Properties

Label 175.4.a.i.1.1
Level $175$
Weight $4$
Character 175.1
Self dual yes
Analytic conductor $10.325$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(1,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.3253342510\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 27x^{3} + 7x^{2} + 120x + 60 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-4.31366\) of defining polynomial
Character \(\chi\) \(=\) 175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.31366 q^{2} -1.93939 q^{3} +20.2350 q^{4} +10.3052 q^{6} -7.00000 q^{7} -65.0123 q^{8} -23.2388 q^{9} +25.5420 q^{11} -39.2434 q^{12} +64.1014 q^{13} +37.1956 q^{14} +183.574 q^{16} +27.6952 q^{17} +123.483 q^{18} +0.792436 q^{19} +13.5757 q^{21} -135.721 q^{22} -108.606 q^{23} +126.084 q^{24} -340.613 q^{26} +97.4324 q^{27} -141.645 q^{28} -234.000 q^{29} +129.204 q^{31} -455.349 q^{32} -49.5357 q^{33} -147.163 q^{34} -470.236 q^{36} -38.3108 q^{37} -4.21073 q^{38} -124.317 q^{39} -403.216 q^{41} -72.1366 q^{42} -172.895 q^{43} +516.840 q^{44} +577.097 q^{46} -206.943 q^{47} -356.020 q^{48} +49.0000 q^{49} -53.7117 q^{51} +1297.09 q^{52} -144.031 q^{53} -517.722 q^{54} +455.086 q^{56} -1.53684 q^{57} +1243.40 q^{58} -679.086 q^{59} -574.717 q^{61} -686.544 q^{62} +162.671 q^{63} +950.977 q^{64} +263.216 q^{66} -515.640 q^{67} +560.411 q^{68} +210.630 q^{69} +556.612 q^{71} +1510.81 q^{72} +173.243 q^{73} +203.571 q^{74} +16.0349 q^{76} -178.794 q^{77} +660.580 q^{78} +79.3290 q^{79} +438.488 q^{81} +2142.55 q^{82} -1043.56 q^{83} +274.704 q^{84} +918.703 q^{86} +453.817 q^{87} -1660.54 q^{88} +652.060 q^{89} -448.710 q^{91} -2197.65 q^{92} -250.576 q^{93} +1099.62 q^{94} +883.097 q^{96} -515.714 q^{97} -260.369 q^{98} -593.564 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 4 q^{2} - 10 q^{3} + 18 q^{4} + 6 q^{6} - 35 q^{7} - 42 q^{8} + 23 q^{9} + 42 q^{11} - 136 q^{12} - 34 q^{13} + 28 q^{14} + 74 q^{16} - 238 q^{17} + 2 q^{18} - 36 q^{19} + 70 q^{21} - 358 q^{22} - 152 q^{23}+ \cdots + 2652 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.31366 −1.87866 −0.939331 0.343013i \(-0.888553\pi\)
−0.939331 + 0.343013i \(0.888553\pi\)
\(3\) −1.93939 −0.373235 −0.186617 0.982433i \(-0.559753\pi\)
−0.186617 + 0.982433i \(0.559753\pi\)
\(4\) 20.2350 2.52937
\(5\) 0 0
\(6\) 10.3052 0.701182
\(7\) −7.00000 −0.377964
\(8\) −65.0123 −2.87317
\(9\) −23.2388 −0.860696
\(10\) 0 0
\(11\) 25.5420 0.700108 0.350054 0.936730i \(-0.386163\pi\)
0.350054 + 0.936730i \(0.386163\pi\)
\(12\) −39.2434 −0.944049
\(13\) 64.1014 1.36758 0.683790 0.729679i \(-0.260330\pi\)
0.683790 + 0.729679i \(0.260330\pi\)
\(14\) 37.1956 0.710067
\(15\) 0 0
\(16\) 183.574 2.86834
\(17\) 27.6952 0.395122 0.197561 0.980291i \(-0.436698\pi\)
0.197561 + 0.980291i \(0.436698\pi\)
\(18\) 123.483 1.61696
\(19\) 0.792436 0.00956828 0.00478414 0.999989i \(-0.498477\pi\)
0.00478414 + 0.999989i \(0.498477\pi\)
\(20\) 0 0
\(21\) 13.5757 0.141070
\(22\) −135.721 −1.31527
\(23\) −108.606 −0.984609 −0.492305 0.870423i \(-0.663845\pi\)
−0.492305 + 0.870423i \(0.663845\pi\)
\(24\) 126.084 1.07237
\(25\) 0 0
\(26\) −340.613 −2.56922
\(27\) 97.4324 0.694477
\(28\) −141.645 −0.956012
\(29\) −234.000 −1.49837 −0.749186 0.662360i \(-0.769555\pi\)
−0.749186 + 0.662360i \(0.769555\pi\)
\(30\) 0 0
\(31\) 129.204 0.748570 0.374285 0.927314i \(-0.377888\pi\)
0.374285 + 0.927314i \(0.377888\pi\)
\(32\) −455.349 −2.51547
\(33\) −49.5357 −0.261305
\(34\) −147.163 −0.742300
\(35\) 0 0
\(36\) −470.236 −2.17702
\(37\) −38.3108 −0.170223 −0.0851116 0.996371i \(-0.527125\pi\)
−0.0851116 + 0.996371i \(0.527125\pi\)
\(38\) −4.21073 −0.0179756
\(39\) −124.317 −0.510429
\(40\) 0 0
\(41\) −403.216 −1.53590 −0.767949 0.640511i \(-0.778722\pi\)
−0.767949 + 0.640511i \(0.778722\pi\)
\(42\) −72.1366 −0.265022
\(43\) −172.895 −0.613167 −0.306584 0.951844i \(-0.599186\pi\)
−0.306584 + 0.951844i \(0.599186\pi\)
\(44\) 516.840 1.77083
\(45\) 0 0
\(46\) 577.097 1.84975
\(47\) −206.943 −0.642250 −0.321125 0.947037i \(-0.604061\pi\)
−0.321125 + 0.947037i \(0.604061\pi\)
\(48\) −356.020 −1.07056
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −53.7117 −0.147473
\(52\) 1297.09 3.45911
\(53\) −144.031 −0.373287 −0.186643 0.982428i \(-0.559761\pi\)
−0.186643 + 0.982428i \(0.559761\pi\)
\(54\) −517.722 −1.30469
\(55\) 0 0
\(56\) 455.086 1.08595
\(57\) −1.53684 −0.00357122
\(58\) 1243.40 2.81493
\(59\) −679.086 −1.49846 −0.749232 0.662307i \(-0.769577\pi\)
−0.749232 + 0.662307i \(0.769577\pi\)
\(60\) 0 0
\(61\) −574.717 −1.20631 −0.603155 0.797624i \(-0.706090\pi\)
−0.603155 + 0.797624i \(0.706090\pi\)
\(62\) −686.544 −1.40631
\(63\) 162.671 0.325312
\(64\) 950.977 1.85738
\(65\) 0 0
\(66\) 263.216 0.490903
\(67\) −515.640 −0.940230 −0.470115 0.882605i \(-0.655788\pi\)
−0.470115 + 0.882605i \(0.655788\pi\)
\(68\) 560.411 0.999409
\(69\) 210.630 0.367491
