −0.000176037 0
\(584\) −1108.31 −0.0785312
\(585\) 0 0
\(586\) 5861.00 0.413167
\(587\) −11005.3 −0.773826 −0.386913 0.922116i \(-0.626459\pi\)
−0.386913 + 0.922116i \(0.626459\pi\)
\(588\) 2683.66 0.188218
\(589\) −25797.2 −1.80468
\(590\) 0 0
\(591\) −5444.81 −0.378967
\(592\) −11575.6 −0.803642
\(593\) 11233.1 0.777889 0.388944 0.921261i \(-0.372840\pi\)
0.388944 + 0.921261i \(0.372840\pi\)
\(594\) 2041.75 0.141034
\(595\) 0 0
\(596\) −23479.2 −1.61366
\(597\) 2527.89 0.173300
\(598\) 6391.08 0.437041
\(599\) 14855.4 1.01331 0.506656 0.862149i \(-0.330882\pi\)
0.506656 + 0.862149i \(0.330882\pi\)
\(600\) 0 0
\(601\) 25358.8 1.72115 0.860573 0.509327i \(-0.170106\pi\)
0.860573 + 0.509327i \(0.170106\pi\)
\(602\) −992.457 −0.0671919
\(603\) −12938.4 −0.873786
\(604\) −24059.5 −1.62081
\(605\) 0 0
\(606\) 15627.6 1.04757
\(607\) −14393.9 −0.962487 −0.481243 0.876587i \(-0.659815\pi\)
−0.481243 + 0.876587i \(0.659815\pi\)
\(608\) −32459.3 −2.16513
\(609\) 12920.8 0.859732
\(610\) 0 0
\(611\) 20499.8 1.35734
\(612\) 12105.6 0.799573
\(613\) −4769.94 −0.314284 −0.157142 0.987576i \(-0.550228\pi\)
−0.157142 + 0.987576i \(0.550228\pi\)
\(614\) −6442.92 −0.423477
\(615\) 0 0
\(616\) −75.0453 −0.00490854
\(617\) 7769.86 0.506974 0.253487 0.967339i \(-0.418423\pi\)
0.253487 + 0.967339i \(0.418423\pi\)
\(618\) 12592.1 0.819627
\(619\) −5680.75 −0.368867 −0.184433 0.982845i \(-0.559045\pi\)
−0.184433 + 0.982845i \(0.559045\pi\)
\(620\) 0 0
\(621\) 2399.48 0.155053
\(622\) 34756.2 2.24051
\(623\) 961.840 0.0618544
\(624\) −19391.5 −1.24404
\(625\) 0 0
\(626\) 29190.0 1.86368
\(627\) −5559.17 −0.354086
\(628\) −6575.56 −0.417824
\(629\) 17621.2 1.11702
\(630\) 0 0
\(631\) −10395.8 −0.655864 −0.327932 0.944701i \(-0.606352\pi\)
−0.327932 + 0.944701i \(0.606352\pi\)
\(632\) −315.182 −0.0198374
\(633\) 20042.9 1.25851
\(634\) −31526.7 −1.97490
\(635\) 0 0
\(636\) −20.0113 −0.00124764
\(637\) 2397.18 0.149105
\(638\) −7764.34 −0.481808
\(639\) −7745.21 −0.479492
\(640\) 0 0
\(641\) −8194.28 −0.504921 −0.252461 0.967607i \(-0.581240\pi\)
−0.252461 + 0.967607i \(0.581240\pi\)
\(642\) 5961.41 0.366477
\(643\) 32118.2 1.96985 0.984927 0.172970i \(-0.0553363\pi\)
0.984927 + 0.172970i \(0.0553363\pi\)
\(644\) −1895.21 −0.115965
\(645\) 0 0
\(646\) 46994.4 2.86218
\(647\) 22299.0 1.35496 0.677482 0.735539i \(-0.263071\pi\)
0.677482 + 0.735539i \(0.263071\pi\)
\(648\) 1433.43 0.0868987
\(649\) 2226.68 0.134676
\(650\) 0 0
\(651\) 9386.79 0.565127
\(652\) 20279.1 1.21809
\(653\) −920.410 −0.0551584 −0.0275792 0.999620i \(-0.508780\pi\)
−0.0275792 + 0.999620i \(0.508780\pi\)
\(654\) 43013.4 2.57180
