Properties

Label 175.4.a.h.1.4
Level $175$
Weight $4$
Character 175.1
Self dual yes
Analytic conductor $10.325$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(1,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 32x^{2} - 35x + 120 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-3.84167\) of defining polynomial
Character \(\chi\) \(=\) 175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.84167 q^{2} -9.58084 q^{3} +15.4418 q^{4} -46.3873 q^{6} +7.00000 q^{7} +36.0308 q^{8} +64.7926 q^{9} +O(q^{10})\) \(q+4.84167 q^{2} -9.58084 q^{3} +15.4418 q^{4} -46.3873 q^{6} +7.00000 q^{7} +36.0308 q^{8} +64.7926 q^{9} +62.1962 q^{11} -147.945 q^{12} +14.0934 q^{13} +33.8917 q^{14} +50.9148 q^{16} +63.5104 q^{17} +313.704 q^{18} +48.7094 q^{19} -67.0659 q^{21} +301.134 q^{22} -99.3784 q^{23} -345.205 q^{24} +68.2354 q^{26} -362.085 q^{27} +108.093 q^{28} -69.0571 q^{29} -9.68658 q^{31} -41.7334 q^{32} -595.892 q^{33} +307.497 q^{34} +1000.51 q^{36} +240.290 q^{37} +235.835 q^{38} -135.026 q^{39} +335.306 q^{41} -324.711 q^{42} +51.2582 q^{43} +960.421 q^{44} -481.158 q^{46} -451.564 q^{47} -487.806 q^{48} +49.0000 q^{49} -608.484 q^{51} +217.627 q^{52} -180.014 q^{53} -1753.10 q^{54} +252.215 q^{56} -466.677 q^{57} -334.352 q^{58} +268.600 q^{59} -323.925 q^{61} -46.8992 q^{62} +453.548 q^{63} -609.378 q^{64} -2885.12 q^{66} -541.910 q^{67} +980.715 q^{68} +952.129 q^{69} -161.433 q^{71} +2334.53 q^{72} +305.751 q^{73} +1163.40 q^{74} +752.161 q^{76} +435.373 q^{77} -653.753 q^{78} -504.722 q^{79} +1719.68 q^{81} +1623.44 q^{82} -513.838 q^{83} -1035.62 q^{84} +248.176 q^{86} +661.625 q^{87} +2240.98 q^{88} +543.158 q^{89} +98.6535 q^{91} -1534.58 q^{92} +92.8056 q^{93} -2186.32 q^{94} +399.842 q^{96} +1863.06 q^{97} +237.242 q^{98} +4029.85 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 3 q^{3} + 36 q^{4} + q^{6} + 28 q^{7} + 27 q^{8} + 61 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{2} - 3 q^{3} + 36 q^{4} + q^{6} + 28 q^{7} + 27 q^{8} + 61 q^{9} + 100 q^{11} - 165 q^{12} + 44 q^{13} + 28 q^{14} + 160 q^{16} - 53 q^{17} + 433 q^{18} - 29 q^{19} - 21 q^{21} - 152 q^{22} + 295 q^{23} - 21 q^{24} + 700 q^{26} - 441 q^{27} + 252 q^{28} + 129 q^{29} + 114 q^{31} - 310 q^{32} - 865 q^{33} + 203 q^{34} + 1101 q^{36} + 403 q^{37} + 555 q^{38} + 674 q^{39} + 671 q^{41} + 7 q^{42} - 411 q^{43} + 438 q^{44} - 997 q^{46} - 8 q^{47} - 523 q^{48} + 196 q^{49} - 885 q^{51} + 74 q^{52} + 90 q^{53} - 2777 q^{54} + 189 q^{56} + 233 q^{57} + 673 q^{58} + 1018 q^{59} + 50 q^{61} - 1626 q^{62} + 427 q^{63} - 2421 q^{64} - 3841 q^{66} + 424 q^{67} - 617 q^{68} + 1080 q^{69} + 215 q^{71} + 2940 q^{72} - 1207 q^{73} + 623 q^{74} - 3257 q^{76} + 700 q^{77} + 278 q^{78} - 951 q^{79} + 28 q^{81} + 1695 q^{82} - 3035 q^{83} - 1155 q^{84} - 99 q^{86} + 2210 q^{87} + 163 q^{88} + 2819 q^{89} + 308 q^{91} + 3073 q^{92} - 852 q^{93} - 3056 q^{94} - 1345 q^{96} - 1100 q^{97} + 196 q^{98} + 2383 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.84167 1.71179 0.855895 0.517150i \(-0.173007\pi\)
0.855895 + 0.517150i \(0.173007\pi\)
\(3\) −9.58084 −1.84383 −0.921917 0.387387i \(-0.873378\pi\)
−0.921917 + 0.387387i \(0.873378\pi\)
\(4\) 15.4418 1.93022
\(5\) 0 0
\(6\) −46.3873 −3.15626
\(7\) 7.00000 0.377964
\(8\) 36.0308 1.59235
\(9\) 64.7926 2.39972
\(10\) 0 0
\(11\) 62.1962 1.70481 0.852403 0.522886i \(-0.175145\pi\)
0.852403 + 0.522886i \(0.175145\pi\)
\(12\) −147.945 −3.55901
\(13\) 14.0934 0.300676 0.150338 0.988635i \(-0.451964\pi\)
0.150338 + 0.988635i \(0.451964\pi\)
\(14\) 33.8917 0.646996
\(15\) 0 0
\(16\) 50.9148 0.795543
\(17\) 63.5104 0.906091 0.453045 0.891487i \(-0.350338\pi\)
0.453045 + 0.891487i \(0.350338\pi\)
\(18\) 313.704 4.10782
\(19\) 48.7094 0.588143 0.294071 0.955783i \(-0.404990\pi\)
0.294071 + 0.955783i \(0.404990\pi\)
\(20\) 0 0
\(21\) −67.0659 −0.696904
\(22\) 301.134 2.91827
\(23\) −99.3784 −0.900949 −0.450475 0.892789i \(-0.648745\pi\)
−0.450475 + 0.892789i \(0.648745\pi\)
\(24\) −345.205 −2.93603
\(25\) 0 0
\(26\) 68.2354 0.514695
\(27\) −362.085 −2.58086
\(28\) 108.093 0.729556
\(29\) −69.0571 −0.442193 −0.221096 0.975252i \(-0.570964\pi\)
−0.221096 + 0.975252i \(0.570964\pi\)
\(30\) 0 0
\(31\) −9.68658 −0.0561213 −0.0280607 0.999606i \(-0.508933\pi\)
−0.0280607 + 0.999606i \(0.508933\pi\)
\(32\) −41.7334 −0.230547
\(33\) −595.892 −3.14338
\(34\) 307.497 1.55104
\(35\) 0 0
\(36\) 1000.51 4.63201
\(37\) 240.290 1.06766 0.533829 0.845592i \(-0.320752\pi\)
0.533829 + 0.845592i \(0.320752\pi\)
\(38\) 235.835 1.00678
\(39\) −135.026 −0.554398
\(40\) 0 0
\(41\) 335.306 1.27722 0.638610 0.769531i \(-0.279510\pi\)
0.638610 + 0.769531i \(0.279510\pi\)
\(42\) −324.711 −1.19295
\(43\) 51.2582 0.181786 0.0908931 0.995861i \(-0.471028\pi\)
0.0908931 + 0.995861i \(0.471028\pi\)
\(44\) 960.421 3.29066
\(45\) 0 0
