Properties

Label 175.4.a.i.1.3
Level $175$
Weight $4$
Character 175.1
Self dual yes
Analytic conductor $10.325$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(1,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.3253342510\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 27x^{3} + 7x^{2} + 120x + 60 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.555276\) of defining polynomial
Character \(\chi\) \(=\) 175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.55528 q^{2} +4.96149 q^{3} -5.58112 q^{4} -7.71648 q^{6} -7.00000 q^{7} +21.1224 q^{8} -2.38365 q^{9} +O(q^{10})\) \(q-1.55528 q^{2} +4.96149 q^{3} -5.58112 q^{4} -7.71648 q^{6} -7.00000 q^{7} +21.1224 q^{8} -2.38365 q^{9} +29.8232 q^{11} -27.6906 q^{12} -90.7316 q^{13} +10.8869 q^{14} +11.7978 q^{16} -29.5740 q^{17} +3.70723 q^{18} -62.3278 q^{19} -34.7304 q^{21} -46.3833 q^{22} -90.6198 q^{23} +104.798 q^{24} +141.113 q^{26} -145.787 q^{27} +39.0678 q^{28} +193.070 q^{29} -152.123 q^{31} -187.328 q^{32} +147.967 q^{33} +45.9957 q^{34} +13.3034 q^{36} -102.453 q^{37} +96.9368 q^{38} -450.164 q^{39} -266.744 q^{41} +54.0154 q^{42} -387.125 q^{43} -166.447 q^{44} +140.939 q^{46} +152.298 q^{47} +58.5346 q^{48} +49.0000 q^{49} -146.731 q^{51} +506.384 q^{52} +81.5982 q^{53} +226.738 q^{54} -147.857 q^{56} -309.238 q^{57} -300.277 q^{58} -235.884 q^{59} +510.453 q^{61} +236.593 q^{62} +16.6855 q^{63} +196.964 q^{64} -230.130 q^{66} +347.374 q^{67} +165.056 q^{68} -449.609 q^{69} +317.014 q^{71} -50.3483 q^{72} +709.901 q^{73} +159.343 q^{74} +347.858 q^{76} -208.762 q^{77} +700.129 q^{78} +1062.95 q^{79} -658.960 q^{81} +414.861 q^{82} -503.810 q^{83} +193.834 q^{84} +602.086 q^{86} +957.914 q^{87} +629.937 q^{88} +482.342 q^{89} +635.121 q^{91} +505.760 q^{92} -754.756 q^{93} -236.866 q^{94} -929.425 q^{96} -481.167 q^{97} -76.2085 q^{98} -71.0879 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 4 q^{2} - 10 q^{3} + 18 q^{4} + 6 q^{6} - 35 q^{7} - 42 q^{8} + 23 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 5 q - 4 q^{2} - 10 q^{3} + 18 q^{4} + 6 q^{6} - 35 q^{7} - 42 q^{8} + 23 q^{9} + 42 q^{11} - 136 q^{12} - 34 q^{13} + 28 q^{14} + 74 q^{16} - 238 q^{17} + 2 q^{18} - 36 q^{19} + 70 q^{21} - 358 q^{22} - 152 q^{23} - 36 q^{24} - 310 q^{26} - 334 q^{27} - 126 q^{28} - 44 q^{29} + 60 q^{31} - 710 q^{32} - 426 q^{33} - 482 q^{34} - 210 q^{36} - 312 q^{37} - 280 q^{38} - 106 q^{39} - 426 q^{41} - 42 q^{42} - 304 q^{43} + 712 q^{44} + 88 q^{46} - 370 q^{47} + 696 q^{48} + 245 q^{49} + 638 q^{51} + 1156 q^{52} - 976 q^{53} + 498 q^{54} + 294 q^{56} + 588 q^{57} + 2722 q^{58} - 432 q^{59} - 442 q^{61} + 956 q^{62} - 161 q^{63} + 1362 q^{64} + 574 q^{66} + 804 q^{67} + 420 q^{68} - 2404 q^{69} + 440 q^{71} + 3150 q^{72} - 564 q^{73} - 1512 q^{74} - 1336 q^{76} - 294 q^{77} + 2742 q^{78} + 1790 q^{79} - 151 q^{81} + 3480 q^{82} - 1656 q^{83} + 952 q^{84} + 1216 q^{86} + 1674 q^{87} + 1092 q^{88} + 746 q^{89} + 238 q^{91} - 572 q^{92} - 676 q^{93} - 826 q^{94} + 2040 q^{96} - 518 q^{97} - 196 q^{98} + 2652 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.55528 −0.549873 −0.274937 0.961462i \(-0.588657\pi\)
−0.274937 + 0.961462i \(0.588657\pi\)
\(3\) 4.96149 0.954839 0.477419 0.878676i \(-0.341572\pi\)
0.477419 + 0.878676i \(0.341572\pi\)
\(4\) −5.58112 −0.697640
\(5\) 0 0
\(6\) −7.71648 −0.525040
\(7\) −7.00000 −0.377964
\(8\) 21.1224 0.933486
\(9\) −2.38365 −0.0882832
\(10\) 0 0
\(11\) 29.8232 0.817457 0.408728 0.912656i \(-0.365972\pi\)
0.408728 + 0.912656i \(0.365972\pi\)
\(12\) −27.6906 −0.666133
\(13\) −90.7316 −1.93572 −0.967862 0.251481i \(-0.919083\pi\)
−0.967862 + 0.251481i \(0.919083\pi\)
\(14\) 10.8869 0.207832
\(15\) 0 0
\(16\) 11.7978 0.184341
\(17\) −29.5740 −0.421927 −0.210963 0.977494i \(-0.567660\pi\)
−0.210963 + 0.977494i \(0.567660\pi\)
\(18\) 3.70723 0.0485446
\(19\) −62.3278 −0.752577 −0.376289 0.926503i \(-0.622800\pi\)
−0.376289 + 0.926503i \(0.622800\pi\)
\(20\) 0 0
\(21\) −34.7304 −0.360895
\(22\) −46.3833 −0.449498
\(23\) −90.6198 −0.821545 −0.410772 0.911738i \(-0.634741\pi\)
−0.410772 + 0.911738i \(0.634741\pi\)
\(24\) 104.798 0.891329
\(25\) 0 0
\(26\) 141.113 1.06440
\(27\) −145.787 −1.03913
\(28\) 39.0678 0.263683
\(29\) 193.070 1.23628 0.618141 0.786067i \(-0.287886\pi\)
0.618141 + 0.786067i \(0.287886\pi\)
\(30\) 0 0
\(31\) −152.123 −0.881357 −0.440679 0.897665i \(-0.645262\pi\)
−0.440679 + 0.897665i \(0.645262\pi\)
\(32\) −187.328 −1.03485
\(33\) 147.967 0.780539
\(34\) 45.9957 0.232006
\(35\) 0 0
\(36\) 13.3034 0.0615899
\(37\) −102.453 −0.455222 −0.227611 0.973752i \(-0.573092\pi\)
−0.227611 + 0.973752i \(0.573092\pi\)
\(38\) 96.9368 0.413822
\(39\) −450.164 −1.84830
\(40\) 0 0
\(41\) −266.744 −1.01606 −0.508030 0.861340i \(-0.669626\pi\)
−0.508030 + 0.861340i \(0.669626\pi\)
\(42\) 54.0154 0.198446
\(43\) −387.125 −1.37293 −0.686465 0.727163i \(-0.740838\pi\)
−0.686465 + 0.727163i \(0.740838\pi\)
\(44\) −166.447 −0.570290
\(45\) 0 0
\(46\) 140.939 0.451745
