Properties

Label 175.4.a.i.1.5
Level $175$
Weight $4$
Character 175.1
Self dual yes
Analytic conductor $10.325$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(1,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.3253342510\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 27x^{3} + 7x^{2} + 120x + 60 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(5.04851\) of defining polynomial
Character \(\chi\) \(=\) 175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.04851 q^{2} -6.52749 q^{3} +8.39045 q^{4} -26.4266 q^{6} -7.00000 q^{7} +1.58074 q^{8} +15.6081 q^{9} +O(q^{10})\) \(q+4.04851 q^{2} -6.52749 q^{3} +8.39045 q^{4} -26.4266 q^{6} -7.00000 q^{7} +1.58074 q^{8} +15.6081 q^{9} +6.78210 q^{11} -54.7685 q^{12} -48.9221 q^{13} -28.3396 q^{14} -60.7239 q^{16} -92.4381 q^{17} +63.1894 q^{18} -125.574 q^{19} +45.6924 q^{21} +27.4574 q^{22} +32.2681 q^{23} -10.3183 q^{24} -198.062 q^{26} +74.3607 q^{27} -58.7332 q^{28} +282.778 q^{29} +205.434 q^{31} -258.488 q^{32} -44.2701 q^{33} -374.237 q^{34} +130.959 q^{36} -190.627 q^{37} -508.388 q^{38} +319.338 q^{39} +123.269 q^{41} +184.986 q^{42} -35.0202 q^{43} +56.9049 q^{44} +130.638 q^{46} -419.030 q^{47} +396.375 q^{48} +49.0000 q^{49} +603.388 q^{51} -410.478 q^{52} +0.365379 q^{53} +301.050 q^{54} -11.0652 q^{56} +819.683 q^{57} +1144.83 q^{58} +328.317 q^{59} -515.707 q^{61} +831.704 q^{62} -109.256 q^{63} -560.699 q^{64} -179.228 q^{66} +828.957 q^{67} -775.597 q^{68} -210.630 q^{69} -496.231 q^{71} +24.6723 q^{72} -701.132 q^{73} -771.757 q^{74} -1053.62 q^{76} -47.4747 q^{77} +1292.84 q^{78} +199.388 q^{79} -906.806 q^{81} +499.056 q^{82} +194.923 q^{83} +383.380 q^{84} -141.780 q^{86} -1845.83 q^{87} +10.7208 q^{88} +137.406 q^{89} +342.454 q^{91} +270.744 q^{92} -1340.97 q^{93} -1696.45 q^{94} +1687.27 q^{96} -220.440 q^{97} +198.377 q^{98} +105.855 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 4 q^{2} - 10 q^{3} + 18 q^{4} + 6 q^{6} - 35 q^{7} - 42 q^{8} + 23 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 5 q - 4 q^{2} - 10 q^{3} + 18 q^{4} + 6 q^{6} - 35 q^{7} - 42 q^{8} + 23 q^{9} + 42 q^{11} - 136 q^{12} - 34 q^{13} + 28 q^{14} + 74 q^{16} - 238 q^{17} + 2 q^{18} - 36 q^{19} + 70 q^{21} - 358 q^{22} - 152 q^{23} - 36 q^{24} - 310 q^{26} - 334 q^{27} - 126 q^{28} - 44 q^{29} + 60 q^{31} - 710 q^{32} - 426 q^{33} - 482 q^{34} - 210 q^{36} - 312 q^{37} - 280 q^{38} - 106 q^{39} - 426 q^{41} - 42 q^{42} - 304 q^{43} + 712 q^{44} + 88 q^{46} - 370 q^{47} + 696 q^{48} + 245 q^{49} + 638 q^{51} + 1156 q^{52} - 976 q^{53} + 498 q^{54} + 294 q^{56} + 588 q^{57} + 2722 q^{58} - 432 q^{59} - 442 q^{61} + 956 q^{62} - 161 q^{63} + 1362 q^{64} + 574 q^{66} + 804 q^{67} + 420 q^{68} - 2404 q^{69} + 440 q^{71} + 3150 q^{72} - 564 q^{73} - 1512 q^{74} - 1336 q^{76} - 294 q^{77} + 2742 q^{78} + 1790 q^{79} - 151 q^{81} + 3480 q^{82} - 1656 q^{83} + 952 q^{84} + 1216 q^{86} + 1674 q^{87} + 1092 q^{88} + 746 q^{89} + 238 q^{91} - 572 q^{92} - 676 q^{93} - 826 q^{94} + 2040 q^{96} - 518 q^{97} - 196 q^{98} + 2652 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.04851 1.43137 0.715683 0.698426i \(-0.246116\pi\)
0.715683 + 0.698426i \(0.246116\pi\)
\(3\) −6.52749 −1.25622 −0.628108 0.778127i \(-0.716170\pi\)
−0.628108 + 0.778127i \(0.716170\pi\)
\(4\) 8.39045 1.04881
\(5\) 0 0
\(6\) −26.4266 −1.79810
\(7\) −7.00000 −0.377964
\(8\) 1.58074 0.0698597
\(9\) 15.6081 0.578076
\(10\) 0 0
\(11\) 6.78210 0.185898 0.0929491 0.995671i \(-0.470371\pi\)
0.0929491 + 0.995671i \(0.470371\pi\)
\(12\) −54.7685 −1.31753
\(13\) −48.9221 −1.04373 −0.521867 0.853027i \(-0.674764\pi\)
−0.521867 + 0.853027i \(0.674764\pi\)
\(14\) −28.3396 −0.541005
\(15\) 0 0
\(16\) −60.7239 −0.948812
\(17\) −92.4381 −1.31880 −0.659398 0.751794i \(-0.729189\pi\)
−0.659398 + 0.751794i \(0.729189\pi\)
\(18\) 63.1894 0.827438
\(19\) −125.574 −1.51625 −0.758123 0.652112i \(-0.773883\pi\)
−0.758123 + 0.652112i \(0.773883\pi\)
\(20\) 0 0
\(21\) 45.6924 0.474805
\(22\) 27.4574 0.266088
\(23\) 32.2681 0.292538 0.146269 0.989245i \(-0.453274\pi\)
0.146269 + 0.989245i \(0.453274\pi\)
\(24\) −10.3183 −0.0877588
\(25\) 0 0
\(26\) −198.062 −1.49396
\(27\) 74.3607 0.530027
\(28\) −58.7332 −0.396412
\(29\) 282.778 1.81071 0.905354 0.424659i \(-0.139606\pi\)
0.905354 + 0.424659i \(0.139606\pi\)
\(30\) 0 0
\(31\) 205.434 1.19023 0.595115 0.803641i \(-0.297107\pi\)
0.595115 + 0.803641i \(0.297107\pi\)
\(32\) −258.488 −1.42796
\(33\) −44.2701 −0.233528
\(34\) −374.237 −1.88768
\(35\) 0 0
\(36\) 130.959 0.606290
\(37\) −190.627 −0.846998 −0.423499 0.905897i \(-0.639198\pi\)
−0.423499 + 0.905897i \(0.639198\pi\)
\(38\) −508.388 −2.17030
\(39\) 319.338 1.31115
\(40\) 0 0
\(41\) 123.269 0.469546 0.234773 0.972050i \(-0.424565\pi\)
0.234773 + 0.972050i \(0.424565\pi\)
\(42\) 184.986 0.679619
\(43\) −35.0202 −0.124198 −0.0620991 0.998070i \(-0.519779\pi\)
−0.0620991 + 0.998070i \(0.519779\pi\)
\(44\) 56.9049 0.194971
\(45\) 0 0
\(46\) 130.638 0.418728