\(655\) 0 0
\(656\) −7485.38 −0.445511
\(657\) 10943.3 0.649832
\(658\) −11875.1 −0.703557
\(659\) 17824.3 1.05362 0.526812 0.849982i \(-0.323387\pi\)
0.526812 + 0.849982i \(0.323387\pi\)
\(660\) 0 0
\(661\) 11343.8 0.667510 0.333755 0.942660i \(-0.391684\pi\)
0.333755 + 0.942660i \(0.391684\pi\)
\(662\) 7003.03 0.411149
\(663\) 29519.0 1.72915
\(664\) 308.123 0.0180083
\(665\) 0 0
\(666\) −12045.6 −0.700839
\(667\) −9124.71 −0.529700
\(668\) −5910.44 −0.342338
\(669\) 6556.61 0.378914
\(670\) 0 0
\(671\) −3497.58 −0.201226
\(672\) 11810.9 0.678000
\(673\) 13422.9 0.768816 0.384408 0.923163i \(-0.374406\pi\)
0.384408 + 0.923163i \(0.374406\pi\)
\(674\) 31639.4 1.80817
\(675\) 0 0
\(676\) 1647.62 0.0937426
\(677\) 1066.77 0.0605602 0.0302801 0.999541i \(-0.490360\pi\)
0.0302801 + 0.999541i \(0.490360\pi\)
\(678\) −9435.36 −0.534458
\(679\) 1543.08 0.0872134
\(680\) 0 0
\(681\) −35080.1 −1.97397
\(682\) −5640.70 −0.316706
\(683\) 19090.6 1.06952 0.534759 0.845005i \(-0.320402\pi\)
0.534759 + 0.845005i \(0.320402\pi\)
\(684\) −16445.0 −0.919285
\(685\) 0 0
\(686\) −1388.64 −0.0772865
\(687\) 23831.6 1.32348
\(688\) −2126.56 −0.117841
\(689\) −17.8751 −0.000988370 0
\(690\) 0 0
\(691\) −16878.4 −0.929208 −0.464604 0.885518i \(-0.653803\pi\)
−0.464604 + 0.885518i \(0.653803\pi\)
\(692\) −11734.0 −0.644594
\(693\) 740.988 0.0406173
\(694\) 9553.57 0.522549
\(695\) 0 0
\(696\) −2917.78 −0.158905
\(697\) 11394.8 0.619236
\(698\) −13006.8 −0.705321
\(699\) 29914.7 1.61871
\(700\) 0 0
\(701\) 30272.6 1.63107 0.815535 0.578707i \(-0.196443\pi\)
0.815535 + 0.578707i \(0.196443\pi\)
\(702\) 14728.0 0.791841
\(703\) −23937.8 −1.28426
\(704\) −3802.71 −0.203580
\(705\) 0 0
\(706\) −22599.0 −1.20471
\(707\) −4139.50 −0.220201
\(708\) 17981.4 0.954497
\(709\) −6593.32 −0.349248 −0.174624 0.984635i \(-0.555871\pi\)
−0.174624 + 0.984635i \(0.555871\pi\)
\(710\) 0 0
\(711\) 3112.06 0.164151
\(712\) −217.203 −0.0114326
\(713\) −6628.99 −0.348187
\(714\) −17099.8 −0.896279
\(715\) 0 0
\(716\) 3093.46 0.161464
\(717\) 4548.15 0.236895
\(718\) 43038.2 2.23701
\(719\) 3293.72 0.170842 0.0854208 0.996345i \(-0.472777\pi\)
0.0854208 + 0.996345i \(0.472777\pi\)
\(720\) 0 0
\(721\) −3335.46 −0.172287
\(722\) −36071.6 −1.85934
\(723\) 33178.1 1.70665
\(724\) −2648.20 −0.135939
\(725\) 0 0
\(726\) 33958.3 1.73596
\(727\) −27757.8 −1.41606 −0.708032 0.706181i \(-0.750417\pi\)
−0.708032 + 0.706181i \(0.750417\pi\)
\(728\) −541.333 −0.0275592
\(729\) −1048.00 −0.0532439
\(730\) 0 0
\(731\) 3237.20 0.163792
\(732\) −28244.5 −1.42616
\(733\) −38324.6 −1.93117 −0.965587 0.260080i \(-0.916251\pi\)
