Properties

Label 175.4.a.g.1.2
Level $175$
Weight $4$
Character 175.1
Self dual yes
Analytic conductor $10.325$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(1,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 32x^{2} - 35x + 120 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-3.53510\) of defining polynomial
Character \(\chi\) \(=\) 175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.53510 q^{2} -6.46622 q^{3} +12.5671 q^{4} +29.3249 q^{6} -7.00000 q^{7} -20.7124 q^{8} +14.8119 q^{9} +O(q^{10})\) \(q-4.53510 q^{2} -6.46622 q^{3} +12.5671 q^{4} +29.3249 q^{6} -7.00000 q^{7} -20.7124 q^{8} +14.8119 q^{9} -54.0684 q^{11} -81.2617 q^{12} -75.2159 q^{13} +31.7457 q^{14} -6.60441 q^{16} +71.2538 q^{17} -67.1736 q^{18} -65.5100 q^{19} +45.2635 q^{21} +245.206 q^{22} -125.688 q^{23} +133.931 q^{24} +341.111 q^{26} +78.8106 q^{27} -87.9699 q^{28} +190.405 q^{29} -193.105 q^{31} +195.650 q^{32} +349.618 q^{33} -323.143 q^{34} +186.144 q^{36} -114.673 q^{37} +297.094 q^{38} +486.362 q^{39} +216.896 q^{41} -205.275 q^{42} +413.032 q^{43} -679.484 q^{44} +570.007 q^{46} +113.555 q^{47} +42.7055 q^{48} +49.0000 q^{49} -460.743 q^{51} -945.247 q^{52} -584.366 q^{53} -357.414 q^{54} +144.986 q^{56} +423.602 q^{57} -863.504 q^{58} +203.748 q^{59} -162.539 q^{61} +875.749 q^{62} -103.684 q^{63} -834.459 q^{64} -1585.55 q^{66} -477.534 q^{67} +895.456 q^{68} +812.725 q^{69} +822.294 q^{71} -306.790 q^{72} +798.993 q^{73} +520.052 q^{74} -823.273 q^{76} +378.479 q^{77} -2205.70 q^{78} -468.087 q^{79} -909.529 q^{81} -983.643 q^{82} +310.333 q^{83} +568.832 q^{84} -1873.14 q^{86} -1231.20 q^{87} +1119.88 q^{88} +1314.90 q^{89} +526.511 q^{91} -1579.53 q^{92} +1248.66 q^{93} -514.985 q^{94} -1265.12 q^{96} +1314.66 q^{97} -222.220 q^{98} -800.858 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 3 q^{3} + 36 q^{4} + q^{6} - 28 q^{7} - 27 q^{8} + 61 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{2} + 3 q^{3} + 36 q^{4} + q^{6} - 28 q^{7} - 27 q^{8} + 61 q^{9} + 100 q^{11} + 165 q^{12} - 44 q^{13} + 28 q^{14} + 160 q^{16} + 53 q^{17} - 433 q^{18} - 29 q^{19} - 21 q^{21} + 152 q^{22} - 295 q^{23} - 21 q^{24} + 700 q^{26} + 441 q^{27} - 252 q^{28} + 129 q^{29} + 114 q^{31} + 310 q^{32} + 865 q^{33} + 203 q^{34} + 1101 q^{36} - 403 q^{37} - 555 q^{38} + 674 q^{39} + 671 q^{41} - 7 q^{42} + 411 q^{43} + 438 q^{44} - 997 q^{46} + 8 q^{47} + 523 q^{48} + 196 q^{49} - 885 q^{51} - 74 q^{52} - 90 q^{53} - 2777 q^{54} + 189 q^{56} - 233 q^{57} - 673 q^{58} + 1018 q^{59} + 50 q^{61} + 1626 q^{62} - 427 q^{63} - 2421 q^{64} - 3841 q^{66} - 424 q^{67} + 617 q^{68} + 1080 q^{69} + 215 q^{71} - 2940 q^{72} + 1207 q^{73} + 623 q^{74} - 3257 q^{76} - 700 q^{77} - 278 q^{78} - 951 q^{79} + 28 q^{81} - 1695 q^{82} + 3035 q^{83} - 1155 q^{84} - 99 q^{86} - 2210 q^{87} - 163 q^{88} + 2819 q^{89} + 308 q^{91} - 3073 q^{92} + 852 q^{93} - 3056 q^{94} - 1345 q^{96} + 1100 q^{97} - 196 q^{98} + 2383 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.53510 −1.60340 −0.801700 0.597727i \(-0.796071\pi\)
−0.801700 + 0.597727i \(0.796071\pi\)
\(3\) −6.46622 −1.24442 −0.622212 0.782849i \(-0.713766\pi\)
−0.622212 + 0.782849i \(0.713766\pi\)
\(4\) 12.5671 1.57089
\(5\) 0 0
\(6\) 29.3249 1.99531
\(7\) −7.00000 −0.377964
\(8\) −20.7124 −0.915365
\(9\) 14.8119 0.548591
\(10\) 0 0
\(11\) −54.0684 −1.48202 −0.741011 0.671493i \(-0.765653\pi\)
−0.741011 + 0.671493i \(0.765653\pi\)
\(12\) −81.2617 −1.95485
\(13\) −75.2159 −1.60470 −0.802351 0.596853i \(-0.796418\pi\)
−0.802351 + 0.596853i \(0.796418\pi\)
\(14\) 31.7457 0.606028
\(15\) 0 0
\(16\) −6.60441 −0.103194
\(17\) 71.2538 1.01656 0.508282 0.861191i \(-0.330281\pi\)
0.508282 + 0.861191i \(0.330281\pi\)
\(18\) −67.1736 −0.879610
\(19\) −65.5100 −0.791002 −0.395501 0.918466i \(-0.629429\pi\)
−0.395501 + 0.918466i \(0.629429\pi\)
\(20\) 0 0
\(21\) 45.2635 0.470348
\(22\) 245.206 2.37627
\(23\) −125.688 −1.13947 −0.569733 0.821830i \(-0.692953\pi\)
−0.569733 + 0.821830i \(0.692953\pi\)
\(24\) 133.931 1.13910