\(46\) −481.158 −1.54224
\(47\) −451.564 −1.40143 −0.700716 0.713440i \(-0.747136\pi\)
−0.700716 + 0.713440i \(0.747136\pi\)
\(48\) −487.806 −1.46685
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −608.484 −1.67068
\(52\) 217.627 0.580373
\(53\) −180.014 −0.466545 −0.233273 0.972411i \(-0.574943\pi\)
−0.233273 + 0.972411i \(0.574943\pi\)
\(54\) −1753.10 −4.41789
\(55\) 0 0
\(56\) 252.215 0.601852
\(57\) −466.677 −1.08444
\(58\) −334.352 −0.756941
\(59\) 268.600 0.592691 0.296345 0.955081i \(-0.404232\pi\)
0.296345 + 0.955081i \(0.404232\pi\)
\(60\) 0 0
\(61\) −323.925 −0.679906 −0.339953 0.940442i \(-0.610411\pi\)
−0.339953 + 0.940442i \(0.610411\pi\)
\(62\) −46.8992 −0.0960679
\(63\) 453.548 0.907011
\(64\) −609.378 −1.19019
\(65\) 0 0
\(66\) −2885.12 −5.38080
\(67\) −541.910 −0.988132 −0.494066 0.869424i \(-0.664490\pi\)
−0.494066 + 0.869424i \(0.664490\pi\)
\(68\) 980.715 1.74896
\(69\) 952.129 1.66120
\(70\) 0 0
\(71\) −161.433 −0.269839 −0.134919 0.990857i \(-0.543078\pi\)
−0.134919 + 0.990857i \(0.543078\pi\)
\(72\) 2334.53 3.82120
\(73\) 305.751 0.490212 0.245106 0.969496i \(-0.421177\pi\)
0.245106 + 0.969496i \(0.421177\pi\)
\(74\) 1163.40 1.82761
\(75\) 0 0
\(76\) 752.161 1.13525
\(77\) 435.373 0.644356
\(78\) −653.753 −0.949012
\(79\) −504.722 −0.718805 −0.359403 0.933183i \(-0.617020\pi\)
−0.359403 + 0.933183i \(0.617020\pi\)
\(80\) 0 0
\(81\) 1719.68 2.35895
\(82\) 1623.44 2.18633
\(83\) −513.838 −0.679531 −0.339766 0.940510i \(-0.610348\pi\)
−0.339766 + 0.940510i \(0.610348\pi\)
\(84\) −1035.62 −1.34518
\(85\) 0 0
\(86\) 248.176 0.311180
\(87\) 661.625 0.815330
\(88\) 2240.98 2.71465
\(89\) 543.158 0.646907 0.323453 0.946244i \(-0.395156\pi\)
0.323453 + 0.946244i \(0.395156\pi\)
\(90\) 0 0
\(91\) 98.6535 0.113645
\(92\) −1534.58 −1.73903
\(93\) 92.8056 0.103478
\(94\) −2186.32 −2.39896
\(95\) 0 0
\(96\) 399.842 0.425090
\(97\) 1863.06 1.95016 0.975079 0.221857i \(-0.0712118\pi\)
0.975079 + 0.221857i \(0.0712118\pi\)
\(98\) 237.242 0.244541
\(99\) 4029.85 4.09106
\(100\) 0 0
\(101\) −1685.70 −1.66073 −0.830365 0.557221i \(-0.811868\pi\)
−0.830365 + 0.557221i \(0.811868\pi\)
\(102\) −2946.08 −2.85986
\(103\) −1014.19 −0.970203 −0.485102 0.874458i \(-0.661217\pi\)
−0.485102 + 0.874458i \(0.661217\pi\)
\(104\) 507.794 0.478782
\(105\) 0 0
\(106\) −871.571 −0.798627
\(107\) 913.161 0.825033 0.412517 0.910950i \(-0.364650\pi\)
0.412517 + 0.910950i \(0.364650\pi\)
\(108\) −5591.24 −4.98164
\(109\) −1397.13 −1.22772 −0.613859 0.789416i \(-0.710383\pi\)
−0.613859 + 0.789416i \(0.710383\pi\)
\(110\) 0 0
\(111\) −2302.18 −1.96859
\(112\) 356.403 0.300687
\(113\) 2082.49 1.73366 0.866831 0.498603i \(-0.166153\pi\)
0.866831 + 0.498603i \(0.166153\pi\)
\(114\) −2259.50 −1.85633
\(115\) 0 0
\(116\) −1066.37 −0.853531
\(117\) 913.145 0.721541
\(118\) 1300.47 1.01456
\(119\) 444.573 0.342470
\(120\) 0 0
\(121\) 2537.37 1.90636
\(122\) −1568.34 −1.16386
\(123\) −3212.51 −2.35498
\(124\) −149.578 −0.108327
\(125\) 0 0
\(126\) 2195.93 1.55261
\(127\) −230.691 −0.161185 −0.0805925 0.996747i \(-0.525681\pi\)
−0.0805925 + 0.996747i \(0.525681\pi\)
\(128\) −2616.54 −1.80681
\(129\) −491.097 −0.335184
\(130\) 0 0
\(131\) −973.877 −0.649527 −0.324764 0.945795i \(-0.605285\pi\)
−0.324764 + 0.945795i \(0.605285\pi\)
\(132\) −9201.65 −6.06743
\(133\) 340.966 0.222297
\(134\) −2623.75 −1.69148
\(135\) 0 0
\(136\) 2288.33 1.44281
\(137\) 695.734 0.433873 0.216936 0.976186i \(-0.430394\pi\)
0.216936 + 0.976186i \(0.430394\pi\)
\(138\) 4609.90 2.84363
\(139\) −298.530 −0.182165 −0.0910826 0.995843i \(-0.529033\pi\)
−0.0910826 + 0.995843i \(0.529033\pi\)
\(140\) 0 0
\(141\) 4326.36 2.58401
\(142\) −781.605 −0.461908
\(143\) 876.553 0.512595
\(144\) 3298.90 1.90908
\(145\) 0 0
\(146\) 1480.35 0.839140
\(147\) −469.461 −0.263405
\(148\) 3710.50 2.06082
\(149\) −1792.02 −0.985290 −0.492645 0.870230i \(-0.663970\pi\)
−0.492645 + 0.870230i \(0.663970\pi\)
\(150\) 0 0
\(151\) 1201.27 0.647403 0.323701 0.946159i \(-0.395073\pi\)
0.323701 + 0.946159i \(0.395073\pi\)
\(152\) 1755.04 0.936529
\(153\) 4115.00 2.17437
\(154\) 2107.94 1.10300
\(155\) 0 0
\(156\) −2085.05 −1.07011
\(157\) 409.798 0.208315 0.104158 0.994561i \(-0.466785\pi\)
0.104158 + 0.994561i \(0.466785\pi\)
\(158\) −2443.70 −1.23044
\(159\) 1724.69 0.860232
\(160\) 0 0
\(161\) −695.649 −0.340527
\(162\) 8326.12 4.03803
\(163\) −2030.71 −0.975811 −0.487905 0.872896i \(-0.662239\pi\)
−0.487905 + 0.872896i \(0.662239\pi\)
\(164\) 5177.73 2.46532
\(165\) 0 0
\(166\) −2487.84 −1.16321
\(167\) 520.014 0.240958 0.120479 0.992716i \(-0.461557\pi\)
0.120479 + 0.992716i \(0.461557\pi\)
\(168\) −2416.44 −1.10971
\(169\) −1998.38 −0.909594
\(170\) 0 0
\(171\) 3156.01 1.41138
\(172\) 791.520 0.350888
\(173\) −2561.90 −1.12588 −0.562942 0.826497i \(-0.690331\pi\)
−0.562942 + 0.826497i \(0.690331\pi\)