\(47\) 152.298 0.472660 0.236330 0.971673i \(-0.424055\pi\)
0.236330 + 0.971673i \(0.424055\pi\)
\(48\) 58.5346 0.176016
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −146.731 −0.402872
\(52\) 506.384 1.35044
\(53\) 81.5982 0.211479 0.105739 0.994394i \(-0.466279\pi\)
0.105739 + 0.994394i \(0.466279\pi\)
\(54\) 226.738 0.571392
\(55\) 0 0
\(56\) −147.857 −0.352825
\(57\) −309.238 −0.718590
\(58\) −300.277 −0.679798
\(59\) −235.884 −0.520499 −0.260250 0.965541i \(-0.583805\pi\)
−0.260250 + 0.965541i \(0.583805\pi\)
\(60\) 0 0
\(61\) 510.453 1.07142 0.535712 0.844401i \(-0.320043\pi\)
0.535712 + 0.844401i \(0.320043\pi\)
\(62\) 236.593 0.484635
\(63\) 16.6855 0.0333679
\(64\) 196.964 0.384696
\(65\) 0 0
\(66\) −230.130 −0.429198
\(67\) 347.374 0.633410 0.316705 0.948524i \(-0.397423\pi\)
0.316705 + 0.948524i \(0.397423\pi\)
\(68\) 165.056 0.294353
\(69\) −449.609 −0.784443
\(70\) 0 0
\(71\) 317.014 0.529896 0.264948 0.964263i \(-0.414645\pi\)
0.264948 + 0.964263i \(0.414645\pi\)
\(72\) −50.3483 −0.0824112
\(73\) 709.901 1.13819 0.569093 0.822273i \(-0.307294\pi\)
0.569093 + 0.822273i \(0.307294\pi\)
\(74\) 159.343 0.250315
\(75\) 0 0
\(76\) 347.858 0.525028
\(77\) −208.762 −0.308970
\(78\) 700.129 1.01633
\(79\) 1062.95 1.51382 0.756908 0.653522i \(-0.226709\pi\)
0.756908 + 0.653522i \(0.226709\pi\)
\(80\) 0 0
\(81\) −658.960 −0.903923
\(82\) 414.861 0.558704
\(83\) −503.810 −0.666270 −0.333135 0.942879i \(-0.608106\pi\)
−0.333135 + 0.942879i \(0.608106\pi\)
\(84\) 193.834 0.251775
\(85\) 0 0
\(86\) 602.086 0.754937
\(87\) 957.914 1.18045
\(88\) 629.937 0.763085
\(89\) 482.342 0.574474 0.287237 0.957860i \(-0.407263\pi\)
0.287237 + 0.957860i \(0.407263\pi\)
\(90\) 0 0
\(91\) 635.121 0.731635
\(92\) 505.760 0.573142
\(93\) −754.756 −0.841554
\(94\) −236.866 −0.259903
\(95\) 0 0
\(96\) −929.425 −0.988115
\(97\) −481.167 −0.503661 −0.251831 0.967771i \(-0.581033\pi\)
−0.251831 + 0.967771i \(0.581033\pi\)
\(98\) −76.2085 −0.0785533
\(99\) −71.0879 −0.0721677
\(100\) 0 0
\(101\) 1065.65 1.04986 0.524931 0.851145i \(-0.324091\pi\)
0.524931 + 0.851145i \(0.324091\pi\)
\(102\) 228.207 0.221528
\(103\) 94.8594 0.0907454 0.0453727 0.998970i \(-0.485552\pi\)
0.0453727 + 0.998970i \(0.485552\pi\)
\(104\) −1916.47 −1.80697
\(105\) 0 0
\(106\) −126.908 −0.116286
\(107\) 1288.94 1.16455 0.582274 0.812993i \(-0.302163\pi\)
0.582274 + 0.812993i \(0.302163\pi\)
\(108\) 813.652 0.724942
\(109\) 343.006 0.301413 0.150707 0.988579i \(-0.451845\pi\)
0.150707 + 0.988579i \(0.451845\pi\)
\(110\) 0 0
\(111\) −508.321 −0.434664
\(112\) −82.5846 −0.0696742
\(113\) −1444.58 −1.20261 −0.601306 0.799019i \(-0.705353\pi\)
−0.601306 + 0.799019i \(0.705353\pi\)
\(114\) 480.951 0.395133
\(115\) 0 0
\(116\) −1077.55 −0.862479
\(117\) 216.272 0.170892
\(118\) 366.864 0.286208
\(119\) 207.018 0.159473
\(120\) 0 0
\(121\) −441.578 −0.331764
\(122\) −793.895 −0.589147
\(123\) −1323.45 −0.970173
\(124\) 849.016 0.614870
\(125\) 0 0
\(126\) −25.9506 −0.0183481
\(127\) −1786.52 −1.24825 −0.624125 0.781324i \(-0.714545\pi\)
−0.624125 + 0.781324i \(0.714545\pi\)
\(128\) 1192.29 0.823317
\(129\) −1920.71 −1.31093
\(130\) 0 0
\(131\) −885.502 −0.590585 −0.295293 0.955407i \(-0.595417\pi\)
−0.295293 + 0.955407i \(0.595417\pi\)
\(132\) −825.823 −0.544535
\(133\) 436.294 0.284447
\(134\) −540.263 −0.348295
\(135\) 0 0
\(136\) −624.674 −0.393863
\(137\) −3019.24 −1.88285 −0.941426 0.337219i \(-0.890514\pi\)
−0.941426 + 0.337219i \(0.890514\pi\)
\(138\) 699.266 0.431344
\(139\) −2725.65 −1.66322 −0.831608 0.555363i \(-0.812579\pi\)
−0.831608 + 0.555363i \(0.812579\pi\)
\(140\) 0 0
\(141\) 755.626 0.451314
\(142\) −493.043 −0.291375
\(143\) −2705.90 −1.58237
\(144\) −28.1218 −0.0162742
\(145\) 0 0
\(146\) −1104.09 −0.625858
\(147\) 243.113 0.136406
\(148\) 571.804 0.317581
\(149\) 2963.88 1.62960 0.814801 0.579741i \(-0.196846\pi\)
0.814801 + 0.579741i \(0.196846\pi\)
\(150\) 0 0
\(151\) 434.482 0.234157 0.117078 0.993123i \(-0.462647\pi\)
0.117078 + 0.993123i \(0.462647\pi\)
\(152\) −1316.51 −0.702520
\(153\) 70.4940 0.0372490
\(154\) 324.683 0.169894
\(155\) 0 0
\(156\) 2512.42 1.28945
\(157\) −496.409 −0.252342 −0.126171 0.992008i \(-0.540269\pi\)
−0.126171 + 0.992008i \(0.540269\pi\)
\(158\) −1653.18 −0.832406
\(159\) 404.848 0.201928
\(160\) 0 0
\(161\) 634.339 0.310515
\(162\) 1024.86 0.497043
\(163\) 2966.73 1.42560 0.712799 0.701368i \(-0.247427\pi\)
0.712799 + 0.701368i \(0.247427\pi\)
\(164\) 1488.73 0.708843
\(165\) 0 0
\(166\) 783.564 0.366364
\(167\) 1295.44 0.600265 0.300132 0.953898i \(-0.402969\pi\)
0.300132 + 0.953898i \(0.402969\pi\)
\(168\) −733.589 −0.336891
\(169\) 6035.23 2.74703
\(170\) 0 0
\(171\) 148.567 0.0664399
\(172\) 2160.59 0.957810
\(173\) −3195.32 −1.40425 −0.702126 0.712052i \(-0.747766\pi\)
−0.702126 + 0.712052i \(0.747766\pi\)
\(174\) −1489.82 −0.649098
\(175\) 0 0
\(176\) 351.848 0.150691
\(177\) −1170.33 −0.496993
\(178\) −750.176 −0.315888
\(179\) −4294.90 −1.79338 −0.896692 0.442655i \(-0.854037\pi\)