\(25\) 0 0
\(26\) 341.111 2.57298
\(27\) 78.8106 0.561745
\(28\) −87.9699 −0.593741
\(29\) 190.405 1.21922 0.609608 0.792703i \(-0.291327\pi\)
0.609608 + 0.792703i \(0.291327\pi\)
\(30\) 0 0
\(31\) −193.105 −1.11879 −0.559397 0.828900i \(-0.688967\pi\)
−0.559397 + 0.828900i \(0.688967\pi\)
\(32\) 195.650 1.08083
\(33\) 349.618 1.84426
\(34\) −323.143 −1.62996
\(35\) 0 0
\(36\) 186.144 0.861776
\(37\) −114.673 −0.509516 −0.254758 0.967005i \(-0.581996\pi\)
−0.254758 + 0.967005i \(0.581996\pi\)
\(38\) 297.094 1.26829
\(39\) 486.362 1.99693
\(40\) 0 0
\(41\) 216.896 0.826180 0.413090 0.910690i \(-0.364449\pi\)
0.413090 + 0.910690i \(0.364449\pi\)
\(42\) −205.275 −0.754156
\(43\) 413.032 1.46481 0.732405 0.680870i \(-0.238398\pi\)
0.732405 + 0.680870i \(0.238398\pi\)
\(44\) −679.484 −2.32809
\(45\) 0 0
\(46\) 570.007 1.82702
\(47\) 113.555 0.352421 0.176210 0.984353i \(-0.443616\pi\)
0.176210 + 0.984353i \(0.443616\pi\)
\(48\) 42.7055 0.128417
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −460.743 −1.26504
\(52\) −945.247 −2.52081
\(53\) −584.366 −1.51451 −0.757253 0.653122i \(-0.773459\pi\)
−0.757253 + 0.653122i \(0.773459\pi\)
\(54\) −357.414 −0.900701
\(55\) 0 0
\(56\) 144.986 0.345976
\(57\) 423.602 0.984341
\(58\) −863.504 −1.95489
\(59\) 203.748 0.449589 0.224795 0.974406i \(-0.427829\pi\)
0.224795 + 0.974406i \(0.427829\pi\)
\(60\) 0 0
\(61\) −162.539 −0.341163 −0.170581 0.985344i \(-0.554565\pi\)
−0.170581 + 0.985344i \(0.554565\pi\)
\(62\) 875.749 1.79387
\(63\) −103.684 −0.207348
\(64\) −834.459 −1.62980
\(65\) 0 0
\(66\) −1585.55 −2.95709
\(67\) −477.534 −0.870747 −0.435374 0.900250i \(-0.643384\pi\)
−0.435374 + 0.900250i \(0.643384\pi\)
\(68\) 895.456 1.59691
\(69\) 812.725 1.41798
\(70\) 0 0
\(71\) 822.294 1.37448 0.687242 0.726429i \(-0.258821\pi\)
0.687242 + 0.726429i \(0.258821\pi\)
\(72\) −306.790 −0.502161
\(73\) 798.993 1.28103 0.640514 0.767947i \(-0.278721\pi\)
0.640514 + 0.767947i \(0.278721\pi\)
\(74\) 520.052 0.816957
\(75\) 0 0
\(76\) −823.273 −1.24258
\(77\) 378.479 0.560152
\(78\) −2205.70 −3.20188
\(79\) −468.087 −0.666632 −0.333316 0.942815i \(-0.608168\pi\)
−0.333316 + 0.942815i \(0.608168\pi\)
\(80\) 0 0
\(81\) −909.529 −1.24764
\(82\) −983.643 −1.32470
\(83\) 310.333 0.410403 0.205202 0.978720i \(-0.434215\pi\)
0.205202 + 0.978720i \(0.434215\pi\)
\(84\) 568.832 0.738865
\(85\) 0 0
\(86\) −1873.14 −2.34867
\(87\) −1231.20 −1.51722
\(88\) 1119.88 1.35659
\(89\) 1314.90 1.56606 0.783029 0.621985i \(-0.213674\pi\)
0.783029 + 0.621985i \(0.213674\pi\)
\(90\) 0 0
\(91\) 526.511 0.606520
\(92\) −1579.53 −1.78998
\(93\) 1248.66 1.39225
\(94\) −514.985 −0.565071
\(95\) 0 0
\(96\) −1265.12 −1.34501
\(97\) 1314.66 1.37612 0.688058 0.725656i \(-0.258463\pi\)
0.688058 + 0.725656i \(0.258463\pi\)
\(98\) −222.220 −0.229057
\(99\) −800.858 −0.813023
\(100\) 0 0
\(101\) −401.240 −0.395296 −0.197648 0.980273i \(-0.563330\pi\)
−0.197648 + 0.980273i \(0.563330\pi\)
\(102\) 2089.51 2.02836
\(103\) −291.844 −0.279187 −0.139594 0.990209i \(-0.544580\pi\)
−0.139594 + 0.990209i \(0.544580\pi\)
\(104\) 1557.90 1.46889
\(105\) 0 0
\(106\) 2650.16 2.42836
\(107\) 21.9594 0.0198402 0.00992009 0.999951i \(-0.496842\pi\)
0.00992009 + 0.999951i \(0.496842\pi\)
\(108\) 990.422 0.882439
\(109\) −17.3019 −0.0152039 −0.00760194 0.999971i \(-0.502420\pi\)
−0.00760194 + 0.999971i \(0.502420\pi\)
\(110\) 0 0
\(111\) 741.498 0.634053
\(112\) 46.2308 0.0390036
\(113\) −58.8182 −0.0489660 −0.0244830 0.999700i \(-0.507794\pi\)
−0.0244830 + 0.999700i \(0.507794\pi\)
\(114\) −1921.08 −1.57829
\(115\) 0 0
\(116\) 2392.84 1.91526
\(117\) −1114.09 −0.880324
\(118\) −924.018 −0.720871
\(119\) −498.777 −0.384225
\(120\) 0 0
\(121\) 1592.39 1.19639
\(122\) 737.129 0.547020
\(123\) −1402.49 −1.02812
\(124\) −2426.77 −1.75750
\(125\) 0 0
\(126\) 470.216 0.332461
\(127\) −1862.03 −1.30101 −0.650507 0.759501i \(-0.725443\pi\)
−0.650507 + 0.759501i \(0.725443\pi\)
\(128\) 2219.15 1.53240
\(129\) −2670.75 −1.82284
\(130\) 0 0
\(131\) 775.161 0.516994 0.258497 0.966012i \(-0.416773\pi\)