\(47\) −419.030 −1.30046 −0.650231 0.759736i \(-0.725328\pi\)
−0.650231 + 0.759736i \(0.725328\pi\)
\(48\) 396.375 1.19191
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 603.388 1.65669
\(52\) −410.478 −1.09467
\(53\) 0.365379 0.000946956 0 0.000473478 1.00000i \(-0.499849\pi\)
0.000473478 1.00000i \(0.499849\pi\)
\(54\) 301.050 0.758662
\(55\) 0 0
\(56\) −11.0652 −0.0264045
\(57\) 819.683 1.90473
\(58\) 1144.83 2.59178
\(59\) 328.317 0.724461 0.362231 0.932088i \(-0.382015\pi\)
0.362231 + 0.932088i \(0.382015\pi\)
\(60\) 0 0
\(61\) −515.707 −1.08245 −0.541226 0.840877i \(-0.682040\pi\)
−0.541226 + 0.840877i \(0.682040\pi\)
\(62\) 831.704 1.70365
\(63\) −109.256 −0.218492
\(64\) −560.699 −1.09511
\(65\) 0 0
\(66\) −179.228 −0.334264
\(67\) 828.957 1.51154 0.755770 0.654837i \(-0.227263\pi\)
0.755770 + 0.654837i \(0.227263\pi\)
\(68\) −775.597 −1.38316
\(69\) −210.630 −0.367490
\(70\) 0 0
\(71\) −496.231 −0.829462 −0.414731 0.909944i \(-0.636124\pi\)
−0.414731 + 0.909944i \(0.636124\pi\)
\(72\) 24.6723 0.0403842
\(73\) −701.132 −1.12413 −0.562064 0.827094i \(-0.689992\pi\)
−0.562064 + 0.827094i \(0.689992\pi\)
\(74\) −771.757 −1.21236
\(75\) 0 0
\(76\) −1053.62 −1.59025
\(77\) −47.4747 −0.0702629
\(78\) 1292.84 1.87674
\(79\) 199.388 0.283961 0.141981 0.989869i \(-0.454653\pi\)
0.141981 + 0.989869i \(0.454653\pi\)
\(80\) 0 0
\(81\) −906.806 −1.24390
\(82\) 499.056 0.672092
\(83\) 194.923 0.257778 0.128889 0.991659i \(-0.458859\pi\)
0.128889 + 0.991659i \(0.458859\pi\)
\(84\) 383.380 0.497978
\(85\) 0 0
\(86\) −141.780 −0.177773
\(87\) −1845.83 −2.27464
\(88\) 10.7208 0.0129868
\(89\) 137.406 0.163651 0.0818257 0.996647i \(-0.473925\pi\)
0.0818257 + 0.996647i \(0.473925\pi\)
\(90\) 0 0
\(91\) 342.454 0.394494
\(92\) 270.744 0.306815
\(93\) −1340.97 −1.49518
\(94\) −1696.45 −1.86144
\(95\) 0 0
\(96\) 1687.27 1.79382
\(97\) −220.440 −0.230745 −0.115372 0.993322i \(-0.536806\pi\)
−0.115372 + 0.993322i \(0.536806\pi\)
\(98\) 198.377 0.204481
\(99\) 105.855 0.107463
\(100\) 0 0
\(101\) −591.358 −0.582597 −0.291298 0.956632i \(-0.594087\pi\)
−0.291298 + 0.956632i \(0.594087\pi\)
\(102\) 2442.83 2.37133
\(103\) 476.494 0.455829 0.227914 0.973681i \(-0.426809\pi\)
0.227914 + 0.973681i \(0.426809\pi\)
\(104\) −77.3332 −0.0729149
\(105\) 0 0
\(106\) 1.47924 0.00135544
\(107\) 225.584 0.203813 0.101907 0.994794i \(-0.467506\pi\)
0.101907 + 0.994794i \(0.467506\pi\)
\(108\) 623.920 0.555895
\(109\) −1627.65 −1.43028 −0.715142 0.698979i \(-0.753638\pi\)
−0.715142 + 0.698979i \(0.753638\pi\)
\(110\) 0 0
\(111\) 1244.32 1.06401
\(112\) 425.068 0.358617
\(113\) −357.040 −0.297235 −0.148617 0.988895i \(-0.547482\pi\)
−0.148617 + 0.988895i \(0.547482\pi\)
\(114\) 3318.50 2.72636
\(115\) 0 0
\(116\) 2372.63 1.89908
\(117\) −763.579 −0.603358
\(118\) 1329.19 1.03697
\(119\) 647.067 0.498458
\(120\) 0 0
\(121\) −1285.00 −0.965442
\(122\) −2087.85 −1.54938
\(123\) −804.637 −0.589851
\(124\) 1723.69 1.24832
\(125\) 0 0
\(126\) −442.326 −0.312742
\(127\) 1728.25 1.20754 0.603771 0.797158i \(-0.293664\pi\)
0.603771 + 0.797158i \(0.293664\pi\)
\(128\) −202.094 −0.139553
\(129\) 228.594 0.156020
\(130\) 0 0
\(131\) 1461.19 0.974543 0.487272 0.873250i \(-0.337992\pi\)
0.487272 + 0.873250i \(0.337992\pi\)
\(132\) −371.446 −0.244926
\(133\) 879.018 0.573087
\(134\) 3356.04 2.16357
\(135\) 0 0
\(136\) −146.121 −0.0921306
\(137\) −1892.96 −1.18049 −0.590243 0.807226i \(-0.700968\pi\)
−0.590243 + 0.807226i \(0.700968\pi\)
\(138\) −852.737 −0.526013
\(139\) −1715.03 −1.04652 −0.523262 0.852172i \(-0.675285\pi\)
−0.523262 + 0.852172i \(0.675285\pi\)
\(140\) 0 0
\(141\) 2735.21 1.63366
\(142\) −2009.00 −1.18726
\(143\) −331.794 −0.194028
\(144\) −947.783 −0.548486
\(145\) 0 0
\(146\) −2838.54 −1.60904
\(147\) −319.847 −0.179459
\(148\) −1599.45 −0.888337
\(149\) −2798.32 −1.53857 −0.769286 0.638904i \(-0.779388\pi\)
−0.769286 + 0.638904i \(0.779388\pi\)
\(150\) 0 0
\(151\) −2867.49 −1.54538 −0.772692 0.634781i \(-0.781090\pi\)
−0.772692 + 0.634781i \(0.781090\pi\)
\(152\) −198.500 −0.105924
\(153\) −1442.78 −0.762365
\(154\) −192.202 −0.100572
\(155\) 0 0
\(156\) 2679.39 1.37515
\(157\) 783.696 0.398381 0.199190 0.979961i \(-0.436169\pi\)
0.199190 + 0.979961i \(0.436169\pi\)
\(158\) 807.226 0.406452
\(159\) −2.38501 −0.00118958
\(160\) 0 0
\(161\) −225.877 −0.110569
\(162\) −3671.22 −1.78048
\(163\) −2416.93 −1.16140 −0.580702 0.814116i \(-0.697222\pi\)
−0.580702 + 0.814116i \(0.697222\pi\)
\(164\) 1034.28 0.492463
\(165\) 0 0
\(166\) 789.149 0.368975
\(167\) 704.424 0.326407 0.163204 0.986592i \(-0.447817\pi\)
0.163204 + 0.986592i \(0.447817\pi\)
\(168\) 72.2280 0.0331697
\(169\) 196.369 0.0893803
\(170\) 0 0
\(171\) −1959.97 −0.876506
\(172\) −293.835 −0.130260
\(173\) 1398.49 0.614598 0.307299 0.951613i \(-0.400575\pi\)
0.307299 + 0.951613i \(0.400575\pi\)
\(174\) −7472.85 −3.25584
\(175\) 0 0
\(176\) −411.836 −0.176382
\(177\) −2143.08 −0.910079
\(178\) 556.289 0.234245
\(179\) 368.688 0.153950 0.0769749 0.997033i \(-0.475474\pi\)