−0.896692 + 0.442655i \(0.854037\pi\)
\(180\) 0 0
\(181\) −1017.02 −0.417648 −0.208824 0.977953i \(-0.566964\pi\)
−0.208824 + 0.977953i \(0.566964\pi\)
\(182\) −987.789 −0.402306
\(183\) 2532.61 1.02304
\(184\) −1914.11 −0.766901
\(185\) 0 0
\(186\) 1173.85 0.462748
\(187\) −881.991 −0.344907
\(188\) −849.995 −0.329746
\(189\) 1020.51 0.392756
\(190\) 0 0
\(191\) −1072.62 −0.406347 −0.203174 0.979143i \(-0.565126\pi\)
−0.203174 + 0.979143i \(0.565126\pi\)
\(192\) 977.235 0.367322
\(193\) 1382.74 0.515710 0.257855 0.966184i \(-0.416984\pi\)
0.257855 + 0.966184i \(0.416984\pi\)
\(194\) 748.348 0.276950
\(195\) 0 0
\(196\) −273.475 −0.0996628
\(197\) −933.061 −0.337451 −0.168725 0.985663i \(-0.553965\pi\)
−0.168725 + 0.985663i \(0.553965\pi\)
\(198\) 110.561 0.0396831
\(199\) 126.253 0.0449740 0.0224870 0.999747i \(-0.492842\pi\)
0.0224870 + 0.999747i \(0.492842\pi\)
\(200\) 0 0
\(201\) 1723.49 0.604805
\(202\) −1657.38 −0.577291
\(203\) −1351.49 −0.467271
\(204\) 818.923 0.281059
\(205\) 0 0
\(206\) −147.533 −0.0498985
\(207\) 216.006 0.0725286
\(208\) −1070.43 −0.356833
\(209\) −1858.81 −0.615199
\(210\) 0 0
\(211\) −862.984 −0.281565 −0.140783 0.990041i \(-0.544962\pi\)
−0.140783 + 0.990041i \(0.544962\pi\)
\(212\) −455.409 −0.147536
\(213\) 1572.86 0.505965
\(214\) −2004.66 −0.640353
\(215\) 0 0
\(216\) −3079.36 −0.970018
\(217\) 1064.86 0.333122
\(218\) −533.469 −0.165739
\(219\) 3522.16 1.08678
\(220\) 0 0
\(221\) 2683.30 0.816734
\(222\) 790.579 0.239010
\(223\) 4533.19 1.36128 0.680639 0.732619i \(-0.261702\pi\)
0.680639 + 0.732619i \(0.261702\pi\)
\(224\) 1311.30 0.391137
\(225\) 0 0
\(226\) 2246.73 0.661284
\(227\) −3806.46 −1.11297 −0.556484 0.830858i \(-0.687850\pi\)
−0.556484 + 0.830858i \(0.687850\pi\)
\(228\) 1725.90 0.501317
\(229\) −3073.77 −0.886989 −0.443495 0.896277i \(-0.646261\pi\)
−0.443495 + 0.896277i \(0.646261\pi\)
\(230\) 0 0
\(231\) −1035.77 −0.295016
\(232\) 4078.10 1.15405
\(233\) −1527.66 −0.429530 −0.214765 0.976666i \(-0.568899\pi\)
−0.214765 + 0.976666i \(0.568899\pi\)
\(234\) −336.363 −0.0939689
\(235\) 0 0
\(236\) 1316.49 0.363121
\(237\) 5273.82 1.44545
\(238\) −321.970 −0.0876900
\(239\) −2356.10 −0.637672 −0.318836 0.947810i \(-0.603292\pi\)
−0.318836 + 0.947810i \(0.603292\pi\)
\(240\) 0 0
\(241\) −6297.25 −1.68316 −0.841581 0.540132i \(-0.818374\pi\)
−0.841581 + 0.540132i \(0.818374\pi\)
\(242\) 686.776 0.182428
\(243\) 666.817 0.176034
\(244\) −2848.90 −0.747467
\(245\) 0 0
\(246\) 2058.33 0.533472
\(247\) 5655.10 1.45678
\(248\) −3213.20 −0.822735
\(249\) −2499.65 −0.636180
\(250\) 0 0
\(251\) −3531.12 −0.887978 −0.443989 0.896032i \(-0.646437\pi\)
−0.443989 + 0.896032i \(0.646437\pi\)
\(252\) −93.1239 −0.0232788
\(253\) −2702.57 −0.671578
\(254\) 2778.53 0.686379
\(255\) 0 0
\(256\) −3430.05 −0.837415
\(257\) 2186.27 0.530645 0.265323 0.964160i \(-0.414522\pi\)
0.265323 + 0.964160i \(0.414522\pi\)
\(258\) 2987.24 0.720843
\(259\) 717.173 0.172058
\(260\) 0 0
\(261\) −460.210 −0.109143
\(262\) 1377.20 0.324747
\(263\) 2432.29 0.570271 0.285135 0.958487i \(-0.407961\pi\)
0.285135 + 0.958487i \(0.407961\pi\)
\(264\) 3125.42 0.728623
\(265\) 0 0
\(266\) −678.558 −0.156410
\(267\) 2393.14 0.548530
\(268\) −1938.74 −0.441892
\(269\) −1025.45 −0.232428 −0.116214 0.993224i \(-0.537076\pi\)
−0.116214 + 0.993224i \(0.537076\pi\)
\(270\) 0 0
\(271\) 3859.89 0.865209 0.432604 0.901584i \(-0.357595\pi\)
0.432604 + 0.901584i \(0.357595\pi\)
\(272\) −348.908 −0.0777782
\(273\) 3151.15 0.698594
\(274\) 4695.75 1.03533
\(275\) 0 0
\(276\) 2509.32 0.547258
\(277\) 5352.31 1.16097 0.580485 0.814271i \(-0.302863\pi\)
0.580485 + 0.814271i \(0.302863\pi\)
\(278\) 4239.15 0.914558
\(279\) 362.607 0.0778090
\(280\) 0 0
\(281\) 1405.89 0.298464 0.149232 0.988802i \(-0.452320\pi\)
0.149232 + 0.988802i \(0.452320\pi\)
\(282\) −1175.21 −0.248165
\(283\) 1886.24 0.396203 0.198102 0.980181i \(-0.436522\pi\)
0.198102 + 0.980181i \(0.436522\pi\)
\(284\) −1769.29 −0.369676
\(285\) 0 0
\(286\) 4208.43 0.870104
\(287\) 1867.21 0.384034
\(288\) 446.523 0.0913599
\(289\) −4038.38 −0.821978
\(290\) 0 0
\(291\) −2387.31 −0.480915
\(292\) −3962.04 −0.794044
\(293\) −6265.03 −1.24917 −0.624585 0.780956i \(-0.714732\pi\)
−0.624585 + 0.780956i \(0.714732\pi\)
\(294\) −378.108 −0.0750057
\(295\) 0 0
\(296\) −2164.06 −0.424944
\(297\) −4347.82 −0.849448
\(298\) −4609.65 −0.896074
\(299\) 8222.08 1.59028
\(300\) 0 0
\(301\) 2709.87 0.518919
\(302\) −675.739 −0.128756
\(303\) 5287.21 1.00245
\(304\) −735.331 −0.138731
\(305\) 0 0
\(306\) −109.638 −0.0204822
\(307\) 1665.50 0.309626 0.154813 0.987944i \(-0.450522\pi\)
0.154813 + 0.987944i \(0.450522\pi\)
\(308\) 1165.13 0.215549
\(309\) 470.644 0.0866472
\(310\) 0 0
\(311\) 2493.66 0.454669 0.227335 0.973817i \(-0.426999\pi\)
0.227335 + 0.973817i \(0.426999\pi\)
\(312\) −9508.53 −1.72537
\(313\) 2859.53 0.516390 0.258195 0.966093i \(-0.416872\pi\)
0.258195 + 0.966093i \(0.416872\pi\)
\(314\) 772.052 0.138756
\(315\) 0 0
\(316\) −5932.46 −1.05610