0.258497 + 0.966012i \(0.416773\pi\)
\(132\) 4393.69 2.89714
\(133\) 458.570 0.298971
\(134\) 2165.66 1.39616
\(135\) 0 0
\(136\) −1475.83 −0.930528
\(137\) 1027.95 0.641051 0.320525 0.947240i \(-0.396141\pi\)
0.320525 + 0.947240i \(0.396141\pi\)
\(138\) −3685.79 −2.27359
\(139\) −1029.66 −0.628309 −0.314154 0.949372i \(-0.601721\pi\)
−0.314154 + 0.949372i \(0.601721\pi\)
\(140\) 0 0
\(141\) −734.274 −0.438561
\(142\) −3729.18 −2.20385
\(143\) 4066.80 2.37820
\(144\) −97.8241 −0.0566112
\(145\) 0 0
\(146\) −3623.51 −2.05400
\(147\) −316.845 −0.177775
\(148\) −1441.11 −0.800393
\(149\) 1414.67 0.777814 0.388907 0.921277i \(-0.372853\pi\)
0.388907 + 0.921277i \(0.372853\pi\)
\(150\) 0 0
\(151\) 2094.96 1.12904 0.564522 0.825418i \(-0.309060\pi\)
0.564522 + 0.825418i \(0.309060\pi\)
\(152\) 1356.87 0.724056
\(153\) 1055.41 0.557678
\(154\) −1716.44 −0.898147
\(155\) 0 0
\(156\) 6112.17 3.13696
\(157\) 709.495 0.360662 0.180331 0.983606i \(-0.442283\pi\)
0.180331 + 0.983606i \(0.442283\pi\)
\(158\) 2122.82 1.06888
\(159\) 3778.64 1.88469
\(160\) 0 0
\(161\) 879.815 0.430678
\(162\) 4124.80 2.00046
\(163\) −3276.23 −1.57432 −0.787160 0.616749i \(-0.788449\pi\)
−0.787160 + 0.616749i \(0.788449\pi\)
\(164\) 2725.75 1.29784
\(165\) 0 0
\(166\) −1407.39 −0.658040
\(167\) −2860.69 −1.32555 −0.662775 0.748819i \(-0.730621\pi\)
−0.662775 + 0.748819i \(0.730621\pi\)
\(168\) −937.514 −0.430540
\(169\) 3460.42 1.57507
\(170\) 0 0
\(171\) −970.331 −0.433936
\(172\) 5190.62 2.30105
\(173\) −2803.44 −1.23203 −0.616015 0.787734i \(-0.711254\pi\)
−0.616015 + 0.787734i \(0.711254\pi\)
\(174\) 5583.61 2.43271
\(175\) 0 0
\(176\) 357.090 0.152936
\(177\) −1317.48 −0.559479
\(178\) −5963.20 −2.51102
\(179\) 248.617 0.103813 0.0519064 0.998652i \(-0.483470\pi\)
0.0519064 + 0.998652i \(0.483470\pi\)
\(180\) 0 0
\(181\) 2075.56 0.852347 0.426174 0.904641i \(-0.359861\pi\)
0.426174 + 0.904641i \(0.359861\pi\)
\(182\) −2387.78 −0.972494
\(183\) 1051.01 0.424551
\(184\) 2603.29 1.04303
\(185\) 0 0
\(186\) −5662.78 −2.23234
\(187\) −3852.58 −1.50657
\(188\) 1427.07 0.553614
\(189\) −551.674 −0.212319
\(190\) 0 0
\(191\) −1252.95 −0.474663 −0.237331 0.971429i \(-0.576273\pi\)
−0.237331 + 0.971429i \(0.576273\pi\)
\(192\) 5395.79 2.02817
\(193\) −1602.12 −0.597527 −0.298764 0.954327i \(-0.596574\pi\)
−0.298764 + 0.954327i \(0.596574\pi\)
\(194\) −5962.10 −2.20646
\(195\) 0 0
\(196\) 615.789 0.224413
\(197\) −2346.38 −0.848593 −0.424296 0.905523i \(-0.639479\pi\)
−0.424296 + 0.905523i \(0.639479\pi\)
\(198\) 3631.97 1.30360
\(199\) −1993.53 −0.710140 −0.355070 0.934840i \(-0.615543\pi\)
−0.355070 + 0.934840i \(0.615543\pi\)
\(200\) 0 0
\(201\) 3087.84 1.08358
\(202\) 1819.67 0.633818
\(203\) −1332.83 −0.460820
\(204\) −5790.21 −1.98723
\(205\) 0 0
\(206\) 1323.54 0.447649
\(207\) −1861.68 −0.625101
\(208\) 496.756 0.165595
\(209\) 3542.02 1.17228
\(210\) 0 0
\(211\) −5852.55 −1.90951 −0.954754 0.297396i \(-0.903882\pi\)
−0.954754 + 0.297396i \(0.903882\pi\)
\(212\) −7343.80 −2.37912
\(213\) −5317.13 −1.71044
\(214\) −99.5883 −0.0318117
\(215\) 0 0
\(216\) −1632.35 −0.514202
\(217\) 1351.73 0.422864
\(218\) 78.4659 0.0243779
\(219\) −5166.46 −1.59414
\(220\) 0 0
\(221\) −5359.42 −1.63128
\(222\) −3362.77 −1.01664
\(223\) 1719.58 0.516374 0.258187 0.966095i \(-0.416875\pi\)
0.258187 + 0.966095i \(0.416875\pi\)
\(224\) −1369.55 −0.408514
\(225\) 0 0
\(226\) 266.747 0.0785120
\(227\) 5686.00 1.66252 0.831262 0.555881i \(-0.187619\pi\)
0.831262 + 0.555881i \(0.187619\pi\)
\(228\) 5323.46 1.54629
\(229\) −3087.40 −0.890923 −0.445461 0.895301i \(-0.646960\pi\)
−0.445461 + 0.895301i \(0.646960\pi\)
\(230\) 0 0
\(231\) −2447.33 −0.697066
\(232\) −3943.73 −1.11603
\(233\) −3997.55 −1.12398 −0.561991 0.827143i \(-0.689965\pi\)
−0.561991 + 0.827143i \(0.689965\pi\)
\(234\) 5052.52 1.41151
\(235\) 0 0
\(236\) 2560.53 0.706255
\(237\) 3026.75 0.829573
\(238\) 2262.00 0.616067
\(239\) −4499.79 −1.21786 −0.608928 0.793226i \(-0.708400\pi\)