\(70\) 0 0
\(71\) 556.612 0.930391 0.465195 0.885208i \(-0.345984\pi\)
0.465195 + 0.885208i \(0.345984\pi\)
\(72\) 1510.81 2.47292
\(73\) 173.243 0.277762 0.138881 0.990309i \(-0.455650\pi\)
0.138881 + 0.990309i \(0.455650\pi\)
\(74\) 203.571 0.319792
\(75\) 0 0
\(76\) 16.0349 0.0242017
\(77\) −178.794 −0.264616
\(78\) 660.580 0.958923
\(79\) 79.3290 0.112977 0.0564887 0.998403i \(-0.482010\pi\)
0.0564887 + 0.998403i \(0.482010\pi\)
\(80\) 0 0
\(81\) 438.488 0.601493
\(82\) 2142.55 2.88543
\(83\) −1043.56 −1.38007 −0.690034 0.723777i \(-0.742404\pi\)
−0.690034 + 0.723777i \(0.742404\pi\)
\(84\) 274.704 0.356817
\(85\) 0 0
\(86\) 918.703 1.15193
\(87\) 453.817 0.559245
\(88\) −1660.54 −2.01153
\(89\) 652.060 0.776609 0.388304 0.921531i \(-0.373061\pi\)
0.388304 + 0.921531i \(0.373061\pi\)
\(90\) 0 0
\(91\) −448.710 −0.516897
\(92\) −2197.65 −2.49044
\(93\) −250.576 −0.279393
\(94\) 1099.62 1.20657
\(95\) 0 0
\(96\) 883.097 0.938861
\(97\) −515.714 −0.539823 −0.269912 0.962885i \(-0.586995\pi\)
−0.269912 + 0.962885i \(0.586995\pi\)
\(98\) −260.369 −0.268380
\(99\) −593.564 −0.602580
\(100\) 0 0
\(101\) −536.339 −0.528394 −0.264197 0.964469i \(-0.585107\pi\)
−0.264197 + 0.964469i \(0.585107\pi\)
\(102\) 285.405 0.277052
\(103\) −381.693 −0.365139 −0.182570 0.983193i \(-0.558441\pi\)
−0.182570 + 0.983193i \(0.558441\pi\)
\(104\) −4167.38 −3.92928
\(105\) 0 0
\(106\) 765.332 0.701279
\(107\) 1381.12 1.24783 0.623915 0.781492i \(-0.285541\pi\)
0.623915 + 0.781492i \(0.285541\pi\)
\(108\) 1971.54 1.75659
\(109\) −390.582 −0.343220 −0.171610 0.985165i \(-0.554897\pi\)
−0.171610 + 0.985165i \(0.554897\pi\)
\(110\) 0 0
\(111\) 74.2995 0.0635333
\(112\) −1285.02 −1.08413
\(113\) −1643.15 −1.36792 −0.683958 0.729521i \(-0.739743\pi\)
−0.683958 + 0.729521i \(0.739743\pi\)
\(114\) 8.16624 0.00670911
\(115\) 0 0
\(116\) −4734.99 −3.78994
\(117\) −1489.64 −1.17707
\(118\) 3608.43 2.81511
\(119\) −193.866 −0.149342
\(120\) 0 0
\(121\) −678.609 −0.509849
\(122\) 3053.85 2.26625
\(123\) 781.992 0.573251
\(124\) 2614.43 1.89341
\(125\) 0 0
\(126\) −864.380 −0.611152
\(127\) 192.032 0.134174 0.0670869 0.997747i \(-0.478630\pi\)
0.0670869 + 0.997747i \(0.478630\pi\)
\(128\) −1410.38 −0.973914
\(129\) 335.310 0.228856
\(130\) 0 0
\(131\) 2082.90 1.38919 0.694594 0.719402i \(-0.255584\pi\)
0.694594 + 0.719402i \(0.255584\pi\)
\(132\) −1002.35 −0.660936
\(133\) −5.54705 −0.00361647
\(134\) 2739.93 1.76637
\(135\) 0 0
\(136\) −1800.53 −1.13525
\(137\) 78.1709 0.0487488 0.0243744 0.999703i \(-0.492241\pi\)
0.0243744 + 0.999703i \(0.492241\pi\)
\(138\) −1119.21 −0.690390
\(139\) 1393.67 0.850426 0.425213 0.905093i \(-0.360199\pi\)
0.425213 + 0.905093i \(0.360199\pi\)
\(140\) 0 0
\(141\) 401.342 0.239710
\(142\) −2957.65 −1.74789
\(143\) 1637.28 0.957454
\(144\) −4266.03 −2.46877
\(145\) 0 0
\(146\) −920.556 −0.521820
\(147\) −95.0299 −0.0533193
\(148\) −775.217 −0.430557
\(149\) 32.5002 0.0178693 0.00893463 0.999960i \(-0.497156\pi\)
0.00893463 + 0.999960i \(0.497156\pi\)
\(150\) 0 0
\(151\) 466.762 0.251553 0.125777 0.992059i \(-0.459858\pi\)
0.125777 + 0.992059i \(0.459858\pi\)
\(152\) −51.5181 −0.0274913
\(153\) −643.602 −0.340080
\(154\) 950.048 0.497124
\(155\) 0 0
\(156\) −2515.56 −1.29106
\(157\) −1673.50 −0.850701 −0.425351 0.905029i \(-0.639849\pi\)
−0.425351 + 0.905029i \(0.639849\pi\)
\(158\) −421.527 −0.212246
\(159\) 279.332 0.139324
\(160\) 0 0
\(161\) 760.245 0.372147
\(162\) −2329.98 −1.13000
\(163\) −1869.36 −0.898279 −0.449139 0.893462i \(-0.648269\pi\)
−0.449139 + 0.893462i \(0.648269\pi\)
\(164\) −8159.06 −3.88485
\(165\) 0 0
\(166\) 5545.12 2.59268
\(167\) −46.5250 −0.0215581 −0.0107791 0.999942i \(-0.503431\pi\)
−0.0107791 + 0.999942i \(0.503431\pi\)
\(168\) −882.588 −0.405316
\(169\) 1911.99 0.870275
\(170\) 0 0
\(171\) −18.4152 −0.00823538
\(172\) −3498.52 −1.55093
\(173\) −2496.28 −1.09704 −0.548521 0.836137i \(-0.684809\pi\)
−0.548521 + 0.836137i \(0.684809\pi\)
\(174\) −2411.43 −1.05063
\(175\) 0 0
\(176\) 4688.83 2.00815
\(177\) 1317.01 0.559279
\(178\) −3464.82 −1.45898
\(179\) 2975.70 1.24254 0.621269 0.783598i \(-0.286618\pi\)
0.621269 + 0.783598i \(0.286618\pi\)
\(180\) 0 0
\(181\) 966.273 0.396809 0.198405 0.980120i \(-0.436424\pi\)
0.198405 + 0.980120i \(0.436424\pi\)
\(182\) 2384.29 0.971074
\(183\) 1114.60 0.450237
\(184\) 7060.76 2.82895
\(185\) 0 0
\(186\) 1331.47 0.524884
\(187\) 707.389 0.276628
\(188\) −4187.48 −1.62449
\(189\) −682.027 −0.262488
\(190\) 0 0
\(191\) −1545.50 −0.585488 −0.292744 0.956191i \(-0.594568\pi\)
−0.292744 + 0.956191i \(0.594568\pi\)
\(192\) −1844.31 −0.693238
\(193\) 2304.05 0.859322 0.429661 0.902990i \(-0.358633\pi\)
0.429661 + 0.902990i \(0.358633\pi\)
\(194\) 2740.33 1.01415
\(195\) 0 0
\(196\) 991.513 0.361338
\(197\) 222.021 0.0802960 0.0401480 0.999194i \(-0.487217\pi\)
0.0401480 + 0.999194i \(0.487217\pi\)
