Properties

Label 175.4.a.h.1.1
Level $175$
Weight $4$
Character 175.1
Self dual yes
Analytic conductor $10.325$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(1,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 32x^{2} - 35x + 120 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(5.87199\) of defining polynomial
Character \(\chi\) \(=\) 175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.87199 q^{2} -4.14916 q^{3} +15.7363 q^{4} +20.2147 q^{6} +7.00000 q^{7} -37.6910 q^{8} -9.78444 q^{9} +36.9922 q^{11} -65.2924 q^{12} -61.3165 q^{13} -34.1039 q^{14} +57.7401 q^{16} -44.8345 q^{17} +47.6697 q^{18} -139.701 q^{19} -29.0441 q^{21} -180.226 q^{22} +217.580 q^{23} +156.386 q^{24} +298.733 q^{26} +152.625 q^{27} +110.154 q^{28} -33.8226 q^{29} +124.437 q^{31} +20.2192 q^{32} -153.487 q^{33} +218.433 q^{34} -153.971 q^{36} +237.270 q^{37} +680.620 q^{38} +254.412 q^{39} +195.117 q^{41} +141.503 q^{42} -343.725 q^{43} +582.119 q^{44} -1060.05 q^{46} +16.8224 q^{47} -239.573 q^{48} +49.0000 q^{49} +186.026 q^{51} -964.894 q^{52} +346.965 q^{53} -743.586 q^{54} -263.837 q^{56} +579.641 q^{57} +164.783 q^{58} +135.340 q^{59} +490.414 q^{61} -606.255 q^{62} -68.4911 q^{63} -560.428 q^{64} +747.785 q^{66} +477.969 q^{67} -705.529 q^{68} -902.777 q^{69} +45.2557 q^{71} +368.786 q^{72} +100.781 q^{73} -1155.98 q^{74} -2198.37 q^{76} +258.945 q^{77} -1239.49 q^{78} +880.534 q^{79} -369.085 q^{81} -950.609 q^{82} -1155.03 q^{83} -457.047 q^{84} +1674.62 q^{86} +140.336 q^{87} -1394.27 q^{88} +619.374 q^{89} -429.216 q^{91} +3423.90 q^{92} -516.309 q^{93} -81.9585 q^{94} -83.8929 q^{96} -231.195 q^{97} -238.727 q^{98} -361.948 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 3 q^{3} + 36 q^{4} + q^{6} + 28 q^{7} + 27 q^{8} + 61 q^{9} + 100 q^{11} - 165 q^{12} + 44 q^{13} + 28 q^{14} + 160 q^{16} - 53 q^{17} + 433 q^{18} - 29 q^{19} - 21 q^{21} - 152 q^{22}+ \cdots + 2383 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.87199 −1.72251 −0.861254 0.508175i \(-0.830320\pi\)
−0.861254 + 0.508175i \(0.830320\pi\)
\(3\) −4.14916 −0.798507 −0.399253 0.916841i \(-0.630731\pi\)
−0.399253 + 0.916841i \(0.630731\pi\)
\(4\) 15.7363 1.96703
\(5\) 0 0
\(6\) 20.2147 1.37543
\(7\) 7.00000 0.377964
\(8\) −37.6910 −1.66572
\(9\) −9.78444 −0.362387
\(10\) 0 0
\(11\) 36.9922 1.01396 0.506980 0.861958i \(-0.330762\pi\)
0.506980 + 0.861958i \(0.330762\pi\)
\(12\) −65.2924 −1.57069
\(13\) −61.3165 −1.30817 −0.654083 0.756423i \(-0.726945\pi\)
−0.654083 + 0.756423i \(0.726945\pi\)
\(14\) −34.1039 −0.651047
\(15\) 0 0
\(16\) 57.7401 0.902189
\(17\) −44.8345 −0.639646 −0.319823 0.947477i \(-0.603623\pi\)
−0.319823 + 0.947477i \(0.603623\pi\)
\(18\) 47.6697 0.624214
\(19\) −139.701 −1.68682 −0.843408 0.537273i \(-0.819455\pi\)
−0.843408 + 0.537273i \(0.819455\pi\)
\(20\) 0 0
\(21\) −29.0441 −0.301807
\(22\) −180.226 −1.74656
\(23\) 217.580 1.97255 0.986275 0.165110i \(-0.0527979\pi\)
0.986275 + 0.165110i \(0.0527979\pi\)
\(24\) 156.386 1.33009
\(25\) 0 0
\(26\) 298.733 2.25333
\(27\) 152.625 1.08788
\(28\) 110.154 0.743469
\(29\) −33.8226 −0.216576 −0.108288 0.994120i \(-0.534537\pi\)
−0.108288 + 0.994120i \(0.534537\pi\)
\(30\) 0 0
\(31\) 124.437 0.720952 0.360476 0.932769i \(-0.382614\pi\)
0.360476 + 0.932769i \(0.382614\pi\)
\(32\) 20.2192 0.111697
\(33\) −153.487 −0.809655
\(34\) 218.433 1.10179
\(35\) 0 0
\(36\) −153.971 −0.712827
\(37\) 237.270 1.05424 0.527121 0.849790i \(-0.323271\pi\)
0.527121 + 0.849790i \(0.323271\pi\)
\(38\) 680.620 2.90556
\(39\) 254.412 1.04458
\(40\) 0 0
\(41\) 195.117 0.743224 0.371612 0.928388i \(-0.378805\pi\)
0.371612 + 0.928388i \(0.378805\pi\)
\(42\) 141.503 0.519865
\(43\) −343.725 −1.21901 −0.609506 0.792781i \(-0.708632\pi\)
−0.609506 + 0.792781i \(0.708632\pi\)
\(44\) 582.119 1.99450
\(45\) 0 0
\(46\) −1060.05 −3.39773
\(47\) 16.8224 0.0522085 0.0261042 0.999659i \(-0.491690\pi\)
0.0261042 + 0.999659i \(0.491690\pi\)
\(48\) −239.573 −0.720404
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 186.026 0.510761
\(52\) −964.894 −2.57321
\(53\) 346.965 0.899231 0.449616 0.893222i \(-0.351561\pi\)
0.449616 + 0.893222i \(0.351561\pi\)
\(54\) −743.586 −1.87387
\(55\) 0 0
\(56\) −263.837 −0.629584
\(57\) 579.641 1.34694
\(58\) 164.783 0.373054
\(59\) 135.340 0.298640 0.149320 0.988789i \(-0.452292\pi\)
0.149320 + 0.988789i \(0.452292\pi\)
\(60\) 0 0
\(61\) 490.414 1.02936 0.514681 0.857382i \(-0.327911\pi\)
0.514681 + 0.857382i \(0.327911\pi\)
\(62\) −606.255 −1.24185
\(63\) −68.4911 −0.136969
\(64\) −560.428 −1.09459
\(65\) 0 0
\(66\) 747.785 1.39464
\(67\) 477.969 0.871540 0.435770 0.900058i \(-0.356476\pi\)
0.435770 + 0.900058i \(0.356476\pi\)
\(68\) −705.529 −1.25820
\(69\) −902.777 −1.57510