\(174\) 3203.37 1.39567
\(175\) 0 0
\(176\) 3166.71 1.35625
\(177\) −2573.42 −1.09282
\(178\) 2629.80 1.10737
\(179\) −3042.08 −1.27025 −0.635127 0.772408i \(-0.719052\pi\)
−0.635127 + 0.772408i \(0.719052\pi\)
\(180\) 0 0
\(181\) −3648.02 −1.49809 −0.749047 0.662516i \(-0.769488\pi\)
−0.749047 + 0.662516i \(0.769488\pi\)
\(182\) 477.648 0.194536
\(183\) 3103.47 1.25363
\(184\) −3580.68 −1.43463
\(185\) 0 0
\(186\) 449.334 0.177133
\(187\) 3950.11 1.54471
\(188\) −6972.95 −2.70508
\(189\) −2534.59 −0.975474
\(190\) 0 0
\(191\) −4091.12 −1.54986 −0.774929 0.632049i \(-0.782214\pi\)
−0.774929 + 0.632049i \(0.782214\pi\)
\(192\) 5838.35 2.19451
\(193\) 3051.70 1.13817 0.569084 0.822280i \(-0.307298\pi\)
0.569084 + 0.822280i \(0.307298\pi\)
\(194\) 9020.34 3.33826
\(195\) 0 0
\(196\) 756.648 0.275746
\(197\) 3011.44 1.08912 0.544560 0.838722i \(-0.316697\pi\)
0.544560 + 0.838722i \(0.316697\pi\)
\(198\) 19511.2 7.00304
\(199\) 199.943 0.0712239 0.0356119 0.999366i \(-0.488662\pi\)
0.0356119 + 0.999366i \(0.488662\pi\)
\(200\) 0 0
\(201\) 5191.96 1.82195
\(202\) −8161.62 −2.84282
\(203\) −483.400 −0.167133
\(204\) −9396.08 −3.22479
\(205\) 0 0
\(206\) −4910.37 −1.66078
\(207\) −6438.98 −2.16203
\(208\) 717.560 0.239201
\(209\) 3029.54 1.00267
\(210\) 0 0
\(211\) −297.442 −0.0970461 −0.0485231 0.998822i \(-0.515451\pi\)
−0.0485231 + 0.998822i \(0.515451\pi\)
\(212\) −2779.75 −0.900537
\(213\) 1546.66 0.497538
\(214\) 4421.23 1.41228
\(215\) 0 0
\(216\) −13046.2 −4.10963
\(217\) −67.8061 −0.0212119
\(218\) −6764.47 −2.10159
\(219\) −2929.36 −0.903870
\(220\) 0 0
\(221\) 895.075 0.272440
\(222\) −11146.4 −3.36981
\(223\) −6282.68 −1.88663 −0.943317 0.331894i \(-0.892312\pi\)
−0.943317 + 0.331894i \(0.892312\pi\)
\(224\) −292.134 −0.0871385
\(225\) 0 0
\(226\) 10082.7 2.96766
\(227\) −2357.28 −0.689243 −0.344621 0.938742i \(-0.611993\pi\)
−0.344621 + 0.938742i \(0.611993\pi\)
\(228\) −7206.34 −2.09321
\(229\) −2476.81 −0.714727 −0.357363 0.933965i \(-0.616324\pi\)
−0.357363 + 0.933965i \(0.616324\pi\)
\(230\) 0 0
\(231\) −4171.25 −1.18809
\(232\) −2488.18 −0.704125
\(233\) −5142.47 −1.44590 −0.722950 0.690900i \(-0.757214\pi\)
−0.722950 + 0.690900i \(0.757214\pi\)
\(234\) 4421.15 1.23513
\(235\) 0 0
\(236\) 4147.67 1.14403
\(237\) 4835.66 1.32536
\(238\) 2152.48 0.586237
\(239\) −831.250 −0.224975 −0.112488 0.993653i \(-0.535882\pi\)
−0.112488 + 0.993653i \(0.535882\pi\)
\(240\) 0 0
\(241\) 4538.85 1.21317 0.606584 0.795020i \(-0.292540\pi\)
0.606584 + 0.795020i \(0.292540\pi\)
\(242\) 12285.1 3.26329
\(243\) −6699.68 −1.76866
\(244\) −5001.98 −1.31237
\(245\) 0 0
\(246\) −15553.9 −4.03123
\(247\) 686.479 0.176841
\(248\) −349.015 −0.0893648
\(249\) 4923.01 1.25294
\(250\) 0 0
\(251\) 7232.00 1.81865 0.909323 0.416091i \(-0.136600\pi\)
0.909323 + 0.416091i \(0.136600\pi\)
\(252\) 7003.60 1.75073
\(253\) −6180.96 −1.53594
\(254\) −1116.93 −0.275915
\(255\) 0 0
\(256\) −7793.41 −1.90269
\(257\) 4242.66 1.02977 0.514883 0.857260i \(-0.327835\pi\)
0.514883 + 0.857260i \(0.327835\pi\)
\(258\) −2377.73 −0.573764
\(259\) 1682.03 0.403537
\(260\) 0 0
\(261\) −4474.39 −1.06114
\(262\) −4715.20 −1.11185
\(263\) 6604.75 1.54854 0.774271 0.632855i \(-0.218117\pi\)
0.774271 + 0.632855i \(0.218117\pi\)
\(264\) −21470.4 −5.00536
\(265\) 0 0
\(266\) 1650.85 0.380526
\(267\) −5203.92 −1.19279
\(268\) −8368.07 −1.90732
\(269\) 4612.29 1.04541 0.522707 0.852512i \(-0.324922\pi\)
0.522707 + 0.852512i \(0.324922\pi\)
\(270\) 0 0
\(271\) −3542.29 −0.794018 −0.397009 0.917815i \(-0.629952\pi\)
−0.397009 + 0.917815i \(0.629952\pi\)
\(272\) 3233.62 0.720834
\(273\) −945.184 −0.209543
\(274\) 3368.52 0.742699
\(275\) 0 0
\(276\) 14702.6 3.20649
\(277\) 19.5351 0.00423737 0.00211868 0.999998i \(-0.499326\pi\)
0.00211868 + 0.999998i \(0.499326\pi\)
\(278\) −1445.38 −0.311829
\(279\) −627.618 −0.134676
\(280\) 0 0
\(281\) 6769.20 1.43707 0.718535 0.695491i \(-0.244813\pi\)
0.718535 + 0.695491i \(0.244813\pi\)
\(282\) 20946.8 4.42328
\(283\) 1269.89 0.266740 0.133370 0.991066i \(-0.457420\pi\)
0.133370 + 0.991066i \(0.457420\pi\)
\(284\) −2492.81 −0.520850
\(285\) 0 0
\(286\) 4243.98 0.877455
\(287\) 2347.14 0.482743
\(288\) −2704.02 −0.553249
\(289\) −879.424 −0.178999
\(290\) 0 0
\(291\) −17849.7 −3.59577
\(292\) 4721.35 0.946220
\(293\) 6349.74 1.26606 0.633030 0.774127i \(-0.281811\pi\)
0.633030 + 0.774127i \(0.281811\pi\)
\(294\) −2272.98 −0.450894
\(295\) 0 0
\(296\) 8657.82 1.70009
\(297\) −22520.3 −4.39987
\(298\) −8676.39 −1.68661
\(299\) −1400.58 −0.270894
\(300\) 0 0
\(301\) 358.808 0.0687087
\(302\) 5816.15 1.10822
\(303\) 16150.4 3.06211
\(304\) 2480.03 0.467893
\(305\) 0 0
\(306\) 19923.5 3.72206
\(307\) −4772.37 −0.887211 −0.443605 0.896222i \(-0.646301\pi\)
−0.443605 + 0.896222i \(0.646301\pi\)
\(308\) 6722.95 1.24375
\(309\) 9716.78 1.78889
\(310\) 0 0