\(198\) 3153.99 1.13204
\(199\) 3580.56 1.27547 0.637736 0.770255i \(-0.279871\pi\)
0.637736 + 0.770255i \(0.279871\pi\)
\(200\) 0 0
\(201\) 1000.02 0.350927
\(202\) 2849.92 0.992673
\(203\) 1638.00 0.566331
\(204\) −1086.85 −0.373014
\(205\) 0 0
\(206\) 2028.19 0.685973
\(207\) 2523.88 0.847449
\(208\) 11767.3 3.92268
\(209\) 20.2404 0.00669883
\(210\) 0 0
\(211\) −4181.04 −1.36415 −0.682073 0.731284i \(-0.738921\pi\)
−0.682073 + 0.731284i \(0.738921\pi\)
\(212\) −2914.46 −0.944180
\(213\) −1079.49 −0.347254
\(214\) −7338.79 −2.34425
\(215\) 0 0
\(216\) −6334.31 −1.99535
\(217\) −904.426 −0.282933
\(218\) 2075.42 0.644794
\(219\) −335.986 −0.103670
\(220\) 0 0
\(221\) 1775.30 0.540361
\(222\) −394.802 −0.119357
\(223\) −2361.52 −0.709145 −0.354573 0.935028i \(-0.615374\pi\)
−0.354573 + 0.935028i \(0.615374\pi\)
\(224\) 3187.44 0.950758
\(225\) 0 0
\(226\) 8731.14 2.56985
\(227\) −586.877 −0.171596 −0.0857982 0.996313i \(-0.527344\pi\)
−0.0857982 + 0.996313i \(0.527344\pi\)
\(228\) −31.0979 −0.00903292
\(229\) −4619.55 −1.33305 −0.666526 0.745482i \(-0.732219\pi\)
−0.666526 + 0.745482i \(0.732219\pi\)
\(230\) 0 0
\(231\) 346.750 0.0987639
\(232\) 15212.9 4.30507
\(233\) 5120.44 1.43971 0.719853 0.694127i \(-0.244209\pi\)
0.719853 + 0.694127i \(0.244209\pi\)
\(234\) 7915.43 2.21132
\(235\) 0 0
\(236\) −13741.3 −3.79017
\(237\) −153.850 −0.0421671
\(238\) 1030.14 0.280563
\(239\) 1127.51 0.305158 0.152579 0.988291i \(-0.451242\pi\)
0.152579 + 0.988291i \(0.451242\pi\)
\(240\) 0 0
\(241\) −3549.53 −0.948736 −0.474368 0.880327i \(-0.657323\pi\)
−0.474368 + 0.880327i \(0.657323\pi\)
\(242\) 3605.89 0.957833
\(243\) −3481.07 −0.918975
\(244\) −11629.4 −3.05120
\(245\) 0 0
\(246\) −4155.24 −1.07694
\(247\) 50.7963 0.0130854
\(248\) −8399.84 −2.15077
\(249\) 2023.87 0.515090
\(250\) 0 0
\(251\) 4717.19 1.18624 0.593120 0.805114i \(-0.297896\pi\)
0.593120 + 0.805114i \(0.297896\pi\)
\(252\) 3291.65 0.822835
\(253\) −2774.02 −0.689333
\(254\) −1020.39 −0.252067
\(255\) 0 0
\(256\) −113.552 −0.0277227
\(257\) −6260.31 −1.51948 −0.759742 0.650224i \(-0.774675\pi\)
−0.759742 + 0.650224i \(0.774675\pi\)
\(258\) −1781.72 −0.429942
\(259\) 268.176 0.0643383
\(260\) 0 0
\(261\) 5437.88 1.28964
\(262\) −11067.8 −2.60981
\(263\) 5753.04 1.34885 0.674425 0.738344i \(-0.264392\pi\)
0.674425 + 0.738344i \(0.264392\pi\)
\(264\) 3220.43 0.750772
\(265\) 0 0
\(266\) 29.4751 0.00679412
\(267\) −1264.60 −0.289858
\(268\) −10433.9 −2.37819
\(269\) −7059.21 −1.60003 −0.800014 0.599982i \(-0.795174\pi\)
−0.800014 + 0.599982i \(0.795174\pi\)
\(270\) 0 0
\(271\) −8534.52 −1.91305 −0.956523 0.291658i \(-0.905793\pi\)
−0.956523 + 0.291658i \(0.905793\pi\)
\(272\) 5084.11 1.13334
\(273\) 870.222 0.192924
\(274\) −415.373 −0.0915826
\(275\) 0 0
\(276\) 4262.08 0.929519
\(277\) 1313.94 0.285008 0.142504 0.989794i \(-0.454485\pi\)
0.142504 + 0.989794i \(0.454485\pi\)
\(278\) −7405.47 −1.59766
\(279\) −3002.54 −0.644291
\(280\) 0 0
\(281\) −247.229 −0.0524856 −0.0262428 0.999656i \(-0.508354\pi\)
−0.0262428 + 0.999656i \(0.508354\pi\)
\(282\) −2132.60 −0.450334
\(283\) 9074.90 1.90617 0.953087 0.302697i \(-0.0978872\pi\)
0.953087 + 0.302697i \(0.0978872\pi\)
\(284\) 11263.0 2.35330
\(285\) 0 0
\(286\) −8699.92 −1.79873
\(287\) 2822.51 0.580515
\(288\) 10581.7 2.16505
\(289\) −4145.98 −0.843879
\(290\) 0 0
\(291\) 1000.17 0.201481
\(292\) 3505.57 0.702562
\(293\) 2740.72 0.546466 0.273233 0.961948i \(-0.411907\pi\)
0.273233 + 0.961948i \(0.411907\pi\)
\(294\) 504.956 0.100169
\(295\) 0 0
\(296\) 2490.68 0.489080
\(297\) 2488.61 0.486209
\(298\) −172.695 −0.0335703
\(299\) −6961.83 −1.34653
\(300\) 0 0
\(301\) 1210.26 0.231755
\(302\) −2480.21 −0.472584
\(303\) 1040.17 0.197215
\(304\) 145.470 0.0274451
\(305\) 0 0
\(306\) 3419.88 0.638894
\(307\) 6985.46 1.29864 0.649318 0.760517i \(-0.275054\pi\)
0.649318 + 0.760517i \(0.275054\pi\)
\(308\) −3617.88 −0.669311
\(309\) 740.250 0.136283
\(310\) 0 0
\(311\) −356.841 −0.0650630 −0.0325315 0.999471i \(-0.510357\pi\)
−0.0325315 + 0.999471i \(0.510357\pi\)
\(312\) 8082.16 1.46655
\(313\) −6630.12 −1.19731 −0.598653 0.801009i \(-0.704297\pi\)
−0.598653 + 0.801009i \(0.704297\pi\)
\(314\) 8892.42 1.59818
\(315\) 0 0
\(316\) 1605.22 0.285762
\(317\) −2494.05 −0.441891 −0.220946 0.975286i \(-0.570914\pi\)
−0.220946 + 0.975286i \(0.570914\pi\)
\(318\) −1484.27 −0.261742
\(319\) −5976.83 −1.04902
\(320\) 0 0
\(321\) −2678.52 −0.465734
\(322\) −4039.68 −0.699139
\(323\) 21.9467 0.00378063
\(324\) 8872.79 1.52140
\(325\) 0 0
\(326\) 9933.13 1.68756
\(327\) 757.489 0.128102
\(328\) 26214.0 4.41289
\(329\) 1448.60 0.242748
\(330\) 0 0
\(331\) −4682.47 −0.777558 −0.388779 0.921331i \(-0.627103\pi\)
−0.388779 + 0.921331i \(0.627103\pi\)
\(332\) −21116.4 −3.49070
\(333\) 890.297 0.146510
\(334\) 247.218 0.0405005
\(335\) 0 0
\(336\) 2492.14 0.404635
