Properties

Label 175.4.a.i.1.4
Level $175$
Weight $4$
Character 175.1
Self dual yes
Analytic conductor $10.325$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(1,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.3253342510\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 27x^{3} + 7x^{2} + 120x + 60 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.67516\) of defining polynomial
Character \(\chi\) \(=\) 175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.67516 q^{2} +2.49396 q^{3} -5.19383 q^{4} +4.17779 q^{6} -7.00000 q^{7} -22.1018 q^{8} -20.7802 q^{9} -57.5880 q^{11} -12.9532 q^{12} +45.5159 q^{13} -11.7261 q^{14} +4.52655 q^{16} -92.0051 q^{17} -34.8101 q^{18} +125.177 q^{19} -17.4577 q^{21} -96.4692 q^{22} -158.496 q^{23} -55.1211 q^{24} +76.2466 q^{26} -119.162 q^{27} +36.3568 q^{28} -40.1708 q^{29} +49.5590 q^{31} +184.397 q^{32} -143.622 q^{33} -154.123 q^{34} +107.929 q^{36} -231.307 q^{37} +209.692 q^{38} +113.515 q^{39} +169.556 q^{41} -29.2445 q^{42} +147.428 q^{43} +299.102 q^{44} -265.507 q^{46} +67.0327 q^{47} +11.2890 q^{48} +49.0000 q^{49} -229.457 q^{51} -236.402 q^{52} -268.647 q^{53} -199.615 q^{54} +154.713 q^{56} +312.187 q^{57} -67.2926 q^{58} -240.843 q^{59} +90.4579 q^{61} +83.0194 q^{62} +145.461 q^{63} +272.683 q^{64} -240.591 q^{66} +406.498 q^{67} +477.859 q^{68} -395.283 q^{69} +330.782 q^{71} +459.279 q^{72} -546.255 q^{73} -387.477 q^{74} -650.149 q^{76} +403.116 q^{77} +190.156 q^{78} -25.3087 q^{79} +263.879 q^{81} +284.034 q^{82} -376.255 q^{83} +90.6725 q^{84} +246.965 q^{86} -100.184 q^{87} +1272.80 q^{88} +1026.44 q^{89} -318.612 q^{91} +823.203 q^{92} +123.598 q^{93} +112.291 q^{94} +459.879 q^{96} +942.660 q^{97} +82.0829 q^{98} +1196.69 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 4 q^{2} - 10 q^{3} + 18 q^{4} + 6 q^{6} - 35 q^{7} - 42 q^{8} + 23 q^{9} + 42 q^{11} - 136 q^{12} - 34 q^{13} + 28 q^{14} + 74 q^{16} - 238 q^{17} + 2 q^{18} - 36 q^{19} + 70 q^{21} - 358 q^{22} - 152 q^{23}+ \cdots + 2652 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.67516 0.592259 0.296130 0.955148i \(-0.404304\pi\)
0.296130 + 0.955148i \(0.404304\pi\)
\(3\) 2.49396 0.479963 0.239982 0.970777i \(-0.422859\pi\)
0.239982 + 0.970777i \(0.422859\pi\)
\(4\) −5.19383 −0.649229
\(5\) 0 0
\(6\) 4.17779 0.284263
\(7\) −7.00000 −0.377964
\(8\) −22.1018 −0.976771
\(9\) −20.7802 −0.769635
\(10\) 0 0
\(11\) −57.5880 −1.57849 −0.789247 0.614076i \(-0.789529\pi\)
−0.789247 + 0.614076i \(0.789529\pi\)
\(12\) −12.9532 −0.311606
\(13\) 45.5159 0.971066 0.485533 0.874218i \(-0.338626\pi\)
0.485533 + 0.874218i \(0.338626\pi\)
\(14\) −11.7261 −0.223853
\(15\) 0 0
\(16\) 4.52655 0.0707273
\(17\) −92.0051 −1.31262 −0.656309 0.754492i \(-0.727883\pi\)
−0.656309 + 0.754492i \(0.727883\pi\)
\(18\) −34.8101 −0.455824
\(19\) 125.177 1.51145 0.755726 0.654888i \(-0.227284\pi\)
0.755726 + 0.654888i \(0.227284\pi\)
\(20\) 0 0
\(21\) −17.4577 −0.181409
\(22\) −96.4692 −0.934878
\(23\) −158.496 −1.43690 −0.718451 0.695578i \(-0.755149\pi\)
−0.718451 + 0.695578i \(0.755149\pi\)
\(24\) −55.1211 −0.468814
\(25\) 0 0
\(26\) 76.2466 0.575123
\(27\) −119.162 −0.849360
\(28\) 36.3568 0.245386
\(29\) −40.1708 −0.257225 −0.128613 0.991695i \(-0.541052\pi\)
−0.128613 + 0.991695i \(0.541052\pi\)
\(30\) 0 0
\(31\) 49.5590 0.287131 0.143566 0.989641i \(-0.454143\pi\)
0.143566 + 0.989641i \(0.454143\pi\)
\(32\) 184.397 1.01866
\(33\) −143.622 −0.757619
\(34\) −154.123 −0.777410
\(35\) 0 0
\(36\) 107.929 0.499670
\(37\) −231.307 −1.02775 −0.513874 0.857866i \(-0.671790\pi\)
−0.513874 + 0.857866i \(0.671790\pi\)
\(38\) 209.692 0.895171
\(39\) 113.515 0.466076
\(40\) 0 0
\(41\) 169.556 0.645859 0.322929 0.946423i \(-0.395332\pi\)
0.322929 + 0.946423i \(0.395332\pi\)
\(42\) −29.2445 −0.107441
\(43\) 147.428 0.522849 0.261425 0.965224i \(-0.415808\pi\)
0.261425 + 0.965224i \(0.415808\pi\)
\(44\) 299.102 1.02480
\(45\) 0 0
\(46\) −265.507 −0.851018
\(47\) 67.0327 0.208037 0.104018 0.994575i \(-0.466830\pi\)
0.104018 + 0.994575i \(0.466830\pi\)
\(48\) 11.2890 0.0339465
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −229.457 −0.630008
\(52\) −236.402 −0.630444
\(53\) −268.647 −0.696254 −0.348127 0.937447i \(-0.613182\pi\)
−0.348127 + 0.937447i \(0.613182\pi\)
\(54\) −199.615 −0.503041
\(55\) 0 0
\(56\) 154.713 0.369185
\(57\) 312.187 0.725441
\(58\) −67.2926 −0.152344
\(59\) −240.843 −0.531442 −0.265721 0.964050i \(-0.585610\pi\)
−0.265721 + 0.964050i \(0.585610\pi\)
\(60\) 0 0
\(61\) 90.4579 0.189868 0.0949340 0.995484i \(-0.469736\pi\)
0.0949340 + 0.995484i \(0.469736\pi\)
\(62\) 83.0194 0.170056
\(63\) 145.461 0.290895
\(64\) 272.683 0.532583
\(65\) 0 0
\(66\) −240.591 −0.448707
\(67\) 406.498 0.741218 0.370609 0.928789i \(-0.379149\pi\)
0.370609 + 0.928789i \(0.379149\pi\)
\(68\) 477.859 0.852190
\(69\) −395.283 −0.689660
\(70\) 0 0