\(311\) 740.703 0.135053 0.0675264 0.997717i \(-0.478489\pi\)
0.0675264 + 0.997717i \(0.478489\pi\)
\(312\) −4865.10 −0.882795
\(313\) −2279.68 −0.411678 −0.205839 0.978586i \(-0.565992\pi\)
−0.205839 + 0.978586i \(0.565992\pi\)
\(314\) 1984.11 0.356592
\(315\) 0 0
\(316\) −7793.81 −1.38746
\(317\) −10198.1 −1.80689 −0.903446 0.428702i \(-0.858971\pi\)
−0.903446 + 0.428702i \(0.858971\pi\)
\(318\) 8350.39 1.47254
\(319\) −4295.09 −0.753852
\(320\) 0 0
\(321\) −8748.85 −1.52122
\(322\) −3368.10 −0.582910
\(323\) 3093.56 0.532911
\(324\) 26554.9 4.55331
\(325\) 0 0
\(326\) −9832.01 −1.67038
\(327\) 13385.7 2.26371
\(328\) 12081.3 2.03378
\(329\) −3160.95 −0.529692
\(330\) 0 0
\(331\) −78.0380 −0.0129588 −0.00647939 0.999979i \(-0.502062\pi\)
−0.00647939 + 0.999979i \(0.502062\pi\)
\(332\) −7934.59 −1.31165
\(333\) 15569.0 2.56209
\(334\) 2517.74 0.412469
\(335\) 0 0
\(336\) −3414.64 −0.554417
\(337\) −4164.73 −0.673196 −0.336598 0.941648i \(-0.609276\pi\)
−0.336598 + 0.941648i \(0.609276\pi\)
\(338\) −9675.49 −1.55703
\(339\) −19952.0 −3.19658
\(340\) 0 0
\(341\) −602.468 −0.0956759
\(342\) 15280.4 2.41599
\(343\) 343.000 0.0539949
\(344\) 1846.87 0.289467
\(345\) 0 0
\(346\) −12403.9 −1.92728
\(347\) 1795.19 0.277726 0.138863 0.990312i \(-0.455655\pi\)
0.138863 + 0.990312i \(0.455655\pi\)
\(348\) 10216.7 1.57377
\(349\) −11751.4 −1.80241 −0.901203 0.433398i \(-0.857314\pi\)
−0.901203 + 0.433398i \(0.857314\pi\)
\(350\) 0 0
\(351\) −5102.99 −0.776004
\(352\) −2595.66 −0.393038
\(353\) 2882.32 0.434590 0.217295 0.976106i \(-0.430277\pi\)
0.217295 + 0.976106i \(0.430277\pi\)
\(354\) −12459.6 −1.87069
\(355\) 0 0
\(356\) 8387.34 1.24868
\(357\) −4259.39 −0.631458
\(358\) −14728.7 −2.17441
\(359\) −1193.78 −0.175503 −0.0877513 0.996142i \(-0.527968\pi\)
−0.0877513 + 0.996142i \(0.527968\pi\)
\(360\) 0 0
\(361\) −4486.39 −0.654088
\(362\) −17662.5 −2.56442
\(363\) −24310.1 −3.51502
\(364\) 1523.39 0.219360
\(365\) 0 0
\(366\) 15026.0 2.14596
\(367\) 8858.80 1.26001 0.630007 0.776589i \(-0.283052\pi\)
0.630007 + 0.776589i \(0.283052\pi\)
\(368\) −5059.83 −0.716744
\(369\) 21725.3 3.06497
\(370\) 0 0
\(371\) −1260.10 −0.176337
\(372\) 1433.09 0.199737
\(373\) −2287.78 −0.317578 −0.158789 0.987313i \(-0.550759\pi\)
−0.158789 + 0.987313i \(0.550759\pi\)
\(374\) 19125.1 2.64422
\(375\) 0 0
\(376\) −16270.2 −2.23157
\(377\) −973.246 −0.132957
\(378\) −12271.7 −1.66981
\(379\) 8870.18 1.20219 0.601095 0.799177i \(-0.294731\pi\)
0.601095 + 0.799177i \(0.294731\pi\)
\(380\) 0 0
\(381\) 2210.21 0.297198
\(382\) −19807.8 −2.65303
\(383\) 13359.2 1.78231 0.891155 0.453700i \(-0.149896\pi\)
0.891155 + 0.453700i \(0.149896\pi\)
\(384\) 25068.7 3.33146
\(385\) 0 0
\(386\) 14775.3 1.94830
\(387\) 3321.15 0.436237
\(388\) 28769.0 3.76424
\(389\) 11324.7 1.47605 0.738025 0.674773i \(-0.235759\pi\)
0.738025 + 0.674773i \(0.235759\pi\)
\(390\) 0 0
\(391\) −6311.57 −0.816342
\(392\) 1765.51 0.227479
\(393\) 9330.57 1.19762
\(394\) 14580.4 1.86434
\(395\) 0 0
\(396\) 62228.2 7.89667
\(397\) −13242.8 −1.67415 −0.837076 0.547087i \(-0.815737\pi\)
−0.837076 + 0.547087i \(0.815737\pi\)
\(398\) 968.056 0.121920
\(399\) −3266.74 −0.409879
\(400\) 0 0
\(401\) 1952.96 0.243207 0.121604 0.992579i \(-0.461196\pi\)
0.121604 + 0.992579i \(0.461196\pi\)
\(402\) 25137.8 3.11880
\(403\) −136.516 −0.0168744
\(404\) −26030.3 −3.20558
\(405\) 0 0
\(406\) −2340.46 −0.286097
\(407\) 14945.1 1.82015
\(408\) −21924.1 −2.66031
\(409\) −10597.8 −1.28124 −0.640618 0.767860i \(-0.721322\pi\)
−0.640618 + 0.767860i \(0.721322\pi\)
\(410\) 0 0
\(411\) −6665.72 −0.799989
\(412\) −15660.9 −1.87271
\(413\) 1880.20 0.224016
\(414\) −31175.5 −3.70094
\(415\) 0 0
\(416\) −588.164 −0.0693200
\(417\) 2860.17 0.335882
\(418\) 14668.1 1.71636
\(419\) −1631.18 −0.190187 −0.0950935 0.995468i \(-0.530315\pi\)
−0.0950935 + 0.995468i \(0.530315\pi\)
\(420\) 0 0
\(421\) 13181.2 1.52592 0.762961 0.646445i \(-0.223745\pi\)
0.762961 + 0.646445i \(0.223745\pi\)
\(422\) −1440.12 −0.166123
\(423\) −29258.0 −3.36305
\(424\) −6486.06 −0.742903
\(425\) 0 0
\(426\) 7488.44 0.851681
\(427\) −2267.47 −0.256980
\(428\) 14100.8 1.59250
\(429\) −8398.12 −0.945140
\(430\) 0 0
\(431\) 9159.40 1.02365 0.511825 0.859090i \(-0.328970\pi\)
0.511825 + 0.859090i \(0.328970\pi\)
\(432\) −18435.5 −2.05319
\(433\) 270.519 0.0300238 0.0150119 0.999887i \(-0.495221\pi\)
0.0150119 + 0.999887i \(0.495221\pi\)
\(434\) −328.295 −0.0363103
\(435\) 0 0
\(436\) −21574.3 −2.36977
\(437\) −4840.67 −0.529887
\(438\) −14183.0 −1.54724
\(439\) 17008.0 1.84908 0.924541 0.381082i \(-0.124448\pi\)
0.924541 + 0.381082i \(0.124448\pi\)
\(440\) 0 0
\(441\) 3174.84 0.342818
\(442\) 4333.66 0.466360
\(443\) 3968.12 0.425578 0.212789 0.977098i \(-0.431745\pi\)
0.212789 + 0.977098i \(0.431745\pi\)
\(444\) −35549.8 −3.79981
\(445\) 0 0
\(446\) −30418.7 −3.22952