−0.965587 + 0.260080i \(0.916251\pi\)
\(734\) 18277.8 0.919136
\(735\) 0 0
\(736\) −8340.91 −0.417731
\(737\) −5622.07 −0.280993
\(738\) −7789.30 −0.388521
\(739\) 21957.3 1.09298 0.546490 0.837466i \(-0.315964\pi\)
0.546490 + 0.837466i \(0.315964\pi\)
\(740\) 0 0
\(741\) −40100.6 −1.98803
\(742\) 10.3547 0.000512308 0
\(743\) 14695.0 0.725580 0.362790 0.931871i \(-0.381824\pi\)
0.362790 + 0.931871i \(0.381824\pi\)
\(744\) −2119.73 −0.104453
\(745\) 0 0
\(746\) 46338.5 2.27423
\(747\) −3042.37 −0.149016
\(748\) 5260.18 0.257127
\(749\) −1579.09 −0.0770341
\(750\) 0 0
\(751\) −21439.1 −1.04171 −0.520855 0.853645i \(-0.674387\pi\)
−0.520855 + 0.853645i \(0.674387\pi\)
\(752\) −25445.1 −1.23389
\(753\) −7880.74 −0.381395
\(754\) −56007.4 −2.70513
\(755\) 0 0
\(756\) −4367.44 −0.210109
\(757\) 23896.8 1.14735 0.573675 0.819083i \(-0.305517\pi\)
0.573675 + 0.819083i \(0.305517\pi\)
\(758\) −32981.1 −1.58038
\(759\) −1428.51 −0.0683158
\(760\) 0 0
\(761\) −24436.9 −1.16404 −0.582022 0.813173i \(-0.697738\pi\)
−0.582022 + 0.813173i \(0.697738\pi\)
\(762\) 45671.9 2.17128
\(763\) −11393.6 −0.540597
\(764\) −1272.24 −0.0602459
\(765\) 0 0
\(766\) −21301.5 −1.00477
\(767\) 16061.9 0.756145
\(768\) 23938.9 1.12477
\(769\) −30689.3 −1.43912 −0.719560 0.694430i \(-0.755657\pi\)
−0.719560 + 0.694430i \(0.755657\pi\)
\(770\) 0 0
\(771\) 3335.13 0.155787
\(772\) −5795.19 −0.270173
\(773\) 5110.74 0.237801 0.118901 0.992906i \(-0.462063\pi\)
0.118901 + 0.992906i \(0.462063\pi\)
\(774\) −2212.90 −0.102766
\(775\) 0 0
\(776\) −348.459 −0.0161198
\(777\) 8710.22 0.402159
\(778\) −53469.3 −2.46397
\(779\) −15479.4 −0.711947
\(780\) 0 0
\(781\) −3365.49 −0.154195
\(782\) 12075.9 0.552217
\(783\) −21027.6 −0.959723
\(784\) −2975.47 −0.135545
\(785\) 0 0
\(786\) −38614.4 −1.75233
\(787\) −6991.30 −0.316662 −0.158331 0.987386i \(-0.550611\pi\)
−0.158331 + 0.987386i \(0.550611\pi\)
\(788\) −6998.78 −0.316397
\(789\) 14811.1 0.668302
\(790\) 0 0
\(791\) 2499.28 0.112344
\(792\) −167.330 −0.00750735
\(793\) −25229.5 −1.12979
\(794\) −22927.3 −1.02476
\(795\) 0 0
\(796\) 3249.36 0.144687
\(797\) −4020.31 −0.178678 −0.0893392 0.996001i \(-0.528476\pi\)
−0.0893392 + 0.996001i \(0.528476\pi\)
\(798\) 23229.5 1.03047
\(799\) 38734.3 1.71505
\(800\) 0 0
\(801\) 2144.64 0.0946030
\(802\) 48537.7 2.13706
\(803\) 4755.15 0.208973
\(804\) −45400.8 −1.99149
\(805\) 0 0
\(806\) −40688.7 −1.77816
\(807\) −51150.0 −2.23118
\(808\) 934.785 0.0407000
\(809\) −41608.1 −1.80824 −0.904119 0.427281i \(-0.859472\pi\)
−0.904119 + 0.427281i \(0.859472\pi\)
\(810\) 0 0
\(811\) 42271.3 1.83027 0.915133 0.403152i \(-0.132086\pi\)