\(317\) −8154.58 −1.44482 −0.722409 0.691466i \(-0.756965\pi\)
−0.722409 + 0.691466i \(0.756965\pi\)
\(318\) −629.651 −0.111035
\(319\) 5757.96 1.01061
\(320\) 0 0
\(321\) 6395.06 1.11195
\(322\) −986.571 −0.170744
\(323\) 1843.28 0.317532
\(324\) 3677.73 0.630612
\(325\) 0 0
\(326\) −4614.09 −0.783898
\(327\) 1701.82 0.287801
\(328\) −5634.27 −0.948477
\(329\) −1066.09 −0.178649
\(330\) 0 0
\(331\) 164.125 0.0272541 0.0136271 0.999907i \(-0.495662\pi\)
0.0136271 + 0.999907i \(0.495662\pi\)
\(332\) 2811.83 0.464816
\(333\) 244.213 0.0401885
\(334\) −2014.77 −0.330069
\(335\) 0 0
\(336\) −409.743 −0.0665276
\(337\) −5015.35 −0.810692 −0.405346 0.914163i \(-0.632849\pi\)
−0.405346 + 0.914163i \(0.632849\pi\)
\(338\) −9386.44 −1.51052
\(339\) −7167.29 −1.14830
\(340\) 0 0
\(341\) −4536.79 −0.720472
\(342\) −231.063 −0.0365335
\(343\) −343.000 −0.0539949
\(344\) −8177.00 −1.28161
\(345\) 0 0
\(346\) 4969.60 0.772161
\(347\) 10679.9 1.65224 0.826122 0.563492i \(-0.190542\pi\)
0.826122 + 0.563492i \(0.190542\pi\)
\(348\) −5346.23 −0.823529
\(349\) −7727.85 −1.18528 −0.592639 0.805468i \(-0.701914\pi\)
−0.592639 + 0.805468i \(0.701914\pi\)
\(350\) 0 0
\(351\) 13227.5 2.01148
\(352\) −5586.71 −0.845946
\(353\) 3214.61 0.484693 0.242346 0.970190i \(-0.422083\pi\)
0.242346 + 0.970190i \(0.422083\pi\)
\(354\) 1820.19 0.273283
\(355\) 0 0
\(356\) −2692.01 −0.400776
\(357\) 1027.12 0.152271
\(358\) 6679.75 0.986134
\(359\) 104.088 0.0153023 0.00765116 0.999971i \(-0.497565\pi\)
0.00765116 + 0.999971i \(0.497565\pi\)
\(360\) 0 0
\(361\) −2974.25 −0.433628
\(362\) 1581.74 0.229653
\(363\) −2190.88 −0.316781
\(364\) −3544.69 −0.510418
\(365\) 0 0
\(366\) −3938.90 −0.562540
\(367\) −2285.33 −0.325049 −0.162525 0.986704i \(-0.551964\pi\)
−0.162525 + 0.986704i \(0.551964\pi\)
\(368\) −1069.11 −0.151444
\(369\) 635.824 0.0897010
\(370\) 0 0
\(371\) −571.187 −0.0799314
\(372\) 4212.38 0.587101
\(373\) −5810.11 −0.806531 −0.403265 0.915083i \(-0.632125\pi\)
−0.403265 + 0.915083i \(0.632125\pi\)
\(374\) 1371.74 0.189655
\(375\) 0 0
\(376\) 3216.90 0.441221
\(377\) −17517.5 −2.39310
\(378\) −1587.17 −0.215966
\(379\) −1457.82 −0.197581 −0.0987904 0.995108i \(-0.531497\pi\)
−0.0987904 + 0.995108i \(0.531497\pi\)
\(380\) 0 0
\(381\) −8863.79 −1.19188
\(382\) 1668.22 0.223439
\(383\) −775.614 −0.103478 −0.0517389 0.998661i \(-0.516476\pi\)
−0.0517389 + 0.998661i \(0.516476\pi\)
\(384\) 5915.53 0.786134
\(385\) 0 0
\(386\) −2150.54 −0.283575
\(387\) 922.769 0.121207
\(388\) 2685.45 0.351374
\(389\) 9160.87 1.19402 0.597011 0.802233i \(-0.296355\pi\)
0.597011 + 0.802233i \(0.296355\pi\)
\(390\) 0 0
\(391\) 2679.99 0.346632
\(392\) 1035.00 0.133355
\(393\) −4393.41 −0.563913
\(394\) 1451.17 0.185555
\(395\) 0 0
\(396\) 396.750 0.0503471
\(397\) −2306.95 −0.291643 −0.145822 0.989311i \(-0.546583\pi\)
−0.145822 + 0.989311i \(0.546583\pi\)
\(398\) −196.358 −0.0247300
\(399\) 2164.67 0.271601
\(400\) 0 0
\(401\) 5554.28 0.691689 0.345845 0.938292i \(-0.387592\pi\)
0.345845 + 0.938292i \(0.387592\pi\)
\(402\) −2680.51 −0.332566
\(403\) 13802.4 1.70607
\(404\) −5947.51 −0.732425
\(405\) 0 0
\(406\) 2101.94 0.256940
\(407\) −3055.48 −0.372125
\(408\) −3099.31 −0.376075
\(409\) 6860.22 0.829379 0.414690 0.909963i \(-0.363890\pi\)
0.414690 + 0.909963i \(0.363890\pi\)
\(410\) 0 0
\(411\) −14979.9 −1.79782
\(412\) −529.422 −0.0633076
\(413\) 1651.19 0.196730
\(414\) −335.948 −0.0398815
\(415\) 0 0
\(416\) 16996.6 2.00319
\(417\) −13523.3 −1.58810
\(418\) 2890.96 0.338282
\(419\) 6261.62 0.730072 0.365036 0.930993i \(-0.381057\pi\)
0.365036 + 0.930993i \(0.381057\pi\)
\(420\) 0 0
\(421\) −12589.2 −1.45739 −0.728694 0.684840i \(-0.759872\pi\)
−0.728694 + 0.684840i \(0.759872\pi\)
\(422\) 1342.18 0.154825
\(423\) −363.025 −0.0417279
\(424\) 1723.55 0.197412
\(425\) 0 0
\(426\) −2446.23 −0.278216
\(427\) −3573.17 −0.404960
\(428\) −7193.73 −0.812434
\(429\) −13425.3 −1.51091
\(430\) 0 0
\(431\) 13362.1 1.49334 0.746670 0.665195i \(-0.231652\pi\)
0.746670 + 0.665195i \(0.231652\pi\)
\(432\) −1719.96 −0.191555
\(433\) 13554.8 1.50439 0.752194 0.658941i \(-0.228995\pi\)
0.752194 + 0.658941i \(0.228995\pi\)
\(434\) −1656.15 −0.183175
\(435\) 0 0
\(436\) −1914.36 −0.210278
\(437\) 5648.13 0.618276
\(438\) −5477.94 −0.597593
\(439\) −9039.11 −0.982718 −0.491359 0.870957i \(-0.663500\pi\)
−0.491359 + 0.870957i \(0.663500\pi\)
\(440\) 0 0
\(441\) −116.799 −0.0126119
\(442\) −4173.27 −0.449100
\(443\) −287.745 −0.0308604 −0.0154302 0.999881i \(-0.504912\pi\)
−0.0154302 + 0.999881i \(0.504912\pi\)
\(444\) 2837.00 0.303239
\(445\) 0 0
\(446\) −7050.37 −0.748530
\(447\) 14705.3 1.55601
\(448\) −1378.75 −0.145401
\(449\) 672.823 0.0707182 0.0353591 0.999375i \(-0.488743\pi\)
0.0353591 + 0.999375i \(0.488743\pi\)
\(450\) 0 0
\(451\) −7955.16 −0.830585
\(452\) 8062.39 0.838989
\(453\) 2155.68 0.223582
\(454\) 5920.10 0.611991
\(455\) 0 0
\(456\) −6531.85 −0.670794
\(457\) 6272.56 0.642052 0.321026 0.947070i \(-0.395972\pi\)
0.321026 + 0.947070i \(0.395972\pi\)