\(71\) 330.782 0.552910 0.276455 0.961027i \(-0.410840\pi\)
0.276455 + 0.961027i \(0.410840\pi\)
\(72\) 459.279 0.751758
\(73\) −546.255 −0.875812 −0.437906 0.899021i \(-0.644280\pi\)
−0.437906 + 0.899021i \(0.644280\pi\)
\(74\) −387.477 −0.608693
\(75\) 0 0
\(76\) −650.149 −0.981279
\(77\) 403.116 0.596615
\(78\) 190.156 0.276038
\(79\) −25.3087 −0.0360436 −0.0180218 0.999838i \(-0.505737\pi\)
−0.0180218 + 0.999838i \(0.505737\pi\)
\(80\) 0 0
\(81\) 263.879 0.361974
\(82\) 284.034 0.382516
\(83\) −376.255 −0.497582 −0.248791 0.968557i \(-0.580033\pi\)
−0.248791 + 0.968557i \(0.580033\pi\)
\(84\) 90.6725 0.117776
\(85\) 0 0
\(86\) 246.965 0.309662
\(87\) −100.184 −0.123459
\(88\) 1272.80 1.54183
\(89\) 1026.44 1.22250 0.611248 0.791439i \(-0.290668\pi\)
0.611248 + 0.791439i \(0.290668\pi\)
\(90\) 0 0
\(91\) −318.612 −0.367028
\(92\) 823.203 0.932878
\(93\) 123.598 0.137812
\(94\) 112.291 0.123212
\(95\) 0 0
\(96\) 459.879 0.488919
\(97\) 942.660 0.986728 0.493364 0.869823i \(-0.335767\pi\)
0.493364 + 0.869823i \(0.335767\pi\)
\(98\) 82.0829 0.0846085
\(99\) 1196.69 1.21487
\(100\) 0 0
\(101\) −604.617 −0.595659 −0.297830 0.954619i \(-0.596263\pi\)
−0.297830 + 0.954619i \(0.596263\pi\)
\(102\) −384.378 −0.373128
\(103\) 300.967 0.287914 0.143957 0.989584i \(-0.454017\pi\)
0.143957 + 0.989584i \(0.454017\pi\)
\(104\) −1005.98 −0.948509
\(105\) 0 0
\(106\) −450.027 −0.412363
\(107\) −1511.66 −1.36577 −0.682886 0.730525i \(-0.739276\pi\)
−0.682886 + 0.730525i \(0.739276\pi\)
\(108\) 618.907 0.551429
\(109\) −1767.09 −1.55281 −0.776406 0.630233i \(-0.782959\pi\)
−0.776406 + 0.630233i \(0.782959\pi\)
\(110\) 0 0
\(111\) −576.871 −0.493281
\(112\) −31.6858 −0.0267324
\(113\) −1045.27 −0.870182 −0.435091 0.900387i \(-0.643284\pi\)
−0.435091 + 0.900387i \(0.643284\pi\)
\(114\) 522.963 0.429649
\(115\) 0 0
\(116\) 208.640 0.166998
\(117\) −945.828 −0.747366
\(118\) −403.451 −0.314751
\(119\) 644.036 0.496123
\(120\) 0 0
\(121\) 1985.38 1.49164
\(122\) 151.532 0.112451
\(123\) 422.866 0.309988
\(124\) −257.401 −0.186414
\(125\) 0 0
\(126\) 243.671 0.172285
\(127\) −260.727 −0.182171 −0.0910857 0.995843i \(-0.529034\pi\)
−0.0910857 + 0.995843i \(0.529034\pi\)
\(128\) −1018.39 −0.703233
\(129\) 367.679 0.250948
\(130\) 0 0
\(131\) −723.522 −0.482553 −0.241276 0.970456i \(-0.577566\pi\)
−0.241276 + 0.970456i \(0.577566\pi\)
\(132\) 745.950 0.491868
\(133\) −876.240 −0.571275
\(134\) 680.950 0.438993
\(135\) 0 0
\(136\) 2033.48 1.28213
\(137\) −773.693 −0.482490 −0.241245 0.970464i \(-0.577556\pi\)
−0.241245 + 0.970464i \(0.577556\pi\)
\(138\) −662.164 −0.408457
\(139\) −2952.97 −1.80192 −0.900961 0.433899i \(-0.857137\pi\)
−0.900961 + 0.433899i \(0.857137\pi\)
\(140\) 0 0
\(141\) 167.177 0.0998499
\(142\) 554.114 0.327466
\(143\) −2621.17 −1.53282
\(144\) −94.0624 −0.0544343
\(145\) 0 0
\(146\) −915.066 −0.518708
\(147\) 122.204 0.0685662
\(148\) 1201.37 0.667244
\(149\) 2514.00 1.38225 0.691124 0.722736i \(-0.257116\pi\)
0.691124 + 0.722736i \(0.257116\pi\)
\(150\) 0 0
\(151\) 101.052 0.0544605 0.0272302 0.999629i \(-0.491331\pi\)
0.0272302 + 0.999629i \(0.491331\pi\)
\(152\) −2766.64 −1.47634
\(153\) 1911.88 1.01024
\(154\) 675.285 0.353351
\(155\) 0 0
\(156\) −589.578 −0.302590
\(157\) −2338.35 −1.18867 −0.594333 0.804219i \(-0.702584\pi\)
−0.594333 + 0.804219i \(0.702584\pi\)
\(158\) −42.3961 −0.0213472
\(159\) −669.995 −0.334176
\(160\) 0 0
\(161\) 1109.47 0.543098
\(162\) 442.040 0.214383
\(163\) 1325.20 0.636798 0.318399 0.947957i \(-0.396855\pi\)
0.318399 + 0.947957i \(0.396855\pi\)
\(164\) −880.646 −0.419310
\(165\) 0 0
\(166\) −630.288 −0.294698
\(167\) −2086.20 −0.966675 −0.483338 0.875434i \(-0.660576\pi\)
−0.483338 + 0.875434i \(0.660576\pi\)
\(168\) 385.847 0.177195
\(169\) −125.299 −0.0570317
\(170\) 0 0
\(171\) −2601.20 −1.16327
\(172\) −765.715 −0.339449
\(173\) −1918.19 −0.842990 −0.421495 0.906831i \(-0.638495\pi\)
−0.421495 + 0.906831i \(0.638495\pi\)
\(174\) −167.825 −0.0731195
\(175\) 0 0
\(176\) −260.675 −0.111643
\(177\) −600.652 −0.255072
\(178\) 1719.45 0.724035
\(179\) 629.046 0.262665 0.131333 0.991338i \(-0.458074\pi\)
0.131333 + 0.991338i \(0.458074\pi\)
\(180\) 0 0
\(181\) −2800.85 −1.15020 −0.575099 0.818084i \(-0.695036\pi\)
−0.575099 + 0.818084i \(0.695036\pi\)
\(182\) −533.726 −0.217376
\(183\) 225.599 0.0911296
\(184\) 3503.05 1.40352
\(185\) 0 0
\(186\) 207.047 0.0816207
\(187\) 5298.39 2.07196
\(188\) −348.157 −0.135063
\(189\) 834.133 0.321028
\(190\) 0 0
\(191\) 740.255 0.280434 0.140217 0.990121i \(-0.455220\pi\)
0.140217 + 0.990121i \(0.455220\pi\)
\(192\) 680.060 0.255620
\(193\) −4082.57 −1.52264 −0.761321 0.648375i \(-0.775449\pi\)
−0.761321 + 0.648375i \(0.775449\pi\)
\(194\) 1579.11 0.584399
\(195\) 0 0
\(196\) −254.498 −0.0927470
\(197\) −3414.89 −1.23503 −0.617515 0.786559i \(-0.711860\pi\)
−0.617515 + 0.786559i \(0.711860\pi\)
\(198\) 2004.65 0.719515