\(70\) 0 0
\(71\) 45.2557 0.0756460 0.0378230 0.999284i \(-0.487958\pi\)
0.0378230 + 0.999284i \(0.487958\pi\)
\(72\) 368.786 0.603636
\(73\) 100.781 0.161583 0.0807913 0.996731i \(-0.474255\pi\)
0.0807913 + 0.996731i \(0.474255\pi\)
\(74\) −1155.98 −1.81594
\(75\) 0 0
\(76\) −2198.37 −3.31803
\(77\) 258.945 0.383241
\(78\) −1239.49 −1.79930
\(79\) 880.534 1.25402 0.627012 0.779010i \(-0.284278\pi\)
0.627012 + 0.779010i \(0.284278\pi\)
\(80\) 0 0
\(81\) −369.085 −0.506289
\(82\) −950.609 −1.28021
\(83\) −1155.03 −1.52748 −0.763739 0.645525i \(-0.776638\pi\)
−0.763739 + 0.645525i \(0.776638\pi\)
\(84\) −457.047 −0.593665
\(85\) 0 0
\(86\) 1674.62 2.09976
\(87\) 140.336 0.172937
\(88\) −1394.27 −1.68898
\(89\) 619.374 0.737680 0.368840 0.929493i \(-0.379755\pi\)
0.368840 + 0.929493i \(0.379755\pi\)
\(90\) 0 0
\(91\) −429.216 −0.494440
\(92\) 3423.90 3.88007
\(93\) −516.309 −0.575685
\(94\) −81.9585 −0.0899295
\(95\) 0 0
\(96\) −83.8929 −0.0891904
\(97\) −231.195 −0.242003 −0.121001 0.992652i \(-0.538611\pi\)
−0.121001 + 0.992652i \(0.538611\pi\)
\(98\) −238.727 −0.246073
\(99\) −361.948 −0.367446
\(100\) 0 0
\(101\) 1875.99 1.84820 0.924101 0.382149i \(-0.124816\pi\)
0.924101 + 0.382149i \(0.124816\pi\)
\(102\) −906.316 −0.879791
\(103\) 1855.94 1.77545 0.887723 0.460377i \(-0.152286\pi\)
0.887723 + 0.460377i \(0.152286\pi\)
\(104\) 2311.08 2.17904
\(105\) 0 0
\(106\) −1690.41 −1.54893
\(107\) −218.016 −0.196976 −0.0984879 0.995138i \(-0.531401\pi\)
−0.0984879 + 0.995138i \(0.531401\pi\)
\(108\) 2401.74 2.13989
\(109\) 847.217 0.744484 0.372242 0.928136i \(-0.378589\pi\)
0.372242 + 0.928136i \(0.378589\pi\)
\(110\) 0 0
\(111\) −984.473 −0.841820
\(112\) 404.181 0.340995
\(113\) 1430.05 1.19051 0.595254 0.803537i \(-0.297051\pi\)
0.595254 + 0.803537i \(0.297051\pi\)
\(114\) −2824.00 −2.32011
\(115\) 0 0
\(116\) −532.242 −0.426012
\(117\) 599.948 0.474062
\(118\) −659.374 −0.514409
\(119\) −313.842 −0.241763
\(120\) 0 0
\(121\) 37.4229 0.0281164
\(122\) −2389.29 −1.77308
\(123\) −809.573 −0.593470
\(124\) 1958.17 1.41814
\(125\) 0 0
\(126\) 333.688 0.235931
\(127\) −1732.84 −1.21075 −0.605374 0.795941i \(-0.706976\pi\)
−0.605374 + 0.795941i \(0.706976\pi\)
\(128\) 2568.65 1.77374
\(129\) 1426.17 0.973390
\(130\) 0 0
\(131\) −2429.76 −1.62052 −0.810262 0.586068i \(-0.800675\pi\)
−0.810262 + 0.586068i \(0.800675\pi\)
\(132\) −2415.31 −1.59262
\(133\) −977.904 −0.637557
\(134\) −2328.66 −1.50123
\(135\) 0 0
\(136\) 1689.86 1.06547
\(137\) 1452.84 0.906018 0.453009 0.891506i \(-0.350351\pi\)
0.453009 + 0.891506i \(0.350351\pi\)
\(138\) 4398.32 2.71311
\(139\) 2927.47 1.78637 0.893183 0.449693i \(-0.148467\pi\)
0.893183 + 0.449693i \(0.148467\pi\)
\(140\) 0 0
\(141\) −69.7989 −0.0416888
\(142\) −220.485 −0.130301
\(143\) −2268.23 −1.32643
\(144\) −564.954 −0.326941
\(145\) 0 0
\(146\) −491.004 −0.278327
\(147\) −203.309 −0.114072
\(148\) 3733.75 2.07373
\(149\) 901.724 0.495786 0.247893 0.968787i \(-0.420262\pi\)
0.247893 + 0.968787i \(0.420262\pi\)
\(150\) 0 0
\(151\) −1357.63 −0.731669 −0.365834 0.930680i \(-0.619216\pi\)
−0.365834 + 0.930680i \(0.619216\pi\)
\(152\) 5265.46 2.80977
\(153\) 438.681 0.231799
\(154\) −1261.58 −0.660136
\(155\) 0 0
\(156\) 4003.50 2.05472
\(157\) −2318.72 −1.17869 −0.589343 0.807883i \(-0.700613\pi\)
−0.589343 + 0.807883i \(0.700613\pi\)
\(158\) −4289.95 −2.16006
\(159\) −1439.61 −0.718042
\(160\) 0 0
\(161\) 1523.06 0.745554
\(162\) 1798.18 0.872087
\(163\) −1577.42 −0.757996 −0.378998 0.925397i \(-0.623731\pi\)
−0.378998 + 0.925397i \(0.623731\pi\)
\(164\) 3070.42 1.46195
\(165\) 0 0
\(166\) 5627.28 2.63109
\(167\) 1038.02 0.480982 0.240491 0.970651i \(-0.422691\pi\)
0.240491 + 0.970651i \(0.422691\pi\)
\(168\) 1094.70 0.502728
\(169\) 1562.72 0.711296
\(170\) 0 0
\(171\) 1366.89 0.611280
\(172\) −5408.95 −2.39784
\(173\) −482.641 −0.212107 −0.106054 0.994360i \(-0.533822\pi\)
−0.106054 + 0.994360i \(0.533822\pi\)
\(174\) −683.714 −0.297886
\(175\) 0 0
\(176\) 2135.93 0.914784
\(177\) −561.547 −0.238466
\(178\) −3017.58 −1.27066
\(179\) 2407.19 1.00515 0.502575 0.864534i \(-0.332386\pi\)
0.502575 + 0.864534i \(0.332386\pi\)
\(180\) 0 0
\(181\) 532.600 0.218717 0.109359 0.994002i \(-0.465120\pi\)
0.109359 + 0.994002i \(0.465120\pi\)
\(182\) 2091.13 0.851677
\(183\) −2034.81 −0.821952
\(184\) −8200.83 −3.28572
\(185\) 0 0
\(186\) 2515.45 0.991622
\(187\) −1658.53 −0.648575
\(188\) 264.722 0.102696
\(189\) 1068.37 0.411178
\(190\) 0 0
\(191\) 336.675 0.127544 0.0637721 0.997964i \(-0.479687\pi\)
0.0637721 + 0.997964i \(0.479687\pi\)
\(192\) 2325.31 0.874035
\(193\) 22.7366 0.00847988 0.00423994 0.999991i \(-0.498650\pi\)
0.00423994 + 0.999991i \(0.498650\pi\)
\(194\) 1126.38 0.416852
\(195\) 0 0