−0.608928 + 0.793226i \(0.708400\pi\)
\(240\) 0 0
\(241\) 3633.26 0.971115 0.485557 0.874205i \(-0.338617\pi\)
0.485557 + 0.874205i \(0.338617\pi\)
\(242\) −7221.66 −1.91829
\(243\) 3753.32 0.990847
\(244\) −2042.64 −0.535929
\(245\) 0 0
\(246\) 6360.45 1.64849
\(247\) 4927.39 1.26932
\(248\) 3999.65 1.02411
\(249\) −2006.68 −0.510715
\(250\) 0 0
\(251\) −1211.21 −0.304585 −0.152292 0.988335i \(-0.548666\pi\)
−0.152292 + 0.988335i \(0.548666\pi\)
\(252\) −1303.00 −0.325721
\(253\) 6795.74 1.68871
\(254\) 8444.50 2.08604
\(255\) 0 0
\(256\) −3388.39 −0.827245
\(257\) 6225.81 1.51111 0.755556 0.655085i \(-0.227367\pi\)
0.755556 + 0.655085i \(0.227367\pi\)
\(258\) 12112.1 2.92275
\(259\) 802.709 0.192579
\(260\) 0 0
\(261\) 2820.27 0.668851
\(262\) −3515.43 −0.828947
\(263\) 757.377 0.177574 0.0887869 0.996051i \(-0.471701\pi\)
0.0887869 + 0.996051i \(0.471701\pi\)
\(264\) −7241.41 −1.68817
\(265\) 0 0
\(266\) −2079.66 −0.479369
\(267\) −8502.43 −1.94884
\(268\) −6001.23 −1.36785
\(269\) 1750.59 0.396786 0.198393 0.980123i \(-0.436428\pi\)
0.198393 + 0.980123i \(0.436428\pi\)
\(270\) 0 0
\(271\) 4451.86 0.997902 0.498951 0.866630i \(-0.333719\pi\)
0.498951 + 0.866630i \(0.333719\pi\)
\(272\) −470.589 −0.104903
\(273\) −3404.53 −0.754768
\(274\) −4661.87 −1.02786
\(275\) 0 0
\(276\) 10213.6 2.22749
\(277\) 7691.69 1.66841 0.834204 0.551456i \(-0.185928\pi\)
0.834204 + 0.551456i \(0.185928\pi\)
\(278\) 4669.62 1.00743
\(279\) −2860.26 −0.613760
\(280\) 0 0
\(281\) −199.034 −0.0422540 −0.0211270 0.999777i \(-0.506725\pi\)
−0.0211270 + 0.999777i \(0.506725\pi\)
\(282\) 3330.01 0.703188
\(283\) 799.307 0.167893 0.0839467 0.996470i \(-0.473247\pi\)
0.0839467 + 0.996470i \(0.473247\pi\)
\(284\) 10333.9 2.15916
\(285\) 0 0
\(286\) −18443.3 −3.81321
\(287\) −1518.27 −0.312267
\(288\) 2897.96 0.592931
\(289\) 164.110 0.0334031
\(290\) 0 0
\(291\) −8500.86 −1.71247
\(292\) 10041.0 2.01235
\(293\) −3302.75 −0.658528 −0.329264 0.944238i \(-0.606801\pi\)
−0.329264 + 0.944238i \(0.606801\pi\)
\(294\) 1436.92 0.285044
\(295\) 0 0
\(296\) 2375.14 0.466393
\(297\) −4261.16 −0.832518
\(298\) −6415.67 −1.24715
\(299\) 9453.72 1.82850
\(300\) 0 0
\(301\) −2891.22 −0.553646
\(302\) −9500.87 −1.81031
\(303\) 2594.51 0.491916
\(304\) 432.655 0.0816265
\(305\) 0 0
\(306\) −4786.38 −0.894180
\(307\) 8628.17 1.60402 0.802012 0.597308i \(-0.203763\pi\)
0.802012 + 0.597308i \(0.203763\pi\)
\(308\) 4756.39 0.879937
\(309\) 1887.13 0.347427
\(310\) 0 0
\(311\) −4900.60 −0.893530 −0.446765 0.894651i \(-0.647424\pi\)
−0.446765 + 0.894651i \(0.647424\pi\)
\(312\) −10073.7 −1.82792
\(313\) 9114.26 1.64590 0.822952 0.568110i \(-0.192325\pi\)
0.822952 + 0.568110i \(0.192325\pi\)
\(314\) −3217.63 −0.578285
\(315\) 0 0
\(316\) −5882.51 −1.04721
\(317\) 8022.82 1.42147 0.710736 0.703459i \(-0.248362\pi\)
0.710736 + 0.703459i \(0.248362\pi\)
\(318\) −17136.5 −3.02191
\(319\) −10294.9 −1.80691
\(320\) 0 0
\(321\) −141.995 −0.0246896
\(322\) −3990.05 −0.690549
\(323\) −4667.84 −0.804104
\(324\) −11430.2 −1.95990
\(325\) 0 0
\(326\) 14858.0 2.52426
\(327\) 111.878 0.0189201
\(328\) −4492.42 −0.756257
\(329\) −794.888 −0.133202
\(330\) 0 0
\(331\) −1333.58 −0.221451 −0.110725 0.993851i \(-0.535317\pi\)
−0.110725 + 0.993851i \(0.535317\pi\)
\(332\) 3899.99 0.644698
\(333\) −1698.53 −0.279515
\(334\) 12973.5 2.12539
\(335\) 0 0
\(336\) −298.939 −0.0485370
\(337\) 1687.33 0.272744 0.136372 0.990658i \(-0.456456\pi\)
0.136372 + 0.990658i \(0.456456\pi\)
\(338\) −15693.4 −2.52546
\(339\) 380.331 0.0609344
\(340\) 0 0
\(341\) 10440.9 1.65808
\(342\) 4400.55 0.695773
\(343\) −343.000 −0.0539949
\(344\) −8554.87 −1.34084
\(345\) 0 0
\(346\) 12713.9 1.97544
\(347\) −5955.18 −0.921299 −0.460649 0.887582i \(-0.652383\pi\)
−0.460649 + 0.887582i \(0.652383\pi\)
\(348\) −15472.6 −2.38339
\(349\) 6876.59 1.05471 0.527357 0.849644i \(-0.323183\pi\)
0.527357 + 0.849644i \(0.323183\pi\)
\(350\) 0 0
\(351\) −5927.81 −0.901433
\(352\) −10578.5 −1.60181
\(353\) −1395.95 −0.210479 −0.105239 0.994447i \(-0.533561\pi\)