\(337\) 3596.60 0.581363 0.290681 0.956820i \(-0.406118\pi\)
0.290681 + 0.956820i \(0.406118\pi\)
\(338\) −10159.7 −1.63495
\(339\) 3186.70 0.510554
\(340\) 0 0
\(341\) 3300.12 0.524080
\(342\) 97.8523 0.0154715
\(343\) −343.000 −0.0539949
\(344\) 11240.3 1.76173
\(345\) 0 0
\(346\) 13264.4 2.06097
\(347\) 1899.51 0.293865 0.146932 0.989147i \(-0.453060\pi\)
0.146932 + 0.989147i \(0.453060\pi\)
\(348\) 9182.97 1.41454
\(349\) −1037.55 −0.159137 −0.0795683 0.996829i \(-0.525354\pi\)
−0.0795683 + 0.996829i \(0.525354\pi\)
\(350\) 0 0
\(351\) 6245.56 0.949752
\(352\) −11630.5 −1.76110
\(353\) −4087.08 −0.616242 −0.308121 0.951347i \(-0.599700\pi\)
−0.308121 + 0.951347i \(0.599700\pi\)
\(354\) −6998.13 −1.05070
\(355\) 0 0
\(356\) 13194.4 1.96433
\(357\) 375.982 0.0557397
\(358\) −15811.8 −2.33431
\(359\) 3472.67 0.510530 0.255265 0.966871i \(-0.417837\pi\)
0.255265 + 0.966871i \(0.417837\pi\)
\(360\) 0 0
\(361\) −6858.37 −0.999908
\(362\) −5134.44 −0.745470
\(363\) 1316.08 0.190293
\(364\) −9079.63 −1.30742
\(365\) 0 0
\(366\) −5922.59 −0.845844
\(367\) 8769.14 1.24726 0.623631 0.781719i \(-0.285657\pi\)
0.623631 + 0.781719i \(0.285657\pi\)
\(368\) −19937.3 −2.82419
\(369\) 9370.25 1.32194
\(370\) 0 0
\(371\) 1008.22 0.141089
\(372\) −5070.39 −0.706687
\(373\) 11368.9 1.57817 0.789085 0.614284i \(-0.210555\pi\)
0.789085 + 0.614284i \(0.210555\pi\)
\(374\) −3758.82 −0.519690
\(375\) 0 0
\(376\) 13453.8 1.84529
\(377\) −14999.8 −2.04914
\(378\) 3624.06 0.493125
\(379\) −12137.4 −1.64500 −0.822501 0.568764i \(-0.807422\pi\)
−0.822501 + 0.568764i \(0.807422\pi\)
\(380\) 0 0
\(381\) −372.424 −0.0500784
\(382\) 8212.24 1.09993
\(383\) −9869.61 −1.31675 −0.658373 0.752692i \(-0.728755\pi\)
−0.658373 + 0.752692i \(0.728755\pi\)
\(384\) 2735.27 0.363499
\(385\) 0 0
\(386\) −12242.9 −1.61438
\(387\) 4017.86 0.527751
\(388\) −10435.5 −1.36541
\(389\) 57.1166 0.00744454 0.00372227 0.999993i \(-0.498815\pi\)
0.00372227 + 0.999993i \(0.498815\pi\)
\(390\) 0 0
\(391\) −3007.88 −0.389041
\(392\) −3185.60 −0.410452
\(393\) −4039.54 −0.518494
\(394\) −1179.74 −0.150849
\(395\) 0 0
\(396\) −12010.7 −1.52415
\(397\) −7436.17 −0.940078 −0.470039 0.882646i \(-0.655760\pi\)
−0.470039 + 0.882646i \(0.655760\pi\)
\(398\) −19025.8 −2.39618
\(399\) 10.7579 0.00134979
\(400\) 0 0
\(401\) −12465.0 −1.55230 −0.776149 0.630550i \(-0.782829\pi\)
−0.776149 + 0.630550i \(0.782829\pi\)
\(402\) −5313.79 −0.659273
\(403\) 8282.15 1.02373
\(404\) −10852.8 −1.33650
\(405\) 0 0
\(406\) −8703.79 −1.06394
\(407\) −978.533 −0.119175
\(408\) 3491.92 0.423715
\(409\) −1708.72 −0.206578 −0.103289 0.994651i \(-0.532937\pi\)
−0.103289 + 0.994651i \(0.532937\pi\)
\(410\) 0 0
\(411\) −151.604 −0.0181948
\(412\) −7723.54 −0.923571
\(413\) 4753.60 0.566366
\(414\) −13411.0 −1.59207
\(415\) 0 0
\(416\) −29188.5 −3.44011
\(417\) −2702.86 −0.317409
\(418\) −107.550 −0.0125848
\(419\) 10618.8 1.23810 0.619050 0.785352i \(-0.287518\pi\)
0.619050 + 0.785352i \(0.287518\pi\)
\(420\) 0 0
\(421\) 13273.5 1.53661 0.768304 0.640085i \(-0.221101\pi\)
0.768304 + 0.640085i \(0.221101\pi\)
\(422\) 22216.6 2.56277
\(423\) 4809.10 0.552781
\(424\) 9363.80 1.07251
\(425\) 0 0
\(426\) 5736.02 0.652373
\(427\) 4023.02 0.455943
\(428\) 27946.9 3.15622
\(429\) −3175.31 −0.357355
\(430\) 0 0
\(431\) 7918.20 0.884934 0.442467 0.896785i \(-0.354103\pi\)
0.442467 + 0.896785i \(0.354103\pi\)
\(432\) 17886.0 1.99199
\(433\) −4433.34 −0.492038 −0.246019 0.969265i \(-0.579123\pi\)
−0.246019 + 0.969265i \(0.579123\pi\)
\(434\) 4805.81 0.531535
\(435\) 0 0
\(436\) −7903.40 −0.868129
\(437\) −86.0637 −0.00942102
\(438\) 1785.31 0.194761
\(439\) 12958.4 1.40882 0.704408 0.709796i \(-0.251213\pi\)
0.704408 + 0.709796i \(0.251213\pi\)
\(440\) 0 0
\(441\) −1138.70 −0.122957
\(442\) −9433.34 −1.01515
\(443\) 12040.4 1.29133 0.645664 0.763621i \(-0.276580\pi\)
0.645664 + 0.763621i \(0.276580\pi\)
\(444\) 1503.45 0.160699
\(445\) 0 0
\(446\) 12548.3 1.33224
\(447\) −63.0304 −0.00666943
\(448\) −6656.84 −0.702023
\(449\) 11586.3 1.21780 0.608899 0.793247i \(-0.291611\pi\)
0.608899 + 0.793247i \(0.291611\pi\)
\(450\) 0 0
\(451\) −10298.9 −1.07529
\(452\) −33249.1 −3.45997
\(453\) −905.232 −0.0938886
\(454\) 3118.46 0.322371
\(455\) 0 0
\(456\) 99.9135 0.0102607
\(457\) −9734.34 −0.996396 −0.498198 0.867063i \(-0.666005\pi\)
−0.498198 + 0.867063i \(0.666005\pi\)
\(458\) 24546.7 2.50435
\(459\) 2698.41 0.274403
\(460\) 0 0
\(461\) −1343.41 −0.135724 −0.0678621 0.997695i \(-0.521618\pi\)
−0.0678621 + 0.997695i \(0.521618\pi\)
\(462\) −1842.51 −0.185544
\(463\) 6613.72 0.663857 0.331929 0.943305i \(-0.392301\pi\)
0.331929 + 0.943305i \(0.392301\pi\)
\(464\) −42956.3 −4.29784
\(465\) 0 0
\(466\) −27208.3 −2.70472
\(467\) 14688.9 1.45551 0.727755 0.685838i \(-0.240564\pi\)
0.727755 + 0.685838i \(0.240564\pi\)
\(468\) −30142.8 −2.97724
\(469\) 3609.48 0.355374