\(196\) 771.077 0.281005
\(197\) −1085.33 −0.392520 −0.196260 0.980552i \(-0.562880\pi\)
−0.196260 + 0.980552i \(0.562880\pi\)
\(198\) 1763.41 0.632928
\(199\) −2630.28 −0.936963 −0.468482 0.883473i \(-0.655199\pi\)
−0.468482 + 0.883473i \(0.655199\pi\)
\(200\) 0 0
\(201\) −1983.17 −0.695931
\(202\) −9139.82 −3.18354
\(203\) −236.758 −0.0818580
\(204\) 2927.35 1.00469
\(205\) 0 0
\(206\) −9042.11 −3.05822
\(207\) −2128.90 −0.714826
\(208\) −3540.42 −1.18021
\(209\) −5167.83 −1.71037
\(210\) 0 0
\(211\) 614.178 0.200388 0.100194 0.994968i \(-0.468054\pi\)
0.100194 + 0.994968i \(0.468054\pi\)
\(212\) 5459.93 1.76882
\(213\) −187.773 −0.0604039
\(214\) 1062.17 0.339292
\(215\) 0 0
\(216\) −5752.58 −1.81210
\(217\) 871.057 0.272494
\(218\) −4127.63 −1.28238
\(219\) −418.157 −0.129025
\(220\) 0 0
\(221\) 2749.10 0.836762
\(222\) 4796.34 1.45004
\(223\) 1930.30 0.579651 0.289826 0.957079i \(-0.406403\pi\)
0.289826 + 0.957079i \(0.406403\pi\)
\(224\) 141.535 0.0422173
\(225\) 0 0
\(226\) −6967.17 −2.05066
\(227\) 765.365 0.223784 0.111892 0.993720i \(-0.464309\pi\)
0.111892 + 0.993720i \(0.464309\pi\)
\(228\) 9121.39 2.64947
\(229\) −5712.66 −1.64849 −0.824243 0.566237i \(-0.808399\pi\)
−0.824243 + 0.566237i \(0.808399\pi\)
\(230\) 0 0
\(231\) −1074.41 −0.306021
\(232\) 1274.81 0.360756
\(233\) −864.418 −0.243047 −0.121523 0.992589i \(-0.538778\pi\)
−0.121523 + 0.992589i \(0.538778\pi\)
\(234\) −2922.94 −0.816575
\(235\) 0 0
\(236\) 2129.74 0.587435
\(237\) −3653.48 −1.00135
\(238\) 1529.03 0.416439
\(239\) −1816.64 −0.491669 −0.245834 0.969312i \(-0.579062\pi\)
−0.245834 + 0.969312i \(0.579062\pi\)
\(240\) 0 0
\(241\) −2354.53 −0.629330 −0.314665 0.949203i \(-0.601892\pi\)
−0.314665 + 0.949203i \(0.601892\pi\)
\(242\) −182.324 −0.0484307
\(243\) −2589.47 −0.683600
\(244\) 7717.28 2.02479
\(245\) 0 0
\(246\) 3944.23 1.02226
\(247\) 8565.96 2.20664
\(248\) −4690.15 −1.20091
\(249\) 4792.39 1.21970
\(250\) 0 0
\(251\) −2983.66 −0.750306 −0.375153 0.926963i \(-0.622410\pi\)
−0.375153 + 0.926963i \(0.622410\pi\)
\(252\) −1077.79 −0.269423
\(253\) 8048.78 2.00009
\(254\) 8442.39 2.08552
\(255\) 0 0
\(256\) −8030.99 −1.96069
\(257\) −5121.50 −1.24307 −0.621537 0.783385i \(-0.713492\pi\)
−0.621537 + 0.783385i \(0.713492\pi\)
\(258\) −6948.29 −1.67667
\(259\) 1660.89 0.398466
\(260\) 0 0
\(261\) 330.935 0.0784843
\(262\) 11837.7 2.79137
\(263\) 4663.66 1.09344 0.546718 0.837317i \(-0.315877\pi\)
0.546718 + 0.837317i \(0.315877\pi\)
\(264\) 5785.07 1.34866
\(265\) 0 0
\(266\) 4764.34 1.09820
\(267\) −2569.88 −0.589043
\(268\) 7521.45 1.71435
\(269\) 5018.86 1.13757 0.568783 0.822488i \(-0.307414\pi\)
0.568783 + 0.822488i \(0.307414\pi\)
\(270\) 0 0
\(271\) −2512.66 −0.563222 −0.281611 0.959529i \(-0.590869\pi\)
−0.281611 + 0.959529i \(0.590869\pi\)
\(272\) −2588.75 −0.577081
\(273\) 1780.89 0.394814
\(274\) −7078.21 −1.56062
\(275\) 0 0
\(276\) −14206.3 −3.09827
\(277\) 6286.82 1.36368 0.681839 0.731503i \(-0.261181\pi\)
0.681839 + 0.731503i \(0.261181\pi\)
\(278\) −14262.6 −3.07703
\(279\) −1217.54 −0.261263
\(280\) 0 0
\(281\) 8804.33 1.86912 0.934560 0.355807i \(-0.115794\pi\)
0.934560 + 0.355807i \(0.115794\pi\)
\(282\) 340.059 0.0718093
\(283\) 485.298 0.101936 0.0509681 0.998700i \(-0.483769\pi\)
0.0509681 + 0.998700i \(0.483769\pi\)
\(284\) 712.157 0.148798
\(285\) 0 0
\(286\) 11050.8 2.28478
\(287\) 1365.82 0.280912
\(288\) −197.834 −0.0404773
\(289\) −2902.86 −0.590854
\(290\) 0 0
\(291\) 959.265 0.193241
\(292\) 1585.92 0.317838
\(293\) 4004.48 0.798444 0.399222 0.916854i \(-0.369280\pi\)
0.399222 + 0.916854i \(0.369280\pi\)
\(294\) 990.519 0.196491
\(295\) 0 0
\(296\) −8942.96 −1.75608
\(297\) 5645.92 1.10306
\(298\) −4393.19 −0.853995
\(299\) −13341.3 −2.58042
\(300\) 0 0
\(301\) −2406.07 −0.460743
\(302\) 6614.33 1.26031
\(303\) −7783.81 −1.47580
\(304\) −8066.32 −1.52183
\(305\) 0 0
\(306\) −2137.25 −0.399276
\(307\) 3154.13 0.586370 0.293185 0.956056i \(-0.405285\pi\)
0.293185 + 0.956056i \(0.405285\pi\)
\(308\) 4074.84 0.753848
\(309\) −7700.59 −1.41771
\(310\) 0 0
\(311\) −1738.29 −0.316944 −0.158472 0.987363i \(-0.550657\pi\)
−0.158472 + 0.987363i \(0.550657\pi\)
\(312\) −9589.06 −1.73998
\(313\) 5092.30 0.919597 0.459799 0.888023i \(-0.347922\pi\)
0.459799 + 0.888023i \(0.347922\pi\)
\(314\) 11296.8 2.03030
\(315\) 0 0
\(316\) 13856.3 2.46671
\(317\) −4874.67 −0.863686 −0.431843 0.901949i \(-0.642137\pi\)
−0.431843 + 0.901949i \(0.642137\pi\)
\(318\) 7013.78 1.23683
\(319\) −1251.17 −0.219600
\(320\) 0 0
\(321\) 904.584 0.157287
\(322\) −7420.35 −1.28422
\(323\) 6263.41 1.07896
\(324\) −5808.02 −0.995888
\(325\) 0 0
\(326\) 7685.19 1.30565
\(327\) −3515.24 −0.594475
\(328\) −7354.17 −1.23801
\(329\) 117.757 0.0197329