\(458\) 4780.56 0.487731
\(459\) 4311.49 0.438439
\(460\) 0 0
\(461\) 3967.12 0.400796 0.200398 0.979715i \(-0.435776\pi\)
0.200398 + 0.979715i \(0.435776\pi\)
\(462\) 1610.91 0.162221
\(463\) −14898.3 −1.49543 −0.747716 0.664019i \(-0.768849\pi\)
−0.747716 + 0.664019i \(0.768849\pi\)
\(464\) 2277.80 0.227897
\(465\) 0 0
\(466\) 2375.93 0.236187
\(467\) 7371.22 0.730405 0.365203 0.930928i \(-0.381000\pi\)
0.365203 + 0.930928i \(0.381000\pi\)
\(468\) −1207.04 −0.119221
\(469\) −2431.62 −0.239407
\(470\) 0 0
\(471\) −2462.93 −0.240946
\(472\) −4982.43 −0.485879
\(473\) −11545.3 −1.12231
\(474\) −8202.25 −0.794814
\(475\) 0 0
\(476\) −1155.39 −0.111255
\(477\) −194.501 −0.0186700
\(478\) 3664.39 0.350638
\(479\) 11934.3 1.13840 0.569198 0.822201i \(-0.307254\pi\)
0.569198 + 0.822201i \(0.307254\pi\)
\(480\) 0 0
\(481\) 9295.76 0.881185
\(482\) 9793.97 0.925525
\(483\) 3147.26 0.296492
\(484\) 2464.50 0.231452
\(485\) 0 0
\(486\) −1037.08 −0.0967965
\(487\) −4462.53 −0.415229 −0.207614 0.978211i \(-0.566570\pi\)
−0.207614 + 0.978211i \(0.566570\pi\)
\(488\) 10782.0 1.00016
\(489\) 14719.4 1.36122
\(490\) 0 0
\(491\) 7577.70 0.696491 0.348245 0.937403i \(-0.386778\pi\)
0.348245 + 0.937403i \(0.386778\pi\)
\(492\) 7386.31 0.676831
\(493\) −5709.85 −0.521620
\(494\) −8795.24 −0.801045
\(495\) 0 0
\(496\) −1794.72 −0.162470
\(497\) −2219.09 −0.200282
\(498\) 3887.64 0.349818
\(499\) −11422.5 −1.02474 −0.512368 0.858766i \(-0.671231\pi\)
−0.512368 + 0.858766i \(0.671231\pi\)
\(500\) 0 0
\(501\) 6427.31 0.573156
\(502\) 5491.87 0.488275
\(503\) −6264.74 −0.555330 −0.277665 0.960678i \(-0.589560\pi\)
−0.277665 + 0.960678i \(0.589560\pi\)
\(504\) 352.438 0.0311485
\(505\) 0 0
\(506\) 4203.24 0.369282
\(507\) 29943.7 2.62297
\(508\) 9970.77 0.870829
\(509\) −6895.92 −0.600504 −0.300252 0.953860i \(-0.597071\pi\)
−0.300252 + 0.953860i \(0.597071\pi\)
\(510\) 0 0
\(511\) −4969.31 −0.430194
\(512\) −4203.64 −0.362844
\(513\) 9086.55 0.782029
\(514\) −3400.26 −0.291788
\(515\) 0 0
\(516\) 10719.7 0.914554
\(517\) 4542.02 0.386379
\(518\) −1115.40 −0.0946100
\(519\) −15853.5 −1.34083
\(520\) 0 0
\(521\) −12517.6 −1.05260 −0.526302 0.850297i \(-0.676422\pi\)
−0.526302 + 0.850297i \(0.676422\pi\)
\(522\) 715.754 0.0600148
\(523\) −9820.31 −0.821055 −0.410528 0.911848i \(-0.634655\pi\)
−0.410528 + 0.911848i \(0.634655\pi\)
\(524\) 4942.09 0.412016
\(525\) 0 0
\(526\) −3782.88 −0.313577
\(527\) 4498.88 0.371868
\(528\) 1745.69 0.143885
\(529\) −3955.05 −0.325064
\(530\) 0 0
\(531\) 562.263 0.0459513
\(532\) −2435.01 −0.198442
\(533\) 24202.1 1.96681
\(534\) −3721.99 −0.301622
\(535\) 0 0
\(536\) 7337.37 0.591280
\(537\) −21309.1 −1.71239
\(538\) 1594.87 0.127806
\(539\) 1461.34 0.116780
\(540\) 0 0
\(541\) −1864.46 −0.148169 −0.0740845 0.997252i \(-0.523603\pi\)
−0.0740845 + 0.997252i \(0.523603\pi\)
\(542\) −6003.19 −0.475755
\(543\) −5045.91 −0.398786
\(544\) 5540.04 0.436631
\(545\) 0 0
\(546\) −4900.90 −0.384138
\(547\) 13351.8 1.04366 0.521830 0.853050i \(-0.325250\pi\)
0.521830 + 0.853050i \(0.325250\pi\)
\(548\) 16850.7 1.31355
\(549\) −1216.74 −0.0945887
\(550\) 0 0
\(551\) −12033.6 −0.930398
\(552\) −9496.81 −0.732267
\(553\) −7440.66 −0.572168
\(554\) −8324.31 −0.638386
\(555\) 0 0
\(556\) 15212.2 1.16033
\(557\) −4423.73 −0.336516 −0.168258 0.985743i \(-0.553814\pi\)
−0.168258 + 0.985743i \(0.553814\pi\)
\(558\) −563.954 −0.0427851
\(559\) 35124.5 2.65761
\(560\) 0 0
\(561\) −4375.99 −0.329330
\(562\) −2186.55 −0.164117
\(563\) 2690.20 0.201383 0.100691 0.994918i \(-0.467895\pi\)
0.100691 + 0.994918i \(0.467895\pi\)
\(564\) −4217.24 −0.314854
\(565\) 0 0
\(566\) −2933.63 −0.217861
\(567\) 4612.72 0.341651
\(568\) 6696.08 0.494650
\(569\) −14143.3 −1.04203 −0.521016 0.853547i \(-0.674447\pi\)
−0.521016 + 0.853547i \(0.674447\pi\)
\(570\) 0 0
\(571\) 10955.4 0.802924 0.401462 0.915876i \(-0.368502\pi\)
0.401462 + 0.915876i \(0.368502\pi\)
\(572\) 15102.0 1.10393
\(573\) −5321.81 −0.387996
\(574\) −2904.02 −0.211170
\(575\) 0 0
\(576\) −469.493 −0.0339622
\(577\) 469.298 0.0338599 0.0169299 0.999857i \(-0.494611\pi\)
0.0169299 + 0.999857i \(0.494611\pi\)
\(578\) 6280.79 0.451984
\(579\) 6860.46 0.492419
\(580\) 0 0
\(581\) 3526.67 0.251826
\(582\) 3712.92 0.264442
\(583\) 2433.52 0.172875
\(584\) 14994.8 1.06248
\(585\) 0 0
\(586\) 9743.85 0.686885
\(587\) −20050.0 −1.40980 −0.704899 0.709308i \(-0.749008\pi\)
−0.704899 + 0.709308i \(0.749008\pi\)
\(588\) −1356.84 −0.0951619
\(589\) 9481.48 0.663289
\(590\) 0 0
\(591\) −4629.37 −0.322211
\(592\) −1208.72 −0.0839160
\(593\) −26534.2 −1.83749 −0.918744 0.394855i \(-0.870795\pi\)
−0.918744 + 0.394855i \(0.870795\pi\)
\(594\) 6762.06 0.467089
\(595\) 0 0
\(596\) −16541.8 −1.13687
\(597\) 626.401 0.0429429
\(598\) −12787.6 −0.874455
\(599\) 6886.62 0.469749 0.234875 0.972026i \(-0.424532\pi\)
0.234875 + 0.972026i \(0.424532\pi\)
\(600\) 0 0
\(601\) 19861.0 1.34800 0.673999 0.738733i \(-0.264575\pi\)
0.673999 + 0.738733i \(0.264575\pi\)
\(602\) −4214.60 −0.285339