\(470\) 0 0
\(471\) 3245.57 0.317511
\(472\) 44148.9 4.30534
\(473\) −4416.07 −0.429283
\(474\) 817.504 0.0792177
\(475\) 0 0
\(476\) −3922.88 −0.377741
\(477\) 3347.11 0.321286
\(478\) −5991.22 −0.573288
\(479\) −15298.6 −1.45931 −0.729657 0.683813i \(-0.760320\pi\)
−0.729657 + 0.683813i \(0.760320\pi\)
\(480\) 0 0
\(481\) −2455.78 −0.232794
\(482\) 18861.0 1.78235
\(483\) −1474.41 −0.138898
\(484\) −13731.6 −1.28960
\(485\) 0 0
\(486\) 18497.2 1.72644
\(487\) 9653.80 0.898266 0.449133 0.893465i \(-0.351733\pi\)
0.449133 + 0.893465i \(0.351733\pi\)
\(488\) 37363.7 3.46593
\(489\) 3625.41 0.335269
\(490\) 0 0
\(491\) 20142.6 1.85137 0.925684 0.378297i \(-0.123490\pi\)
0.925684 + 0.378297i \(0.123490\pi\)
\(492\) 15823.6 1.44996
\(493\) −6480.69 −0.592039
\(494\) −269.914 −0.0245830
\(495\) 0 0
\(496\) 23718.4 2.14715
\(497\) −3896.29 −0.351655
\(498\) −10754.1 −0.967679
\(499\) −1309.29 −0.117459 −0.0587293 0.998274i \(-0.518705\pi\)
−0.0587293 + 0.998274i \(0.518705\pi\)
\(500\) 0 0
\(501\) 90.2299 0.00804625
\(502\) −25065.5 −2.22855
\(503\) −2186.17 −0.193791 −0.0968953 0.995295i \(-0.530891\pi\)
−0.0968953 + 0.995295i \(0.530891\pi\)
\(504\) −10575.7 −0.934677
\(505\) 0 0
\(506\) 14740.2 1.29502
\(507\) −3708.09 −0.324817
\(508\) 3885.76 0.339375
\(509\) 3591.11 0.312718 0.156359 0.987700i \(-0.450024\pi\)
0.156359 + 0.987700i \(0.450024\pi\)
\(510\) 0 0
\(511\) −1212.70 −0.104984
\(512\) 11886.4 1.02600
\(513\) 77.2089 0.00664495
\(514\) 33265.2 2.85460
\(515\) 0 0
\(516\) 6784.97 0.578860
\(517\) −5285.73 −0.449644
\(518\) −1424.99 −0.120870
\(519\) 4841.24 0.409455
\(520\) 0 0
\(521\) −8605.34 −0.723621 −0.361811 0.932252i \(-0.617841\pi\)
−0.361811 + 0.932252i \(0.617841\pi\)
\(522\) −28895.1 −2.42280
\(523\) −22536.4 −1.88423 −0.942113 0.335297i \(-0.891163\pi\)
−0.942113 + 0.335297i \(0.891163\pi\)
\(524\) 42147.3 3.51377
\(525\) 0 0
\(526\) −30569.7 −2.53403
\(527\) 3578.32 0.295776
\(528\) −9093.45 −0.749510
\(529\) −371.637 −0.0305447
\(530\) 0 0
\(531\) 15781.1 1.28972
\(532\) −112.244 −0.00914738
\(533\) −25846.7 −2.10046
\(534\) 6719.63 0.544544
\(535\) 0 0
\(536\) 33522.9 2.70144
\(537\) −5771.03 −0.463758
\(538\) 37510.2 3.00591
\(539\) 1251.56 0.100015
\(540\) 0 0
\(541\) 8782.44 0.697942 0.348971 0.937134i \(-0.386531\pi\)
0.348971 + 0.937134i \(0.386531\pi\)
\(542\) 45349.5 3.59396
\(543\) −1873.98 −0.148103
\(544\) −12611.0 −0.993917
\(545\) 0 0
\(546\) −4624.06 −0.362439
\(547\) −22593.0 −1.76601 −0.883004 0.469366i \(-0.844482\pi\)
−0.883004 + 0.469366i \(0.844482\pi\)
\(548\) 1581.78 0.123304
\(549\) 13355.7 1.03827
\(550\) 0 0
\(551\) −185.430 −0.0143368
\(552\) −13693.5 −1.05586
\(553\) −555.303 −0.0427014
\(554\) −6981.84 −0.535433
\(555\) 0 0
\(556\) 28200.8 2.15104
\(557\) 7264.13 0.552587 0.276294 0.961073i \(-0.410894\pi\)
0.276294 + 0.961073i \(0.410894\pi\)
\(558\) 15954.5 1.21040
\(559\) −11082.8 −0.838555
\(560\) 0 0
\(561\) −1371.90 −0.103247
\(562\) 1313.69 0.0986027
\(563\) −3851.42 −0.288309 −0.144154 0.989555i \(-0.546046\pi\)
−0.144154 + 0.989555i \(0.546046\pi\)
\(564\) 8121.14 0.606315
\(565\) 0 0
\(566\) −48220.9 −3.58105
\(567\) −3069.42 −0.227343
\(568\) −36186.7 −2.67317
\(569\) 16580.3 1.22158 0.610792 0.791791i \(-0.290851\pi\)
0.610792 + 0.791791i \(0.290851\pi\)
\(570\) 0 0
\(571\) 6385.86 0.468021 0.234010 0.972234i \(-0.424815\pi\)
0.234010 + 0.972234i \(0.424815\pi\)
\(572\) 33130.2 2.42175
\(573\) 2997.32 0.218525
\(574\) −14997.9 −1.09059
\(575\) 0 0
\(576\) −22099.6 −1.59864
\(577\) 11059.1 0.797912 0.398956 0.916970i \(-0.369373\pi\)
0.398956 + 0.916970i \(0.369373\pi\)
\(578\) 22030.3 1.58536
\(579\) −4468.44 −0.320729
\(580\) 0 0
\(581\) 7304.92 0.521617
\(582\) −5314.56 −0.378515
\(583\) −3678.84 −0.261341
\(584\) −11263.0 −0.798055
\(585\) 0 0
\(586\) −14563.2 −1.02662
\(587\) 7871.25 0.553461 0.276730 0.960948i \(-0.410749\pi\)
0.276730 + 0.960948i \(0.410749\pi\)
\(588\) −1922.93 −0.134864
\(589\) 102.386 0.00716253
\(590\) 0 0
\(591\) −430.584 −0.0299693
\(592\) −7032.85 −0.488258
\(593\) 2018.06 0.139750 0.0698750 0.997556i \(-0.477740\pi\)
0.0698750 + 0.997556i \(0.477740\pi\)
\(594\) −13223.6 −0.913422
\(595\) 0 0
\(596\) 657.640 0.0451980
\(597\) −6944.08 −0.476051
\(598\) 36992.8 2.52968
\(599\) −1356.67 −0.0925409 −0.0462705 0.998929i \(-0.514734\pi\)
−0.0462705 + 0.998929i \(0.514734\pi\)
\(600\) 0 0
\(601\) 11178.7 0.758715 0.379358 0.925250i \(-0.376145\pi\)
0.379358 + 0.925250i \(0.376145\pi\)
\(602\) −6430.92 −0.435390
\(603\) 11982.8 0.809252
\(604\) 9444.91 0.636272
\(605\) 0 0
\(606\) −5527.10 −0.370500
\(607\) −9404.67 −0.628870 −0.314435 0.949279i \(-0.601815\pi\)
−0.314435 + 0.949279i \(0.601815\pi\)
\(608\) −360.835 −0.0240687
\(609\) −3176.72 −0.211375
\(610\) 0 0
\(611\) −13265.3 −0.878328
\(612\) −13023.3 −0.860187
\(613\) 18938.0 1.24779 0.623897 0.781507i \(-0.285548\pi\)