\(330\) 0 0
\(331\) −2448.46 −0.406585 −0.203292 0.979118i \(-0.565164\pi\)
−0.203292 + 0.979118i \(0.565164\pi\)
\(332\) −18175.8 −3.00460
\(333\) −2321.56 −0.382043
\(334\) −5057.20 −0.828496
\(335\) 0 0
\(336\) −1677.01 −0.272287
\(337\) −6271.50 −1.01374 −0.506870 0.862023i \(-0.669197\pi\)
−0.506870 + 0.862023i \(0.669197\pi\)
\(338\) −7613.54 −1.22521
\(339\) −5933.50 −0.950629
\(340\) 0 0
\(341\) 4603.19 0.731017
\(342\) −6659.48 −1.05293
\(343\) 343.000 0.0539949
\(344\) 12955.3 2.03054
\(345\) 0 0
\(346\) 2351.42 0.365356
\(347\) 417.338 0.0645645 0.0322822 0.999479i \(-0.489722\pi\)
0.0322822 + 0.999479i \(0.489722\pi\)
\(348\) 2208.36 0.340174
\(349\) 5971.08 0.915829 0.457915 0.888996i \(-0.348597\pi\)
0.457915 + 0.888996i \(0.348597\pi\)
\(350\) 0 0
\(351\) −9358.42 −1.42312
\(352\) 747.954 0.113256
\(353\) −12012.6 −1.81124 −0.905620 0.424089i \(-0.860594\pi\)
−0.905620 + 0.424089i \(0.860594\pi\)
\(354\) 2735.85 0.410759
\(355\) 0 0
\(356\) 9746.64 1.45104
\(357\) 1302.18 0.193050
\(358\) −11727.8 −1.73138
\(359\) 6312.46 0.928020 0.464010 0.885830i \(-0.346410\pi\)
0.464010 + 0.885830i \(0.346410\pi\)
\(360\) 0 0
\(361\) 12657.3 1.84535
\(362\) −2594.82 −0.376743
\(363\) −155.274 −0.0224511
\(364\) −6754.26 −0.972580
\(365\) 0 0
\(366\) 9913.55 1.41582
\(367\) 12228.6 1.73932 0.869659 0.493652i \(-0.164338\pi\)
0.869659 + 0.493652i \(0.164338\pi\)
\(368\) 12563.1 1.77961
\(369\) −1909.11 −0.269335
\(370\) 0 0
\(371\) 2428.75 0.339877
\(372\) −8124.77 −1.13239
\(373\) 7876.24 1.09334 0.546671 0.837348i \(-0.315895\pi\)
0.546671 + 0.837348i \(0.315895\pi\)
\(374\) 8080.33 1.11718
\(375\) 0 0
\(376\) −634.053 −0.0869649
\(377\) 2073.89 0.283317
\(378\) −5205.10 −0.708258
\(379\) 5992.79 0.812214 0.406107 0.913826i \(-0.366886\pi\)
0.406107 + 0.913826i \(0.366886\pi\)
\(380\) 0 0
\(381\) 7189.85 0.966790
\(382\) −1640.28 −0.219696
\(383\) 7373.61 0.983743 0.491872 0.870668i \(-0.336313\pi\)
0.491872 + 0.870668i \(0.336313\pi\)
\(384\) −10657.7 −1.41634
\(385\) 0 0
\(386\) −110.772 −0.0146067
\(387\) 3363.15 0.441754
\(388\) −3638.14 −0.476028
\(389\) 1896.88 0.247238 0.123619 0.992330i \(-0.460550\pi\)
0.123619 + 0.992330i \(0.460550\pi\)
\(390\) 0 0
\(391\) −9755.12 −1.26173
\(392\) −1846.86 −0.237961
\(393\) 10081.5 1.29400
\(394\) 5287.71 0.676119
\(395\) 0 0
\(396\) −5695.71 −0.722778
\(397\) −791.156 −0.100018 −0.0500088 0.998749i \(-0.515925\pi\)
−0.0500088 + 0.998749i \(0.515925\pi\)
\(398\) 12814.7 1.61393
\(399\) 4057.49 0.509094
\(400\) 0 0
\(401\) 4410.55 0.549258 0.274629 0.961550i \(-0.411445\pi\)
0.274629 + 0.961550i \(0.411445\pi\)
\(402\) 9661.99 1.19875
\(403\) −7630.03 −0.943124
\(404\) 29521.1 3.63548
\(405\) 0 0
\(406\) 1153.48 0.141001
\(407\) 8777.14 1.06896
\(408\) −7011.51 −0.850787
\(409\) −4403.73 −0.532397 −0.266199 0.963918i \(-0.585768\pi\)
−0.266199 + 0.963918i \(0.585768\pi\)
\(410\) 0 0
\(411\) −6028.07 −0.723461
\(412\) 29205.5 3.49236
\(413\) 947.379 0.112875
\(414\) 10372.0 1.23129
\(415\) 0 0
\(416\) −1239.77 −0.146117
\(417\) −12146.6 −1.42643
\(418\) 25177.6 2.94612
\(419\) −14272.6 −1.66411 −0.832057 0.554691i \(-0.812837\pi\)
−0.832057 + 0.554691i \(0.812837\pi\)
\(420\) 0 0
\(421\) −15530.4 −1.79788 −0.898939 0.438074i \(-0.855661\pi\)
−0.898939 + 0.438074i \(0.855661\pi\)
\(422\) −2992.27 −0.345169
\(423\) −164.598 −0.0189197
\(424\) −13077.5 −1.49787
\(425\) 0 0
\(426\) 914.830 0.104046
\(427\) 3432.90 0.389062
\(428\) −3430.76 −0.387458
\(429\) 9411.27 1.05916
\(430\) 0 0
\(431\) −5260.75 −0.587938 −0.293969 0.955815i \(-0.594976\pi\)
−0.293969 + 0.955815i \(0.594976\pi\)
\(432\) 8812.56 0.981469
\(433\) 6610.65 0.733690 0.366845 0.930282i \(-0.380438\pi\)
0.366845 + 0.930282i \(0.380438\pi\)
\(434\) −4243.78 −0.469373
\(435\) 0 0
\(436\) 13332.0 1.46442
\(437\) −30396.1 −3.32733
\(438\) 2037.26 0.222246
\(439\) −8870.46 −0.964383 −0.482191 0.876066i \(-0.660159\pi\)
−0.482191 + 0.876066i \(0.660159\pi\)
\(440\) 0 0
\(441\) −479.438 −0.0517695
\(442\) −13393.6 −1.44133
\(443\) −13221.8 −1.41802 −0.709012 0.705196i \(-0.750859\pi\)
−0.709012 + 0.705196i \(0.750859\pi\)
\(444\) −15491.9 −1.65589
\(445\) 0 0
\(446\) −9404.38 −0.998454
\(447\) −3741.40 −0.395889
\(448\) −3923.00 −0.413715
\(449\) 4192.70 0.440681 0.220341 0.975423i \(-0.429283\pi\)
0.220341 + 0.975423i \(0.429283\pi\)
\(450\) 0 0
\(451\) 7217.82 0.753600
\(452\) 22503.6 2.34177
\(453\) 5633.01 0.584243
\(454\) −3728.85 −0.385470
\(455\) 0 0
\(456\) −21847.3 −2.24362
\(457\) −4701.78 −0.481270 −0.240635 0.970616i \(-0.577356\pi\)
−0.240635 + 0.970616i \(0.577356\pi\)
\(458\) 27832.0 2.83953
\(459\) −6842.86 −0.695855
\(460\) 0 0
\(461\) −1949.82 −0.196989 −0.0984946 0.995138i \(-0.531403\pi\)