0.915133 + 0.403152i \(0.132086\pi\)
\(812\) 16608.4 0.717785
\(813\) 9571.13 0.412884
\(814\) −5234.13 −0.225376
\(815\) 0 0
\(816\) −36640.1 −1.57189
\(817\) −4397.62 −0.188315
\(818\) −21253.4 −0.908443
\(819\) 5345.05 0.228048
\(820\) 0 0
\(821\) 27184.7 1.15561 0.577804 0.816176i \(-0.303910\pi\)
0.577804 + 0.816176i \(0.303910\pi\)
\(822\) −50024.5 −2.12263
\(823\) 12967.9 0.549250 0.274625 0.961551i \(-0.411446\pi\)
0.274625 + 0.961551i \(0.411446\pi\)
\(824\) 753.215 0.0318440
\(825\) 0 0
\(826\) −9304.36 −0.391937
\(827\) 33111.2 1.39225 0.696124 0.717921i \(-0.254906\pi\)
0.696124 + 0.717921i \(0.254906\pi\)
\(828\) −4225.79 −0.177363
\(829\) 3715.75 0.155673 0.0778367 0.996966i \(-0.475199\pi\)
0.0778367 + 0.996966i \(0.475199\pi\)
\(830\) 0 0
\(831\) 27116.3 1.13195
\(832\) −27430.5 −1.14301
\(833\) 4529.47 0.188399
\(834\) 45322.4 1.88176
\(835\) 0 0
\(836\) −7145.77 −0.295624
\(837\) −15276.3 −0.630854
\(838\) 60521.0 2.49482
\(839\) −1460.56 −0.0601005 −0.0300502 0.999548i \(-0.509567\pi\)
−0.0300502 + 0.999548i \(0.509567\pi\)
\(840\) 0 0
\(841\) 55574.2 2.27866
\(842\) −23644.6 −0.967750
\(843\) −22783.6 −0.930851
\(844\) 25763.2 1.05072
\(845\) 0 0
\(846\) −26478.2 −1.07605
\(847\) −8995.02 −0.364903
\(848\) 22.1873 0.000898483 0
\(849\) −20400.3 −0.824660
\(850\) 0 0
\(851\) −6151.19 −0.247779
\(852\) −27177.9 −1.09284
\(853\) 36027.4 1.44613 0.723067 0.690777i \(-0.242732\pi\)
0.723067 + 0.690777i \(0.242732\pi\)
\(854\) 14614.9 0.585612
\(855\) 0 0
\(856\) 356.590 0.0142383
\(857\) −23500.7 −0.936719 −0.468359 0.883538i \(-0.655155\pi\)
−0.468359 + 0.883538i \(0.655155\pi\)
\(858\) −8768.20 −0.348883
\(859\) 5551.11 0.220491 0.110245 0.993904i \(-0.464836\pi\)
0.110245 + 0.993904i \(0.464836\pi\)
\(860\) 0 0
\(861\) 5632.46 0.222943
\(862\) −30117.7 −1.19004
\(863\) −27721.4 −1.09345 −0.546725 0.837312i \(-0.684126\pi\)
−0.546725 + 0.837312i \(0.684126\pi\)
\(864\) −19221.3 −0.756855
\(865\) 0 0
\(866\) −3553.21 −0.139426
\(867\) 23706.6 0.928624
\(868\) 12065.8 0.471821
\(869\) 1352.27 0.0527878
\(870\) 0 0
\(871\) −40554.3 −1.57765
\(872\) 2572.90 0.0999192
\(873\) 3440.64 0.133388
\(874\) −16404.7 −0.634895
\(875\) 0 0
\(876\) 38400.0 1.48107
\(877\) −47255.6 −1.81951 −0.909754 0.415149i \(-0.863730\pi\)
−0.909754 + 0.415149i \(0.863730\pi\)
\(878\) 43950.0 1.68934
\(879\) −9449.79 −0.362609
\(880\) 0 0
\(881\) 32267.0 1.23394 0.616972 0.786985i \(-0.288359\pi\)
0.616972 + 0.786985i \(0.288359\pi\)
\(882\) −3096.28 −0.118205
\(883\) −5062.08 −0.192925 −0.0964623 0.995337i \(-0.530753\pi\)
−0.0964623 + 0.995337i \(0.530753\pi\)