0.623897 + 0.781507i \(0.285548\pi\)
\(614\) −37118.4 −2.43970
\(615\) 0 0
\(616\) 11623.8 0.760286
\(617\) −17716.9 −1.15600 −0.578001 0.816036i \(-0.696167\pi\)
−0.578001 + 0.816036i \(0.696167\pi\)
\(618\) −3933.43 −0.256029
\(619\) −6240.33 −0.405202 −0.202601 0.979261i \(-0.564939\pi\)
−0.202601 + 0.979261i \(0.564939\pi\)
\(620\) 0 0
\(621\) −10581.8 −0.683788
\(622\) 1896.13 0.122231
\(623\) −4564.42 −0.293531
\(624\) −22821.4 −1.46408
\(625\) 0 0
\(626\) 35230.2 2.24933
\(627\) −39.2539 −0.00250024
\(628\) −33863.2 −2.15174
\(629\) −1061.03 −0.0672589
\(630\) 0 0
\(631\) −25887.7 −1.63323 −0.816617 0.577179i \(-0.804153\pi\)
−0.816617 + 0.577179i \(0.804153\pi\)
\(632\) −5157.37 −0.324603
\(633\) 8108.65 0.509147
\(634\) 13252.5 0.830165
\(635\) 0 0
\(636\) 5652.27 0.352401
\(637\) 3140.97 0.195369
\(638\) 31758.8 1.97076
\(639\) −12935.0 −0.800783
\(640\) 0 0
\(641\) 18798.4 1.15834 0.579168 0.815208i \(-0.303378\pi\)
0.579168 + 0.815208i \(0.303378\pi\)
\(642\) 14232.8 0.874956
\(643\) 2287.70 0.140308 0.0701541 0.997536i \(-0.477651\pi\)
0.0701541 + 0.997536i \(0.477651\pi\)
\(644\) 15383.5 0.941298
\(645\) 0 0
\(646\) −116.617 −0.00710253
\(647\) −1769.31 −0.107510 −0.0537548 0.998554i \(-0.517119\pi\)
−0.0537548 + 0.998554i \(0.517119\pi\)
\(648\) −28507.1 −1.72819
\(649\) −17345.2 −1.04909
\(650\) 0 0
\(651\) 1754.03 0.105600
\(652\) −37826.4 −2.27208
\(653\) −3891.48 −0.233209 −0.116604 0.993178i \(-0.537201\pi\)
−0.116604 + 0.993178i \(0.537201\pi\)
\(654\) −4025.04 −0.240660
\(655\) 0 0
\(656\) −74019.8 −4.40547
\(657\) −4025.96 −0.239068
\(658\) −7697.37 −0.456040
\(659\) 20097.6 1.18800 0.594001 0.804465i \(-0.297548\pi\)
0.594001 + 0.804465i \(0.297548\pi\)
\(660\) 0 0
\(661\) −27167.9 −1.59865 −0.799326 0.600898i \(-0.794810\pi\)
−0.799326 + 0.600898i \(0.794810\pi\)
\(662\) 24881.0 1.46077
\(663\) −3442.99 −0.201681
\(664\) 67844.3 3.96516
\(665\) 0 0
\(666\) −4730.73 −0.275243
\(667\) 25414.0 1.47531
\(668\) −941.430 −0.0545285
\(669\) 4579.91 0.264678
\(670\) 0 0
\(671\) −14679.4 −0.844548
\(672\) −6181.68 −0.354856
\(673\) −25909.7 −1.48402 −0.742010 0.670389i \(-0.766127\pi\)
−0.742010 + 0.670389i \(0.766127\pi\)
\(674\) −19111.1 −1.09218
\(675\) 0 0
\(676\) 38689.1 2.20125
\(677\) −4359.22 −0.247472 −0.123736 0.992315i \(-0.539488\pi\)
−0.123736 + 0.992315i \(0.539488\pi\)
\(678\) −16933.0 −0.959159
\(679\) 3610.00 0.204034
\(680\) 0 0
\(681\) 1138.18 0.0640458
\(682\) −17535.7 −0.984569
\(683\) −29721.9 −1.66512 −0.832559 0.553937i \(-0.813125\pi\)
−0.832559 + 0.553937i \(0.813125\pi\)
\(684\) −372.632 −0.0208303
\(685\) 0 0
\(686\) 1822.58 0.101438
\(687\) 8959.10 0.497541
\(688\) −31738.9 −1.75877
\(689\) −9232.60 −0.510499
\(690\) 0 0
\(691\) −4929.13 −0.271365 −0.135682 0.990752i \(-0.543323\pi\)
−0.135682 + 0.990752i \(0.543323\pi\)
\(692\) −50512.0 −2.77482
\(693\) 4154.95 0.227754
\(694\) −10093.4 −0.552073
\(695\) 0 0
\(696\) −29503.7 −1.60680
\(697\) −11167.1 −0.606866
\(698\) 5513.18 0.298964
\(699\) −9930.51 −0.537348
\(700\) 0 0
\(701\) −19358.8 −1.04304 −0.521520 0.853239i \(-0.674635\pi\)
−0.521520 + 0.853239i \(0.674635\pi\)
\(702\) −33186.7 −1.78426
\(703\) −30.3589 −0.00162874
\(704\) 24289.8 1.30036
\(705\) 0 0
\(706\) 21717.3 1.15771
\(707\) 3754.38 0.199714
\(708\) 26649.6 1.41462
\(709\) −17186.3 −0.910359 −0.455180 0.890400i \(-0.650425\pi\)
−0.455180 + 0.890400i \(0.650425\pi\)
\(710\) 0 0
\(711\) −1843.51 −0.0972392
\(712\) −42391.9 −2.23133
\(713\) −14032.4 −0.737049
\(714\) −1997.84 −0.104716
\(715\) 0 0
\(716\) 60213.1 3.14284
\(717\) −2186.68 −0.113896
\(718\) −18452.6 −0.959113
\(719\) −15107.3 −0.783598 −0.391799 0.920051i \(-0.628147\pi\)
−0.391799 + 0.920051i \(0.628147\pi\)
\(720\) 0 0
\(721\) 2671.85 0.138010
\(722\) 36443.0 1.87849
\(723\) 6883.91 0.354102
\(724\) 19552.5 1.00368
\(725\) 0 0
\(726\) −6993.22 −0.357497
\(727\) 15840.9 0.808124 0.404062 0.914732i \(-0.367598\pi\)
0.404062 + 0.914732i \(0.367598\pi\)
\(728\) 29171.7 1.48513
\(729\) −5088.04 −0.258499
\(730\) 0 0
\(731\) −4788.35 −0.242276
\(732\) 22553.8 1.13882
\(733\) 27639.7 1.39276 0.696382 0.717671i \(-0.254792\pi\)
0.696382 + 0.717671i \(0.254792\pi\)
\(734\) −46596.2 −2.34318
\(735\) 0 0
\(736\) 49453.8 2.47675
\(737\) −13170.4 −0.658263
\(738\) −49790.3 −2.48348
\(739\) 34874.4 1.73596 0.867982 0.496597i \(-0.165417\pi\)
0.867982 + 0.496597i \(0.165417\pi\)
\(740\) 0 0
\(741\) −98.5136 −0.00488392
\(742\) −5357.32 −0.265059
\(743\) 27686.7 1.36706 0.683530 0.729922i \(-0.260444\pi\)
0.683530 + 0.729922i \(0.260444\pi\)
\(744\) 16290.5 0.802741
\(745\) 0 0
\(746\) −60410.2 −2.96485
\(747\) 24251.1 1.18782
\(748\) 14314.0 0.699694
\(749\) −9667.83 −0.471635
\(750\) 0 0
\(751\) 4806.85 0.233561 0.116781 0.993158i \(-0.462743\pi\)
0.116781 + 0.993158i \(0.462743\pi\)
\(752\) −37989.3 −1.84219
\(753\) −9148.45 −0.442747