−0.0984946 + 0.995138i \(0.531403\pi\)
\(462\) 5234.50 0.527123
\(463\) 7315.85 0.734333 0.367166 0.930155i \(-0.380328\pi\)
0.367166 + 0.930155i \(0.380328\pi\)
\(464\) −1952.92 −0.195392
\(465\) 0 0
\(466\) 4211.43 0.418650
\(467\) −1897.54 −0.188025 −0.0940126 0.995571i \(-0.529969\pi\)
−0.0940126 + 0.995571i \(0.529969\pi\)
\(468\) 9440.94 0.932495
\(469\) 3345.78 0.329411
\(470\) 0 0
\(471\) 9620.74 0.941189
\(472\) −5101.10 −0.497451
\(473\) −12715.1 −1.23603
\(474\) 17799.7 1.72483
\(475\) 0 0
\(476\) −4938.70 −0.475557
\(477\) −3394.85 −0.325869
\(478\) 8850.66 0.846903
\(479\) 10534.4 1.00486 0.502429 0.864619i \(-0.332440\pi\)
0.502429 + 0.864619i \(0.332440\pi\)
\(480\) 0 0
\(481\) −14548.6 −1.37912
\(482\) 11471.2 1.08403
\(483\) −6319.44 −0.595330
\(484\) 588.897 0.0553058
\(485\) 0 0
\(486\) 12615.9 1.17751
\(487\) 11937.0 1.11071 0.555355 0.831614i \(-0.312583\pi\)
0.555355 + 0.831614i \(0.312583\pi\)
\(488\) −18484.2 −1.71463
\(489\) 6544.99 0.605265
\(490\) 0 0
\(491\) 100.060 0.00919683 0.00459841 0.999989i \(-0.498536\pi\)
0.00459841 + 0.999989i \(0.498536\pi\)
\(492\) −12739.7 −1.16737
\(493\) 1516.42 0.138532
\(494\) −41733.3 −3.80095
\(495\) 0 0
\(496\) 7184.99 0.650435
\(497\) 316.790 0.0285915
\(498\) −23348.5 −2.10095
\(499\) −15611.7 −1.40055 −0.700275 0.713874i \(-0.746939\pi\)
−0.700275 + 0.713874i \(0.746939\pi\)
\(500\) 0 0
\(501\) −4306.90 −0.384068
\(502\) 14536.3 1.29241
\(503\) 2270.39 0.201256 0.100628 0.994924i \(-0.467915\pi\)
0.100628 + 0.994924i \(0.467915\pi\)
\(504\) 2581.50 0.228153
\(505\) 0 0
\(506\) −39213.6 −3.44517
\(507\) −6483.97 −0.567975
\(508\) −27268.5 −2.38158
\(509\) −2579.79 −0.224651 −0.112325 0.993671i \(-0.535830\pi\)
−0.112325 + 0.993671i \(0.535830\pi\)
\(510\) 0 0
\(511\) 705.467 0.0610725
\(512\) 18577.7 1.60357
\(513\) −21321.8 −1.83505
\(514\) 24951.9 2.14121
\(515\) 0 0
\(516\) 22442.6 1.91469
\(517\) 622.297 0.0529373
\(518\) −8091.84 −0.686361
\(519\) 2002.56 0.169369
\(520\) 0 0
\(521\) 12793.9 1.07584 0.537918 0.842997i \(-0.319211\pi\)
0.537918 + 0.842997i \(0.319211\pi\)
\(522\) −1612.31 −0.135190
\(523\) −11273.4 −0.942548 −0.471274 0.881987i \(-0.656206\pi\)
−0.471274 + 0.881987i \(0.656206\pi\)
\(524\) −38235.3 −3.18763
\(525\) 0 0
\(526\) −22721.3 −1.88345
\(527\) −5579.07 −0.461154
\(528\) −8862.33 −0.730461
\(529\) 35174.2 2.89095
\(530\) 0 0
\(531\) −1324.22 −0.108223
\(532\) −15388.6 −1.25410
\(533\) −11963.9 −0.972260
\(534\) 12520.4 1.01463
\(535\) 0 0
\(536\) −18015.1 −1.45175
\(537\) −9987.83 −0.802619
\(538\) −24451.8 −1.95947
\(539\) 1812.62 0.144852
\(540\) 0 0
\(541\) 10282.9 0.817183 0.408591 0.912717i \(-0.366020\pi\)
0.408591 + 0.912717i \(0.366020\pi\)
\(542\) 12241.6 0.970154
\(543\) −2209.85 −0.174647
\(544\) −906.520 −0.0714462
\(545\) 0 0
\(546\) −8676.46 −0.680070
\(547\) −2160.94 −0.168912 −0.0844562 0.996427i \(-0.526915\pi\)
−0.0844562 + 0.996427i \(0.526915\pi\)
\(548\) 22862.3 1.78217
\(549\) −4798.42 −0.373027
\(550\) 0 0
\(551\) 4725.04 0.365324
\(552\) 34026.6 2.62367
\(553\) 6163.74 0.473976
\(554\) −30629.3 −2.34895
\(555\) 0 0
\(556\) 46067.5 3.51384
\(557\) 15648.4 1.19038 0.595190 0.803585i \(-0.297077\pi\)
0.595190 + 0.803585i \(0.297077\pi\)
\(558\) 5931.86 0.450028
\(559\) 21076.0 1.59467
\(560\) 0 0
\(561\) 6881.51 0.517892
\(562\) −42894.6 −3.21957
\(563\) −21951.6 −1.64325 −0.821623 0.570031i \(-0.806931\pi\)
−0.821623 + 0.570031i \(0.806931\pi\)
\(564\) −1098.37 −0.0820033
\(565\) 0 0
\(566\) −2364.36 −0.175586
\(567\) −2583.59 −0.191359
\(568\) −1705.74 −0.126005
\(569\) 14019.2 1.03289 0.516445 0.856321i \(-0.327255\pi\)
0.516445 + 0.856321i \(0.327255\pi\)
\(570\) 0 0
\(571\) −21706.3 −1.59086 −0.795430 0.606045i \(-0.792755\pi\)
−0.795430 + 0.606045i \(0.792755\pi\)
\(572\) −35693.5 −2.60913
\(573\) −1396.92 −0.101845
\(574\) −6654.26 −0.483874
\(575\) 0 0
\(576\) 5483.48 0.396664
\(577\) 12569.0 0.906853 0.453427 0.891294i \(-0.350201\pi\)
0.453427 + 0.891294i \(0.350201\pi\)
\(578\) 14142.7 1.01775
\(579\) −94.3379 −0.00677124
\(580\) 0 0
\(581\) −8085.19 −0.577332
\(582\) −4673.53 −0.332859
\(583\) 12835.0 0.911785
\(584\) −3798.54 −0.269152
\(585\) 0 0
\(586\) −19509.8 −1.37533
\(587\) −1330.20 −0.0935322 −0.0467661 0.998906i \(-0.514892\pi\)
−0.0467661 + 0.998906i \(0.514892\pi\)
\(588\) −3199.33 −0.224384
\(589\) −17383.9 −1.21611
\(590\) 0 0
\(591\) 4503.20 0.313430
\(592\) 13700.0 0.951126
\(593\) 9866.91 0.683281 0.341640 0.939831i \(-0.389018\pi\)
0.341640 + 0.939831i \(0.389018\pi\)
\(594\) −27506.9 −1.90003
\(595\) 0 0
\(596\) 14189.8 0.975228
\(597\) 10913.5 0.748172
\(598\) 64998.6 4.44480
\(599\) 4185.17 0.285478 0.142739 0.989760i \(-0.454409\pi\)
0.142739 + 0.989760i \(0.454409\pi\)
\(600\) 0 0