−0.105239 + 0.994447i \(0.533561\pi\)
\(354\) 5974.90 0.897069
\(355\) 0 0
\(356\) 16524.5 2.46011
\(357\) 3225.20 0.478139
\(358\) −1127.50 −0.166453
\(359\) −382.988 −0.0563046 −0.0281523 0.999604i \(-0.508962\pi\)
−0.0281523 + 0.999604i \(0.508962\pi\)
\(360\) 0 0
\(361\) −2567.44 −0.374316
\(362\) −9412.85 −1.36665
\(363\) −10296.8 −1.48881
\(364\) 6616.73 0.952777
\(365\) 0 0
\(366\) −4766.43 −0.680725
\(367\) 10178.4 1.44771 0.723856 0.689951i \(-0.242368\pi\)
0.723856 + 0.689951i \(0.242368\pi\)
\(368\) 830.094 0.117586
\(369\) 3212.65 0.453235
\(370\) 0 0
\(371\) 4090.56 0.572430
\(372\) 15692.0 2.18708
\(373\) 2991.00 0.415196 0.207598 0.978214i \(-0.433435\pi\)
0.207598 + 0.978214i \(0.433435\pi\)
\(374\) 17471.8 2.41563
\(375\) 0 0
\(376\) −2352.00 −0.322594
\(377\) −14321.5 −1.95648
\(378\) 2501.90 0.340433
\(379\) 7400.66 1.00302 0.501512 0.865150i \(-0.332777\pi\)
0.501512 + 0.865150i \(0.332777\pi\)
\(380\) 0 0
\(381\) 12040.3 1.61901
\(382\) 5682.27 0.761074
\(383\) 10769.6 1.43682 0.718408 0.695622i \(-0.244871\pi\)
0.718408 + 0.695622i \(0.244871\pi\)
\(384\) −14349.5 −1.90695
\(385\) 0 0
\(386\) 7265.75 0.958075
\(387\) 6117.81 0.803580
\(388\) 16521.5 2.16173
\(389\) −11193.3 −1.45893 −0.729466 0.684017i \(-0.760231\pi\)
−0.729466 + 0.684017i \(0.760231\pi\)
\(390\) 0 0
\(391\) −8955.74 −1.15834
\(392\) −1014.91 −0.130766
\(393\) −5012.36 −0.643359
\(394\) 10641.1 1.36063
\(395\) 0 0
\(396\) −10064.5 −1.27717
\(397\) −10371.9 −1.31121 −0.655605 0.755104i \(-0.727586\pi\)
−0.655605 + 0.755104i \(0.727586\pi\)
\(398\) 9040.88 1.13864
\(399\) −2965.21 −0.372046
\(400\) 0 0
\(401\) 5402.20 0.672751 0.336375 0.941728i \(-0.390799\pi\)
0.336375 + 0.941728i \(0.390799\pi\)
\(402\) −14003.7 −1.73741
\(403\) 14524.5 1.79533
\(404\) −5042.44 −0.620967
\(405\) 0 0
\(406\) 6044.53 0.738879
\(407\) 6200.17 0.755113
\(408\) 9543.07 1.15797
\(409\) −12829.9 −1.55110 −0.775549 0.631288i \(-0.782527\pi\)
−0.775549 + 0.631288i \(0.782527\pi\)
\(410\) 0 0
\(411\) −6646.97 −0.797739
\(412\) −3667.64 −0.438572
\(413\) −1426.24 −0.169929
\(414\) 8442.91 1.00229
\(415\) 0 0
\(416\) −14716.0 −1.73440
\(417\) 6658.02 0.781882
\(418\) −16063.4 −1.87964
\(419\) 5620.85 0.655362 0.327681 0.944788i \(-0.393733\pi\)
0.327681 + 0.944788i \(0.393733\pi\)
\(420\) 0 0
\(421\) −2177.11 −0.252033 −0.126017 0.992028i \(-0.540219\pi\)
−0.126017 + 0.992028i \(0.540219\pi\)
\(422\) 26541.9 3.06171
\(423\) 1681.98 0.193335
\(424\) 12103.6 1.38633
\(425\) 0 0
\(426\) 24113.7 2.74252
\(427\) 1137.77 0.128947
\(428\) 275.967 0.0311668
\(429\) −26296.8 −2.95949
\(430\) 0 0
\(431\) 10396.4 1.16190 0.580950 0.813939i \(-0.302681\pi\)
0.580950 + 0.813939i \(0.302681\pi\)
\(432\) −520.497 −0.0579686
\(433\) −11875.6 −1.31803 −0.659015 0.752129i \(-0.729027\pi\)
−0.659015 + 0.752129i \(0.729027\pi\)
\(434\) −6130.24 −0.678021
\(435\) 0 0
\(436\) −217.435 −0.0238836
\(437\) 8233.81 0.901320
\(438\) 23430.4 2.55605
\(439\) 640.369 0.0696200 0.0348100 0.999394i \(-0.488917\pi\)
0.0348100 + 0.999394i \(0.488917\pi\)
\(440\) 0 0
\(441\) 725.785 0.0783701
\(442\) 24305.5 2.61560
\(443\) 854.852 0.0916823 0.0458411 0.998949i \(-0.485403\pi\)
0.0458411 + 0.998949i \(0.485403\pi\)
\(444\) 9318.50 0.996028
\(445\) 0 0
\(446\) −7798.46 −0.827954
\(447\) −9147.56 −0.967930
\(448\) 5841.21 0.616008
\(449\) 3427.44 0.360247 0.180123 0.983644i \(-0.442350\pi\)
0.180123 + 0.983644i \(0.442350\pi\)
\(450\) 0 0
\(451\) −11727.2 −1.22442
\(452\) −739.176 −0.0769202
\(453\) −13546.5 −1.40501
\(454\) −25786.6 −2.66569
\(455\) 0 0
\(456\) −8773.79 −0.901032
\(457\) −1709.31 −0.174963 −0.0874814 0.996166i \(-0.527882\pi\)
−0.0874814 + 0.996166i \(0.527882\pi\)
\(458\) 14001.7 1.42851
\(459\) 5615.56 0.571050
\(460\) 0 0
\(461\) 2251.18 0.227436 0.113718 0.993513i \(-0.463724\pi\)
0.113718 + 0.993513i \(0.463724\pi\)
\(462\) 11098.9 1.11768
\(463\) 3200.80 0.321282 0.160641 0.987013i \(-0.448644\pi\)
0.160641 + 0.987013i \(0.448644\pi\)
\(464\) −1257.51 −0.125816
\(465\) 0 0
\(466\) 18129.3 1.80219