\(603\) −828.017 −0.0559195
\(604\) −2424.89 −0.163357
\(605\) 0 0
\(606\) −8223.06 −0.551220
\(607\) 16703.0 1.11689 0.558445 0.829541i \(-0.311398\pi\)
0.558445 + 0.829541i \(0.311398\pi\)
\(608\) 11675.7 0.778805
\(609\) −6705.40 −0.446168
\(610\) 0 0
\(611\) −13818.3 −0.914939
\(612\) −393.435 −0.0259864
\(613\) −20753.9 −1.36745 −0.683723 0.729742i \(-0.739640\pi\)
−0.683723 + 0.729742i \(0.739640\pi\)
\(614\) −2590.32 −0.170255
\(615\) 0 0
\(616\) −4409.56 −0.288419
\(617\) −6769.53 −0.441703 −0.220852 0.975307i \(-0.570884\pi\)
−0.220852 + 0.975307i \(0.570884\pi\)
\(618\) −731.981 −0.0476450
\(619\) −10307.2 −0.669272 −0.334636 0.942347i \(-0.608613\pi\)
−0.334636 + 0.942347i \(0.608613\pi\)
\(620\) 0 0
\(621\) 13211.1 0.853696
\(622\) −3878.32 −0.250010
\(623\) −3376.40 −0.217131
\(624\) −5310.94 −0.340718
\(625\) 0 0
\(626\) −4447.36 −0.283949
\(627\) −9222.47 −0.587416
\(628\) 2770.51 0.176044
\(629\) 3029.96 0.192070
\(630\) 0 0
\(631\) 20158.1 1.27176 0.635879 0.771789i \(-0.280638\pi\)
0.635879 + 0.771789i \(0.280638\pi\)
\(632\) 22452.1 1.41313
\(633\) −4281.69 −0.268849
\(634\) 12682.6 0.794466
\(635\) 0 0
\(636\) −2259.51 −0.140873
\(637\) −4445.85 −0.276532
\(638\) −8955.21 −0.555706
\(639\) −755.648 −0.0467809
\(640\) 0 0
\(641\) −9370.22 −0.577381 −0.288691 0.957422i \(-0.593220\pi\)
−0.288691 + 0.957422i \(0.593220\pi\)
\(642\) −9946.08 −0.611434
\(643\) −13605.3 −0.834434 −0.417217 0.908807i \(-0.636994\pi\)
−0.417217 + 0.908807i \(0.636994\pi\)
\(644\) −3540.32 −0.216627
\(645\) 0 0
\(646\) −2866.81 −0.174602
\(647\) −17228.8 −1.04689 −0.523443 0.852061i \(-0.675353\pi\)
−0.523443 + 0.852061i \(0.675353\pi\)
\(648\) −13918.8 −0.843800
\(649\) −7034.80 −0.425486
\(650\) 0 0
\(651\) 5283.29 0.318078
\(652\) −16557.7 −0.994554
\(653\) 24886.7 1.49141 0.745706 0.666275i \(-0.232112\pi\)
0.745706 + 0.666275i \(0.232112\pi\)
\(654\) −2646.80 −0.158254
\(655\) 0 0
\(656\) −3146.99 −0.187301
\(657\) −1692.15 −0.100483
\(658\) 1658.06 0.0982340
\(659\) −22993.3 −1.35917 −0.679583 0.733598i \(-0.737839\pi\)
−0.679583 + 0.733598i \(0.737839\pi\)
\(660\) 0 0
\(661\) −10136.8 −0.596483 −0.298241 0.954490i \(-0.596400\pi\)
−0.298241 + 0.954490i \(0.596400\pi\)
\(662\) −255.259 −0.0149863
\(663\) 13313.1 0.779849
\(664\) −10641.7 −0.621954
\(665\) 0 0
\(666\) −379.818 −0.0220986
\(667\) −17496.0 −1.01566
\(668\) −7230.01 −0.418769
\(669\) 22491.4 1.29980
\(670\) 0 0
\(671\) 15223.3 0.875843
\(672\) 6505.97 0.373472
\(673\) −21980.8 −1.25899 −0.629494 0.777006i \(-0.716738\pi\)
−0.629494 + 0.777006i \(0.716738\pi\)
\(674\) 7800.25 0.445778
\(675\) 0 0
\(676\) −33683.3 −1.91644
\(677\) −30956.4 −1.75739 −0.878695 0.477384i \(-0.841585\pi\)
−0.878695 + 0.477384i \(0.841585\pi\)
\(678\) 11147.1 0.631419
\(679\) 3368.17 0.190366
\(680\) 0 0
\(681\) −18885.7 −1.06270
\(682\) 7055.96 0.396168
\(683\) 22895.4 1.28268 0.641338 0.767259i \(-0.278380\pi\)
0.641338 + 0.767259i \(0.278380\pi\)
\(684\) −829.172 −0.0463511
\(685\) 0 0
\(686\) 533.460 0.0296904
\(687\) −15250.5 −0.846931
\(688\) −4567.22 −0.253087
\(689\) −7403.53 −0.409364
\(690\) 0 0
\(691\) −21418.0 −1.17913 −0.589565 0.807721i \(-0.700701\pi\)
−0.589565 + 0.807721i \(0.700701\pi\)
\(692\) 17833.5 0.979662
\(693\) 497.615 0.0272768
\(694\) −16610.2 −0.908524
\(695\) 0 0
\(696\) 20233.4 1.10193
\(697\) 7888.69 0.428702
\(698\) 12018.9 0.651753
\(699\) −7579.47 −0.410132
\(700\) 0 0
\(701\) −3444.75 −0.185601 −0.0928007 0.995685i \(-0.529582\pi\)
−0.0928007 + 0.995685i \(0.529582\pi\)
\(702\) −20572.3 −1.10606
\(703\) 6385.69 0.342590
\(704\) 5874.10 0.314472
\(705\) 0 0
\(706\) −4999.61 −0.266519
\(707\) −7459.55 −0.396811
\(708\) 6531.77 0.346722
\(709\) −5221.70 −0.276594 −0.138297 0.990391i \(-0.544163\pi\)
−0.138297 + 0.990391i \(0.544163\pi\)
\(710\) 0 0
\(711\) −2533.70 −0.133644
\(712\) 10188.2 0.536264
\(713\) 13785.3 0.724075
\(714\) −1597.45 −0.0837298
\(715\) 0 0
\(716\) 23970.3 1.25114
\(717\) −11689.8 −0.608874
\(718\) −161.885 −0.00841433
\(719\) −13990.0 −0.725645 −0.362822 0.931858i \(-0.618187\pi\)
−0.362822 + 0.931858i \(0.618187\pi\)
\(720\) 0 0
\(721\) −664.016 −0.0342985
\(722\) 4625.78 0.238440
\(723\) −31243.7 −1.60715
\(724\) 5676.09 0.291368
\(725\) 0 0
\(726\) 3407.43 0.174189
\(727\) −874.820 −0.0446290 −0.0223145 0.999751i \(-0.507104\pi\)
−0.0223145 + 0.999751i \(0.507104\pi\)
\(728\) 13415.3 0.682971
\(729\) 21100.3 1.07201
\(730\) 0 0
\(731\) 11448.8 0.579276
\(732\) −14134.8 −0.713711
\(733\) −5261.49 −0.265126 −0.132563 0.991175i \(-0.542321\pi\)
−0.132563 + 0.991175i \(0.542321\pi\)
\(734\) 3554.31 0.178736
\(735\) 0 0
\(736\) 16975.6 0.850176
\(737\) 10359.8 0.517786
\(738\) −988.881 −0.0493241
\(739\) 4697.49 0.233829 0.116915 0.993142i \(-0.462700\pi\)
0.116915 + 0.993142i \(0.462700\pi\)
\(740\) 0 0
\(741\) 28057.7 1.39099
\(742\) 888.354 0.0439521
\(743\) 5710.88 0.281981 0.140990 0.990011i \(-0.454971\pi\)
0.140990 + 0.990011i \(0.454971\pi\)
\(744\) −15942.2 −0.785579
\(745\) 0 0
\(746\) 9036.32 0.443490