\(754\) 79703.6 3.84965
\(755\) 0 0
\(756\) −13800.8 −0.663928
\(757\) 40166.6 1.92851 0.964253 0.264983i \(-0.0853664\pi\)
0.964253 + 0.264983i \(0.0853664\pi\)
\(758\) 64493.9 3.09040
\(759\) 5379.90 0.257283
\(760\) 0 0
\(761\) 25912.3 1.23432 0.617162 0.786836i \(-0.288282\pi\)
0.617162 + 0.786836i \(0.288282\pi\)
\(762\) 1978.93 0.0940803
\(763\) 2734.07 0.129725
\(764\) −31273.1 −1.48092
\(765\) 0 0
\(766\) 52443.7 2.47372
\(767\) −43530.4 −2.04927
\(768\) 220.221 0.0103471
\(769\) −23231.3 −1.08939 −0.544697 0.838633i \(-0.683355\pi\)
−0.544697 + 0.838633i \(0.683355\pi\)
\(770\) 0 0
\(771\) 12141.2 0.567125
\(772\) 46622.4 2.17354
\(773\) −836.306 −0.0389131 −0.0194566 0.999811i \(-0.506194\pi\)
−0.0194566 + 0.999811i \(0.506194\pi\)
\(774\) −21349.5 −0.991465
\(775\) 0 0
\(776\) 33527.8 1.55100
\(777\) −520.096 −0.0240133
\(778\) −303.498 −0.0139858
\(779\) −319.523 −0.0146959
\(780\) 0 0
\(781\) 14217.0 0.651374
\(782\) 15982.8 0.730875
\(783\) −22799.2 −1.04058
\(784\) 8995.11 0.409763
\(785\) 0 0
\(786\) 21464.7 0.974074
\(787\) −31945.6 −1.44693 −0.723467 0.690359i \(-0.757453\pi\)
−0.723467 + 0.690359i \(0.757453\pi\)
\(788\) 4492.58 0.203098
\(789\) −11157.4 −0.503438
\(790\) 0 0
\(791\) 11502.1 0.517024
\(792\) 38589.0 1.73131
\(793\) −36840.2 −1.64973
\(794\) 39513.3 1.76609
\(795\) 0 0
\(796\) 72452.4 3.22614
\(797\) −5628.83 −0.250168 −0.125084 0.992146i \(-0.539920\pi\)
−0.125084 + 0.992146i \(0.539920\pi\)
\(798\) −57.1637 −0.00253580
\(799\) −5731.32 −0.253767
\(800\) 0 0
\(801\) −15153.1 −0.668424
\(802\) 66234.6 2.91624
\(803\) 4424.97 0.194463
\(804\) 20235.4 0.887623
\(805\) 0 0
\(806\) −44008.5 −1.92324
\(807\) 13690.5 0.597186
\(808\) 34868.7 1.51816
\(809\) −27890.7 −1.21210 −0.606048 0.795428i \(-0.707246\pi\)
−0.606048 + 0.795428i \(0.707246\pi\)
\(810\) 0 0
\(811\) −12170.3 −0.526949 −0.263474 0.964666i \(-0.584868\pi\)
−0.263474 + 0.964666i \(0.584868\pi\)
\(812\) 33144.9 1.43246
\(813\) 16551.7 0.714015
\(814\) 5199.59 0.223889
\(815\) 0 0
\(816\) −9860.04 −0.423003
\(817\) −137.008 −0.00586696
\(818\) 9079.53 0.388091
\(819\) 10427.5 0.444891
\(820\) 0 0
\(821\) −30932.3 −1.31491 −0.657457 0.753492i \(-0.728368\pi\)
−0.657457 + 0.753492i \(0.728368\pi\)
\(822\) 805.569 0.0341818
\(823\) 25949.0 1.09906 0.549528 0.835475i \(-0.314807\pi\)
0.549528 + 0.835475i \(0.314807\pi\)
\(824\) 24814.7 1.04911
\(825\) 0 0
\(826\) −25259.0 −1.06401
\(827\) −27728.5 −1.16592 −0.582959 0.812502i \(-0.698105\pi\)
−0.582959 + 0.812502i \(0.698105\pi\)
\(828\) 51070.6 2.14351
\(829\) −10650.1 −0.446194 −0.223097 0.974796i \(-0.571617\pi\)
−0.223097 + 0.974796i \(0.571617\pi\)
\(830\) 0 0
\(831\) −2548.24 −0.106375
\(832\) 60959.0 2.54011
\(833\) 1357.06 0.0564460
\(834\) 14362.1 0.596304
\(835\) 0 0
\(836\) 409.563 0.0169438
\(837\) 12588.6 0.519865
\(838\) −56424.8 −2.32597
\(839\) 29761.9 1.22466 0.612332 0.790601i \(-0.290232\pi\)
0.612332 + 0.790601i \(0.290232\pi\)
\(840\) 0 0
\(841\) 30367.2 1.24512
\(842\) −70531.0 −2.88677
\(843\) 479.473 0.0195895
\(844\) −84603.2 −3.45043
\(845\) 0 0
\(846\) −25553.9 −1.03849
\(847\) 4750.26 0.192705
\(848\) −26440.3 −1.07071
\(849\) −17599.7 −0.711451
\(850\) 0 0
\(851\) 4160.80 0.167603
\(852\) −21843.4 −0.878334
\(853\) 24410.2 0.979824 0.489912 0.871772i \(-0.337029\pi\)
0.489912 + 0.871772i \(0.337029\pi\)
\(854\) −21376.9 −0.856562
\(855\) 0 0
\(856\) −89789.8 −3.58522
\(857\) −15189.3 −0.605433 −0.302717 0.953081i \(-0.597894\pi\)
−0.302717 + 0.953081i \(0.597894\pi\)
\(858\) 16872.5 0.671349
\(859\) −10339.1 −0.410668 −0.205334 0.978692i \(-0.565828\pi\)
−0.205334 + 0.978692i \(0.565828\pi\)
\(860\) 0 0
\(861\) −5473.94 −0.216668
\(862\) −42074.6 −1.66249
\(863\) −27566.6 −1.08734 −0.543671 0.839298i \(-0.682966\pi\)
−0.543671 + 0.839298i \(0.682966\pi\)
\(864\) −44365.7 −1.74693
\(865\) 0 0
\(866\) 23557.2 0.924373
\(867\) 8040.65 0.314965
\(868\) −18301.0 −0.715642
\(869\) 2026.22 0.0790964
\(870\) 0 0
\(871\) −33053.2 −1.28584
\(872\) 25392.6 0.986127
\(873\) 11984.6 0.464624
\(874\) 457.313 0.0176989
\(875\) 0 0
\(876\) −6798.65 −0.262221
\(877\) 6032.49 0.232272 0.116136 0.993233i \(-0.462949\pi\)
0.116136 + 0.993233i \(0.462949\pi\)
\(878\) −68856.4 −2.64669
\(879\) −5315.31 −0.203960
\(880\) 0 0
\(881\) 44253.2 1.69231 0.846156 0.532935i \(-0.178911\pi\)
0.846156 + 0.532935i \(0.178911\pi\)
\(882\) 6050.66 0.230994
\(883\) 7744.13 0.295142 0.147571 0.989051i \(-0.452854\pi\)
0.147571 + 0.989051i \(0.452854\pi\)
\(884\) 35923.1 1.36677
\(885\) 0 0
\(886\) −63978.8 −2.42597
\(887\) −18632.5 −0.705318 −0.352659 0.935752i \(-0.614722\pi\)
−0.352659 + 0.935752i \(0.614722\pi\)
\(888\) −4830.38 −0.182542
\(889\) −1344.22 −0.0507130
\(890\) 0 0
\(891\) 11199.8 0.421110
\(892\) −47785.3 −1.79369
\(893\) −163.989 −0.00614522
\(894\) 334.922 0.0125296
\(895\) 0 0
\(896\) 9872.65 0.368105