\(467\) −5477.39 −0.542748 −0.271374 0.962474i \(-0.587478\pi\)
−0.271374 + 0.962474i \(0.587478\pi\)
\(468\) −14000.9 −1.38289
\(469\) 3342.74 0.329112
\(470\) 0 0
\(471\) −4587.75 −0.448816
\(472\) −4220.11 −0.411538
\(473\) −22332.0 −2.17088
\(474\) −13726.6 −1.33014
\(475\) 0 0
\(476\) −6268.19 −0.603576
\(477\) −8655.60 −0.830844
\(478\) 20407.0 1.95271
\(479\) −14182.0 −1.35280 −0.676399 0.736535i \(-0.736461\pi\)
−0.676399 + 0.736535i \(0.736461\pi\)
\(480\) 0 0
\(481\) 8625.20 0.817620
\(482\) −16477.2 −1.55709
\(483\) −5689.07 −0.535946
\(484\) 20011.8 1.87940
\(485\) 0 0
\(486\) −17021.7 −1.58872
\(487\) 5320.83 0.495092 0.247546 0.968876i \(-0.420376\pi\)
0.247546 + 0.968876i \(0.420376\pi\)
\(488\) 3366.56 0.312289
\(489\) 21184.8 1.95912
\(490\) 0 0
\(491\) −6574.80 −0.604311 −0.302155 0.953259i \(-0.597706\pi\)
−0.302155 + 0.953259i \(0.597706\pi\)
\(492\) −17625.3 −1.61506
\(493\) 13567.1 1.23941
\(494\) −22346.2 −2.03523
\(495\) 0 0
\(496\) 1275.34 0.115453
\(497\) −5756.06 −0.519506
\(498\) 9100.49 0.818881
\(499\) −1507.68 −0.135256 −0.0676282 0.997711i \(-0.521543\pi\)
−0.0676282 + 0.997711i \(0.521543\pi\)
\(500\) 0 0
\(501\) 18497.8 1.64955
\(502\) 5492.95 0.488371
\(503\) 8782.24 0.778491 0.389245 0.921134i \(-0.372736\pi\)
0.389245 + 0.921134i \(0.372736\pi\)
\(504\) 2147.53 0.189799
\(505\) 0 0
\(506\) −30819.4 −2.70768
\(507\) −22375.9 −1.96005
\(508\) −23400.4 −2.04375
\(509\) 12696.6 1.10563 0.552815 0.833304i \(-0.313553\pi\)
0.552815 + 0.833304i \(0.313553\pi\)
\(510\) 0 0
\(511\) −5592.95 −0.484183
\(512\) −2386.50 −0.205995
\(513\) −5162.88 −0.444341
\(514\) −28234.7 −2.42291
\(515\) 0 0
\(516\) −33563.7 −2.86349
\(517\) −6139.76 −0.522295
\(518\) −3640.36 −0.308781
\(519\) 18127.6 1.53317
\(520\) 0 0
\(521\) −10434.7 −0.877455 −0.438727 0.898620i \(-0.644571\pi\)
−0.438727 + 0.898620i \(0.644571\pi\)
\(522\) −12790.2 −1.07243
\(523\) 8403.03 0.702560 0.351280 0.936270i \(-0.385746\pi\)
0.351280 + 0.936270i \(0.385746\pi\)
\(524\) 9741.55 0.812140
\(525\) 0 0
\(526\) −3434.78 −0.284722
\(527\) −13759.4 −1.13733
\(528\) −2309.02 −0.190317
\(529\) 3630.43 0.298384
\(530\) 0 0
\(531\) 3017.91 0.246640
\(532\) 5762.91 0.469650
\(533\) −16314.0 −1.32577
\(534\) 38559.4 3.12477
\(535\) 0 0
\(536\) 9890.85 0.797052
\(537\) −1607.61 −0.129187
\(538\) −7939.11 −0.636207
\(539\) −2649.35 −0.211717
\(540\) 0 0
\(541\) 8349.66 0.663549 0.331775 0.943359i \(-0.392353\pi\)
0.331775 + 0.943359i \(0.392353\pi\)
\(542\) −20189.6 −1.60004
\(543\) −13421.0 −1.06068
\(544\) 13940.8 1.09873
\(545\) 0 0
\(546\) 15439.9 1.21020
\(547\) −12185.7 −0.952509 −0.476254 0.879308i \(-0.658006\pi\)
−0.476254 + 0.879308i \(0.658006\pi\)
\(548\) 12918.4 1.00702
\(549\) −2407.51 −0.187159
\(550\) 0 0
\(551\) −12473.4 −0.964402
\(552\) −16833.4 −1.29797
\(553\) 3276.61 0.251963
\(554\) −34882.6 −2.67512
\(555\) 0 0
\(556\) −12939.9 −0.987004
\(557\) 540.209 0.0410940 0.0205470 0.999789i \(-0.493459\pi\)
0.0205470 + 0.999789i \(0.493459\pi\)
\(558\) 12971.5 0.984103
\(559\) −31066.6 −2.35058
\(560\) 0 0
\(561\) 24911.6 1.87481
\(562\) 902.639 0.0677501
\(563\) 1949.26 0.145917 0.0729587 0.997335i \(-0.476756\pi\)
0.0729587 + 0.997335i \(0.476756\pi\)
\(564\) −9227.71 −0.688930
\(565\) 0 0
\(566\) −3624.94 −0.269200
\(567\) 6366.70 0.471563
\(568\) −17031.6 −1.25815
\(569\) 9487.28 0.698994 0.349497 0.936938i \(-0.386353\pi\)
0.349497 + 0.936938i \(0.386353\pi\)
\(570\) 0 0
\(571\) −20172.3 −1.47843 −0.739215 0.673470i \(-0.764803\pi\)
−0.739215 + 0.673470i \(0.764803\pi\)
\(572\) 51108.0 3.73590
\(573\) 8101.87 0.590681
\(574\) 6885.50 0.500689
\(575\) 0 0
\(576\) −12360.0 −0.894094
\(577\) −12937.3 −0.933423 −0.466712 0.884410i \(-0.654561\pi\)
−0.466712 + 0.884410i \(0.654561\pi\)
\(578\) −744.254 −0.0535586
\(579\) 10359.6 0.743577
\(580\) 0 0
\(581\) −2172.33 −0.155118
\(582\) 38552.2 2.74578
\(583\) 31595.7 2.24453
\(584\) −16549.0 −1.17261
\(585\) 0 0
\(586\) 14978.3 1.05588
\(587\) 6489.43 0.456299 0.228149 0.973626i \(-0.426733\pi\)