\(884\) 37943.8 1.44365
\(885\) 0 0
\(886\) −43712.0 −1.65749
\(887\) −7626.08 −0.288679 −0.144340 0.989528i \(-0.546106\pi\)
−0.144340 + 0.989528i \(0.546106\pi\)
\(888\) −1966.95 −0.0743315
\(889\) −12097.8 −0.456408
\(890\) 0 0
\(891\) −6150.05 −0.231239
\(892\) 8427.89 0.316353
\(893\) −52619.2 −1.97182
\(894\) 73950.1 2.76651
\(895\) 0 0
\(896\) 1414.66 0.0527460
\(897\) −10304.4 −0.383562
\(898\) −34905.0 −1.29710
\(899\) 58092.3 2.15516
\(900\) 0 0
\(901\) −33.7750 −0.00124884
\(902\) −3384.65 −0.124941
\(903\) 1600.16 0.0589699
\(904\) −564.389 −0.0207647
\(905\) 0 0
\(906\) 75778.0 2.77876
\(907\) 8546.31 0.312873 0.156436 0.987688i \(-0.449999\pi\)
0.156436 + 0.987688i \(0.449999\pi\)
\(908\) −45092.1 −1.64806
\(909\) −9229.95 −0.336786
\(910\) 0 0
\(911\) 8778.92 0.319274 0.159637 0.987176i \(-0.448968\pi\)
0.159637 + 0.987176i \(0.448968\pi\)
\(912\) 49774.4 1.80723
\(913\) −1321.99 −0.0479205
\(914\) −15327.3 −0.554683
\(915\) 0 0
\(916\) 30633.3 1.10497
\(917\) 10228.4 0.368343
\(918\) 27828.5 1.00052
\(919\) 21626.0 0.776253 0.388126 0.921606i \(-0.373122\pi\)
0.388126 + 0.921606i \(0.373122\pi\)
\(920\) 0 0
\(921\) 10388.0 0.371658
\(922\) −23320.1 −0.832981
\(923\) −24276.7 −0.865738
\(924\) 2600.12 0.0925732
\(925\) 0 0
\(926\) 43565.8 1.54607
\(927\) −7437.15 −0.263504
\(928\) 73094.5 2.58561
\(929\) 12262.6 0.433073 0.216536 0.976275i \(-0.430524\pi\)
0.216536 + 0.976275i \(0.430524\pi\)
\(930\) 0 0
\(931\) −6153.13 −0.216606
\(932\) 38452.5 1.35145
\(933\) −56037.9 −1.96634
\(934\) 8718.78 0.305447
\(935\) 0 0
\(936\) −1207.02 −0.0421504
\(937\) 13362.6 0.465889 0.232945 0.972490i \(-0.425164\pi\)
0.232945 + 0.972490i \(0.425164\pi\)
\(938\) 23492.3 0.817751
\(939\) −47063.5 −1.63563
\(940\) 0 0
\(941\) −46330.1 −1.60501 −0.802506 0.596643i \(-0.796501\pi\)
−0.802506 + 0.596643i \(0.796501\pi\)
\(942\) 20710.4 0.716329
\(943\) −3977.66 −0.137360
\(944\) −19936.7 −0.687377
\(945\) 0 0
\(946\) −961.563 −0.0330477
\(947\) 17387.6 0.596643 0.298321 0.954465i \(-0.403573\pi\)
0.298321 + 0.954465i \(0.403573\pi\)
\(948\) 10920.2 0.374126
\(949\) 34300.8 1.17329
\(950\) 0 0
\(951\) 50831.1 1.73324
\(952\) −1022.85 −0.0348221
\(953\) 42384.6 1.44068 0.720342 0.693619i \(-0.243985\pi\)
0.720342 + 0.693619i \(0.243985\pi\)
\(954\) 23.0881 0.000783548 0
\(955\) 0 0
\(956\) 5846.20 0.197782
\(957\) 12518.6 0.422851
\(958\) 27895.3 0.940769
\(959\) 13250.7 0.446182
\(960\) 0 0
\(961\) 12412.3 0.416647
\(962\) −37755.9 −1.26539
\(963\) −3520.92 −0.117820
\(964\) 42647.2 1.42487
\(965\) 0 0
\(966\) 5969.16 0.198814