\(447\) 17169.1 1.81671
\(448\) −4265.64 −0.449850
\(449\) −12480.3 −1.31177 −0.655884 0.754862i \(-0.727704\pi\)
−0.655884 + 0.754862i \(0.727704\pi\)
\(450\) 0 0
\(451\) 20854.8 2.17741
\(452\) 32157.3 3.34636
\(453\) −11509.2 −1.19370
\(454\) −11413.2 −1.17984
\(455\) 0 0
\(456\) −16814.7 −1.72680
\(457\) 5782.90 0.591932 0.295966 0.955199i \(-0.404359\pi\)
0.295966 + 0.955199i \(0.404359\pi\)
\(458\) −11991.9 −1.22346
\(459\) −22996.2 −2.33849
\(460\) 0 0
\(461\) 10049.6 1.01531 0.507653 0.861562i \(-0.330513\pi\)
0.507653 + 0.861562i \(0.330513\pi\)
\(462\) −20195.8 −2.03375
\(463\) −659.842 −0.0662321 −0.0331161 0.999452i \(-0.510543\pi\)
−0.0331161 + 0.999452i \(0.510543\pi\)
\(464\) −3516.03 −0.351783
\(465\) 0 0
\(466\) −24898.2 −2.47508
\(467\) −4467.60 −0.442690 −0.221345 0.975196i \(-0.571045\pi\)
−0.221345 + 0.975196i \(0.571045\pi\)
\(468\) 14100.6 1.39274
\(469\) −3793.37 −0.373479
\(470\) 0 0
\(471\) −3926.21 −0.384099
\(472\) 9677.87 0.943771
\(473\) 3188.07 0.309910
\(474\) 23412.7 2.26873
\(475\) 0 0
\(476\) 6865.01 0.661044
\(477\) −11663.6 −1.11958
\(478\) −4024.64 −0.385110
\(479\) 7633.87 0.728185 0.364092 0.931363i \(-0.381379\pi\)
0.364092 + 0.931363i \(0.381379\pi\)
\(480\) 0 0
\(481\) 3386.49 0.321020
\(482\) 21975.6 2.07669
\(483\) 6664.90 0.627875
\(484\) 39181.5 3.67971
\(485\) 0 0
\(486\) −32437.6 −3.02758
\(487\) 6289.84 0.585256 0.292628 0.956226i \(-0.405470\pi\)
0.292628 + 0.956226i \(0.405470\pi\)
\(488\) −11671.2 −1.08265
\(489\) 19455.9 1.79923
\(490\) 0 0
\(491\) 3562.54 0.327445 0.163722 0.986506i \(-0.447650\pi\)
0.163722 + 0.986506i \(0.447650\pi\)
\(492\) −49607.0 −4.54564
\(493\) −4385.85 −0.400667
\(494\) 3323.71 0.302714
\(495\) 0 0
\(496\) −493.190 −0.0446469
\(497\) −1130.03 −0.101990
\(498\) 23835.6 2.14478
\(499\) −18916.9 −1.69706 −0.848532 0.529144i \(-0.822513\pi\)
−0.848532 + 0.529144i \(0.822513\pi\)
\(500\) 0 0
\(501\) −4982.17 −0.444286
\(502\) 35015.0 3.11314
\(503\) 2565.91 0.227452 0.113726 0.993512i \(-0.463721\pi\)
0.113726 + 0.993512i \(0.463721\pi\)
\(504\) 16341.7 1.44428
\(505\) 0 0
\(506\) −29926.2 −2.62921
\(507\) 19146.1 1.67714
\(508\) −3562.28 −0.311123
\(509\) 5447.84 0.474403 0.237202 0.971460i \(-0.423770\pi\)
0.237202 + 0.971460i \(0.423770\pi\)
\(510\) 0 0
\(511\) 2140.26 0.185283
\(512\) −16800.8 −1.45019
\(513\) −17636.9 −1.51791
\(514\) 20541.6 1.76274
\(515\) 0 0
\(516\) −7583.42 −0.646980
\(517\) −28085.5 −2.38917
\(518\) 8143.83 0.690771
\(519\) 24545.2 2.07594
\(520\) 0 0
\(521\) −4732.95 −0.397993 −0.198997 0.980000i \(-0.563768\pi\)
−0.198997 + 0.980000i \(0.563768\pi\)
\(522\) −21663.5 −1.81645
\(523\) −9182.96 −0.767769 −0.383884 0.923381i \(-0.625414\pi\)
−0.383884 + 0.923381i \(0.625414\pi\)
\(524\) −15038.4 −1.25373
\(525\) 0 0
\(526\) 31978.0 2.65078
\(527\) −615.199 −0.0508510
\(528\) −30339.7 −2.50069
\(529\) −2290.93 −0.188290
\(530\) 0 0
\(531\) 17403.3 1.42230
\(532\) 5265.13 0.429083
\(533\) 4725.59 0.384030
\(534\) −25195.7 −2.04180
\(535\) 0 0
\(536\) −19525.4 −1.57345
\(537\) 29145.7 2.34214
\(538\) 22331.2 1.78953
\(539\) 3047.61 0.243544
\(540\) 0 0
\(541\) 14572.9 1.15811 0.579055 0.815288i \(-0.303422\pi\)
0.579055 + 0.815288i \(0.303422\pi\)
\(542\) −17150.6 −1.35919
\(543\) 34951.1 2.76224
\(544\) −2650.51 −0.208896
\(545\) 0 0
\(546\) −4576.27 −0.358693
\(547\) 11290.3 0.882519 0.441260 0.897380i \(-0.354532\pi\)
0.441260 + 0.897380i \(0.354532\pi\)
\(548\) 10743.4 0.837472
\(549\) −20987.9 −1.63159
\(550\) 0 0
\(551\) −3363.73 −0.260072
\(552\) 34305.9 2.64521
\(553\) −3533.05 −0.271683
\(554\) 94.5826 0.00725349
\(555\) 0 0
\(556\) −4609.84 −0.351620
\(557\) 3919.93 0.298191 0.149096 0.988823i \(-0.452364\pi\)
0.149096 + 0.988823i \(0.452364\pi\)
\(558\) −3038.72 −0.230537
\(559\) 722.401 0.0546588
\(560\) 0 0
\(561\) −37845.4 −2.84819
\(562\) 32774.2 2.45996
\(563\) −7444.71 −0.557295 −0.278647 0.960393i \(-0.589886\pi\)
−0.278647 + 0.960393i \(0.589886\pi\)
\(564\) 66806.8 4.98772
\(565\) 0 0
\(566\) 6148.41 0.456602
\(567\) 12037.7 0.891601
\(568\) −5816.55 −0.429678
\(569\) 8529.24 0.628408 0.314204 0.949355i \(-0.398262\pi\)
0.314204 + 0.949355i \(0.398262\pi\)
\(570\) 0 0
\(571\) 10324.8 0.756706 0.378353 0.925661i \(-0.376491\pi\)
0.378353 + 0.925661i \(0.376491\pi\)
\(572\) 13535.6 0.989423
\(573\) 39196.3 2.85768
\(574\) 11364.1 0.826355
\(575\) 0 0
\(576\) −39483.1 −2.85613
\(577\) 6467.10 0.466601 0.233301 0.972405i \(-0.425047\pi\)
0.233301 + 0.972405i \(0.425047\pi\)
\(578\) −4257.88 −0.306409
\(579\) −29237.9 −2.09859
\(580\) 0 0
\(581\) −3596.87 −0.256839
\(582\) −86422.5 −6.15520
\(583\) −11196.2 −0.795369
\(584\) 11016.5 0.780589
\(585\) 0 0
\(586\) 30743.4 2.16723
\(587\) 7114.68 0.500263 0.250131 0.968212i \(-0.419526\pi\)
0.250131 + 0.968212i \(0.419526\pi\)
\(588\) −7249.33 −0.508431
\(589\) −471.828 −0.0330073