0.228149 + 0.973626i \(0.426733\pi\)
\(588\) −3981.82 −0.279265
\(589\) 12650.3 0.884968
\(590\) 0 0
\(591\) 15172.2 1.05601
\(592\) 757.345 0.0525789
\(593\) 16803.6 1.16364 0.581821 0.813317i \(-0.302340\pi\)
0.581821 + 0.813317i \(0.302340\pi\)
\(594\) 19324.8 1.33486
\(595\) 0 0
\(596\) 17778.3 1.22186
\(597\) 12890.6 0.883716
\(598\) −42873.5 −2.93182
\(599\) 19139.6 1.30554 0.652772 0.757554i \(-0.273606\pi\)
0.652772 + 0.757554i \(0.273606\pi\)
\(600\) 0 0
\(601\) 14304.0 0.970838 0.485419 0.874282i \(-0.338667\pi\)
0.485419 + 0.874282i \(0.338667\pi\)
\(602\) 13112.0 0.887715
\(603\) −7073.21 −0.477684
\(604\) 26327.7 1.77361
\(605\) 0 0
\(606\) −11766.3 −0.788738
\(607\) 2018.10 0.134946 0.0674730 0.997721i \(-0.478506\pi\)
0.0674730 + 0.997721i \(0.478506\pi\)
\(608\) −12817.1 −0.854935
\(609\) 8618.39 0.573456
\(610\) 0 0
\(611\) −8541.17 −0.565530
\(612\) 13263.4 0.876050
\(613\) −21479.4 −1.41524 −0.707621 0.706592i \(-0.750232\pi\)
−0.707621 + 0.706592i \(0.750232\pi\)
\(614\) −39129.6 −2.57189
\(615\) 0 0
\(616\) −7839.19 −0.512743
\(617\) 5856.83 0.382151 0.191075 0.981575i \(-0.438803\pi\)
0.191075 + 0.981575i \(0.438803\pi\)
\(618\) −8558.31 −0.557065
\(619\) −17619.3 −1.14407 −0.572035 0.820229i \(-0.693846\pi\)
−0.572035 + 0.820229i \(0.693846\pi\)
\(620\) 0 0
\(621\) −9905.53 −0.640089
\(622\) 22224.7 1.43269
\(623\) −9204.30 −0.591914
\(624\) −3212.13 −0.206071
\(625\) 0 0
\(626\) −41334.1 −2.63904
\(627\) −22903.5 −1.45882
\(628\) 8916.31 0.566560
\(629\) −8170.87 −0.517955
\(630\) 0 0
\(631\) 26395.7 1.66529 0.832643 0.553810i \(-0.186827\pi\)
0.832643 + 0.553810i \(0.186827\pi\)
\(632\) 9695.19 0.610212
\(633\) 37843.9 2.37624
\(634\) −36384.3 −2.27919
\(635\) 0 0
\(636\) 47486.6 2.96064
\(637\) −3685.58 −0.229243
\(638\) 46688.3 2.89719
\(639\) 12179.8 0.754029
\(640\) 0 0
\(641\) 3209.30 0.197753 0.0988764 0.995100i \(-0.468475\pi\)
0.0988764 + 0.995100i \(0.468475\pi\)
\(642\) 643.959 0.0395873
\(643\) 1762.48 0.108096 0.0540478 0.998538i \(-0.482788\pi\)
0.0540478 + 0.998538i \(0.482788\pi\)
\(644\) 11056.7 0.676548
\(645\) 0 0
\(646\) 21169.1 1.28930
\(647\) 24372.7 1.48098 0.740488 0.672070i \(-0.234595\pi\)
0.740488 + 0.672070i \(0.234595\pi\)
\(648\) 18838.5 1.14205
\(649\) −11016.3 −0.666301
\(650\) 0 0
\(651\) −8740.60 −0.526223
\(652\) −41172.8 −2.47308
\(653\) −6389.97 −0.382938 −0.191469 0.981499i \(-0.561325\pi\)
−0.191469 + 0.981499i \(0.561325\pi\)
\(654\) −507.377 −0.0303364
\(655\) 0 0
\(656\) −1432.47 −0.0852567
\(657\) 11834.6 0.702760
\(658\) 3604.90 0.213577
\(659\) −6111.68 −0.361270 −0.180635 0.983550i \(-0.557815\pi\)
−0.180635 + 0.983550i \(0.557815\pi\)
\(660\) 0 0
\(661\) 16391.1 0.964510 0.482255 0.876031i \(-0.339818\pi\)
0.482255 + 0.876031i \(0.339818\pi\)
\(662\) 6047.92 0.355074
\(663\) 34655.2 2.03001
\(664\) −6427.72 −0.375669
\(665\) 0 0
\(666\) 7702.98 0.448175
\(667\) −23931.6 −1.38926
\(668\) −35950.6 −2.08229
\(669\) −11119.2 −0.642588
\(670\) 0 0
\(671\) 8788.20 0.505611
\(672\) 8855.83 0.508365
\(673\) 13055.9 0.747799 0.373900 0.927469i \(-0.378020\pi\)
0.373900 + 0.927469i \(0.378020\pi\)
\(674\) −7652.20 −0.437317
\(675\) 0 0
\(676\) 43487.6 2.47426
\(677\) 3154.53 0.179082 0.0895410 0.995983i \(-0.471460\pi\)
0.0895410 + 0.995983i \(0.471460\pi\)
\(678\) −1724.84 −0.0977022
\(679\) −9202.60 −0.520123
\(680\) 0 0
\(681\) −36766.9 −2.06888
\(682\) −47350.4 −2.65856
\(683\) −17282.7 −0.968233 −0.484117 0.875004i \(-0.660859\pi\)
−0.484117 + 0.875004i \(0.660859\pi\)
\(684\) −12194.3 −0.681666
\(685\) 0 0
\(686\) 1555.54 0.0865754
\(687\) 19963.8 1.10869
\(688\) −2727.83 −0.151159
\(689\) 43953.6 2.43033
\(690\) 0 0
\(691\) 26838.3 1.47753 0.738766 0.673961i \(-0.235409\pi\)
0.738766 + 0.673961i \(0.235409\pi\)
\(692\) −35231.1 −1.93538
\(693\) 5606.01 0.307294
\(694\) 27007.3 1.47721
\(695\) 0 0
\(696\) 25501.0 1.38881
\(697\) 15454.6 0.839866
\(698\) −31186.0 −1.69113
\(699\) 25849.0 1.39871
\(700\) 0 0
\(701\) −8374.52 −0.451214 −0.225607 0.974218i \(-0.572437\pi\)