\(199\) −3392.44 −1.20846 −0.604231 0.796809i \(-0.706520\pi\)
−0.604231 + 0.796809i \(0.706520\pi\)
\(200\) 0 0
\(201\) 1013.79 0.355757
\(202\) −1012.83 −0.352785
\(203\) 281.196 0.0972220
\(204\) 1191.76 0.409020
\(205\) 0 0
\(206\) 504.169 0.170520
\(207\) 3293.58 1.10589
\(208\) 206.030 0.0686809
\(209\) −7208.70 −2.38582
\(210\) 0 0
\(211\) 3398.04 1.10867 0.554337 0.832292i \(-0.312972\pi\)
0.554337 + 0.832292i \(0.312972\pi\)
\(212\) 1395.31 0.452029
\(213\) 824.958 0.265376
\(214\) −2532.28 −0.808892
\(215\) 0 0
\(216\) 2633.69 0.829630
\(217\) −346.913 −0.108525
\(218\) −2960.16 −0.919667
\(219\) −1362.34 −0.420358
\(220\) 0 0
\(221\) −4187.70 −1.27464
\(222\) −966.353 −0.292150
\(223\) −182.611 −0.0548365 −0.0274183 0.999624i \(-0.508729\pi\)
−0.0274183 + 0.999624i \(0.508729\pi\)
\(224\) −1290.78 −0.385017
\(225\) 0 0
\(226\) −1750.99 −0.515373
\(227\) 3152.33 0.921707 0.460854 0.887476i \(-0.347543\pi\)
0.460854 + 0.887476i \(0.347543\pi\)
\(228\) −1621.45 −0.470977
\(229\) 6012.35 1.73497 0.867483 0.497466i \(-0.165736\pi\)
0.867483 + 0.497466i \(0.165736\pi\)
\(230\) 0 0
\(231\) 1005.36 0.286353
\(232\) 887.848 0.251250
\(233\) 940.660 0.264484 0.132242 0.991217i \(-0.457782\pi\)
0.132242 + 0.991217i \(0.457782\pi\)
\(234\) −1584.42 −0.442635
\(235\) 0 0
\(236\) 1250.90 0.345027
\(237\) −63.1188 −0.0172996
\(238\) 1078.86 0.293833
\(239\) 5158.82 1.39622 0.698109 0.715991i \(-0.254025\pi\)
0.698109 + 0.715991i \(0.254025\pi\)
\(240\) 0 0
\(241\) −463.836 −0.123976 −0.0619882 0.998077i \(-0.519744\pi\)
−0.0619882 + 0.998077i \(0.519744\pi\)
\(242\) 3325.83 0.883440
\(243\) 3875.47 1.02309
\(244\) −469.823 −0.123268
\(245\) 0 0
\(246\) 708.370 0.183594
\(247\) 5697.55 1.46772
\(248\) −1095.34 −0.280461
\(249\) −938.365 −0.238821
\(250\) 0 0
\(251\) 2290.25 0.575934 0.287967 0.957640i \(-0.407021\pi\)
0.287967 + 0.957640i \(0.407021\pi\)
\(252\) −755.501 −0.188857
\(253\) 9127.48 2.26814
\(254\) −436.760 −0.107893
\(255\) 0 0
\(256\) −3887.43 −0.949079
\(257\) 802.202 0.194708 0.0973541 0.995250i \(-0.468962\pi\)
0.0973541 + 0.995250i \(0.468962\pi\)
\(258\) 615.922 0.148627
\(259\) 1619.15 0.388452
\(260\) 0 0
\(261\) 834.756 0.197970
\(262\) −1212.02 −0.285796
\(263\) 286.978 0.0672845 0.0336423 0.999434i \(-0.489289\pi\)
0.0336423 + 0.999434i \(0.489289\pi\)
\(264\) 3174.31 0.740020
\(265\) 0 0
\(266\) −1467.84 −0.338343
\(267\) 2559.90 0.586753
\(268\) −2111.28 −0.481221
\(269\) 3561.22 0.807180 0.403590 0.914940i \(-0.367762\pi\)
0.403590 + 0.914940i \(0.367762\pi\)
\(270\) 0 0
\(271\) 1928.81 0.432349 0.216175 0.976355i \(-0.430642\pi\)
0.216175 + 0.976355i \(0.430642\pi\)
\(272\) −416.466 −0.0928380
\(273\) −794.605 −0.176160
\(274\) −1296.06 −0.285759
\(275\) 0 0
\(276\) 2053.04 0.447747
\(277\) −6588.69 −1.42916 −0.714578 0.699556i \(-0.753381\pi\)
−0.714578 + 0.699556i \(0.753381\pi\)
\(278\) −4946.70 −1.06721
\(279\) −1029.84 −0.220986
\(280\) 0 0
\(281\) 815.552 0.173138 0.0865689 0.996246i \(-0.472410\pi\)
0.0865689 + 0.996246i \(0.472410\pi\)
\(282\) 280.049 0.0591371
\(283\) 6513.49 1.36815 0.684076 0.729411i \(-0.260206\pi\)
0.684076 + 0.729411i \(0.260206\pi\)
\(284\) −1718.03 −0.358965
\(285\) 0 0
\(286\) −4390.89 −0.907828
\(287\) −1186.89 −0.244112
\(288\) −3831.80 −0.783997
\(289\) 3551.94 0.722967
\(290\) 0 0
\(291\) 2350.96 0.473593
\(292\) 2837.16 0.568603
\(293\) −435.520 −0.0868373 −0.0434186 0.999057i \(-0.513825\pi\)
−0.0434186 + 0.999057i \(0.513825\pi\)
\(294\) 204.712 0.0406089
\(295\) 0 0
\(296\) 5112.31 1.00387
\(297\) 6862.29 1.34071
\(298\) 4211.36 0.818650
\(299\) −7214.10 −1.39533
\(300\) 0 0
\(301\) −1031.99 −0.197618
\(302\) 169.279 0.0322547
\(303\) −1507.89 −0.285895
\(304\) 566.620 0.106901
\(305\) 0 0
\(306\) 3202.71 0.598323
\(307\) 4915.99 0.913910 0.456955 0.889490i \(-0.348940\pi\)
0.456955 + 0.889490i \(0.348940\pi\)
\(308\) −2093.72 −0.387340
\(309\) 750.601 0.138188
\(310\) 0 0
\(311\) −1831.11 −0.333868 −0.166934 0.985968i \(-0.553387\pi\)
−0.166934 + 0.985968i \(0.553387\pi\)
\(312\) −2508.89 −0.455249
\(313\) 2442.96 0.441163 0.220582 0.975369i \(-0.429204\pi\)
0.220582 + 0.975369i \(0.429204\pi\)
\(314\) −3917.11 −0.703998
\(315\) 0 0
\(316\) 131.449 0.0234006
\(317\) −1666.19 −0.295214 −0.147607 0.989046i \(-0.547157\pi\)
−0.147607 + 0.989046i \(0.547157\pi\)
\(318\) −1122.35 −0.197919
\(319\) 2313.36 0.406029
\(320\) 0 0
\(321\) −3770.02 −0.655521
\(322\) 1858.55 0.321655
\(323\) −11516.9 −1.98396
\(324\) −1370.54 −0.235004
\(325\) 0 0
\(326\) 2219.93 0.377149
\(327\) −4407.05 −0.745292
\(328\) −3747.50 −0.630856
\(329\) −469.229 −0.0786305
\(330\) 0 0
\(331\) −5466.38 −0.907732 −0.453866 0.891070i \(-0.649956\pi\)
−0.453866 + 0.891070i \(0.649956\pi\)
\(332\) 1954.20 0.323045
\(333\) 4806.60 0.790991
\(334\) −3494.72 −0.572522
\(335\) 0 0
\(336\) −79.0233 −0.0128306