\(590\) 0 0
\(591\) −28852.2 −2.00816
\(592\) 12234.3 0.849369
\(593\) −21270.8 −1.47299 −0.736497 0.676441i \(-0.763522\pi\)
−0.736497 + 0.676441i \(0.763522\pi\)
\(594\) −109036. −7.53165
\(595\) 0 0
\(596\) −27672.1 −1.90183
\(597\) −1915.62 −0.131325
\(598\) −6781.13 −0.463714
\(599\) −4697.43 −0.320420 −0.160210 0.987083i \(-0.551217\pi\)
−0.160210 + 0.987083i \(0.551217\pi\)
\(600\) 0 0
\(601\) 8719.81 0.591828 0.295914 0.955215i \(-0.404376\pi\)
0.295914 + 0.955215i \(0.404376\pi\)
\(602\) 1737.23 0.117615
\(603\) −35111.8 −2.37125
\(604\) 18549.7 1.24963
\(605\) 0 0
\(606\) 78195.2 5.24169
\(607\) −23097.1 −1.54445 −0.772227 0.635347i \(-0.780857\pi\)
−0.772227 + 0.635347i \(0.780857\pi\)
\(608\) −2032.81 −0.135594
\(609\) 4631.38 0.308166
\(610\) 0 0
\(611\) −6364.05 −0.421378
\(612\) 63543.1 4.19702
\(613\) −16846.2 −1.10997 −0.554986 0.831860i \(-0.687276\pi\)
−0.554986 + 0.831860i \(0.687276\pi\)
\(614\) −23106.3 −1.51872
\(615\) 0 0
\(616\) 15686.8 1.02604
\(617\) 3476.46 0.226834 0.113417 0.993547i \(-0.463820\pi\)
0.113417 + 0.993547i \(0.463820\pi\)
\(618\) 47045.5 3.06221
\(619\) −5407.16 −0.351102 −0.175551 0.984470i \(-0.556171\pi\)
−0.175551 + 0.984470i \(0.556171\pi\)
\(620\) 0 0
\(621\) 35983.4 2.32522
\(622\) 3586.24 0.231182
\(623\) 3802.11 0.244508
\(624\) −6874.83 −0.441047
\(625\) 0 0
\(626\) −11037.5 −0.704706
\(627\) −29025.6 −1.84876
\(628\) 6328.02 0.402095
\(629\) 15260.9 0.967396
\(630\) 0 0
\(631\) −10498.7 −0.662358 −0.331179 0.943568i \(-0.607446\pi\)
−0.331179 + 0.943568i \(0.607446\pi\)
\(632\) −18185.5 −1.14459
\(633\) 2849.74 0.178937
\(634\) −49376.1 −3.09302
\(635\) 0 0
\(636\) 26632.3 1.66044
\(637\) 690.574 0.0429538
\(638\) −20795.4 −1.29044
\(639\) −10459.7 −0.647539
\(640\) 0 0
\(641\) 14363.3 0.885050 0.442525 0.896756i \(-0.354083\pi\)
0.442525 + 0.896756i \(0.354083\pi\)
\(642\) −42359.1 −2.60402
\(643\) 16883.3 1.03548 0.517739 0.855539i \(-0.326774\pi\)
0.517739 + 0.855539i \(0.326774\pi\)
\(644\) −10742.1 −0.657293
\(645\) 0 0
\(646\) 14978.0 0.912231
\(647\) −27365.2 −1.66281 −0.831404 0.555668i \(-0.812462\pi\)
−0.831404 + 0.555668i \(0.812462\pi\)
\(648\) 61961.3 3.75628
\(649\) 16705.9 1.01042
\(650\) 0 0
\(651\) 649.639 0.0391112
\(652\) −31357.8 −1.88353
\(653\) 28643.3 1.71654 0.858269 0.513200i \(-0.171540\pi\)
0.858269 + 0.513200i \(0.171540\pi\)
\(654\) 64809.3 3.87499
\(655\) 0 0
\(656\) 17072.0 1.01608
\(657\) 19810.4 1.17637
\(658\) −15304.3 −0.906721
\(659\) −4102.07 −0.242480 −0.121240 0.992623i \(-0.538687\pi\)
−0.121240 + 0.992623i \(0.538687\pi\)
\(660\) 0 0
\(661\) −13784.0 −0.811098 −0.405549 0.914073i \(-0.632920\pi\)
−0.405549 + 0.914073i \(0.632920\pi\)
\(662\) −377.834 −0.0221827
\(663\) −8575.58 −0.502334
\(664\) −18514.0 −1.08205
\(665\) 0 0
\(666\) 75379.9 4.38576
\(667\) 6862.79 0.398393
\(668\) 8029.95 0.465102
\(669\) 60193.4 3.47864
\(670\) 0 0
\(671\) −20146.9 −1.15911
\(672\) 2798.89 0.160669
\(673\) 4676.98 0.267882 0.133941 0.990989i \(-0.457237\pi\)
0.133941 + 0.990989i \(0.457237\pi\)
\(674\) −20164.2 −1.15237
\(675\) 0 0
\(676\) −30858.5 −1.75572
\(677\) 3849.54 0.218537 0.109269 0.994012i \(-0.465149\pi\)
0.109269 + 0.994012i \(0.465149\pi\)
\(678\) −96600.9 −5.47188
\(679\) 13041.4 0.737091
\(680\) 0 0
\(681\) 22584.7 1.27085
\(682\) −2916.96 −0.163777
\(683\) −10647.5 −0.596508 −0.298254 0.954487i \(-0.596404\pi\)
−0.298254 + 0.954487i \(0.596404\pi\)
\(684\) 48734.5 2.72428
\(685\) 0 0
\(686\) 1660.69 0.0924280
\(687\) 23730.0 1.31784
\(688\) 2609.80 0.144619
\(689\) −2537.01 −0.140279
\(690\) 0 0
\(691\) 22410.8 1.23379 0.616894 0.787046i \(-0.288391\pi\)
0.616894 + 0.787046i \(0.288391\pi\)
\(692\) −39560.4 −2.17321
\(693\) 28209.0 1.54628
\(694\) 8691.72 0.475408
\(695\) 0 0
\(696\) 23838.9 1.29829
\(697\) 21295.4 1.15728
\(698\) −56896.6 −3.08534
\(699\) 49269.2 2.66600
\(700\) 0 0
\(701\) 6040.55 0.325461 0.162731 0.986671i \(-0.447970\pi\)
0.162731 + 0.986671i \(0.447970\pi\)
\(702\) −24707.0 −1.32836
\(703\) 11704.4 0.627936
\(704\) −37901.0 −2.02904
\(705\) 0 0
\(706\) 13955.2 0.743926
\(707\) −11799.9 −0.627697
\(708\) −39738.2 −2.10940
\(709\) 19582.2 1.03727 0.518634 0.854996i \(-0.326441\pi\)
0.518634 + 0.854996i \(0.326441\pi\)
\(710\) 0 0
\(711\) −32702.2 −1.72493
\(712\) 19570.4 1.03010
\(713\) 962.637 0.0505625
\(714\) −20622.6 −1.08092
\(715\) 0 0
\(716\) −46975.2 −2.45188
\(717\) 7964.07 0.414817
\(718\) −5779.91 −0.300424
\(719\) 9257.31 0.480166 0.240083 0.970752i \(-0.422825\pi\)
0.240083 + 0.970752i \(0.422825\pi\)
\(720\) 0 0
\(721\) −7099.32 −0.366702
\(722\) −21721.6 −1.11966
\(723\) −43486.1 −2.23688
\(724\) −56332.0 −2.89166
\(725\) 0 0
\(726\) −117702. −6.01697
\(727\) 11915.5 0.607870 0.303935 0.952693i \(-0.401699\pi\)
0.303935 + 0.952693i \(0.401699\pi\)
\(728\) 3554.56 0.180963
\(729\) 17757.3 0.902162