\(601\) 10599.8 0.719426 0.359713 0.933063i \(-0.382875\pi\)
0.359713 + 0.933063i \(0.382875\pi\)
\(602\) 11722.4 0.793634
\(603\) −4676.66 −0.315834
\(604\) −21364.0 −1.43922
\(605\) 0 0
\(606\) 37922.6 2.54208
\(607\) −13290.1 −0.888679 −0.444340 0.895858i \(-0.646562\pi\)
−0.444340 + 0.895858i \(0.646562\pi\)
\(608\) −2824.64 −0.188412
\(609\) 982.349 0.0653642
\(610\) 0 0
\(611\) −1031.49 −0.0682973
\(612\) 6903.20 0.455957
\(613\) 21327.1 1.40521 0.702606 0.711579i \(-0.252020\pi\)
0.702606 + 0.711579i \(0.252020\pi\)
\(614\) −15366.9 −1.01003
\(615\) 0 0
\(616\) −9759.92 −0.638374
\(617\) 13741.6 0.896622 0.448311 0.893878i \(-0.352026\pi\)
0.448311 + 0.893878i \(0.352026\pi\)
\(618\) 37517.2 2.44201
\(619\) 19444.3 1.26257 0.631285 0.775551i \(-0.282528\pi\)
0.631285 + 0.775551i \(0.282528\pi\)
\(620\) 0 0
\(621\) 33208.1 2.14589
\(622\) 8468.94 0.545938
\(623\) 4335.62 0.278817
\(624\) 14689.8 0.942407
\(625\) 0 0
\(626\) −24809.6 −1.58401
\(627\) 21442.2 1.36574
\(628\) −36488.0 −2.31852
\(629\) −10637.9 −0.674341
\(630\) 0 0
\(631\) −27425.6 −1.73026 −0.865130 0.501547i \(-0.832764\pi\)
−0.865130 + 0.501547i \(0.832764\pi\)
\(632\) −33188.2 −2.08886
\(633\) −2548.33 −0.160011
\(634\) 23749.3 1.48771
\(635\) 0 0
\(636\) −22654.1 −1.41241
\(637\) −3004.51 −0.186881
\(638\) 6095.70 0.378262
\(639\) −442.802 −0.0274131
\(640\) 0 0
\(641\) −10053.8 −0.619502 −0.309751 0.950818i \(-0.600246\pi\)
−0.309751 + 0.950818i \(0.600246\pi\)
\(642\) −4407.12 −0.270927
\(643\) −4044.18 −0.248036 −0.124018 0.992280i \(-0.539578\pi\)
−0.124018 + 0.992280i \(0.539578\pi\)
\(644\) 23967.3 1.46653
\(645\) 0 0
\(646\) −30515.3 −1.85853
\(647\) 1486.90 0.0903491 0.0451746 0.998979i \(-0.485616\pi\)
0.0451746 + 0.998979i \(0.485616\pi\)
\(648\) 13911.2 0.843338
\(649\) 5006.52 0.302809
\(650\) 0 0
\(651\) −3614.16 −0.217588
\(652\) −24822.8 −1.49100
\(653\) 4269.30 0.255851 0.127925 0.991784i \(-0.459168\pi\)
0.127925 + 0.991784i \(0.459168\pi\)
\(654\) 17126.2 1.02399
\(655\) 0 0
\(656\) 11266.1 0.670528
\(657\) −986.086 −0.0585554
\(658\) −573.710 −0.0339902
\(659\) 1607.29 0.0950094 0.0475047 0.998871i \(-0.484873\pi\)
0.0475047 + 0.998871i \(0.484873\pi\)
\(660\) 0 0
\(661\) 8001.31 0.470824 0.235412 0.971896i \(-0.424356\pi\)
0.235412 + 0.971896i \(0.424356\pi\)
\(662\) 11928.9 0.700345
\(663\) −11406.5 −0.668160
\(664\) 43534.1 2.54436
\(665\) 0 0
\(666\) 11310.6 0.658073
\(667\) −7359.14 −0.427207
\(668\) 16334.5 0.946109
\(669\) −8009.12 −0.462855
\(670\) 0 0
\(671\) 18141.5 1.04373
\(672\) −587.250 −0.0337108
\(673\) 3347.96 0.191760 0.0958800 0.995393i \(-0.469433\pi\)
0.0958800 + 0.995393i \(0.469433\pi\)
\(674\) 30554.7 1.74617
\(675\) 0 0
\(676\) 24591.4 1.39914
\(677\) −7.91810 −0.000449508 0 −0.000224754 1.00000i \(-0.500072\pi\)
−0.000224754 1.00000i \(0.500072\pi\)
\(678\) 28907.9 1.63747
\(679\) −1618.36 −0.0914684
\(680\) 0 0
\(681\) −3175.62 −0.178693
\(682\) −22426.7 −1.25918
\(683\) 32136.0 1.80036 0.900182 0.435513i \(-0.143433\pi\)
0.900182 + 0.435513i \(0.143433\pi\)
\(684\) 21509.8 1.20241
\(685\) 0 0
\(686\) −1671.09 −0.0930067
\(687\) 23702.8 1.31633
\(688\) −19846.7 −1.09978
\(689\) −21274.7 −1.17634
\(690\) 0 0
\(691\) −6196.84 −0.341156 −0.170578 0.985344i \(-0.554563\pi\)
−0.170578 + 0.985344i \(0.554563\pi\)
\(692\) −7594.98 −0.417222
\(693\) −2533.64 −0.138881
\(694\) −2033.27 −0.111213
\(695\) 0 0
\(696\) −5289.39 −0.288066
\(697\) −8747.99 −0.475400
\(698\) −29091.0 −1.57752
\(699\) 3586.61 0.194075
\(700\) 0 0
\(701\) 1651.38 0.0889755 0.0444878 0.999010i \(-0.485834\pi\)
0.0444878 + 0.999010i \(0.485834\pi\)
\(702\) 45594.1 2.45134
\(703\) −33146.8 −1.77831
\(704\) −20731.5 −1.10987
\(705\) 0 0
\(706\) 58525.4 3.11988
\(707\) 13132.0 0.698555
\(708\) −8836.66 −0.469071
\(709\) 15399.8 0.815728 0.407864 0.913043i \(-0.366274\pi\)
0.407864 + 0.913043i \(0.366274\pi\)
\(710\) 0 0
\(711\) −8615.53 −0.454441
\(712\) −23344.8 −1.22877
\(713\) 27075.0 1.42211
\(714\) −6344.21 −0.332530
\(715\) 0 0
\(716\) 37880.2 1.97716
\(717\) 7537.54 0.392601
\(718\) −30754.3 −1.59852
\(719\) 3507.31 0.181920 0.0909600 0.995855i \(-0.471006\pi\)
0.0909600 + 0.995855i \(0.471006\pi\)
\(720\) 0 0
\(721\) 12991.6 0.671056
\(722\) −61666.0 −3.17863
\(723\) 9769.32 0.502524
\(724\) 8381.14 0.430225
\(725\) 0 0
\(726\) 756.492 0.0386722
\(727\) 22516.7 1.14869 0.574346 0.818613i \(-0.305256\pi\)
0.574346 + 0.818613i \(0.305256\pi\)
\(728\) 16177.6 0.823600
\(729\) 20709.4 1.05215
\(730\) 0 0
\(731\) 15410.7 0.779736
\(732\) −32020.3 −1.61681
\(733\) −10964.7 −0.552509 −0.276255 0.961084i \(-0.589093\pi\)
−0.276255 + 0.961084i \(0.589093\pi\)
\(734\) −59577.8 −2.99599
\(735\) 0 0
\(736\) 4399.31 0.220327
\(737\) 17681.1 0.883707