\(337\) −10650.5 −1.72157 −0.860784 0.508970i \(-0.830027\pi\)
−0.860784 + 0.508970i \(0.830027\pi\)
\(338\) −209.896 −0.0337776
\(339\) −2606.86 −0.417655
\(340\) 0 0
\(341\) −2854.01 −0.453235
\(342\) −4357.43 −0.688956
\(343\) −343.000 −0.0539949
\(344\) −3258.42 −0.510704
\(345\) 0 0
\(346\) −3213.28 −0.499269
\(347\) −4019.13 −0.621782 −0.310891 0.950446i \(-0.600627\pi\)
−0.310891 + 0.950446i \(0.600627\pi\)
\(348\) 520.341 0.0801529
\(349\) 10544.9 1.61735 0.808674 0.588256i \(-0.200185\pi\)
0.808674 + 0.588256i \(0.200185\pi\)
\(350\) 0 0
\(351\) −5423.76 −0.824784
\(352\) −10619.1 −1.60795
\(353\) −2959.98 −0.446300 −0.223150 0.974784i \(-0.571634\pi\)
−0.223150 + 0.974784i \(0.571634\pi\)
\(354\) −1006.19 −0.151069
\(355\) 0 0
\(356\) −5331.14 −0.793680
\(357\) 1606.20 0.238121
\(358\) 1053.75 0.155566
\(359\) 2170.17 0.319045 0.159523 0.987194i \(-0.449005\pi\)
0.159523 + 0.987194i \(0.449005\pi\)
\(360\) 0 0
\(361\) 8810.30 1.28449
\(362\) −4691.88 −0.681215
\(363\) 4951.46 0.715934
\(364\) 1654.82 0.238285
\(365\) 0 0
\(366\) 377.914 0.0539724
\(367\) 1252.20 0.178105 0.0890523 0.996027i \(-0.471616\pi\)
0.0890523 + 0.996027i \(0.471616\pi\)
\(368\) −717.441 −0.101628
\(369\) −3523.40 −0.497076
\(370\) 0 0
\(371\) 1880.53 0.263159
\(372\) −641.949 −0.0894718
\(373\) −4646.02 −0.644938 −0.322469 0.946580i \(-0.604513\pi\)
−0.322469 + 0.946580i \(0.604513\pi\)
\(374\) 8875.66 1.22714
\(375\) 0 0
\(376\) −1481.54 −0.203204
\(377\) −1828.41 −0.249783
\(378\) 1397.31 0.190132
\(379\) 1434.84 0.194466 0.0972331 0.995262i \(-0.469001\pi\)
0.0972331 + 0.995262i \(0.469001\pi\)
\(380\) 0 0
\(381\) −650.242 −0.0874355
\(382\) 1240.05 0.166090
\(383\) 13216.7 1.76330 0.881649 0.471905i \(-0.156434\pi\)
0.881649 + 0.471905i \(0.156434\pi\)
\(384\) −2539.82 −0.337526
\(385\) 0 0
\(386\) −6838.97 −0.901799
\(387\) −3063.57 −0.402403
\(388\) −4896.02 −0.640612
\(389\) −7755.01 −1.01078 −0.505391 0.862890i \(-0.668652\pi\)
−0.505391 + 0.862890i \(0.668652\pi\)
\(390\) 0 0
\(391\) 14582.5 1.88610
\(392\) −1082.99 −0.139539
\(393\) −1804.44 −0.231607
\(394\) −5720.49 −0.731457
\(395\) 0 0
\(396\) −6215.40 −0.788726
\(397\) 3560.83 0.450158 0.225079 0.974341i \(-0.427736\pi\)
0.225079 + 0.974341i \(0.427736\pi\)
\(398\) −5682.89 −0.715723
\(399\) −2185.31 −0.274191
\(400\) 0 0
\(401\) −5430.61 −0.676288 −0.338144 0.941094i \(-0.609799\pi\)
−0.338144 + 0.941094i \(0.609799\pi\)
\(402\) 1698.26 0.210701
\(403\) 2255.73 0.278823
\(404\) 3140.28 0.386719
\(405\) 0 0
\(406\) 471.048 0.0575806
\(407\) 13320.5 1.62229
\(408\) 5071.42 0.615374
\(409\) −9698.79 −1.17255 −0.586277 0.810111i \(-0.699407\pi\)
−0.586277 + 0.810111i \(0.699407\pi\)
\(410\) 0 0
\(411\) −1929.56 −0.231577
\(412\) −1563.17 −0.186922
\(413\) 1685.90 0.200866
\(414\) 5517.27 0.654974
\(415\) 0 0
\(416\) 8393.01 0.989186
\(417\) −7364.58 −0.864856
\(418\) −12075.7 −1.41302
\(419\) 13830.9 1.61261 0.806307 0.591498i \(-0.201463\pi\)
0.806307 + 0.591498i \(0.201463\pi\)
\(420\) 0 0
\(421\) 16703.0 1.93362 0.966810 0.255498i \(-0.0822393\pi\)
0.966810 + 0.255498i \(0.0822393\pi\)
\(422\) 5692.26 0.656623
\(423\) −1392.95 −0.160112
\(424\) 5937.58 0.680081
\(425\) 0 0
\(426\) 1381.94 0.157172
\(427\) −633.205 −0.0717634
\(428\) 7851.31 0.886699
\(429\) −6537.10 −0.735698
\(430\) 0 0
\(431\) 8174.07 0.913530 0.456765 0.889588i \(-0.349008\pi\)
0.456765 + 0.889588i \(0.349008\pi\)
\(432\) −539.392 −0.0600729
\(433\) −14222.8 −1.57853 −0.789267 0.614051i \(-0.789539\pi\)
−0.789267 + 0.614051i \(0.789539\pi\)
\(434\) −581.136 −0.0642752
\(435\) 0 0
\(436\) 9177.96 1.00813
\(437\) −19840.1 −2.17181
\(438\) −2282.14 −0.248961
\(439\) 5537.38 0.602016 0.301008 0.953622i \(-0.402677\pi\)
0.301008 + 0.953622i \(0.402677\pi\)
\(440\) 0 0
\(441\) −1018.23 −0.109948
\(442\) −7015.07 −0.754916
\(443\) −3974.09 −0.426218 −0.213109 0.977028i \(-0.568359\pi\)
−0.213109 + 0.977028i \(0.568359\pi\)
\(444\) 2996.17 0.320252
\(445\) 0 0
\(446\) −305.903 −0.0324774
\(447\) 6269.82 0.663428
\(448\) −1908.78 −0.201298
\(449\) −15243.1 −1.60216 −0.801078 0.598559i \(-0.795740\pi\)
−0.801078 + 0.598559i \(0.795740\pi\)
\(450\) 0 0
\(451\) −9764.40 −1.01948
\(452\) 5428.95 0.564947
\(453\) 252.021 0.0261390
\(454\) 5280.67 0.545890
\(455\) 0 0
\(456\) −6899.89 −0.708590
\(457\) 10768.9 1.10229 0.551145 0.834410i \(-0.314191\pi\)
0.551145 + 0.834410i \(0.314191\pi\)
\(458\) 10071.7 1.02755
\(459\) 10963.5 1.11489
\(460\) 0 0
\(461\) −332.605 −0.0336029 −0.0168015 0.999859i \(-0.505348\pi\)
−0.0168015 + 0.999859i \(0.505348\pi\)
\(462\) 1684.13 0.169595
\(463\) 8205.35 0.823618 0.411809 0.911270i \(-0.364897\pi\)
0.411809 + 0.911270i \(0.364897\pi\)
\(464\) −181.835 −0.0181929
\(465\) 0 0
\(466\) 1575.76 0.156643
\(467\) 167.628 0.0166100 0.00830501 0.999966i \(-0.497356\pi\)
0.00830501 + 0.999966i \(0.497356\pi\)
\(468\) 4912.47 0.485212
\(469\) −2845.49 −0.280154