\(730\) 0 0
\(731\) 3255.43 0.164715
\(732\) 47923.2 2.41980
\(733\) −15608.0 −0.786486 −0.393243 0.919435i \(-0.628647\pi\)
−0.393243 + 0.919435i \(0.628647\pi\)
\(734\) 42891.4 2.15688
\(735\) 0 0
\(736\) 4147.40 0.207711
\(737\) −33704.8 −1.68457
\(738\) 105187. 5.24659
\(739\) −26189.9 −1.30367 −0.651835 0.758361i \(-0.726000\pi\)
−0.651835 + 0.758361i \(0.726000\pi\)
\(740\) 0 0
\(741\) −6577.05 −0.326065
\(742\) −6101.00 −0.301853
\(743\) 37914.9 1.87209 0.936044 0.351882i \(-0.114458\pi\)
0.936044 + 0.351882i \(0.114458\pi\)
\(744\) 3343.86 0.164774
\(745\) 0 0
\(746\) −11076.7 −0.543627
\(747\) −33292.9 −1.63069
\(748\) 60996.8 2.98164
\(749\) 6392.12 0.311833
\(750\) 0 0
\(751\) −21401.6 −1.03989 −0.519944 0.854200i \(-0.674047\pi\)
−0.519944 + 0.854200i \(0.674047\pi\)
\(752\) −22991.3 −1.11490
\(753\) −69288.7 −3.35328
\(754\) −4712.14 −0.227594
\(755\) 0 0
\(756\) −39138.7 −1.88288
\(757\) 24094.8 1.15686 0.578428 0.815734i \(-0.303667\pi\)
0.578428 + 0.815734i \(0.303667\pi\)
\(758\) 42946.5 2.05790
\(759\) 59218.8 2.83203
\(760\) 0 0
\(761\) 19101.1 0.909872 0.454936 0.890524i \(-0.349662\pi\)
0.454936 + 0.890524i \(0.349662\pi\)
\(762\) 10701.1 0.508741
\(763\) −9779.94 −0.464033
\(764\) −63174.2 −2.99157
\(765\) 0 0
\(766\) 64681.0 3.05094
\(767\) 3785.48 0.178208
\(768\) 74667.5 3.50824
\(769\) −32718.1 −1.53426 −0.767129 0.641493i \(-0.778315\pi\)
−0.767129 + 0.641493i \(0.778315\pi\)
\(770\) 0 0
\(771\) −40648.3 −1.89872
\(772\) 47123.8 2.19692
\(773\) −4707.97 −0.219061 −0.109530 0.993983i \(-0.534935\pi\)
−0.109530 + 0.993983i \(0.534935\pi\)
\(774\) 16079.9 0.746746
\(775\) 0 0
\(776\) 67127.6 3.10533
\(777\) −16115.2 −0.744056
\(778\) 54830.3 2.52669
\(779\) 16332.6 0.751187
\(780\) 0 0
\(781\) −10040.5 −0.460023
\(782\) −30558.5 −1.39741
\(783\) 25004.5 1.14124
\(784\) 2494.82 0.113649
\(785\) 0 0
\(786\) 45175.6 2.05007
\(787\) 3218.47 0.145776 0.0728882 0.997340i \(-0.476778\pi\)
0.0728882 + 0.997340i \(0.476778\pi\)
\(788\) 46502.1 2.10224
\(789\) −63279.1 −2.85525
\(790\) 0 0
\(791\) 14577.4 0.655262
\(792\) 145199. 6.51440
\(793\) −4565.18 −0.204432
\(794\) −64117.4 −2.86580
\(795\) 0 0
\(796\) 3087.47 0.137478
\(797\) −15548.9 −0.691054 −0.345527 0.938409i \(-0.612300\pi\)
−0.345527 + 0.938409i \(0.612300\pi\)
\(798\) −15816.5 −0.701627
\(799\) −28679.0 −1.26982
\(800\) 0 0
\(801\) 35192.6 1.55240
\(802\) 9455.58 0.416319
\(803\) 19016.6 0.835717
\(804\) 80173.2 3.51678
\(805\) 0 0
\(806\) −660.968 −0.0288854
\(807\) −44189.6 −1.92757
\(808\) −60737.1 −2.64446
\(809\) −3106.83 −0.135019 −0.0675095 0.997719i \(-0.521505\pi\)
−0.0675095 + 0.997719i \(0.521505\pi\)
\(810\) 0 0
\(811\) −44061.1 −1.90776 −0.953882 0.300183i \(-0.902952\pi\)
−0.953882 + 0.300183i \(0.902952\pi\)
\(812\) −7464.56 −0.322604
\(813\) 33938.1 1.46404
\(814\) 72359.3 3.11572
\(815\) 0 0
\(816\) −30980.8 −1.32910
\(817\) 2496.76 0.106916
\(818\) −51310.9 −2.19321
\(819\) 6392.01 0.272717
\(820\) 0 0
\(821\) 13977.3 0.594169 0.297084 0.954851i \(-0.403986\pi\)
0.297084 + 0.954851i \(0.403986\pi\)
\(822\) −32273.2 −1.36941
\(823\) 3287.14 0.139225 0.0696127 0.997574i \(-0.477824\pi\)
0.0696127 + 0.997574i \(0.477824\pi\)
\(824\) −36542.0 −1.54490
\(825\) 0 0
\(826\) 9103.32 0.383469
\(827\) −2454.69 −0.103214 −0.0516069 0.998667i \(-0.516434\pi\)
−0.0516069 + 0.998667i \(0.516434\pi\)
\(828\) −99429.5 −4.17320
\(829\) −38510.6 −1.61342 −0.806711 0.590946i \(-0.798755\pi\)
−0.806711 + 0.590946i \(0.798755\pi\)
\(830\) 0 0
\(831\) −187.163 −0.00781301
\(832\) −8588.18 −0.357862
\(833\) 3112.01 0.129442
\(834\) 13848.0 0.574960
\(835\) 0 0
\(836\) 46781.6 1.93538
\(837\) 3507.36 0.144841
\(838\) −7897.64 −0.325560
\(839\) 32983.5 1.35723 0.678616 0.734493i \(-0.262580\pi\)
0.678616 + 0.734493i \(0.262580\pi\)
\(840\) 0 0
\(841\) −19620.1 −0.804466
\(842\) 63819.1 2.61206
\(843\) −64854.6 −2.64972
\(844\) −4593.04 −0.187321
\(845\) 0 0
\(846\) −141658. −5.75684
\(847\) 17761.6 0.720537
\(848\) −9165.39 −0.371157
\(849\) −12166.7 −0.491824
\(850\) 0 0
\(851\) −23879.6 −0.961906
\(852\) 23883.3 0.960361
\(853\) −13620.1 −0.546710 −0.273355 0.961913i \(-0.588133\pi\)
−0.273355 + 0.961913i \(0.588133\pi\)
\(854\) −10978.4 −0.439897
\(855\) 0 0
\(856\) 32901.9 1.31374
\(857\) 24493.2 0.976279 0.488139 0.872766i \(-0.337676\pi\)
0.488139 + 0.872766i \(0.337676\pi\)
\(858\) −40661.0 −1.61788
\(859\) 3742.34 0.148646 0.0743231 0.997234i \(-0.476320\pi\)
0.0743231 + 0.997234i \(0.476320\pi\)
\(860\) 0 0
\(861\) −22487.6 −0.890099
\(862\) 44346.8 1.75227
\(863\) 165.238 0.00651770 0.00325885 0.999995i \(-0.498963\pi\)
0.00325885 + 0.999995i \(0.498963\pi\)
\(864\) 15111.0 0.595009
\(865\) 0 0
\(866\) 1309.77 0.0513945
\(867\) 8425.63 0.330045
\(868\) −1047.05 −0.0409437
\(869\) −31391.8 −1.22542
\(870\) 0 0
\(871\) −7637.33 −0.297108