\(897\) 13501.7 0.502573
\(898\) −61565.7 −2.28783
\(899\) −30233.7 −1.12164
\(900\) 0 0
\(901\) −3988.97 −0.147494
\(902\) 54725.0 2.02011
\(903\) −2347.17 −0.0864993
\(904\) 106825. 3.93025
\(905\) 0 0
\(906\) 4810.09 0.176385
\(907\) −1258.19 −0.0460612 −0.0230306 0.999735i \(-0.507332\pi\)
−0.0230306 + 0.999735i \(0.507332\pi\)
\(908\) −11875.4 −0.434030
\(909\) 12463.9 0.454786
\(910\) 0 0
\(911\) 27133.6 0.986800 0.493400 0.869802i \(-0.335754\pi\)
0.493400 + 0.869802i \(0.335754\pi\)
\(912\) −282.123 −0.0102435
\(913\) −26654.6 −0.966197
\(914\) 51724.9 1.87189
\(915\) 0 0
\(916\) −93476.5 −3.37178
\(917\) −14580.3 −0.525064
\(918\) −14338.4 −0.515510
\(919\) 42534.1 1.52673 0.763367 0.645965i \(-0.223545\pi\)
0.763367 + 0.645965i \(0.223545\pi\)
\(920\) 0 0
\(921\) −13547.5 −0.484697
\(922\) 7138.42 0.254980
\(923\) 35679.7 1.27238
\(924\) 7016.47 0.249810
\(925\) 0 0
\(926\) −35143.1 −1.24716
\(927\) 8870.08 0.314274
\(928\) 106552. 3.76911
\(929\) 41849.0 1.47795 0.738977 0.673730i \(-0.235309\pi\)
0.738977 + 0.673730i \(0.235309\pi\)
\(930\) 0 0
\(931\) 38.8294 0.00136690
\(932\) 103612. 3.64155
\(933\) 692.053 0.0242838
\(934\) −78051.9 −2.73441
\(935\) 0 0
\(936\) 96844.9 3.38192
\(937\) 33281.9 1.16038 0.580188 0.814482i \(-0.302979\pi\)
0.580188 + 0.814482i \(0.302979\pi\)
\(938\) −19179.5 −0.667627
\(939\) 12858.4 0.446876
\(940\) 0 0
\(941\) 12740.6 0.441373 0.220687 0.975345i \(-0.429170\pi\)
0.220687 + 0.975345i \(0.429170\pi\)
\(942\) −17245.8 −0.596496
\(943\) 43791.9 1.51226
\(944\) −124662. −4.29810
\(945\) 0 0
\(946\) 23465.5 0.806478
\(947\) −20681.5 −0.709670 −0.354835 0.934929i \(-0.615463\pi\)
−0.354835 + 0.934929i \(0.615463\pi\)
\(948\) −3113.14 −0.106656
\(949\) 11105.1 0.379861
\(950\) 0 0
\(951\) 4836.92 0.164929
\(952\) 12603.7 0.429084
\(953\) −6702.50 −0.227823 −0.113912 0.993491i \(-0.536338\pi\)
−0.113912 + 0.993491i \(0.536338\pi\)
\(954\) −17785.4 −0.603588
\(955\) 0 0
\(956\) 22815.2 0.771857
\(957\) 11591.4 0.391532
\(958\) 81291.6 2.74156
\(959\) −547.196 −0.0184253
\(960\) 0 0
\(961\) −13097.4 −0.439643
\(962\) 13049.2 0.437341
\(963\) −32095.5 −1.07400
\(964\) −71824.6 −2.39970
\(965\) 0 0
\(966\) 7834.50 0.260943
\(967\) 36459.9 1.21248 0.606242 0.795280i \(-0.292676\pi\)
0.606242 + 0.795280i \(0.292676\pi\)
\(968\) 44117.9 1.46488
\(969\) −42.5631 −0.00141107
\(970\) 0 0
\(971\) −15789.7 −0.521850 −0.260925 0.965359i \(-0.584027\pi\)
−0.260925 + 0.965359i \(0.584027\pi\)
\(972\) −70439.3 −2.32443
\(973\) −9755.67 −0.321431
\(974\) −51297.0 −1.68754
\(975\) 0 0
\(976\) −105503. −3.46011
\(977\) 34429.2 1.12742 0.563709 0.825974i \(-0.309374\pi\)
0.563709 + 0.825974i \(0.309374\pi\)
\(978\) −19264.2 −0.629857
\(979\) 16654.9 0.543710
\(980\) 0 0
\(981\) 9076.65 0.295408
\(982\) −107031. −3.47809
\(983\) 21047.5 0.682922 0.341461 0.939896i \(-0.389078\pi\)
0.341461 + 0.939896i \(0.389078\pi\)
\(984\) −50839.1 −1.64704
\(985\) 0 0
\(986\) 34436.1 1.11224
\(987\) −2809.40 −0.0906019
\(988\) 1027.86 0.0330978
\(989\) 18777.5 0.603730
\(990\) 0 0
\(991\) 23839.1 0.764150 0.382075 0.924131i \(-0.375210\pi\)
0.382075 + 0.924131i \(0.375210\pi\)
\(992\) −58832.7 −1.88301
\(993\) 9081.12 0.290212
\(994\) 20703.5 0.660640
\(995\) 0 0
\(996\) 40952.8 1.30285
\(997\) −7853.62 −0.249475 −0.124738 0.992190i \(-0.539809\pi\)
−0.124738 + 0.992190i \(0.539809\pi\)
\(998\) 6957.12 0.220665
\(999\) −3732.71 −0.118216
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.4.a.i.1.1 5
3.2 odd 2 1575.4.a.bq.1.5 5
5.2 odd 4 35.4.b.a.29.1 10
5.3 odd 4 35.4.b.a.29.10 yes 10
5.4 even 2 175.4.a.j.1.5 5
7.6 odd 2 1225.4.a.be.1.1 5
15.2 even 4 315.4.d.c.64.10 10
15.8 even 4 315.4.d.c.64.1 10
15.14 odd 2 1575.4.a.bn.1.1 5
20.3 even 4 560.4.g.f.449.6 10
20.7 even 4 560.4.g.f.449.5 10
35.2 odd 12 245.4.j.e.214.1 20
35.3 even 12 245.4.j.f.79.1 20
35.12 even 12 245.4.j.f.214.1 20
35.13 even 4 245.4.b.d.99.10 10
35.17 even 12 245.4.j.f.79.10 20
35.18 odd 12 245.4.j.e.79.1 20
35.23 odd 12 245.4.j.e.214.10 20
35.27 even 4 245.4.b.d.99.1 10
35.32 odd 12 245.4.j.e.79.10 20
35.33 even 12 245.4.j.f.214.10 20
35.34 odd 2 1225.4.a.bh.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.b.a.29.1 10 5.2 odd 4
35.4.b.a.29.10 yes 10 5.3 odd 4
175.4.a.i.1.1 5 1.1 even 1 trivial
175.4.a.j.1.5 5 5.4 even 2
245.4.b.d.99.1 10 35.27 even 4
245.4.b.d.99.10 10 35.13 even 4
245.4.j.e.79.1 20 35.18 odd 12
245.4.j.e.79.10 20 35.32 odd 12
245.4.j.e.214.1 20 35.2 odd 12
245.4.j.e.214.10 20 35.23 odd 12
245.4.j.f.79.1 20 35.3 even 12
245.4.j.f.79.10 20 35.17 even 12
245.4.j.f.214.1 20 35.12 even 12
245.4.j.f.214.10 20 35.33 even 12
315.4.d.c.64.1 10 15.8 even 4
315.4.d.c.64.10 10 15.2 even 4
560.4.g.f.449.5 10 20.7 even 4
560.4.g.f.449.6 10 20.3 even 4
1225.4.a.be.1.1 5 7.6 odd 2
1225.4.a.bh.1.5 5 35.34 odd 2
1575.4.a.bn.1.1 5 15.14 odd 2
1575.4.a.bq.1.5 5 3.2 odd 2