\(747\) 1200.91 0.0588204
\(748\) 4922.49 0.240621
\(749\) −9022.58 −0.440158
\(750\) 0 0
\(751\) −22319.1 −1.08447 −0.542234 0.840228i \(-0.682421\pi\)
−0.542234 + 0.840228i \(0.682421\pi\)
\(752\) 1796.79 0.0871304
\(753\) −17519.6 −0.847875
\(754\) 27244.6 1.31590
\(755\) 0 0
\(756\) −5695.56 −0.274002
\(757\) 18686.6 0.897192 0.448596 0.893735i \(-0.351924\pi\)
0.448596 + 0.893735i \(0.351924\pi\)
\(758\) 2267.31 0.108644
\(759\) −13408.8 −0.641248
\(760\) 0 0
\(761\) −10187.1 −0.485259 −0.242630 0.970119i \(-0.578010\pi\)
−0.242630 + 0.970119i \(0.578010\pi\)
\(762\) 13785.6 0.655382
\(763\) −2401.04 −0.113923
\(764\) 5986.44 0.283484
\(765\) 0 0
\(766\) 1206.29 0.0568997
\(767\) 21402.1 1.00754
\(768\) −17018.2 −0.799596
\(769\) 3239.30 0.151901 0.0759506 0.997112i \(-0.475801\pi\)
0.0759506 + 0.997112i \(0.475801\pi\)
\(770\) 0 0
\(771\) 10847.2 0.506681
\(772\) −7717.24 −0.359779
\(773\) 7855.19 0.365500 0.182750 0.983159i \(-0.441500\pi\)
0.182750 + 0.983159i \(0.441500\pi\)
\(774\) −1435.16 −0.0666483
\(775\) 0 0
\(776\) −10163.4 −0.470161
\(777\) 3558.25 0.164288
\(778\) −14247.7 −0.656560
\(779\) 16625.6 0.764663
\(780\) 0 0
\(781\) 9454.35 0.433167
\(782\) −4168.12 −0.190603
\(783\) −28147.0 −1.28466
\(784\) 578.092 0.0263344
\(785\) 0 0
\(786\) 6832.96 0.310081
\(787\) −15718.5 −0.711948 −0.355974 0.934496i \(-0.615851\pi\)
−0.355974 + 0.934496i \(0.615851\pi\)
\(788\) 5207.52 0.235419
\(789\) 12067.8 0.544517
\(790\) 0 0
\(791\) 10112.1 0.454544
\(792\) −1501.55 −0.0673676
\(793\) −46314.2 −2.07398
\(794\) 3587.94 0.160367
\(795\) 0 0
\(796\) −704.631 −0.0313756
\(797\) 9616.93 0.427414 0.213707 0.976898i \(-0.431446\pi\)
0.213707 + 0.976898i \(0.431446\pi\)
\(798\) −3366.66 −0.149346
\(799\) −4504.07 −0.199428
\(800\) 0 0
\(801\) −1149.73 −0.0507164
\(802\) −8638.43 −0.380341
\(803\) 21171.5 0.930418
\(804\) −9619.01 −0.421936
\(805\) 0 0
\(806\) −21466.5 −0.938119
\(807\) −5087.78 −0.221931
\(808\) 22509.1 0.980032
\(809\) −3533.48 −0.153561 −0.0767803 0.997048i \(-0.524464\pi\)
−0.0767803 + 0.997048i \(0.524464\pi\)
\(810\) 0 0
\(811\) −19156.3 −0.829432 −0.414716 0.909951i \(-0.636119\pi\)
−0.414716 + 0.909951i \(0.636119\pi\)
\(812\) 7542.82 0.325987
\(813\) 19150.8 0.826135
\(814\) 4752.12 0.204621
\(815\) 0 0
\(816\) −1731.10 −0.0742657
\(817\) 24128.6 1.03324
\(818\) −10669.5 −0.456053
\(819\) −1513.90 −0.0645911
\(820\) 0 0
\(821\) 10117.5 0.430090 0.215045 0.976604i \(-0.431010\pi\)
0.215045 + 0.976604i \(0.431010\pi\)
\(822\) 23297.9 0.988573
\(823\) 45130.4 1.91148 0.955739 0.294217i \(-0.0950588\pi\)
0.955739 + 0.294217i \(0.0950588\pi\)
\(824\) 2003.66 0.0847096
\(825\) 0 0
\(826\) −2568.05 −0.108177
\(827\) 33833.7 1.42263 0.711313 0.702875i \(-0.248101\pi\)
0.711313 + 0.702875i \(0.248101\pi\)
\(828\) −1205.55 −0.0505988
\(829\) 9630.51 0.403476 0.201738 0.979440i \(-0.435341\pi\)
0.201738 + 0.979440i \(0.435341\pi\)
\(830\) 0 0
\(831\) 26555.4 1.10854
\(832\) −17870.9 −0.744665
\(833\) −1449.13 −0.0602752
\(834\) 21032.5 0.873255
\(835\) 0 0
\(836\) 10374.2 0.429188
\(837\) 22177.5 0.915849
\(838\) −9738.55 −0.401447
\(839\) −21003.2 −0.864258 −0.432129 0.901812i \(-0.642237\pi\)
−0.432129 + 0.901812i \(0.642237\pi\)
\(840\) 0 0
\(841\) 12887.0 0.528393
\(842\) 19579.7 0.801378
\(843\) 6975.31 0.284985
\(844\) 4816.42 0.196431
\(845\) 0 0
\(846\) 564.605 0.0229450
\(847\) 3091.05 0.125395
\(848\) 962.679 0.0389841
\(849\) 9358.57 0.378310
\(850\) 0 0
\(851\) 9284.30 0.373986
\(852\) −8778.31 −0.352981
\(853\) 35952.4 1.44313 0.721563 0.692349i \(-0.243424\pi\)
0.721563 + 0.692349i \(0.243424\pi\)
\(854\) 5557.27 0.222677
\(855\) 0 0
\(856\) 27225.5 1.08709
\(857\) 11294.5 0.450191 0.225095 0.974337i \(-0.427731\pi\)
0.225095 + 0.974337i \(0.427731\pi\)
\(858\) 20880.1 0.830808
\(859\) −16077.2 −0.638586 −0.319293 0.947656i \(-0.603445\pi\)
−0.319293 + 0.947656i \(0.603445\pi\)
\(860\) 0 0
\(861\) 9264.13 0.366691
\(862\) −20781.7 −0.821147
\(863\) 9154.92 0.361109 0.180555 0.983565i \(-0.442211\pi\)
0.180555 + 0.983565i \(0.442211\pi\)
\(864\) 27309.9 1.07535
\(865\) 0 0
\(866\) −21081.4 −0.827223
\(867\) −20036.4 −0.784856
\(868\) −5943.11 −0.232399
\(869\) 31700.6 1.23748
\(870\) 0 0
\(871\) −31517.8 −1.22611
\(872\) 7245.11 0.281365
\(873\) 1146.93 0.0444648
\(874\) −8784.40 −0.339973
\(875\) 0 0
\(876\) −19657.6 −0.758184
\(877\) −17118.2 −0.659110 −0.329555 0.944136i \(-0.606899\pi\)
−0.329555 + 0.944136i \(0.606899\pi\)
\(878\) 14058.3 0.540370
\(879\) −31083.9 −1.19276
\(880\) 0 0
\(881\) −38904.8 −1.48778 −0.743891 0.668301i \(-0.767022\pi\)
−0.743891 + 0.668301i \(0.767022\pi\)
\(882\) 181.654 0.00693494
\(883\) 22859.4 0.871211 0.435605 0.900138i \(-0.356534\pi\)
0.435605 + 0.900138i \(0.356534\pi\)
\(884\) −14975.8 −0.569786
\(885\) 0 0
\(886\) 447.523 0.0169693
\(887\) 8653.76 0.327582 0.163791 0.986495i \(-0.447628\pi\)
0.163791 + 0.986495i \(0.447628\pi\)
\(888\) −10737.0 −0.405753
\(889\) 12505.6 0.471794
\(890\) 0 0
\(891\) −19652.3 −0.738918