\(738\) 9301.17 0.463931
\(739\) 3029.33 0.150793 0.0753963 0.997154i \(-0.475978\pi\)
0.0753963 + 0.997154i \(0.475978\pi\)
\(740\) 0 0
\(741\) −35541.6 −1.76201
\(742\) −11832.9 −0.585442
\(743\) −8921.04 −0.440486 −0.220243 0.975445i \(-0.570685\pi\)
−0.220243 + 0.975445i \(0.570685\pi\)
\(744\) 19460.2 0.958932
\(745\) 0 0
\(746\) −38373.0 −1.88329
\(747\) 11301.3 0.553537
\(748\) −26099.1 −1.27577
\(749\) −1526.11 −0.0744498
\(750\) 0 0
\(751\) −6202.64 −0.301382 −0.150691 0.988581i \(-0.548150\pi\)
−0.150691 + 0.988581i \(0.548150\pi\)
\(752\) 971.326 0.0471019
\(753\) 12379.7 0.599124
\(754\) −10104.0 −0.488016
\(755\) 0 0
\(756\) 16812.2 0.808801
\(757\) −12099.3 −0.580922 −0.290461 0.956887i \(-0.593809\pi\)
−0.290461 + 0.956887i \(0.593809\pi\)
\(758\) −29196.8 −1.39905
\(759\) −33395.7 −1.59708
\(760\) 0 0
\(761\) 29332.7 1.39725 0.698626 0.715487i \(-0.253795\pi\)
0.698626 + 0.715487i \(0.253795\pi\)
\(762\) −35028.9 −1.66530
\(763\) 5930.52 0.281388
\(764\) 5298.01 0.250884
\(765\) 0 0
\(766\) −35924.1 −1.69451
\(767\) −8298.57 −0.390670
\(768\) 33321.9 1.56563
\(769\) −13280.1 −0.622748 −0.311374 0.950287i \(-0.600789\pi\)
−0.311374 + 0.950287i \(0.600789\pi\)
\(770\) 0 0
\(771\) 21249.9 0.992604
\(772\) 357.789 0.0166802
\(773\) 11248.1 0.523370 0.261685 0.965153i \(-0.415722\pi\)
0.261685 + 0.965153i \(0.415722\pi\)
\(774\) −16385.3 −0.760925
\(775\) 0 0
\(776\) 8713.96 0.403110
\(777\) −6891.31 −0.318178
\(778\) −9241.57 −0.425869
\(779\) −27258.0 −1.25368
\(780\) 0 0
\(781\) 1674.11 0.0767021
\(782\) 47526.8 2.17335
\(783\) −5162.17 −0.235608
\(784\) 2829.26 0.128884
\(785\) 0 0
\(786\) −49116.7 −2.22893
\(787\) −436.193 −0.0197568 −0.00987839 0.999951i \(-0.503144\pi\)
−0.00987839 + 0.999951i \(0.503144\pi\)
\(788\) −17079.0 −0.772100
\(789\) −19350.3 −0.873116
\(790\) 0 0
\(791\) 10010.3 0.449970
\(792\) 13642.2 0.612063
\(793\) −30070.5 −1.34657
\(794\) 3854.50 0.172281
\(795\) 0 0
\(796\) −41390.8 −1.84304
\(797\) −24034.0 −1.06816 −0.534082 0.845433i \(-0.679343\pi\)
−0.534082 + 0.845433i \(0.679343\pi\)
\(798\) −19768.0 −0.876918
\(799\) −754.224 −0.0333949
\(800\) 0 0
\(801\) −6060.23 −0.267325
\(802\) −21488.1 −0.946101
\(803\) 3728.11 0.163838
\(804\) −31207.7 −1.36892
\(805\) 0 0
\(806\) 37173.4 1.62454
\(807\) −20824.1 −0.908354
\(808\) −70708.1 −3.07859
\(809\) 16188.0 0.703509 0.351754 0.936092i \(-0.385585\pi\)
0.351754 + 0.936092i \(0.385585\pi\)
\(810\) 0 0
\(811\) 3732.42 0.161607 0.0808033 0.996730i \(-0.474251\pi\)
0.0808033 + 0.996730i \(0.474251\pi\)
\(812\) −3725.69 −0.161018
\(813\) 10425.4 0.449737
\(814\) −42762.1 −1.84129
\(815\) 0 0
\(816\) 10741.1 0.460803
\(817\) 48018.6 2.05625
\(818\) 21454.9 0.917058
\(819\) 4199.64 0.179178
\(820\) 0 0
\(821\) 37226.4 1.58247 0.791237 0.611510i \(-0.209438\pi\)
0.791237 + 0.611510i \(0.209438\pi\)
\(822\) 29368.7 1.24617
\(823\) 21355.7 0.904511 0.452256 0.891888i \(-0.350620\pi\)
0.452256 + 0.891888i \(0.350620\pi\)
\(824\) −69952.2 −2.95740
\(825\) 0 0
\(826\) −4615.62 −0.194428
\(827\) −18852.9 −0.792718 −0.396359 0.918096i \(-0.629726\pi\)
−0.396359 + 0.918096i \(0.629726\pi\)
\(828\) −33501.0 −1.40609
\(829\) −43227.9 −1.81106 −0.905528 0.424286i \(-0.860525\pi\)
−0.905528 + 0.424286i \(0.860525\pi\)
\(830\) 0 0
\(831\) −26085.1 −1.08891
\(832\) 34363.5 1.43190
\(833\) −2196.89 −0.0913779
\(834\) 59177.9 2.45703
\(835\) 0 0
\(836\) −81322.4 −3.36435
\(837\) 18992.1 0.784306
\(838\) 69536.1 2.86645
\(839\) 30311.3 1.24727 0.623637 0.781714i \(-0.285654\pi\)
0.623637 + 0.781714i \(0.285654\pi\)
\(840\) 0 0
\(841\) −23245.0 −0.953095
\(842\) 75664.0 3.09686
\(843\) −36530.6 −1.49250
\(844\) 9664.88 0.394169
\(845\) 0 0
\(846\) 801.918 0.0325893
\(847\) 261.960 0.0106270
\(848\) 20033.8 0.811276
\(849\) −2013.58 −0.0813968
\(850\) 0 0
\(851\) 51625.3 2.07955
\(852\) −2954.85 −0.118816
\(853\) −22797.0 −0.915071 −0.457535 0.889191i \(-0.651268\pi\)
−0.457535 + 0.889191i \(0.651268\pi\)
\(854\) −16725.0 −0.670162
\(855\) 0 0
\(856\) 8217.25 0.328107
\(857\) −11280.3 −0.449625 −0.224813 0.974402i \(-0.572177\pi\)
−0.224813 + 0.974402i \(0.572177\pi\)
\(858\) −45851.6 −1.82442
\(859\) 43369.3 1.72263 0.861315 0.508071i \(-0.169641\pi\)
0.861315 + 0.508071i \(0.169641\pi\)
\(860\) 0 0
\(861\) −5667.01 −0.224310
\(862\) 25630.3 1.01273
\(863\) 9846.22 0.388377 0.194189 0.980964i \(-0.437793\pi\)
0.194189 + 0.980964i \(0.437793\pi\)
\(864\) 3085.95 0.121512
\(865\) 0 0
\(866\) −32207.0 −1.26379
\(867\) 12044.5 0.471801
\(868\) 13707.2 0.536005
\(869\) 32572.9 1.27153
\(870\) 0 0
\(871\) −29307.4 −1.14012
\(872\) −31932.5 −1.24010
\(873\) 2262.11 0.0876985
\(874\) 148090. 5.73136
\(875\) 0 0
\(876\) −6580.23 −0.253796