0.0769749 + 0.997033i \(0.475474\pi\)
\(180\) 0 0
\(181\) −315.621 −0.129613 −0.0648064 0.997898i \(-0.520643\pi\)
−0.0648064 + 0.997898i \(0.520643\pi\)
\(182\) 1386.43 0.564665
\(183\) 3366.27 1.35979
\(184\) 51.0076 0.0204366
\(185\) 0 0
\(186\) −5428.94 −2.14016
\(187\) −626.924 −0.245162
\(188\) −3515.85 −1.36393
\(189\) −520.525 −0.200331
\(190\) 0 0
\(191\) −151.629 −0.0574424 −0.0287212 0.999587i \(-0.509143\pi\)
−0.0287212 + 0.999587i \(0.509143\pi\)
\(192\) 3659.95 1.37570
\(193\) 690.689 0.257600 0.128800 0.991671i \(-0.458887\pi\)
0.128800 + 0.991671i \(0.458887\pi\)
\(194\) −892.453 −0.330280
\(195\) 0 0
\(196\) 411.132 0.149829
\(197\) 834.136 0.301674 0.150837 0.988559i \(-0.451803\pi\)
0.150837 + 0.988559i \(0.451803\pi\)
\(198\) 428.557 0.153819
\(199\) 387.269 0.137954 0.0689769 0.997618i \(-0.478027\pi\)
0.0689769 + 0.997618i \(0.478027\pi\)
\(200\) 0 0
\(201\) −5411.00 −1.89882
\(202\) −2394.12 −0.833909
\(203\) −1979.44 −0.684383
\(204\) 5062.70 1.73755
\(205\) 0 0
\(206\) 1929.09 0.652457
\(207\) 503.643 0.169109
\(208\) 2970.74 0.990307
\(209\) −851.656 −0.281867
\(210\) 0 0
\(211\) 3070.54 1.00182 0.500912 0.865498i \(-0.332998\pi\)
0.500912 + 0.865498i \(0.332998\pi\)
\(212\) 3.06570 0.000993174 0
\(213\) 3239.14 1.04198
\(214\) 913.278 0.291731
\(215\) 0 0
\(216\) 117.545 0.0370275
\(217\) −1438.04 −0.449865
\(218\) −6589.58 −2.04726
\(219\) 4576.63 1.41215
\(220\) 0 0
\(221\) 4522.26 1.37647
\(222\) 5037.63 1.52299
\(223\) −1004.46 −0.301631 −0.150816 0.988562i \(-0.548190\pi\)
−0.150816 + 0.988562i \(0.548190\pi\)
\(224\) 1809.41 0.539716
\(225\) 0 0
\(226\) −1445.48 −0.425451
\(227\) 5374.22 1.57136 0.785681 0.618631i \(-0.212313\pi\)
0.785681 + 0.618631i \(0.212313\pi\)
\(228\) 6877.51 1.99769
\(229\) 3650.97 1.05355 0.526775 0.850005i \(-0.323401\pi\)
0.526775 + 0.850005i \(0.323401\pi\)
\(230\) 0 0
\(231\) 309.890 0.0882653
\(232\) 446.999 0.126495
\(233\) −4582.88 −1.28856 −0.644280 0.764789i \(-0.722843\pi\)
−0.644280 + 0.764789i \(0.722843\pi\)
\(234\) −3091.36 −0.863625
\(235\) 0 0
\(236\) 2754.73 0.759820
\(237\) −1301.50 −0.356716
\(238\) 2619.66 0.713476
\(239\) 696.769 0.188578 0.0942892 0.995545i \(-0.469942\pi\)
0.0942892 + 0.995545i \(0.469942\pi\)
\(240\) 0 0
\(241\) 5082.82 1.35856 0.679281 0.733878i \(-0.262292\pi\)
0.679281 + 0.733878i \(0.262292\pi\)
\(242\) −5202.35 −1.38190
\(243\) 3911.42 1.03258
\(244\) −4327.02 −1.13528
\(245\) 0 0
\(246\) −3257.58 −0.844292
\(247\) 6143.34 1.58256
\(248\) 324.739 0.0831490
\(249\) −1272.36 −0.323825
\(250\) 0 0
\(251\) −1207.32 −0.303606 −0.151803 0.988411i \(-0.548508\pi\)
−0.151803 + 0.988411i \(0.548508\pi\)
\(252\) −916.711 −0.229156
\(253\) 218.846 0.0543822
\(254\) 6996.86 1.72843
\(255\) 0 0
\(256\) 3667.41 0.895363
\(257\) −510.936 −0.124013 −0.0620064 0.998076i \(-0.519750\pi\)
−0.0620064 + 0.998076i \(0.519750\pi\)
\(258\) 925.464 0.223321
\(259\) 1334.39 0.320135
\(260\) 0 0
\(261\) 4413.61 1.04673
\(262\) 5915.67 1.39493
\(263\) −2269.04 −0.531997 −0.265998 0.963974i \(-0.585702\pi\)
−0.265998 + 0.963974i \(0.585702\pi\)
\(264\) −69.9796 −0.0163142
\(265\) 0 0
\(266\) 3558.72 0.820297
\(267\) −896.913 −0.205581
\(268\) 6955.32 1.58531
\(269\) −7836.10 −1.77612 −0.888058 0.459731i \(-0.847946\pi\)
−0.888058 + 0.459731i \(0.847946\pi\)
\(270\) 0 0
\(271\) 1466.28 0.328673 0.164336 0.986404i \(-0.447452\pi\)
0.164336 + 0.986404i \(0.447452\pi\)
\(272\) 5613.21 1.25129
\(273\) −2235.37 −0.495570
\(274\) −7663.67 −1.68971
\(275\) 0 0
\(276\) −1767.28 −0.385426
\(277\) −4154.17 −0.901083 −0.450542 0.892755i \(-0.648769\pi\)
−0.450542 + 0.892755i \(0.648769\pi\)
\(278\) −6943.32 −1.49796
\(279\) 3206.43 0.688044
\(280\) 0 0
\(281\) −3490.40 −0.740996 −0.370498 0.928833i \(-0.620813\pi\)
−0.370498 + 0.928833i \(0.620813\pi\)
\(282\) 11073.5 2.33837
\(283\) 3125.29 0.656464 0.328232 0.944597i \(-0.393547\pi\)
0.328232 + 0.944597i \(0.393547\pi\)
\(284\) −4163.60 −0.869945
\(285\) 0 0
\(286\) −1343.27 −0.277725
\(287\) −862.883 −0.177472
\(288\) −4034.49 −0.825467
\(289\) 3631.80 0.739223
\(290\) 0 0
\(291\) 1438.92 0.289865
\(292\) −5882.81 −1.17899
\(293\) 1447.69 0.288652 0.144326 0.989530i \(-0.453899\pi\)
0.144326 + 0.989530i \(0.453899\pi\)
\(294\) −1294.90 −0.256872
\(295\) 0 0
\(296\) −301.333 −0.0591710
\(297\) 504.322 0.0985310
\(298\) −11329.0 −2.20226
\(299\) −1578.62 −0.305332
\(300\) 0 0
\(301\) 245.141 0.0469425
\(302\) −11609.1 −2.21201
\(303\) 3860.08 0.731867
\(304\) 7625.35 1.43863
\(305\) 0 0
\(306\) −5841.11 −1.09122
\(307\) −1591.43 −0.295856 −0.147928 0.988998i \(-0.547260\pi\)
−0.147928 + 0.988998i \(0.547260\pi\)
\(308\) −398.334 −0.0736922
\(309\) −3110.31 −0.572619
\(310\) 0 0
\(311\) −8584.92 −1.56529 −0.782647 0.622466i \(-0.786131\pi\)
−0.782647 + 0.622466i \(0.786131\pi\)
\(312\) 504.792 0.0915968
\(313\) 7210.05 1.30203 0.651016 0.759064i \(-0.274343\pi\)
0.651016 + 0.759064i \(0.274343\pi\)
\(314\) 3172.80 0.570228
\(315\) 0 0
\(316\) 1672.96 0.297820