\(967\) 15771.6 0.524489 0.262245 0.965001i \(-0.415537\pi\)
0.262245 + 0.965001i \(0.415537\pi\)
\(968\) 2031.26 0.0674454
\(969\) −75769.9 −2.51195
\(970\) 0 0
\(971\) 36370.5 1.20204 0.601022 0.799232i \(-0.294760\pi\)
0.601022 + 0.799232i \(0.294760\pi\)
\(972\) −32818.6 −1.08298
\(973\) −12005.2 −0.395549
\(974\) −76947.5 −2.53137
\(975\) 0 0
\(976\) 31315.8 1.02704
\(977\) 35122.8 1.15013 0.575065 0.818108i \(-0.304977\pi\)
0.575065 + 0.818108i \(0.304977\pi\)
\(978\) −63871.3 −2.08832
\(979\) 931.899 0.0304225
\(980\) 0 0
\(981\) −25404.5 −0.826814
\(982\) −18340.0 −0.595979
\(983\) 12798.9 0.415282 0.207641 0.978205i \(-0.433421\pi\)
0.207641 + 0.978205i \(0.433421\pi\)
\(984\) −1271.92 −0.0412068
\(985\) 0 0
\(986\) −105826. −3.41803
\(987\) 19146.5 0.617466
\(988\) −51545.4 −1.65980
\(989\) −1130.03 −0.0363327
\(990\) 0 0
\(991\) −46594.9 −1.49358 −0.746789 0.665061i \(-0.768406\pi\)
−0.746789 + 0.665061i \(0.768406\pi\)
\(992\) 53102.3 1.69960
\(993\) −11291.1 −0.360838
\(994\) 14063.0 0.448743
\(995\) 0 0
\(996\) −10675.7 −0.339630
\(997\) −47534.1 −1.50995 −0.754975 0.655753i \(-0.772351\pi\)
−0.754975 + 0.655753i \(0.772351\pi\)
\(998\) −14656.4 −0.464869
\(999\) −14175.2 −0.448932
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.4.a.j.1.1 5
3.2 odd 2 1575.4.a.bn.1.5 5
5.2 odd 4 35.4.b.a.29.2 10
5.3 odd 4 35.4.b.a.29.9 yes 10
5.4 even 2 175.4.a.i.1.5 5
7.6 odd 2 1225.4.a.bh.1.1 5
15.2 even 4 315.4.d.c.64.9 10
15.8 even 4 315.4.d.c.64.2 10
15.14 odd 2 1575.4.a.bq.1.1 5
20.3 even 4 560.4.g.f.449.2 10
20.7 even 4 560.4.g.f.449.9 10
35.2 odd 12 245.4.j.e.214.2 20
35.3 even 12 245.4.j.f.79.2 20
35.12 even 12 245.4.j.f.214.2 20
35.13 even 4 245.4.b.d.99.9 10
35.17 even 12 245.4.j.f.79.9 20
35.18 odd 12 245.4.j.e.79.2 20
35.23 odd 12 245.4.j.e.214.9 20
35.27 even 4 245.4.b.d.99.2 10
35.32 odd 12 245.4.j.e.79.9 20
35.33 even 12 245.4.j.f.214.9 20
35.34 odd 2 1225.4.a.be.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.b.a.29.2 10 5.2 odd 4
35.4.b.a.29.9 yes 10 5.3 odd 4
175.4.a.i.1.5 5 5.4 even 2
175.4.a.j.1.1 5 1.1 even 1 trivial
245.4.b.d.99.2 10 35.27 even 4
245.4.b.d.99.9 10 35.13 even 4
245.4.j.e.79.2 20 35.18 odd 12
245.4.j.e.79.9 20 35.32 odd 12
245.4.j.e.214.2 20 35.2 odd 12
245.4.j.e.214.9 20 35.23 odd 12
245.4.j.f.79.2 20 35.3 even 12
245.4.j.f.79.9 20 35.17 even 12
245.4.j.f.214.2 20 35.12 even 12
245.4.j.f.214.9 20 35.33 even 12
315.4.d.c.64.2 10 15.8 even 4
315.4.d.c.64.9 10 15.2 even 4
560.4.g.f.449.2 10 20.3 even 4
560.4.g.f.449.9 10 20.7 even 4
1225.4.a.be.1.5 5 35.34 odd 2
1225.4.a.bh.1.1 5 7.6 odd 2
1575.4.a.bn.1.5 5 3.2 odd 2
1575.4.a.bq.1.1 5 15.14 odd 2