\(877\) −15229.8 −0.586400 −0.293200 0.956051i \(-0.594720\pi\)
−0.293200 + 0.956051i \(0.594720\pi\)
\(878\) 43216.8 1.66116
\(879\) −16615.2 −0.637563
\(880\) 0 0
\(881\) 27891.7 1.06662 0.533311 0.845919i \(-0.320948\pi\)
0.533311 + 0.845919i \(0.320948\pi\)
\(882\) 2335.81 0.0891734
\(883\) 18300.3 0.697456 0.348728 0.937224i \(-0.386614\pi\)
0.348728 + 0.937224i \(0.386614\pi\)
\(884\) 43260.6 1.64594
\(885\) 0 0
\(886\) 64416.3 2.44256
\(887\) −19104.8 −0.723197 −0.361598 0.932334i \(-0.617769\pi\)
−0.361598 + 0.932334i \(0.617769\pi\)
\(888\) 37105.8 1.40224
\(889\) −12129.9 −0.457620
\(890\) 0 0
\(891\) −13653.3 −0.513357
\(892\) 30375.7 1.14019
\(893\) −2350.10 −0.0880661
\(894\) 18228.1 0.681921
\(895\) 0 0
\(896\) 17980.5 0.670410
\(897\) 55355.2 2.06048
\(898\) −20426.8 −0.759077
\(899\) −4208.78 −0.156141
\(900\) 0 0
\(901\) −15556.0 −0.575189
\(902\) −35165.1 −1.29808
\(903\) 9983.19 0.367907
\(904\) −53899.9 −1.98306
\(905\) 0 0
\(906\) −27444.0 −1.00636
\(907\) −29518.8 −1.08066 −0.540328 0.841455i \(-0.681700\pi\)
−0.540328 + 0.841455i \(0.681700\pi\)
\(908\) 12044.0 0.440191
\(909\) −18355.5 −0.669764
\(910\) 0 0
\(911\) −30322.2 −1.10277 −0.551383 0.834253i \(-0.685900\pi\)
−0.551383 + 0.834253i \(0.685900\pi\)
\(912\) 33468.5 1.21519
\(913\) −42727.0 −1.54880
\(914\) 22907.0 0.828991
\(915\) 0 0
\(916\) −89895.9 −3.24263
\(917\) −17008.3 −0.612501
\(918\) 33338.3 1.19862
\(919\) −37780.9 −1.35612 −0.678062 0.735005i \(-0.737180\pi\)
−0.678062 + 0.735005i \(0.737180\pi\)
\(920\) 0 0
\(921\) −13087.0 −0.468220
\(922\) 9499.48 0.339315
\(923\) −2774.93 −0.0989575
\(924\) −16907.2 −0.601953
\(925\) 0 0
\(926\) −35642.7 −1.26489
\(927\) −18159.3 −0.643398
\(928\) −683.867 −0.0241908
\(929\) 48493.3 1.71261 0.856305 0.516470i \(-0.172754\pi\)
0.856305 + 0.516470i \(0.172754\pi\)
\(930\) 0 0
\(931\) −6845.33 −0.240974
\(932\) −13602.7 −0.478081
\(933\) 7212.46 0.253082
\(934\) 9244.81 0.323875
\(935\) 0 0
\(936\) −22612.7 −0.789656
\(937\) 18661.7 0.650641 0.325320 0.945604i \(-0.394528\pi\)
0.325320 + 0.945604i \(0.394528\pi\)
\(938\) −16300.6 −0.567413
\(939\) −21128.8 −0.734305
\(940\) 0 0
\(941\) −31270.1 −1.08329 −0.541644 0.840608i \(-0.682198\pi\)
−0.541644 + 0.840608i \(0.682198\pi\)
\(942\) −46872.1 −1.62121
\(943\) 42453.7 1.46605
\(944\) 7814.53 0.269429
\(945\) 0 0
\(946\) 61948.0 2.12907
\(947\) −22405.3 −0.768823 −0.384412 0.923162i \(-0.625596\pi\)
−0.384412 + 0.923162i \(0.625596\pi\)
\(948\) −57492.2 −1.96968
\(949\) −6179.55 −0.211377
\(950\) 0 0
\(951\) 20225.8 0.689660
\(952\) 11829.0 0.402711
\(953\) 21777.9 0.740247 0.370123 0.928983i \(-0.379315\pi\)
0.370123 + 0.928983i \(0.379315\pi\)
\(954\) 16539.7 0.561313
\(955\) 0 0
\(956\) −28587.2 −0.967129
\(957\) 5191.32 0.175352
\(958\) −51323.3 −1.73088
\(959\) 10169.9 0.342442
\(960\) 0 0
\(961\) −14306.5 −0.480229
\(962\) 70880.5 2.37555
\(963\) 2133.16 0.0713814
\(964\) −37051.5 −1.23791
\(965\) 0 0
\(966\) 30788.2 1.02546
\(967\) −14432.2 −0.479945 −0.239973 0.970780i \(-0.577138\pi\)
−0.239973 + 0.970780i \(0.577138\pi\)
\(968\) −1410.51 −0.0468341
\(969\) −25987.9 −0.861561
\(970\) 0 0
\(971\) 6672.57 0.220528 0.110264 0.993902i \(-0.464830\pi\)
0.110264 + 0.993902i \(0.464830\pi\)
\(972\) −40748.6 −1.34466
\(973\) 20492.3 0.675183
\(974\) −58156.7 −1.91321
\(975\) 0 0
\(976\) 28316.5 0.928678
\(977\) −33300.2 −1.09045 −0.545224 0.838290i \(-0.683556\pi\)
−0.545224 + 0.838290i \(0.683556\pi\)
\(978\) −31887.1 −1.04257
\(979\) 22912.0 0.747979
\(980\) 0 0
\(981\) −8289.55 −0.269791
\(982\) −487.491 −0.0158416
\(983\) 17243.3 0.559486 0.279743 0.960075i \(-0.409751\pi\)
0.279743 + 0.960075i \(0.409751\pi\)
\(984\) 30513.6 0.988557
\(985\) 0 0
\(986\) −7387.99 −0.238622
\(987\) −488.592 −0.0157569
\(988\) 134796. 4.34053
\(989\) −74787.8 −2.40456
\(990\) 0 0
\(991\) −32266.7 −1.03429 −0.517147 0.855897i \(-0.673006\pi\)
−0.517147 + 0.855897i \(0.673006\pi\)
\(992\) 2516.02 0.0805278
\(993\) 10159.1 0.324661
\(994\) −1543.40 −0.0492491
\(995\) 0 0
\(996\) 75414.4 2.39919
\(997\) −14339.8 −0.455514 −0.227757 0.973718i \(-0.573139\pi\)
−0.227757 + 0.973718i \(0.573139\pi\)
\(998\) 76059.8 2.41246
\(999\) 36213.3 1.14688
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.4.a.h.1.1 yes 4
3.2 odd 2 1575.4.a.bg.1.4 4
5.2 odd 4 175.4.b.f.99.1 8
5.3 odd 4 175.4.b.f.99.8 8
5.4 even 2 175.4.a.g.1.4 4
7.6 odd 2 1225.4.a.bd.1.1 4
15.14 odd 2 1575.4.a.bl.1.1 4
35.34 odd 2 1225.4.a.z.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.4.a.g.1.4 4 5.4 even 2
175.4.a.h.1.1 yes 4 1.1 even 1 trivial
175.4.b.f.99.1 8 5.2 odd 4
175.4.b.f.99.8 8 5.3 odd 4
1225.4.a.z.1.4 4 35.34 odd 2
1225.4.a.bd.1.1 4 7.6 odd 2
1575.4.a.bg.1.4 4 3.2 odd 2
1575.4.a.bl.1.1 4 15.14 odd 2