\(470\) 0 0
\(471\) −5831.75 −0.570515
\(472\) 5323.06 0.519097
\(473\) −8490.07 −0.825315
\(474\) −105.734 −0.0102459
\(475\) 0 0
\(476\) −3345.01 −0.322098
\(477\) 5582.52 0.535862
\(478\) 8641.86 0.826924
\(479\) 6628.58 0.632292 0.316146 0.948711i \(-0.397611\pi\)
0.316146 + 0.948711i \(0.397611\pi\)
\(480\) 0 0
\(481\) −10528.2 −0.998010
\(482\) −777.001 −0.0734262
\(483\) 2766.98 0.260667
\(484\) −10311.7 −0.968419
\(485\) 0 0
\(486\) 6492.05 0.605937
\(487\) 20641.6 1.92065 0.960327 0.278875i \(-0.0899614\pi\)
0.960327 + 0.278875i \(0.0899614\pi\)
\(488\) −1999.28 −0.185458
\(489\) 3305.01 0.305640
\(490\) 0 0
\(491\) −16710.8 −1.53594 −0.767972 0.640484i \(-0.778734\pi\)
−0.767972 + 0.640484i \(0.778734\pi\)
\(492\) −2196.30 −0.201253
\(493\) 3695.92 0.337639
\(494\) 9544.32 0.869270
\(495\) 0 0
\(496\) 224.331 0.0203080
\(497\) −2315.47 −0.208980
\(498\) −1571.91 −0.141444
\(499\) −13728.7 −1.23162 −0.615812 0.787893i \(-0.711172\pi\)
−0.615812 + 0.787893i \(0.711172\pi\)
\(500\) 0 0
\(501\) −5202.90 −0.463969
\(502\) 3836.54 0.341102
\(503\) 19523.7 1.73065 0.865326 0.501209i \(-0.167111\pi\)
0.865326 + 0.501209i \(0.167111\pi\)
\(504\) −3214.95 −0.284138
\(505\) 0 0
\(506\) 15290.0 1.34333
\(507\) −312.490 −0.0273731
\(508\) 1354.17 0.118271
\(509\) −8688.17 −0.756574 −0.378287 0.925688i \(-0.623487\pi\)
−0.378287 + 0.925688i \(0.623487\pi\)
\(510\) 0 0
\(511\) 3823.78 0.331026
\(512\) 1635.04 0.141131
\(513\) −14916.3 −1.28377
\(514\) 1343.82 0.115318
\(515\) 0 0
\(516\) −1909.66 −0.162923
\(517\) −3860.28 −0.328385
\(518\) 2712.34 0.230064
\(519\) −4783.89 −0.404604
\(520\) 0 0
\(521\) 6771.36 0.569402 0.284701 0.958616i \(-0.408106\pi\)
0.284701 + 0.958616i \(0.408106\pi\)
\(522\) 1398.35 0.117249
\(523\) 1365.89 0.114200 0.0570998 0.998368i \(-0.481815\pi\)
0.0570998 + 0.998368i \(0.481815\pi\)
\(524\) 3757.85 0.313287
\(525\) 0 0
\(526\) 480.735 0.0398499
\(527\) −4559.68 −0.376894
\(528\) −650.113 −0.0535844
\(529\) 12954.0 1.06469
\(530\) 0 0
\(531\) 5004.75 0.409016
\(532\) 4551.04 0.370888
\(533\) 7717.51 0.627171
\(534\) 4288.24 0.347510
\(535\) 0 0
\(536\) −8984.34 −0.724001
\(537\) 1568.82 0.126070
\(538\) 5965.62 0.478060
\(539\) −2821.81 −0.225499
\(540\) 0 0
\(541\) −23250.1 −1.84769 −0.923844 0.382770i \(-0.874970\pi\)
−0.923844 + 0.382770i \(0.874970\pi\)
\(542\) 3231.06 0.256063
\(543\) −6985.22 −0.552052
\(544\) −16965.5 −1.33711
\(545\) 0 0
\(546\) −1331.09 −0.104332
\(547\) 11552.7 0.903033 0.451516 0.892263i \(-0.350883\pi\)
0.451516 + 0.892263i \(0.350883\pi\)
\(548\) 4018.43 0.313246
\(549\) −1879.73 −0.146129
\(550\) 0 0
\(551\) −5028.47 −0.388784
\(552\) 8736.48 0.673640
\(553\) 177.161 0.0136232
\(554\) −11037.1 −0.846430
\(555\) 0 0
\(556\) 15337.2 1.16986
\(557\) 16406.2 1.24803 0.624014 0.781413i \(-0.285501\pi\)
0.624014 + 0.781413i \(0.285501\pi\)
\(558\) −1725.16 −0.130881
\(559\) 6710.31 0.507721
\(560\) 0 0
\(561\) 13214.0 0.994465
\(562\) 1366.18 0.102542
\(563\) −13631.9 −1.02045 −0.510227 0.860040i \(-0.670439\pi\)
−0.510227 + 0.860040i \(0.670439\pi\)
\(564\) −868.289 −0.0648255
\(565\) 0 0
\(566\) 10911.2 0.810300
\(567\) −1847.15 −0.136813
\(568\) −7310.88 −0.540067
\(569\) −3086.83 −0.227428 −0.113714 0.993514i \(-0.536275\pi\)
−0.113714 + 0.993514i \(0.536275\pi\)
\(570\) 0 0
\(571\) −3258.06 −0.238784 −0.119392 0.992847i \(-0.538095\pi\)
−0.119392 + 0.992847i \(0.538095\pi\)
\(572\) 13613.9 0.995152
\(573\) 1846.17 0.134598
\(574\) −1988.24 −0.144577
\(575\) 0 0
\(576\) −5666.39 −0.409895
\(577\) −23758.4 −1.71417 −0.857083 0.515178i \(-0.827726\pi\)
−0.857083 + 0.515178i \(0.827726\pi\)
\(578\) 5950.07 0.428184
\(579\) −10181.8 −0.730812
\(580\) 0 0
\(581\) 2633.78 0.188068
\(582\) 3938.23 0.280490
\(583\) 15470.8 1.09903
\(584\) 12073.2 0.855468
\(585\) 0 0
\(586\) −729.566 −0.0514302
\(587\) −596.893 −0.0419701 −0.0209850 0.999780i \(-0.506680\pi\)
−0.0209850 + 0.999780i \(0.506680\pi\)
\(588\) −634.708 −0.0445151
\(589\) 6203.66 0.433985
\(590\) 0 0
\(591\) −8516.60 −0.592768
\(592\) −1047.02 −0.0726898
\(593\) −19496.3 −1.35012 −0.675058 0.737765i \(-0.735881\pi\)
−0.675058 + 0.737765i \(0.735881\pi\)
\(594\) 11495.5 0.794047
\(595\) 0 0
\(596\) −13057.3 −0.897396
\(597\) −8460.62 −0.580017
\(598\) −12084.8 −0.826395
\(599\) 3797.02 0.259001 0.129501 0.991579i \(-0.458663\pi\)
0.129501 + 0.991579i \(0.458663\pi\)
\(600\) 0 0
\(601\) 5789.33 0.392931 0.196466 0.980511i \(-0.437054\pi\)
0.196466 + 0.980511i \(0.437054\pi\)
\(602\) −1728.76 −0.117041
\(603\) −8447.09 −0.570468
\(604\) −524.850 −0.0353573
\(605\) 0 0
\(606\) −2525.96 −0.169324
\(607\) −18536.4 −1.23949 −0.619745 0.784803i \(-0.712764\pi\)
−0.619745 + 0.784803i \(0.712764\pi\)
\(608\) 23082.3 1.53966
\(609\) 701.291 0.0466630
\(610\) 0 0
\(611\) 3051.06 0.202017
\(612\) −9929.98 −0.655876
\(613\) −2163.47 −0.142548 −0.0712738 0.997457i \(-0.522706\pi\)