\(892\) −25300.3 −0.949682
\(893\) −9492.41 −0.355713
\(894\) −22870.7 −0.855606
\(895\) 0 0
\(896\) −8346.03 −0.311184
\(897\) 40793.7 1.51847
\(898\) −1046.42 −0.0388860
\(899\) −29370.3 −1.08961
\(900\) 0 0
\(901\) −2413.18 −0.0892285
\(902\) 12372.5 0.456716
\(903\) 13445.0 0.495484
\(904\) −30513.1 −1.12262
\(905\) 0 0
\(906\) −3352.67 −0.122942
\(907\) 34173.4 1.25106 0.625529 0.780201i \(-0.284883\pi\)
0.625529 + 0.780201i \(0.284883\pi\)
\(908\) 21244.3 0.776451
\(909\) −2540.13 −0.0926852
\(910\) 0 0
\(911\) −18578.2 −0.675657 −0.337829 0.941208i \(-0.609692\pi\)
−0.337829 + 0.941208i \(0.609692\pi\)
\(912\) −3648.33 −0.132465
\(913\) −15025.2 −0.544647
\(914\) −9755.56 −0.353047
\(915\) 0 0
\(916\) 17155.1 0.618799
\(917\) 6198.51 0.223220
\(918\) −6705.56 −0.241086
\(919\) 21712.3 0.779349 0.389674 0.920953i \(-0.372588\pi\)
0.389674 + 0.920953i \(0.372588\pi\)
\(920\) 0 0
\(921\) 8263.37 0.295643
\(922\) −6169.96 −0.220387
\(923\) −28763.1 −1.02573
\(924\) 5780.76 0.205815
\(925\) 0 0
\(926\) 23171.0 0.822298
\(927\) −226.111 −0.00801130
\(928\) −36167.4 −1.27937
\(929\) −21430.5 −0.756848 −0.378424 0.925632i \(-0.623534\pi\)
−0.378424 + 0.925632i \(0.623534\pi\)
\(930\) 0 0
\(931\) −3054.06 −0.107511
\(932\) 8526.06 0.299657
\(933\) 12372.2 0.434136
\(934\) −11464.3 −0.401630
\(935\) 0 0
\(936\) 4568.18 0.159525
\(937\) 20091.8 0.700501 0.350250 0.936656i \(-0.386096\pi\)
0.350250 + 0.936656i \(0.386096\pi\)
\(938\) 3781.84 0.131643
\(939\) 14187.5 0.493069
\(940\) 0 0
\(941\) −1000.61 −0.0346640 −0.0173320 0.999850i \(-0.505517\pi\)
−0.0173320 + 0.999850i \(0.505517\pi\)
\(942\) 3830.53 0.132490
\(943\) 24172.3 0.834738
\(944\) −2782.91 −0.0959492
\(945\) 0 0
\(946\) 17956.1 0.617129
\(947\) −19867.8 −0.681751 −0.340875 0.940108i \(-0.610723\pi\)
−0.340875 + 0.940108i \(0.610723\pi\)
\(948\) −29433.8 −1.00840
\(949\) −64410.4 −2.20322
\(950\) 0 0
\(951\) −40458.9 −1.37957
\(952\) 4372.72 0.148866
\(953\) −1557.33 −0.0529347 −0.0264673 0.999650i \(-0.508426\pi\)
−0.0264673 + 0.999650i \(0.508426\pi\)
\(954\) 302.503 0.0102661
\(955\) 0 0
\(956\) 13149.7 0.444865
\(957\) 28568.0 0.964967
\(958\) −18561.1 −0.625973
\(959\) 21134.7 0.711651
\(960\) 0 0
\(961\) −6649.63 −0.223209
\(962\) −14457.5 −0.484540
\(963\) −3072.38 −0.102810
\(964\) 35145.7 1.17424
\(965\) 0 0
\(966\) −4894.86 −0.163033
\(967\) −45866.9 −1.52532 −0.762658 0.646802i \(-0.776106\pi\)
−0.762658 + 0.646802i \(0.776106\pi\)
\(968\) −9327.18 −0.309697
\(969\) 9145.42 0.303192
\(970\) 0 0
\(971\) −26313.5 −0.869661 −0.434830 0.900512i \(-0.643192\pi\)
−0.434830 + 0.900512i \(0.643192\pi\)
\(972\) −3721.59 −0.122809
\(973\) 19079.6 0.628637
\(974\) 6940.46 0.228323
\(975\) 0 0
\(976\) 6022.23 0.197507
\(977\) −46807.1 −1.53274 −0.766372 0.642397i \(-0.777940\pi\)
−0.766372 + 0.642397i \(0.777940\pi\)
\(978\) −22892.8 −0.748496
\(979\) 14385.0 0.469608
\(980\) 0 0
\(981\) −817.605 −0.0266097
\(982\) −11785.4 −0.382981
\(983\) −43413.8 −1.40863 −0.704316 0.709887i \(-0.748746\pi\)
−0.704316 + 0.709887i \(0.748746\pi\)
\(984\) −27954.4 −0.905643
\(985\) 0 0
\(986\) 8880.39 0.286825
\(987\) −5289.38 −0.170580
\(988\) −31561.8 −1.01631
\(989\) 35081.2 1.12792
\(990\) 0 0
\(991\) 52226.1 1.67408 0.837042 0.547139i \(-0.184283\pi\)
0.837042 + 0.547139i \(0.184283\pi\)
\(992\) 28496.9 0.912073
\(993\) 814.303 0.0260233
\(994\) 3451.30 0.110129
\(995\) 0 0
\(996\) 13950.8 0.443824
\(997\) 23852.0 0.757673 0.378836 0.925464i \(-0.376324\pi\)
0.378836 + 0.925464i \(0.376324\pi\)
\(998\) 17765.2 0.563474
\(999\) 14936.3 0.473037
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.4.a.i.1.3 5
3.2 odd 2 1575.4.a.bq.1.3 5
5.2 odd 4 35.4.b.a.29.5 10
5.3 odd 4 35.4.b.a.29.6 yes 10
5.4 even 2 175.4.a.j.1.3 5
7.6 odd 2 1225.4.a.be.1.3 5
15.2 even 4 315.4.d.c.64.6 10
15.8 even 4 315.4.d.c.64.5 10
15.14 odd 2 1575.4.a.bn.1.3 5
20.3 even 4 560.4.g.f.449.3 10
20.7 even 4 560.4.g.f.449.8 10
35.2 odd 12 245.4.j.e.214.5 20
35.3 even 12 245.4.j.f.79.5 20
35.12 even 12 245.4.j.f.214.5 20
35.13 even 4 245.4.b.d.99.6 10
35.17 even 12 245.4.j.f.79.6 20
35.18 odd 12 245.4.j.e.79.5 20
35.23 odd 12 245.4.j.e.214.6 20
35.27 even 4 245.4.b.d.99.5 10
35.32 odd 12 245.4.j.e.79.6 20
35.33 even 12 245.4.j.f.214.6 20
35.34 odd 2 1225.4.a.bh.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.b.a.29.5 10 5.2 odd 4
35.4.b.a.29.6 yes 10 5.3 odd 4
175.4.a.i.1.3 5 1.1 even 1 trivial
175.4.a.j.1.3 5 5.4 even 2
245.4.b.d.99.5 10 35.27 even 4
245.4.b.d.99.6 10 35.13 even 4
245.4.j.e.79.5 20 35.18 odd 12
245.4.j.e.79.6 20 35.32 odd 12
245.4.j.e.214.5 20 35.2 odd 12
245.4.j.e.214.6 20 35.23 odd 12
245.4.j.f.79.5 20 35.3 even 12
245.4.j.f.79.6 20 35.17 even 12
245.4.j.f.214.5 20 35.12 even 12
245.4.j.f.214.6 20 35.33 even 12
315.4.d.c.64.5 10 15.8 even 4
315.4.d.c.64.6 10 15.2 even 4
560.4.g.f.449.3 10 20.3 even 4
560.4.g.f.449.8 10 20.7 even 4
1225.4.a.be.1.3 5 7.6 odd 2
1225.4.a.bh.1.3 5 35.34 odd 2
1575.4.a.bn.1.3 5 15.14 odd 2
1575.4.a.bq.1.3 5 3.2 odd 2