\(317\) −7787.24 −1.37973 −0.689865 0.723938i \(-0.742330\pi\)
−0.689865 + 0.723938i \(0.742330\pi\)
\(318\) −9.65573 −0.00170272
\(319\) 1917.83 0.336607
\(320\) 0 0
\(321\) −1472.49 −0.256033
\(322\) −914.465 −0.158264
\(323\) 11607.8 1.99962
\(324\) −7608.51 −1.30461
\(325\) 0 0
\(326\) −9784.98 −1.66239
\(327\) 10624.5 1.79674
\(328\) 194.857 0.0328023
\(329\) 2933.21 0.491529
\(330\) 0 0
\(331\) −1729.78 −0.287243 −0.143621 0.989633i \(-0.545875\pi\)
−0.143621 + 0.989633i \(0.545875\pi\)
\(332\) 1635.49 0.270359
\(333\) −2975.32 −0.489630
\(334\) 2851.87 0.467208
\(335\) 0 0
\(336\) −2774.62 −0.450500
\(337\) 7815.06 1.26325 0.631623 0.775276i \(-0.282389\pi\)
0.631623 + 0.775276i \(0.282389\pi\)
\(338\) 795.000 0.127936
\(339\) 2330.57 0.373391
\(340\) 0 0
\(341\) 1393.28 0.221262
\(342\) −7934.95 −1.25460
\(343\) −343.000 −0.0539949
\(344\) −55.3579 −0.00867645
\(345\) 0 0
\(346\) 5661.82 0.879714
\(347\) 2359.77 0.365070 0.182535 0.983199i \(-0.441570\pi\)
0.182535 + 0.983199i \(0.441570\pi\)
\(348\) −15487.3 −2.38565
\(349\) 3212.73 0.492761 0.246380 0.969173i \(-0.420759\pi\)
0.246380 + 0.969173i \(0.420759\pi\)
\(350\) 0 0
\(351\) −3637.88 −0.553207
\(352\) −1753.09 −0.265454
\(353\) −5582.04 −0.841649 −0.420824 0.907142i \(-0.638259\pi\)
−0.420824 + 0.907142i \(0.638259\pi\)
\(354\) −8676.30 −1.30266
\(355\) 0 0
\(356\) 1152.90 0.171639
\(357\) −4223.72 −0.626171
\(358\) 1492.64 0.220358
\(359\) −10630.6 −1.56285 −0.781425 0.623999i \(-0.785507\pi\)
−0.781425 + 0.623999i \(0.785507\pi\)
\(360\) 0 0
\(361\) 8909.84 1.29900
\(362\) −1277.80 −0.185523
\(363\) 8387.84 1.21280
\(364\) 2873.35 0.413748
\(365\) 0 0
\(366\) 13628.4 1.94636
\(367\) 4514.69 0.642139 0.321070 0.947056i \(-0.395958\pi\)
0.321070 + 0.947056i \(0.395958\pi\)
\(368\) −1959.45 −0.277563
\(369\) 1923.99 0.271434
\(370\) 0 0
\(371\) −2.55765 −0.000357916 0
\(372\) −11251.3 −1.56816
\(373\) 11445.8 1.58885 0.794426 0.607361i \(-0.207772\pi\)
0.794426 + 0.607361i \(0.207772\pi\)
\(374\) −2538.11 −0.350916
\(375\) 0 0
\(376\) −662.378 −0.0908499
\(377\) −13834.1 −1.88990
\(378\) −2107.35 −0.286747
\(379\) 8146.48 1.10411 0.552054 0.833809i \(-0.313844\pi\)
0.552054 + 0.833809i \(0.313844\pi\)
\(380\) 0 0
\(381\) −11281.2 −1.51693
\(382\) −613.872 −0.0822210
\(383\) −5261.56 −0.701967 −0.350983 0.936382i \(-0.614153\pi\)
−0.350983 + 0.936382i \(0.614153\pi\)
\(384\) 1319.17 0.175308
\(385\) 0 0
\(386\) 2796.26 0.368720
\(387\) −546.597 −0.0717961
\(388\) −1849.59 −0.242007
\(389\) 13207.1 1.72141 0.860706 0.509103i \(-0.170023\pi\)
0.860706 + 0.509103i \(0.170023\pi\)
\(390\) 0 0
\(391\) −2982.80 −0.385798
\(392\) 77.4564 0.00997995
\(393\) −9537.93 −1.22424
\(394\) 3377.01 0.431805
\(395\) 0 0
\(396\) 888.175 0.112708
\(397\) −5663.15 −0.715933 −0.357967 0.933734i \(-0.616530\pi\)
−0.357967 + 0.933734i \(0.616530\pi\)
\(398\) 1567.86 0.197462
\(399\) −5737.78 −0.719920
\(400\) 0 0
\(401\) −11989.0 −1.49302 −0.746512 0.665372i \(-0.768273\pi\)
−0.746512 + 0.665372i \(0.768273\pi\)
\(402\) −21906.5 −2.71790
\(403\) −10050.3 −1.24228
\(404\) −4961.76 −0.611031
\(405\) 0 0
\(406\) −8013.80 −0.979602
\(407\) −1292.85 −0.157455
\(408\) 953.802 0.115736
\(409\) 5249.67 0.634669 0.317334 0.948314i \(-0.397212\pi\)
0.317334 + 0.948314i \(0.397212\pi\)
\(410\) 0 0
\(411\) 12356.3 1.48294
\(412\) 3998.00 0.478076
\(413\) −2298.22 −0.273821
\(414\) 2039.00 0.242057
\(415\) 0 0
\(416\) 12645.7 1.49041
\(417\) 11194.8 1.31466
\(418\) −3447.94 −0.403455
\(419\) −14948.9 −1.74297 −0.871484 0.490424i \(-0.836842\pi\)
−0.871484 + 0.490424i \(0.836842\pi\)
\(420\) 0 0
\(421\) 5840.31 0.676103 0.338051 0.941128i \(-0.390232\pi\)
0.338051 + 0.941128i \(0.390232\pi\)
\(422\) 12431.1 1.43398
\(423\) −6540.24 −0.751767
\(424\) 0.577571 6.61540e−5 0
\(425\) 0 0
\(426\) 13113.7 1.49146
\(427\) 3609.95 0.409128
\(428\) 1892.75 0.213760
\(429\) 2165.78 0.243741
\(430\) 0 0
\(431\) 7439.21 0.831402 0.415701 0.909501i \(-0.363536\pi\)
0.415701 + 0.909501i \(0.363536\pi\)
\(432\) −4515.48 −0.502896
\(433\) −877.657 −0.0974077 −0.0487038 0.998813i \(-0.515509\pi\)
−0.0487038 + 0.998813i \(0.515509\pi\)
\(434\) −5821.93 −0.643920
\(435\) 0 0
\(436\) −13656.8 −1.50009
\(437\) −4052.04 −0.443559
\(438\) 18528.5 2.02130
\(439\) −10855.8 −1.18023 −0.590114 0.807320i \(-0.700917\pi\)
−0.590114 + 0.807320i \(0.700917\pi\)
\(440\) 0 0
\(441\) 764.795 0.0825823
\(442\) 18308.4 1.97023
\(443\) −10797.0 −1.15798 −0.578988 0.815336i \(-0.696552\pi\)
−0.578988 + 0.815336i \(0.696552\pi\)
\(444\) 10440.4 1.11594
\(445\) 0 0
\(446\) −4066.58 −0.431745
\(447\) 18266.0 1.93278
\(448\) 3924.89 0.413914
\(449\) 8621.70 0.906198 0.453099 0.891460i \(-0.350318\pi\)
0.453099 + 0.891460i \(0.350318\pi\)
\(450\) 0 0
\(451\) 836.023 0.0872878
\(452\) −2995.73 −0.311742
\(453\) 18717.5 1.94134
\(454\) 21757.6 2.24919
\(455\) 0 0
\(456\) 1295.71 0.133064
\(457\) −3785.90 −0.387520 −0.193760 0.981049i \(-0.562068\pi\)
−0.193760 + 0.981049i \(0.562068\pi\)