\(872\) −50339.8 −1.95495
\(873\) 120713. 4.67984
\(874\) −23436.9 −0.907055
\(875\) 0 0
\(876\) −45234.5 −1.74467
\(877\) 7230.06 0.278383 0.139192 0.990265i \(-0.455550\pi\)
0.139192 + 0.990265i \(0.455550\pi\)
\(878\) 82347.2 3.16524
\(879\) −60835.9 −2.33441
\(880\) 0 0
\(881\) −18707.9 −0.715422 −0.357711 0.933832i \(-0.616443\pi\)
−0.357711 + 0.933832i \(0.616443\pi\)
\(882\) 15371.5 0.586832
\(883\) −28766.9 −1.09636 −0.548179 0.836361i \(-0.684679\pi\)
−0.548179 + 0.836361i \(0.684679\pi\)
\(884\) 13821.6 0.525871
\(885\) 0 0
\(886\) 19212.3 0.728500
\(887\) −33980.4 −1.28630 −0.643152 0.765738i \(-0.722374\pi\)
−0.643152 + 0.765738i \(0.722374\pi\)
\(888\) −82949.2 −3.13468
\(889\) −1614.84 −0.0609222
\(890\) 0 0
\(891\) 106957. 4.02156
\(892\) −97015.8 −3.64163
\(893\) −21995.4 −0.824242
\(894\) 83127.1 3.10983
\(895\) 0 0
\(896\) −18315.8 −0.682910
\(897\) 13418.7 0.499484
\(898\) −60425.7 −2.24547
\(899\) 668.927 0.0248164
\(900\) 0 0
\(901\) −11432.8 −0.422732
\(902\) 100972. 3.72727
\(903\) −3437.68 −0.126688
\(904\) 75033.5 2.76059
\(905\) 0 0
\(906\) −55723.6 −2.04337
\(907\) −35753.2 −1.30889 −0.654446 0.756109i \(-0.727098\pi\)
−0.654446 + 0.756109i \(0.727098\pi\)
\(908\) −36400.6 −1.33039
\(909\) −109221. −3.98529
\(910\) 0 0
\(911\) 16039.7 0.583334 0.291667 0.956520i \(-0.405790\pi\)
0.291667 + 0.956520i \(0.405790\pi\)
\(912\) −23760.8 −0.862717
\(913\) −31958.8 −1.15847
\(914\) 27998.9 1.01326
\(915\) 0 0
\(916\) −38246.5 −1.37958
\(917\) −6817.14 −0.245498
\(918\) −111340. −4.00301
\(919\) 22104.9 0.793441 0.396720 0.917940i \(-0.370148\pi\)
0.396720 + 0.917940i \(0.370148\pi\)
\(920\) 0 0
\(921\) 45723.3 1.63587
\(922\) 48656.8 1.73799
\(923\) −2275.13 −0.0811342
\(924\) −64411.5 −2.29327
\(925\) 0 0
\(926\) −3194.74 −0.113376
\(927\) −65711.9 −2.32822
\(928\) 2881.99 0.101946
\(929\) 20234.8 0.714621 0.357310 0.933986i \(-0.383694\pi\)
0.357310 + 0.933986i \(0.383694\pi\)
\(930\) 0 0
\(931\) 2386.76 0.0840204
\(932\) −79409.1 −2.79091
\(933\) −7096.56 −0.249015
\(934\) −21630.7 −0.757792
\(935\) 0 0
\(936\) 32901.3 1.14894
\(937\) −37551.2 −1.30923 −0.654614 0.755964i \(-0.727169\pi\)
−0.654614 + 0.755964i \(0.727169\pi\)
\(938\) −18366.3 −0.639318
\(939\) 21841.3 0.759066
\(940\) 0 0
\(941\) 19093.3 0.661449 0.330725 0.943727i \(-0.392707\pi\)
0.330725 + 0.943727i \(0.392707\pi\)
\(942\) −19009.4 −0.657496
\(943\) −33322.2 −1.15071
\(944\) 13675.7 0.471511
\(945\) 0 0
\(946\) 15435.6 0.530501
\(947\) −10117.0 −0.347158 −0.173579 0.984820i \(-0.555533\pi\)
−0.173579 + 0.984820i \(0.555533\pi\)
\(948\) 74671.3 2.55824
\(949\) 4309.06 0.147395
\(950\) 0 0
\(951\) 97706.8 3.33161
\(952\) 16018.3 0.545332
\(953\) 6272.48 0.213206 0.106603 0.994302i \(-0.466003\pi\)
0.106603 + 0.994302i \(0.466003\pi\)
\(954\) −56471.3 −1.91649
\(955\) 0 0
\(956\) −12836.0 −0.434253
\(957\) 41150.6 1.38998
\(958\) 36960.7 1.24650
\(959\) 4870.14 0.163988
\(960\) 0 0
\(961\) −29697.2 −0.996850
\(962\) 16396.3 0.549519
\(963\) 59166.0 1.97985
\(964\) 70088.1 2.34169
\(965\) 0 0
\(966\) 32269.3 1.07479
\(967\) 26660.8 0.886613 0.443307 0.896370i \(-0.353805\pi\)
0.443307 + 0.896370i \(0.353805\pi\)
\(968\) 91423.3 3.03560
\(969\) −29638.9 −0.982599
\(970\) 0 0
\(971\) −461.190 −0.0152423 −0.00762116 0.999971i \(-0.502426\pi\)
−0.00762116 + 0.999971i \(0.502426\pi\)
\(972\) −103455. −3.41391
\(973\) −2089.71 −0.0688520
\(974\) 30453.3 1.00184
\(975\) 0 0
\(976\) −16492.5 −0.540895
\(977\) −4058.08 −0.132886 −0.0664429 0.997790i \(-0.521165\pi\)
−0.0664429 + 0.997790i \(0.521165\pi\)
\(978\) 94199.0 3.07991
\(979\) 33782.4 1.10285
\(980\) 0 0
\(981\) −90523.9 −2.94618
\(982\) 17248.7 0.560517
\(983\) 3259.92 0.105773 0.0528867 0.998601i \(-0.483158\pi\)
0.0528867 + 0.998601i \(0.483158\pi\)
\(984\) −115749. −3.74995
\(985\) 0 0
\(986\) −21234.8 −0.685857
\(987\) 30284.5 0.976664
\(988\) 10600.5 0.341342
\(989\) −5093.96 −0.163780
\(990\) 0 0
\(991\) −21398.9 −0.685933 −0.342967 0.939348i \(-0.611432\pi\)
−0.342967 + 0.939348i \(0.611432\pi\)
\(992\) 404.254 0.0129386
\(993\) 747.669 0.0238938
\(994\) −5471.24 −0.174585
\(995\) 0 0
\(996\) 76020.1 2.41846
\(997\) −28609.5 −0.908798 −0.454399 0.890798i \(-0.650146\pi\)
−0.454399 + 0.890798i \(0.650146\pi\)
\(998\) −91589.2 −2.90502
\(999\) −87005.2 −2.75548
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.4.a.h.1.4 yes 4
3.2 odd 2 1575.4.a.bg.1.1 4
5.2 odd 4 175.4.b.f.99.7 8
5.3 odd 4 175.4.b.f.99.2 8
5.4 even 2 175.4.a.g.1.1 4
7.6 odd 2 1225.4.a.bd.1.4 4
15.14 odd 2 1575.4.a.bl.1.4 4
35.34 odd 2 1225.4.a.z.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.4.a.g.1.1 4 5.4 even 2
175.4.a.h.1.4 yes 4 1.1 even 1 trivial
175.4.b.f.99.2 8 5.3 odd 4
175.4.b.f.99.7 8 5.2 odd 4
1225.4.a.z.1.1 4 35.34 odd 2
1225.4.a.bd.1.4 4 7.6 odd 2
1575.4.a.bg.1.1 4 3.2 odd 2
1575.4.a.bl.1.4 4 15.14 odd 2