−0.0712738 + 0.997457i \(0.522706\pi\)
\(614\) 8235.08 0.541272
\(615\) 0 0
\(616\) −8909.59 −0.582756
\(617\) −22964.9 −1.49843 −0.749215 0.662327i \(-0.769569\pi\)
−0.749215 + 0.662327i \(0.769569\pi\)
\(618\) 1257.38 0.0818433
\(619\) −1386.67 −0.0900401 −0.0450200 0.998986i \(-0.514335\pi\)
−0.0450200 + 0.998986i \(0.514335\pi\)
\(620\) 0 0
\(621\) 18886.7 1.22045
\(622\) −3067.41 −0.197736
\(623\) −7185.06 −0.462060
\(624\) 513.831 0.0329643
\(625\) 0 0
\(626\) 4092.35 0.261283
\(627\) −17978.2 −1.14510
\(628\) 12145.0 0.771716
\(629\) 21281.4 1.34904
\(630\) 0 0
\(631\) 5969.39 0.376605 0.188303 0.982111i \(-0.439701\pi\)
0.188303 + 0.982111i \(0.439701\pi\)
\(632\) 559.367 0.0352064
\(633\) 8474.57 0.532123
\(634\) −2791.14 −0.174843
\(635\) 0 0
\(636\) 3479.84 0.216957
\(637\) 2230.28 0.138724
\(638\) 3875.25 0.240474
\(639\) −6873.70 −0.425539
\(640\) 0 0
\(641\) 30367.1 1.87118 0.935592 0.353084i \(-0.114867\pi\)
0.935592 + 0.353084i \(0.114867\pi\)
\(642\) −6315.40 −0.388238
\(643\) −28592.2 −1.75360 −0.876802 0.480851i \(-0.840328\pi\)
−0.876802 + 0.480851i \(0.840328\pi\)
\(644\) −5762.42 −0.352595
\(645\) 0 0
\(646\) −19292.7 −1.17502
\(647\) 14507.9 0.881555 0.440778 0.897616i \(-0.354703\pi\)
0.440778 + 0.897616i \(0.354703\pi\)
\(648\) −5832.21 −0.353566
\(649\) 13869.7 0.838877
\(650\) 0 0
\(651\) −865.188 −0.0520882
\(652\) −6882.89 −0.413428
\(653\) −6999.85 −0.419488 −0.209744 0.977756i \(-0.567263\pi\)
−0.209744 + 0.977756i \(0.567263\pi\)
\(654\) −7382.53 −0.441406
\(655\) 0 0
\(656\) 767.504 0.0456799
\(657\) 11351.3 0.674056
\(658\) −786.035 −0.0465696
\(659\) 7308.92 0.432041 0.216020 0.976389i \(-0.430692\pi\)
0.216020 + 0.976389i \(0.430692\pi\)
\(660\) 0 0
\(661\) −30097.2 −1.77102 −0.885512 0.464617i \(-0.846192\pi\)
−0.885512 + 0.464617i \(0.846192\pi\)
\(662\) −9157.07 −0.537613
\(663\) −10444.0 −0.611779
\(664\) 8315.91 0.486024
\(665\) 0 0
\(666\) 8051.83 0.468472
\(667\) 6366.92 0.369608
\(668\) 10835.4 0.627594
\(669\) −455.425 −0.0263195
\(670\) 0 0
\(671\) −5209.29 −0.299706
\(672\) −3219.16 −0.184794
\(673\) 5400.26 0.309309 0.154654 0.987969i \(-0.450574\pi\)
0.154654 + 0.987969i \(0.450574\pi\)
\(674\) −17841.3 −1.01962
\(675\) 0 0
\(676\) 650.781 0.0370267
\(677\) −6431.09 −0.365091 −0.182546 0.983197i \(-0.558434\pi\)
−0.182546 + 0.983197i \(0.558434\pi\)
\(678\) −4366.91 −0.247360
\(679\) −6598.62 −0.372948
\(680\) 0 0
\(681\) 7861.79 0.442385
\(682\) −4780.92 −0.268433
\(683\) 20865.8 1.16897 0.584486 0.811404i \(-0.301296\pi\)
0.584486 + 0.811404i \(0.301296\pi\)
\(684\) 13510.2 0.755227
\(685\) 0 0
\(686\) −574.581 −0.0319790
\(687\) 14994.6 0.832720
\(688\) 667.339 0.0369797
\(689\) −12227.7 −0.676109
\(690\) 0 0
\(691\) 18450.3 1.01575 0.507873 0.861432i \(-0.330432\pi\)
0.507873 + 0.861432i \(0.330432\pi\)
\(692\) 9962.76 0.547294
\(693\) −8376.81 −0.459176
\(694\) −6732.70 −0.368256
\(695\) 0 0
\(696\) 2214.26 0.120591
\(697\) −15600.0 −0.847766
\(698\) 17664.4 0.957890
\(699\) 2345.97 0.126942
\(700\) 0 0
\(701\) 12639.3 0.680996 0.340498 0.940245i \(-0.389404\pi\)
0.340498 + 0.940245i \(0.389404\pi\)
\(702\) −9085.69 −0.488486
\(703\) −28954.4 −1.55339
\(704\) −15703.3 −0.840680
\(705\) 0 0
\(706\) −4958.45 −0.264325
\(707\) 4232.32 0.225138
\(708\) 3119.69 0.165600
\(709\) −23126.8 −1.22503 −0.612514 0.790460i \(-0.709842\pi\)
−0.612514 + 0.790460i \(0.709842\pi\)
\(710\) 0 0
\(711\) 525.918 0.0277404
\(712\) −22686.1 −1.19410
\(713\) −7854.92 −0.412579
\(714\) 2690.65 0.141029
\(715\) 0 0
\(716\) −3267.16 −0.170530
\(717\) 12865.9 0.670134
\(718\) 3635.39 0.188957
\(719\) −24093.1 −1.24968 −0.624841 0.780752i \(-0.714836\pi\)
−0.624841 + 0.780752i \(0.714836\pi\)
\(720\) 0 0
\(721\) −2106.77 −0.108821
\(722\) 14758.7 0.760750
\(723\) −1156.79 −0.0595041
\(724\) 14547.2 0.746741
\(725\) 0 0
\(726\) 8294.49 0.424019
\(727\) −35983.4 −1.83570 −0.917849 0.396931i \(-0.870075\pi\)
−0.917849 + 0.396931i \(0.870075\pi\)
\(728\) 7041.89 0.358503
\(729\) 2540.55 0.129073
\(730\) 0 0
\(731\) −13564.1 −0.686302
\(732\) −1171.72 −0.0591640
\(733\) 1451.50 0.0731413 0.0365706 0.999331i \(-0.488357\pi\)
0.0365706 + 0.999331i \(0.488357\pi\)
\(734\) 2097.64 0.105484
\(735\) 0 0
\(736\) −29226.3 −1.46371
\(737\) −23409.4 −1.17001
\(738\) −5902.27 −0.294398
\(739\) −5891.67 −0.293273 −0.146636 0.989190i \(-0.546845\pi\)
−0.146636 + 0.989190i \(0.546845\pi\)
\(740\) 0 0
\(741\) 14209.5 0.704451
\(742\) 3150.19 0.155859
\(743\) −7438.65 −0.367292 −0.183646 0.982992i \(-0.558790\pi\)
−0.183646 + 0.982992i \(0.558790\pi\)
\(744\) −2731.75 −0.134611
\(745\) 0 0
\(746\) −7782.84 −0.381970
\(747\) 7818.64 0.382957
\(748\) −27518.9 −1.34518
\(749\) 10581.6 0.516214
\(750\) 0 0
\(751\) 20272.4 0.985018 0.492509 0.870307i \(-0.336080\pi\)
0.492509 + 0.870307i \(0.336080\pi\)
\(752\) 303.427 0.0147139
\(753\) 5711.80 0.276427