\(458\) 14781.0 1.50801
\(459\) −6873.76 −0.698997
\(460\) 0 0
\(461\) 5760.18 0.581948 0.290974 0.956731i \(-0.406021\pi\)
0.290974 + 0.956731i \(0.406021\pi\)
\(462\) 1254.59 0.126340
\(463\) 10760.9 1.08014 0.540068 0.841621i \(-0.318398\pi\)
0.540068 + 0.841621i \(0.318398\pi\)
\(464\) −17171.4 −1.71802
\(465\) 0 0
\(466\) −18553.9 −1.84440
\(467\) 2153.58 0.213395 0.106698 0.994292i \(-0.465972\pi\)
0.106698 + 0.994292i \(0.465972\pi\)
\(468\) −6406.77 −0.632806
\(469\) −5802.70 −0.571309
\(470\) 0 0
\(471\) −5115.57 −0.500452
\(472\) 518.985 0.0506106
\(473\) −237.510 −0.0230882
\(474\) −5269.15 −0.510591
\(475\) 0 0
\(476\) 5429.18 0.522786
\(477\) 5.70286 0.000547413 0
\(478\) 2820.88 0.269924
\(479\) −6890.26 −0.657253 −0.328626 0.944460i \(-0.606586\pi\)
−0.328626 + 0.944460i \(0.606586\pi\)
\(480\) 0 0
\(481\) 9325.88 0.884041
\(482\) 20577.9 1.94460
\(483\) 1474.41 0.138898
\(484\) −10781.8 −1.01256
\(485\) 0 0
\(486\) 15835.4 1.47801
\(487\) −19006.4 −1.76850 −0.884251 0.467011i \(-0.845331\pi\)
−0.884251 + 0.467011i \(0.845331\pi\)
\(488\) −815.201 −0.0756197
\(489\) 15776.5 1.45897
\(490\) 0 0
\(491\) 4530.05 0.416371 0.208186 0.978089i \(-0.433244\pi\)
0.208186 + 0.978089i \(0.433244\pi\)
\(492\) −6751.27 −0.618639
\(493\) −26139.4 −2.38795
\(494\) 24871.4 2.26522
\(495\) 0 0
\(496\) −12474.8 −1.12930
\(497\) 3473.62 0.313507
\(498\) −5151.16 −0.463512
\(499\) 3620.18 0.324773 0.162386 0.986727i \(-0.448081\pi\)
0.162386 + 0.986727i \(0.448081\pi\)
\(500\) 0 0
\(501\) −4598.12 −0.410038
\(502\) −4887.84 −0.434571
\(503\) 11761.8 1.04261 0.521303 0.853372i \(-0.325446\pi\)
0.521303 + 0.853372i \(0.325446\pi\)
\(504\) −172.706 −0.0152638
\(505\) 0 0
\(506\) 885.999 0.0778408
\(507\) −1281.79 −0.112281
\(508\) 14500.8 1.26648
\(509\) −5254.47 −0.457564 −0.228782 0.973478i \(-0.573474\pi\)
−0.228782 + 0.973478i \(0.573474\pi\)
\(510\) 0 0
\(511\) 4907.92 0.424880
\(512\) 16464.3 1.42114
\(513\) −9337.77 −0.803651
\(514\) −2068.53 −0.177508
\(515\) 0 0
\(516\) 1918.00 0.163634
\(517\) −2841.90 −0.241754
\(518\) 5402.30 0.458230
\(519\) −9128.64 −0.772067
\(520\) 0 0
\(521\) −15511.8 −1.30439 −0.652193 0.758053i \(-0.726151\pi\)
−0.652193 + 0.758053i \(0.726151\pi\)
\(522\) 17868.6 1.49825
\(523\) 3814.73 0.318942 0.159471 0.987203i \(-0.449021\pi\)
0.159471 + 0.987203i \(0.449021\pi\)
\(524\) 12260.1 1.02211
\(525\) 0 0
\(526\) −9186.24 −0.761481
\(527\) −18990.0 −1.56967
\(528\) 2688.25 0.221574
\(529\) −11125.8 −0.914422
\(530\) 0 0
\(531\) 5124.39 0.418794
\(532\) 7375.36 0.601057
\(533\) −6030.58 −0.490081
\(534\) −3631.17 −0.294262
\(535\) 0 0
\(536\) 1310.37 0.105596
\(537\) −2406.60 −0.193394
\(538\) −31724.5 −2.54227
\(539\) 332.323 0.0265569
\(540\) 0 0
\(541\) −4573.77 −0.363478 −0.181739 0.983347i \(-0.558173\pi\)
−0.181739 + 0.983347i \(0.558173\pi\)
\(542\) 5936.26 0.470451
\(543\) 2060.21 0.162822
\(544\) 23894.1 1.88318
\(545\) 0 0
\(546\) −9049.91 −0.709341
\(547\) 13327.6 1.04177 0.520885 0.853627i \(-0.325602\pi\)
0.520885 + 0.853627i \(0.325602\pi\)
\(548\) −15882.8 −1.23810
\(549\) −8049.19 −0.625740
\(550\) 0 0
\(551\) −35509.5 −2.74548
\(552\) −332.952 −0.0256728
\(553\) −1395.72 −0.107327
\(554\) −16818.2 −1.28978
\(555\) 0 0
\(556\) −14389.9 −1.09760
\(557\) 12096.1 0.920155 0.460077 0.887879i \(-0.347822\pi\)
0.460077 + 0.887879i \(0.347822\pi\)
\(558\) 12981.3 0.984842
\(559\) 1713.26 0.129630
\(560\) 0 0
\(561\) 4092.24 0.307976
\(562\) −14130.9 −1.06064
\(563\) 22943.6 1.71751 0.858755 0.512387i \(-0.171239\pi\)
0.858755 + 0.512387i \(0.171239\pi\)
\(564\) 22949.6 1.71339
\(565\) 0 0
\(566\) 12652.8 0.939639
\(567\) 6347.64 0.470152
\(568\) −784.414 −0.0579459
\(569\) 485.307 0.0357560 0.0178780 0.999840i \(-0.494309\pi\)
0.0178780 + 0.999840i \(0.494309\pi\)
\(570\) 0 0
\(571\) 12271.8 0.899401 0.449701 0.893179i \(-0.351531\pi\)
0.449701 + 0.893179i \(0.351531\pi\)
\(572\) −2783.90 −0.203498
\(573\) 989.756 0.0721600
\(574\) −3493.39 −0.254027
\(575\) 0 0
\(576\) −8751.42 −0.633060
\(577\) −14122.8 −1.01896 −0.509478 0.860484i \(-0.670162\pi\)
−0.509478 + 0.860484i \(0.670162\pi\)
\(578\) 14703.4 1.05810
\(579\) −4508.46 −0.323601
\(580\) 0 0
\(581\) −1364.46 −0.0974310
\(582\) 5825.47 0.414903
\(583\) 2.47804 0.000176037 0
\(584\) −1108.31 −0.0785312
\(585\) 0 0
\(586\) 5861.00 0.413167
\(587\) 11005.3 0.773826 0.386913 0.922116i \(-0.373541\pi\)
0.386913 + 0.922116i \(0.373541\pi\)
\(588\) −2683.66 −0.188218
\(589\) −25797.2 −1.80468
\(590\) 0 0
\(591\) −5444.81 −0.378967
\(592\) 11575.6 0.803642
\(593\) −11233.1 −0.777889 −0.388944 0.921261i \(-0.627160\pi\)
−0.388944 + 0.921261i \(0.627160\pi\)
\(594\) 2041.75 0.141034
\(595\) 0 0
\(596\) −23479.2 −1.61366
\(597\) −2527.89 −0.173300
\(598\) −6391.08 −0.437041
\(599\) 14855.4 1.01331 0.506656 0.862149i \(-0.330882\pi\)
0.506656 + 0.862149i \(0.330882\pi\)
\(600\) 0 0
\(601\) 25358.8 1.72115 0.860573 0.509327i \(-0.170106\pi\)
0.860573 + 0.509327i \(0.170106\pi\)
\(602\) 992.457 0.0671919