\(754\) −3062.89 −0.147936
\(755\) 0 0
\(756\) −4332.35 −0.208421
\(757\) 10193.8 0.489432 0.244716 0.969595i \(-0.421305\pi\)
0.244716 + 0.969595i \(0.421305\pi\)
\(758\) 2403.59 0.115174
\(759\) 22763.6 1.08862
\(760\) 0 0
\(761\) −41117.6 −1.95862 −0.979311 0.202362i \(-0.935138\pi\)
−0.979311 + 0.202362i \(0.935138\pi\)
\(762\) −1089.26 −0.0517845
\(763\) 12369.6 0.586908
\(764\) −3844.76 −0.182066
\(765\) 0 0
\(766\) 22140.2 1.04433
\(767\) −10962.2 −0.516065
\(768\) −9695.10 −0.455523
\(769\) 11486.6 0.538642 0.269321 0.963050i \(-0.413201\pi\)
0.269321 + 0.963050i \(0.413201\pi\)
\(770\) 0 0
\(771\) 2000.66 0.0934527
\(772\) 21204.2 0.988544
\(773\) 21799.2 1.01431 0.507156 0.861854i \(-0.330697\pi\)
0.507156 + 0.861854i \(0.330697\pi\)
\(774\) −5131.98 −0.238327
\(775\) 0 0
\(776\) −20834.5 −0.963807
\(777\) 4038.10 0.186443
\(778\) −12990.9 −0.598645
\(779\) 21224.5 0.976185
\(780\) 0 0
\(781\) −19049.1 −0.872765
\(782\) 24428.0 1.11706
\(783\) 4786.83 0.218477
\(784\) 221.801 0.0101039
\(785\) 0 0
\(786\) −3022.72 −0.137172
\(787\) 24080.3 1.09068 0.545342 0.838214i \(-0.316400\pi\)
0.545342 + 0.838214i \(0.316400\pi\)
\(788\) 17736.4 0.801817
\(789\) 715.712 0.0322941
\(790\) 0 0
\(791\) 7316.87 0.328898
\(792\) −26449.0 −1.18665
\(793\) 4117.28 0.184374
\(794\) 5964.96 0.266610
\(795\) 0 0
\(796\) 17619.8 0.784569
\(797\) 17194.3 0.764184 0.382092 0.924124i \(-0.375204\pi\)
0.382092 + 0.924124i \(0.375204\pi\)
\(798\) −3660.74 −0.162392
\(799\) −6167.35 −0.273073
\(800\) 0 0
\(801\) −21329.5 −0.940876
\(802\) −9097.15 −0.400538
\(803\) 31457.7 1.38246
\(804\) −5265.46 −0.230968
\(805\) 0 0
\(806\) 3778.71 0.165136
\(807\) 8881.55 0.387417
\(808\) 13363.1 0.581823
\(809\) 33349.1 1.44931 0.724656 0.689111i \(-0.241999\pi\)
0.724656 + 0.689111i \(0.241999\pi\)
\(810\) 0 0
\(811\) 4577.87 0.198213 0.0991066 0.995077i \(-0.468402\pi\)
0.0991066 + 0.995077i \(0.468402\pi\)
\(812\) −1460.48 −0.0631194
\(813\) 4810.37 0.207512
\(814\) 22314.0 0.960819
\(815\) 0 0
\(816\) −1038.65 −0.0445588
\(817\) 18454.6 0.790262
\(818\) −16247.0 −0.694455
\(819\) 6620.80 0.282478
\(820\) 0 0
\(821\) −5832.52 −0.247937 −0.123969 0.992286i \(-0.539562\pi\)
−0.123969 + 0.992286i \(0.539562\pi\)
\(822\) −3232.33 −0.137154
\(823\) −37974.3 −1.60838 −0.804192 0.594369i \(-0.797402\pi\)
−0.804192 + 0.594369i \(0.797402\pi\)
\(824\) −6651.92 −0.281226
\(825\) 0 0
\(826\) 2824.15 0.118965
\(827\) −15796.2 −0.664193 −0.332096 0.943245i \(-0.607756\pi\)
−0.332096 + 0.943245i \(0.607756\pi\)
\(828\) −17106.3 −0.717976
\(829\) −12714.1 −0.532666 −0.266333 0.963881i \(-0.585812\pi\)
−0.266333 + 0.963881i \(0.585812\pi\)
\(830\) 0 0
\(831\) −16431.9 −0.685942
\(832\) 12411.4 0.517173
\(833\) −4508.25 −0.187517
\(834\) −12336.9 −0.512219
\(835\) 0 0
\(836\) 37440.8 1.54894
\(837\) −5905.55 −0.243878
\(838\) 23169.0 0.955085
\(839\) −42924.2 −1.76628 −0.883140 0.469109i \(-0.844575\pi\)
−0.883140 + 0.469109i \(0.844575\pi\)
\(840\) 0 0
\(841\) −22775.3 −0.933835
\(842\) 27980.2 1.14520
\(843\) 2033.95 0.0830998
\(844\) −17648.8 −0.719784
\(845\) 0 0
\(846\) −2333.42 −0.0948281
\(847\) −13897.6 −0.563788
\(848\) −1216.04 −0.0492442
\(849\) 16244.4 0.656662
\(850\) 0 0
\(851\) 36661.3 1.47677
\(852\) −4284.69 −0.172290
\(853\) 36172.5 1.45196 0.725980 0.687716i \(-0.241387\pi\)
0.725980 + 0.687716i \(0.241387\pi\)
\(854\) −1060.72 −0.0425025
\(855\) 0 0
\(856\) 33410.4 1.33405
\(857\) 32039.9 1.27709 0.638544 0.769586i \(-0.279537\pi\)
0.638544 + 0.769586i \(0.279537\pi\)
\(858\) −10950.7 −0.435724
\(859\) −6798.07 −0.270020 −0.135010 0.990844i \(-0.543107\pi\)
−0.135010 + 0.990844i \(0.543107\pi\)
\(860\) 0 0
\(861\) −2960.06 −0.117165
\(862\) 13692.9 0.541046
\(863\) 30179.3 1.19040 0.595200 0.803577i \(-0.297073\pi\)
0.595200 + 0.803577i \(0.297073\pi\)
\(864\) −21973.1 −0.865209
\(865\) 0 0
\(866\) −23825.5 −0.934901
\(867\) 8858.39 0.346997
\(868\) 1801.81 0.0704578
\(869\) 1457.47 0.0568946
\(870\) 0 0
\(871\) 18502.1 0.719772
\(872\) 39055.9 1.51674
\(873\) −19588.6 −0.759421
\(874\) −33235.4 −1.28627
\(875\) 0 0
\(876\) 7075.76 0.272908
\(877\) 1700.51 0.0654758 0.0327379 0.999464i \(-0.489577\pi\)
0.0327379 + 0.999464i \(0.489577\pi\)
\(878\) 9276.02 0.356549
\(879\) −1086.17 −0.0416787
\(880\) 0 0
\(881\) 1678.46 0.0641869 0.0320935 0.999485i \(-0.489783\pi\)
0.0320935 + 0.999485i \(0.489783\pi\)
\(882\) −1705.70 −0.0651177
\(883\) −10285.8 −0.392009 −0.196005 0.980603i \(-0.562797\pi\)
−0.196005 + 0.980603i \(0.562797\pi\)
\(884\) 21750.2 0.827532
\(885\) 0 0
\(886\) −6657.24 −0.252432
\(887\) 12167.5 0.460593 0.230296 0.973121i \(-0.426030\pi\)
0.230296 + 0.973121i \(0.426030\pi\)
\(888\) 12749.9 0.481823
\(889\) 1825.09 0.0688543
\(890\) 0 0
\(891\) −15196.3 −0.571374
\(892\) 948.452 0.0356015
\(893\) 8390.96 0.314438
\(894\) 10503.0 0.392922
\(895\) 0 0
\(896\) 7128.73 0.265797
\(897\) −17991.7 −0.669705
\(898\) −25534.7 −0.948892
\(899\) −1990.83 −0.0738574
\(900\) 0 0
\(901\) 24716.9 0.913916
\(902\) −16356.9 −0.603799
\(903\) −2573.75 −0.0948496
\(904\) 23102.3 0.849968
\(905\) 0 0
\(906\) 422.176 0.0154811
\(907\) 50766.0 1.85850 0.929250 0.369452i \(-0.120455\pi\)
0.929250 + 0.369452i \(0.120455\pi\)
\(908\) −16372.7 −0.598399
\(909\) 12564.0 0.458441
\(910\) 0 0
\(911\) 18451.1 0.671033 0.335517 0.942034i \(-0.391089\pi\)
0.335517 + 0.942034i \(0.391089\pi\)
\(912\) 1413.13 0.0513085
\(913\) 21667.8 0.785431
\(914\) 18039.6 0.652841
\(915\) 0 0
\(916\) −31227.1 −1.12639
\(917\) 5064.65 0.182388
\(918\) 18365.6 0.660301
\(919\) 393.861 0.0141374 0.00706870 0.999975i \(-0.497750\pi\)
0.00706870 + 0.999975i \(0.497750\pi\)
\(920\) 0 0
\(921\) 12260.3 0.438643
\(922\) −557.167 −0.0199016
\(923\) 15055.9 0.536912
\(924\) −5221.65 −0.185909
\(925\) 0 0
\(926\) 13745.3 0.487795
\(927\) −6254.15 −0.221589
\(928\) −7407.39 −0.262025
\(929\) 27452.3 0.969517 0.484759 0.874648i \(-0.338907\pi\)
0.484759 + 0.874648i \(0.338907\pi\)
\(930\) 0 0
\(931\) 6133.68 0.215922
\(932\) −4885.63 −0.171710
\(933\) −4566.72 −0.160244
\(934\) 280.803 0.00983744
\(935\) 0 0
\(936\) 20904.5 0.730006
\(937\) −21608.3 −0.753375 −0.376688 0.926340i \(-0.622937\pi\)
−0.376688 + 0.926340i \(0.622937\pi\)
\(938\) −4766.65 −0.165924
\(939\) 6092.64 0.211742
\(940\) 0 0
\(941\) −16708.5 −0.578832 −0.289416 0.957203i \(-0.593461\pi\)
−0.289416 + 0.957203i \(0.593461\pi\)
\(942\) −9769.12 −0.337893
\(943\) −26874.0 −0.928036
\(944\) −1090.19 −0.0375874
\(945\) 0 0
\(946\) −14222.2 −0.488800
\(947\) −13972.8 −0.479466 −0.239733 0.970839i \(-0.577060\pi\)
−0.239733 + 0.970839i \(0.577060\pi\)
\(948\) 327.828 0.0112314
\(949\) −24863.3 −0.850471
\(950\) 0 0
\(951\) −4155.42 −0.141692
\(952\) −14234.4 −0.484599
\(953\) 11155.9 0.379197 0.189598 0.981862i \(-0.439281\pi\)
0.189598 + 0.981862i \(0.439281\pi\)
\(954\) 9351.63 0.317369
\(955\) 0 0
\(956\) −26794.0 −0.906466
\(957\) 5769.42 0.194879
\(958\) 11104.0 0.374481
\(959\) 5415.85 0.182364
\(960\) 0 0
\(961\) −27334.9 −0.917556
\(962\) −17636.4 −0.591081
\(963\) 31412.5 1.05115
\(964\) 2409.09 0.0804891
\(965\) 0 0
\(966\) 4635.15 0.154382
\(967\) 1212.55 0.0403238 0.0201619 0.999797i \(-0.493582\pi\)
0.0201619 + 0.999797i \(0.493582\pi\)
\(968\) −43880.4 −1.45699
\(969\) −28722.8 −0.952227
\(970\) 0 0
\(971\) −48832.2 −1.61390 −0.806952 0.590617i \(-0.798885\pi\)
−0.806952 + 0.590617i \(0.798885\pi\)
\(972\) −20128.6 −0.664222
\(973\) 20670.8 0.681063
\(974\) 34578.0 1.13753
\(975\) 0 0
\(976\) 409.462 0.0134289
\(977\) −5939.19 −0.194485 −0.0972424 0.995261i \(-0.531002\pi\)
−0.0972424 + 0.995261i \(0.531002\pi\)
\(978\) 5536.43 0.181018
\(979\) −59110.5 −1.92970
\(980\) 0 0
\(981\) 36720.4 1.19510
\(982\) −27993.3 −0.909677
\(983\) 21863.5 0.709398 0.354699 0.934980i \(-0.384583\pi\)
0.354699 + 0.934980i \(0.384583\pi\)
\(984\) −9346.11 −0.302788
\(985\) 0 0
\(986\) 6191.26 0.199970
\(987\) −1170.24 −0.0377397
\(988\) −29592.1 −0.952886
\(989\) −23366.7 −0.751283
\(990\) 0 0
\(991\) −44618.5 −1.43023 −0.715113 0.699009i \(-0.753625\pi\)
−0.715113 + 0.699009i \(0.753625\pi\)
\(992\) 9138.55 0.292489
\(993\) −13632.9 −0.435678
\(994\) −3878.80 −0.123771
\(995\) 0 0
\(996\) 4873.71 0.155050
\(997\) 37923.9 1.20468 0.602338 0.798241i \(-0.294236\pi\)
0.602338 + 0.798241i \(0.294236\pi\)
\(998\) −22997.8 −0.729441
\(999\) 27563.0 0.872928
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.4.a.i.1.4 5
3.2 odd 2 1575.4.a.bq.1.2 5
5.2 odd 4 35.4.b.a.29.7 yes 10
5.3 odd 4 35.4.b.a.29.4 10
5.4 even 2 175.4.a.j.1.2 5
7.6 odd 2 1225.4.a.be.1.4 5
15.2 even 4 315.4.d.c.64.4 10
15.8 even 4 315.4.d.c.64.7 10
15.14 odd 2 1575.4.a.bn.1.4 5
20.3 even 4 560.4.g.f.449.4 10
20.7 even 4 560.4.g.f.449.7 10
35.2 odd 12 245.4.j.e.214.7 20
35.3 even 12 245.4.j.f.79.7 20
35.12 even 12 245.4.j.f.214.7 20
35.13 even 4 245.4.b.d.99.4 10
35.17 even 12 245.4.j.f.79.4 20
35.18 odd 12 245.4.j.e.79.7 20
35.23 odd 12 245.4.j.e.214.4 20
35.27 even 4 245.4.b.d.99.7 10
35.32 odd 12 245.4.j.e.79.4 20
35.33 even 12 245.4.j.f.214.4 20
35.34 odd 2 1225.4.a.bh.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.b.a.29.4 10 5.3 odd 4
35.4.b.a.29.7 yes 10 5.2 odd 4
175.4.a.i.1.4 5 1.1 even 1 trivial
175.4.a.j.1.2 5 5.4 even 2
245.4.b.d.99.4 10 35.13 even 4
245.4.b.d.99.7 10 35.27 even 4
245.4.j.e.79.4 20 35.32 odd 12
245.4.j.e.79.7 20 35.18 odd 12
245.4.j.e.214.4 20 35.23 odd 12
245.4.j.e.214.7 20 35.2 odd 12
245.4.j.f.79.4 20 35.17 even 12
245.4.j.f.79.7 20 35.3 even 12
245.4.j.f.214.4 20 35.33 even 12
245.4.j.f.214.7 20 35.12 even 12
315.4.d.c.64.4 10 15.2 even 4
315.4.d.c.64.7 10 15.8 even 4
560.4.g.f.449.4 10 20.3 even 4
560.4.g.f.449.7 10 20.7 even 4
1225.4.a.be.1.4 5 7.6 odd 2
1225.4.a.bh.1.2 5 35.34 odd 2
1575.4.a.bn.1.4 5 15.14 odd 2
1575.4.a.bq.1.2 5 3.2 odd 2