\(603\) 12938.4 0.873786
\(604\) −24059.5 −1.62081
\(605\) 0 0
\(606\) 15627.6 1.04757
\(607\) 14393.9 0.962487 0.481243 0.876587i \(-0.340185\pi\)
0.481243 + 0.876587i \(0.340185\pi\)
\(608\) 32459.3 2.16513
\(609\) 12920.8 0.859732
\(610\) 0 0
\(611\) 20499.8 1.35734
\(612\) −12105.6 −0.799573
\(613\) 4769.94 0.314284 0.157142 0.987576i \(-0.449772\pi\)
0.157142 + 0.987576i \(0.449772\pi\)
\(614\) −6442.92 −0.423477
\(615\) 0 0
\(616\) −75.0453 −0.00490854
\(617\) −7769.86 −0.506974 −0.253487 0.967339i \(-0.581577\pi\)
−0.253487 + 0.967339i \(0.581577\pi\)
\(618\) −12592.1 −0.819627
\(619\) −5680.75 −0.368867 −0.184433 0.982845i \(-0.559045\pi\)
−0.184433 + 0.982845i \(0.559045\pi\)
\(620\) 0 0
\(621\) 2399.48 0.155053
\(622\) −34756.2 −2.24051
\(623\) −961.840 −0.0618544
\(624\) −19391.5 −1.24404
\(625\) 0 0
\(626\) 29190.0 1.86368
\(627\) 5559.17 0.354086
\(628\) 6575.56 0.417824
\(629\) 17621.2 1.11702
\(630\) 0 0
\(631\) −10395.8 −0.655864 −0.327932 0.944701i \(-0.606352\pi\)
−0.327932 + 0.944701i \(0.606352\pi\)
\(632\) 315.182 0.0198374
\(633\) −20042.9 −1.25851
\(634\) −31526.7 −1.97490
\(635\) 0 0
\(636\) −20.0113 −0.00124764
\(637\) −2397.18 −0.149105
\(638\) 7764.34 0.481808
\(639\) −7745.21 −0.479492
\(640\) 0 0
\(641\) −8194.28 −0.504921 −0.252461 0.967607i \(-0.581240\pi\)
−0.252461 + 0.967607i \(0.581240\pi\)
\(642\) −5961.41 −0.366477
\(643\) −32118.2 −1.96985 −0.984927 0.172970i \(-0.944664\pi\)
−0.984927 + 0.172970i \(0.944664\pi\)
\(644\) −1895.21 −0.115965
\(645\) 0 0
\(646\) 46994.4 2.86218
\(647\) −22299.0 −1.35496 −0.677482 0.735539i \(-0.736929\pi\)
−0.677482 + 0.735539i \(0.736929\pi\)
\(648\) −1433.43 −0.0868987
\(649\) 2226.68 0.134676
\(650\) 0 0
\(651\) 9386.79 0.565127
\(652\) −20279.1 −1.21809
\(653\) 920.410 0.0551584 0.0275792 0.999620i \(-0.491220\pi\)
0.0275792 + 0.999620i \(0.491220\pi\)
\(654\) 43013.4 2.57180
\(655\) 0 0
\(656\) −7485.38 −0.445511
\(657\) −10943.3 −0.649832
\(658\) 11875.1 0.703557
\(659\) 17824.3 1.05362 0.526812 0.849982i \(-0.323387\pi\)
0.526812 + 0.849982i \(0.323387\pi\)
\(660\) 0 0
\(661\) 11343.8 0.667510 0.333755 0.942660i \(-0.391684\pi\)
0.333755 + 0.942660i \(0.391684\pi\)
\(662\) −7003.03 −0.411149
\(663\) −29519.0 −1.72915
\(664\) 308.123 0.0180083
\(665\) 0 0
\(666\) −12045.6 −0.700839
\(667\) 9124.71 0.529700
\(668\) 5910.44 0.342338
\(669\) 6556.61 0.378914
\(670\) 0 0
\(671\) −3497.58 −0.201226
\(672\) −11810.9 −0.678000
\(673\) −13422.9 −0.768816 −0.384408 0.923163i \(-0.625594\pi\)
−0.384408 + 0.923163i \(0.625594\pi\)
\(674\) 31639.4 1.80817
\(675\) 0 0
\(676\) 1647.62 0.0937426
\(677\) −1066.77 −0.0605602 −0.0302801 0.999541i \(-0.509640\pi\)
−0.0302801 + 0.999541i \(0.509640\pi\)
\(678\) 9435.36 0.534458
\(679\) 1543.08 0.0872134
\(680\) 0 0
\(681\) −35080.1 −1.97397
\(682\) 5640.70 0.316706
\(683\) −19090.6 −1.06952 −0.534759 0.845005i \(-0.679598\pi\)
−0.534759 + 0.845005i \(0.679598\pi\)
\(684\) −16445.0 −0.919285
\(685\) 0 0
\(686\) −1388.64 −0.0772865
\(687\) −23831.6 −1.32348
\(688\) 2126.56 0.117841
\(689\) −17.8751 −0.000988370 0
\(690\) 0 0
\(691\) −16878.4 −0.929208 −0.464604 0.885518i \(-0.653803\pi\)
−0.464604 + 0.885518i \(0.653803\pi\)
\(692\) 11734.0 0.644594
\(693\) −740.988 −0.0406173
\(694\) 9553.57 0.522549
\(695\) 0 0
\(696\) −2917.78 −0.158905
\(697\) −11394.8 −0.619236
\(698\) 13006.8 0.705321
\(699\) 29914.7 1.61871
\(700\) 0 0
\(701\) 30272.6 1.63107 0.815535 0.578707i \(-0.196443\pi\)
0.815535 + 0.578707i \(0.196443\pi\)
\(702\) −14728.0 −0.791841
\(703\) 23937.8 1.28426
\(704\) −3802.71 −0.203580
\(705\) 0 0
\(706\) −22599.0 −1.20471
\(707\) 4139.50 0.220201
\(708\) −17981.4 −0.954497
\(709\) −6593.32 −0.349248 −0.174624 0.984635i \(-0.555871\pi\)
−0.174624 + 0.984635i \(0.555871\pi\)
\(710\) 0 0
\(711\) 3112.06 0.164151
\(712\) 217.203 0.0114326
\(713\) 6628.99 0.348187
\(714\) −17099.8 −0.896279
\(715\) 0 0
\(716\) 3093.46 0.161464
\(717\) −4548.15 −0.236895
\(718\) −43038.2 −2.23701
\(719\) 3293.72 0.170842 0.0854208 0.996345i \(-0.472777\pi\)
0.0854208 + 0.996345i \(0.472777\pi\)
\(720\) 0 0
\(721\) −3335.46 −0.172287
\(722\) 36071.6 1.85934
\(723\) −33178.1 −1.70665
\(724\) −2648.20 −0.135939
\(725\) 0 0
\(726\) 33958.3 1.73596
\(727\) 27757.8 1.41606 0.708032 0.706181i \(-0.249583\pi\)
0.708032 + 0.706181i \(0.249583\pi\)
\(728\) 541.333 0.0275592
\(729\) −1048.00 −0.0532439
\(730\) 0 0
\(731\) 3237.20 0.163792
\(732\) 28244.5 1.42616
\(733\) 38324.6 1.93117 0.965587 0.260080i \(-0.0837489\pi\)
0.965587 + 0.260080i \(0.0837489\pi\)
\(734\) 18277.8 0.919136
\(735\) 0 0
\(736\) −8340.91 −0.417731
\(737\) 5622.07 0.280993
\(738\) 7789.30 0.388521
\(739\) 21957.3 1.09298 0.546490 0.837466i \(-0.315964\pi\)
0.546490 + 0.837466i \(0.315964\pi\)
\(740\) 0 0
\(741\) −40100.6 −1.98803
\(742\) −10.3547 −0.000512308 0
\(743\) −14695.0 −0.725580 −0.362790 0.931871i \(-0.618176\pi\)
−0.362790 + 0.931871i \(0.618176\pi\)
\(744\) −2119.73 −0.104453
\(745\) 0 0
\(746\) 46338.5 2.27423
\(747\) 3042.37 0.149016
\(748\) −5260.18 −0.257127
\(749\) −1579.09 −0.0770341
\(750\) 0 0
\(751\) −21439.1 −1.04171 −0.520855 0.853645i \(-0.674387\pi\)
−0.520855 + 0.853645i \(0.674387\pi\)
\(752\) 25445.1 1.23389
\(753\) 7880.74 0.381395
\(754\) −56007.4 −2.70513
\(755\) 0 0
\(756\) −4367.44 −0.210109
\(757\) −23896.8 −1.14735 −0.573675 0.819083i \(-0.694483\pi\)
−0.573675 + 0.819083i \(0.694483\pi\)
\(758\) 32981.1 1.58038
\(759\) −1428.51 −0.0683158
\(760\) 0 0
\(761\) −24436.9 −1.16404 −0.582022 0.813173i \(-0.697738\pi\)
−0.582022 + 0.813173i \(0.697738\pi\)
\(762\) −45671.9 −2.17128
\(763\) 11393.6 0.540597
\(764\) −1272.24 −0.0602459
\(765\) 0 0
\(766\) −21301.5 −1.00477
\(767\) −16061.9 −0.756145
\(768\) −23938.9 −1.12477
\(769\) −30689.3 −1.43912 −0.719560 0.694430i \(-0.755657\pi\)
−0.719560 + 0.694430i \(0.755657\pi\)
\(770\) 0 0
\(771\) 3335.13 0.155787
\(772\) 5795.19 0.270173
\(773\) −5110.74 −0.237801 −0.118901 0.992906i \(-0.537937\pi\)
−0.118901 + 0.992906i \(0.537937\pi\)
\(774\) −2212.90 −0.102766
\(775\) 0 0
\(776\) −348.459 −0.0161198
\(777\) −8710.22 −0.402159
\(778\) 53469.3 2.46397
\(779\) −15479.4 −0.711947
\(780\) 0 0
\(781\) −3365.49 −0.154195
\(782\) −12075.9 −0.552217
\(783\) 21027.6 0.959723
\(784\) −2975.47 −0.135545
\(785\) 0 0
\(786\) −38614.4 −1.75233
\(787\) 6991.30 0.316662 0.158331 0.987386i \(-0.449389\pi\)
0.158331 + 0.987386i \(0.449389\pi\)
\(788\) 6998.78 0.316397
\(789\) 14811.1 0.668302
\(790\) 0 0
\(791\) 2499.28 0.112344
\(792\) 167.330 0.00750735
\(793\) 25229.5 1.12979
\(794\) −22927.3 −1.02476
\(795\) 0 0
\(796\) 3249.36 0.144687
\(797\) 4020.31 0.178678 0.0893392 0.996001i \(-0.471524\pi\)
0.0893392 + 0.996001i \(0.471524\pi\)
\(798\) −23229.5 −1.03047
\(799\) 38734.3 1.71505
\(800\) 0 0
\(801\) 2144.64 0.0946030
\(802\) −48537.7 −2.13706
\(803\) −4755.15 −0.208973
\(804\) −45400.8 −1.99149
\(805\) 0 0
\(806\) −40688.7 −1.77816
\(807\) 51150.0 2.23118
\(808\) −934.785 −0.0407000
\(809\) −41608.1 −1.80824 −0.904119 0.427281i \(-0.859472\pi\)
−0.904119 + 0.427281i \(0.859472\pi\)
\(810\) 0 0
\(811\) 42271.3 1.83027 0.915133 0.403152i \(-0.132086\pi\)
0.915133 + 0.403152i \(0.132086\pi\)
\(812\) −16608.4 −0.717785
\(813\) −9571.13 −0.412884
\(814\) −5234.13 −0.225376
\(815\) 0 0
\(816\) −36640.1 −1.57189
\(817\) 4397.62 0.188315
\(818\) 21253.4 0.908443
\(819\) 5345.05 0.228048
\(820\) 0 0
\(821\) 27184.7 1.15561 0.577804 0.816176i \(-0.303910\pi\)
0.577804 + 0.816176i \(0.303910\pi\)
\(822\) 50024.5 2.12263
\(823\) −12967.9 −0.549250 −0.274625 0.961551i \(-0.588554\pi\)
−0.274625 + 0.961551i \(0.588554\pi\)
\(824\) 753.215 0.0318440
\(825\) 0 0
\(826\) −9304.36 −0.391937
\(827\) −33111.2 −1.39225 −0.696124 0.717921i \(-0.745094\pi\)
−0.696124 + 0.717921i \(0.745094\pi\)
\(828\) 4225.79 0.177363
\(829\) 3715.75 0.155673 0.0778367 0.996966i \(-0.475199\pi\)
0.0778367 + 0.996966i \(0.475199\pi\)
\(830\) 0 0
\(831\) 27116.3 1.13195
\(832\) 27430.5 1.14301
\(833\) −4529.47 −0.188399
\(834\) 45322.4 1.88176
\(835\) 0 0
\(836\) −7145.77 −0.295624
\(837\) 15276.3 0.630854
\(838\) −60521.0 −2.49482
\(839\) −1460.56 −0.0601005 −0.0300502 0.999548i \(-0.509567\pi\)
−0.0300502 + 0.999548i \(0.509567\pi\)
\(840\) 0 0
\(841\) 55574.2 2.27866
\(842\) 23644.6 0.967750
\(843\) 22783.6 0.930851
\(844\) 25763.2 1.05072
\(845\) 0 0
\(846\) −26478.2 −1.07605
\(847\) 8995.02 0.364903
\(848\) −22.1873 −0.000898483 0
\(849\) −20400.3 −0.824660
\(850\) 0 0
\(851\) −6151.19 −0.247779
\(852\) 27177.9 1.09284
\(853\) −36027.4 −1.44613 −0.723067 0.690777i \(-0.757268\pi\)
−0.723067 + 0.690777i \(0.757268\pi\)
\(854\) 14614.9 0.585612
\(855\) 0 0
\(856\) 356.590 0.0142383
\(857\) 23500.7 0.936719 0.468359 0.883538i \(-0.344845\pi\)
0.468359 + 0.883538i \(0.344845\pi\)
\(858\) 8768.20 0.348883
\(859\) 5551.11 0.220491 0.110245 0.993904i \(-0.464836\pi\)
0.110245 + 0.993904i \(0.464836\pi\)
\(860\) 0 0
\(861\) 5632.46 0.222943
\(862\) 30117.7 1.19004
\(863\) 27721.4 1.09345 0.546725 0.837312i \(-0.315874\pi\)
0.546725 + 0.837312i \(0.315874\pi\)
\(864\) −19221.3 −0.756855
\(865\) 0 0
\(866\) −3553.21 −0.139426
\(867\) −23706.6 −0.928624
\(868\) −12065.8 −0.471821
\(869\) 1352.27 0.0527878
\(870\) 0 0
\(871\) −40554.3 −1.57765
\(872\) −2572.90 −0.0999192
\(873\) −3440.64 −0.133388
\(874\) −16404.7 −0.634895
\(875\) 0 0
\(876\) 38400.0 1.48107
\(877\) 47255.6 1.81951 0.909754 0.415149i \(-0.136270\pi\)
0.909754 + 0.415149i \(0.136270\pi\)
\(878\) −43950.0 −1.68934
\(879\) −9449.79 −0.362609
\(880\) 0 0
\(881\) 32267.0 1.23394 0.616972 0.786985i \(-0.288359\pi\)
0.616972 + 0.786985i \(0.288359\pi\)
\(882\) 3096.28 0.118205
\(883\) 5062.08 0.192925 0.0964623 0.995337i \(-0.469247\pi\)
0.0964623 + 0.995337i \(0.469247\pi\)
\(884\) 37943.8 1.44365
\(885\) 0 0
\(886\) −43712.0 −1.65749
\(887\) 7626.08 0.288679 0.144340 0.989528i \(-0.453894\pi\)
0.144340 + 0.989528i \(0.453894\pi\)
\(888\) 1966.95 0.0743315
\(889\) −12097.8 −0.456408
\(890\) 0 0
\(891\) −6150.05 −0.231239
\(892\) −8427.89 −0.316353
\(893\) 52619.2 1.97182
\(894\) 73950.1 2.76651
\(895\) 0 0
\(896\) 1414.66 0.0527460
\(897\) 10304.4 0.383562
\(898\) 34905.0 1.29710
\(899\) 58092.3 2.15516
\(900\) 0 0
\(901\) −33.7750 −0.00124884
\(902\) 3384.65 0.124941
\(903\) −1600.16 −0.0589699
\(904\) −564.389 −0.0207647
\(905\) 0 0
\(906\) 75778.0 2.77876
\(907\) −8546.31 −0.312873 −0.156436 0.987688i \(-0.550001\pi\)
−0.156436 + 0.987688i \(0.550001\pi\)
\(908\) 45092.1 1.64806
\(909\) −9229.95 −0.336786
\(910\) 0 0
\(911\) 8778.92 0.319274 0.159637 0.987176i \(-0.448968\pi\)
0.159637 + 0.987176i \(0.448968\pi\)
\(912\) −49774.4 −1.80723
\(913\) 1321.99 0.0479205
\(914\) −15327.3 −0.554683
\(915\) 0 0
\(916\) 30633.3 1.10497
\(917\) −10228.4 −0.368343
\(918\) −27828.5 −1.00052
\(919\) 21626.0 0.776253 0.388126 0.921606i \(-0.373122\pi\)
0.388126 + 0.921606i \(0.373122\pi\)
\(920\) 0 0
\(921\) 10388.0 0.371658
\(922\) 23320.1 0.832981
\(923\) 24276.7 0.865738
\(924\) 2600.12 0.0925732
\(925\) 0 0
\(926\) 43565.8 1.54607
\(927\) 7437.15 0.263504
\(928\) −73094.5 −2.58561
\(929\) 12262.6 0.433073 0.216536 0.976275i \(-0.430524\pi\)
0.216536 + 0.976275i \(0.430524\pi\)
\(930\) 0 0
\(931\) −6153.13 −0.216606
\(932\) −38452.5 −1.35145
\(933\) 56037.9 1.96634
\(934\) 8718.78 0.305447
\(935\) 0 0
\(936\) −1207.02 −0.0421504
\(937\) −13362.6 −0.465889 −0.232945 0.972490i \(-0.574836\pi\)
−0.232945 + 0.972490i \(0.574836\pi\)
\(938\) −23492.3 −0.817751
\(939\) −47063.5 −1.63563
\(940\) 0 0
\(941\) −46330.1 −1.60501 −0.802506 0.596643i \(-0.796501\pi\)
−0.802506 + 0.596643i \(0.796501\pi\)
\(942\) −20710.4 −0.716329
\(943\) 3977.66 0.137360
\(944\) −19936.7 −0.687377
\(945\) 0 0
\(946\) −961.563 −0.0330477
\(947\) −17387.6 −0.596643 −0.298321 0.954465i \(-0.596427\pi\)
−0.298321 + 0.954465i \(0.596427\pi\)
\(948\) −10920.2 −0.374126
\(949\) 34300.8 1.17329
\(950\) 0 0
\(951\) 50831.1 1.73324
\(952\) 1022.85 0.0348221
\(953\) −42384.6 −1.44068 −0.720342 0.693619i \(-0.756015\pi\)
−0.720342 + 0.693619i \(0.756015\pi\)
\(954\) 23.0881 0.000783548 0
\(955\) 0 0
\(956\) 5846.20 0.197782
\(957\) −12518.6 −0.422851
\(958\) −27895.3 −0.940769
\(959\) 13250.7 0.446182
\(960\) 0 0
\(961\) 12412.3 0.416647
\(962\) 37755.9 1.26539
\(963\) 3520.92 0.117820
\(964\) 42647.2 1.42487
\(965\) 0 0
\(966\) 5969.16 0.198814
\(967\) −15771.6 −0.524489 −0.262245 0.965001i \(-0.584463\pi\)
−0.262245 + 0.965001i \(0.584463\pi\)
\(968\) −2031.26 −0.0674454
\(969\) −75769.9 −2.51195
\(970\) 0 0
\(971\) 36370.5 1.20204 0.601022 0.799232i \(-0.294760\pi\)
0.601022 + 0.799232i \(0.294760\pi\)
\(972\) 32818.6 1.08298
\(973\) 12005.2 0.395549
\(974\) −76947.5 −2.53137
\(975\) 0 0
\(976\) 31315.8 1.02704
\(977\) −35122.8 −1.15013 −0.575065 0.818108i \(-0.695023\pi\)
−0.575065 + 0.818108i \(0.695023\pi\)
\(978\) 63871.3 2.08832
\(979\) 931.899 0.0304225
\(980\) 0 0
\(981\) −25404.5 −0.826814
\(982\) 18340.0 0.595979
\(983\) −12798.9 −0.415282 −0.207641 0.978205i \(-0.566579\pi\)
−0.207641 + 0.978205i \(0.566579\pi\)
\(984\) −1271.92 −0.0412068
\(985\) 0 0
\(986\) −105826. −3.41803
\(987\) −19146.5 −0.617466
\(988\) 51545.4 1.65980
\(989\) −1130.03 −0.0363327
\(990\) 0 0
\(991\) −46594.9 −1.49358 −0.746789 0.665061i \(-0.768406\pi\)
−0.746789 + 0.665061i \(0.768406\pi\)
\(992\) −53102.3 −1.69960
\(993\) 11291.1 0.360838
\(994\) 14063.0 0.448743
\(995\) 0 0
\(996\) −10675.7 −0.339630
\(997\) 47534.1 1.50995 0.754975 0.655753i \(-0.227649\pi\)
0.754975 + 0.655753i \(0.227649\pi\)
\(998\) 14656.4 0.464869
\(999\) −14175.2 −0.448932
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.4.a.i.1.5 5
3.2 odd 2 1575.4.a.bq.1.1 5
5.2 odd 4 35.4.b.a.29.9 yes 10
5.3 odd 4 35.4.b.a.29.2 10
5.4 even 2 175.4.a.j.1.1 5
7.6 odd 2 1225.4.a.be.1.5 5
15.2 even 4 315.4.d.c.64.2 10
15.8 even 4 315.4.d.c.64.9 10
15.14 odd 2 1575.4.a.bn.1.5 5
20.3 even 4 560.4.g.f.449.9 10
20.7 even 4 560.4.g.f.449.2 10
35.2 odd 12 245.4.j.e.214.9 20
35.3 even 12 245.4.j.f.79.9 20
35.12 even 12 245.4.j.f.214.9 20
35.13 even 4 245.4.b.d.99.2 10
35.17 even 12 245.4.j.f.79.2 20
35.18 odd 12 245.4.j.e.79.9 20
35.23 odd 12 245.4.j.e.214.2 20
35.27 even 4 245.4.b.d.99.9 10
35.32 odd 12 245.4.j.e.79.2 20
35.33 even 12 245.4.j.f.214.2 20
35.34 odd 2 1225.4.a.bh.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.b.a.29.2 10 5.3 odd 4
35.4.b.a.29.9 yes 10 5.2 odd 4
175.4.a.i.1.5 5 1.1 even 1 trivial
175.4.a.j.1.1 5 5.4 even 2
245.4.b.d.99.2 10 35.13 even 4
245.4.b.d.99.9 10 35.27 even 4
245.4.j.e.79.2 20 35.32 odd 12
245.4.j.e.79.9 20 35.18 odd 12
245.4.j.e.214.2 20 35.23 odd 12
245.4.j.e.214.9 20 35.2 odd 12
245.4.j.f.79.2 20 35.17 even 12
245.4.j.f.79.9 20 35.3 even 12
245.4.j.f.214.2 20 35.33 even 12
245.4.j.f.214.9 20 35.12 even 12
315.4.d.c.64.2 10 15.2 even 4
315.4.d.c.64.9 10 15.8 even 4
560.4.g.f.449.2 10 20.7 even 4
560.4.g.f.449.9 10 20.3 even 4
1225.4.a.be.1.5 5 7.6 odd 2
1225.4.a.bh.1.1 5 35.34 odd 2
1575.4.a.bn.1.5 5 15.14 odd 2
1575.4.a.bq.1.1 5 3.2 odd 2