−0.225607 + 0.974218i \(0.572437\pi\)
\(702\) 26883.2 1.44536
\(703\) 7512.21 0.403028
\(704\) 45117.9 2.41540
\(705\) 0 0
\(706\) 6330.79 0.337482
\(707\) 2808.68 0.149408
\(708\) −16556.9 −0.878881
\(709\) 11929.4 0.631902 0.315951 0.948775i \(-0.397676\pi\)
0.315951 + 0.948775i \(0.397676\pi\)
\(710\) 0 0
\(711\) −6933.28 −0.365708
\(712\) −27234.7 −1.43352
\(713\) 24270.9 1.27483
\(714\) −14626.6 −0.766648
\(715\) 0 0
\(716\) 3124.40 0.163078
\(717\) 29096.6 1.51553
\(718\) 1736.89 0.0902788
\(719\) −23392.3 −1.21333 −0.606666 0.794957i \(-0.707493\pi\)
−0.606666 + 0.794957i \(0.707493\pi\)
\(720\) 0 0
\(721\) 2042.91 0.105523
\(722\) 11643.6 0.600179
\(723\) −23493.4 −1.20848
\(724\) 26083.8 1.33894
\(725\) 0 0
\(726\) 46696.8 2.38717
\(727\) −10659.8 −0.543810 −0.271905 0.962324i \(-0.587654\pi\)
−0.271905 + 0.962324i \(0.587654\pi\)
\(728\) −10905.3 −0.555188
\(729\) 287.476 0.0146053
\(730\) 0 0
\(731\) 29430.1 1.48907
\(732\) 13208.2 0.666923
\(733\) −23919.1 −1.20528 −0.602642 0.798011i \(-0.705885\pi\)
−0.602642 + 0.798011i \(0.705885\pi\)
\(734\) −46160.2 −2.32126
\(735\) 0 0
\(736\) −24590.9 −1.23157
\(737\) 25819.5 1.29047
\(738\) −14569.7 −0.726717
\(739\) 34535.1 1.71907 0.859536 0.511074i \(-0.170752\pi\)
0.859536 + 0.511074i \(0.170752\pi\)
\(740\) 0 0
\(741\) −31861.6 −1.57957
\(742\) −18551.1 −0.917833
\(743\) −17526.8 −0.865403 −0.432702 0.901537i \(-0.642440\pi\)
−0.432702 + 0.901537i \(0.642440\pi\)
\(744\) −25862.6 −1.27442
\(745\) 0 0
\(746\) −13564.5 −0.665725
\(747\) 4596.63 0.225143
\(748\) −48415.9 −2.36666
\(749\) −153.716 −0.00749889
\(750\) 0 0
\(751\) 18534.3 0.900565 0.450283 0.892886i \(-0.351323\pi\)
0.450283 + 0.892886i \(0.351323\pi\)
\(752\) −749.966 −0.0363676
\(753\) 7831.94 0.379033
\(754\) 64949.2 3.13702
\(755\) 0 0
\(756\) −6932.96 −0.333531
\(757\) 9309.64 0.446981 0.223491 0.974706i \(-0.428255\pi\)
0.223491 + 0.974706i \(0.428255\pi\)
\(758\) −33562.7 −1.60825
\(759\) −43942.7 −2.10148
\(760\) 0 0
\(761\) −2968.41 −0.141399 −0.0706996 0.997498i \(-0.522523\pi\)
−0.0706996 + 0.997498i \(0.522523\pi\)
\(762\) −54604.0 −2.59592
\(763\) 121.113 0.00574653
\(764\) −15746.0 −0.745643
\(765\) 0 0
\(766\) −48841.1 −2.30379
\(767\) −15325.1 −0.721457
\(768\) 21910.1 1.02944
\(769\) −34932.9 −1.63812 −0.819060 0.573708i \(-0.805505\pi\)
−0.819060 + 0.573708i \(0.805505\pi\)
\(770\) 0 0
\(771\) −40257.5 −1.88046
\(772\) −20134.0 −0.938650
\(773\) 13595.4 0.632591 0.316295 0.948661i \(-0.397561\pi\)
0.316295 + 0.948661i \(0.397561\pi\)
\(774\) −27744.9 −1.28846
\(775\) 0 0
\(776\) −27229.7 −1.25965
\(777\) −5190.49 −0.239650
\(778\) 50762.9 2.33925
\(779\) −14208.8 −0.653510
\(780\) 0 0
\(781\) −44460.1 −2.03701
\(782\) 40615.2 1.85728
\(783\) 15005.9 0.684888
\(784\) −323.616 −0.0147420
\(785\) 0 0
\(786\) 22731.6 1.03156
\(787\) 14228.1 0.644444 0.322222 0.946664i \(-0.395570\pi\)
0.322222 + 0.946664i \(0.395570\pi\)
\(788\) −29487.3 −1.33305
\(789\) −4897.36 −0.220977
\(790\) 0 0
\(791\) 411.728 0.0185074
\(792\) 16587.7 0.744213
\(793\) 12225.5 0.547465
\(794\) 47037.5 2.10239
\(795\) 0 0
\(796\) −25053.0 −1.11555
\(797\) −11442.3 −0.508539 −0.254270 0.967133i \(-0.581835\pi\)
−0.254270 + 0.967133i \(0.581835\pi\)
\(798\) 13447.5 0.596538
\(799\) 8091.26 0.358258
\(800\) 0 0
\(801\) 19476.2 0.859125
\(802\) −24499.5 −1.07869
\(803\) −43200.3 −1.89851
\(804\) 38805.2 1.70218
\(805\) 0 0
\(806\) −65870.2 −2.87863
\(807\) −11319.7 −0.493770
\(808\) 8310.63 0.361840
\(809\) 22732.9 0.987944 0.493972 0.869478i \(-0.335545\pi\)
0.493972 + 0.869478i \(0.335545\pi\)
\(810\) 0 0
\(811\) −29768.2 −1.28890 −0.644452 0.764644i \(-0.722915\pi\)
−0.644452 + 0.764644i \(0.722915\pi\)
\(812\) −16749.9 −0.723898
\(813\) −28786.7 −1.24181
\(814\) −28118.4 −1.21075
\(815\) 0 0
\(816\) 3042.93 0.130544
\(817\) −27057.7 −1.15867
\(818\) 58185.0 2.48703
\(819\) 7798.65 0.332731
\(820\) 0 0
\(821\) 6408.35 0.272416 0.136208 0.990680i \(-0.456509\pi\)
0.136208 + 0.990680i \(0.456509\pi\)
\(822\) 30144.6 1.27909
\(823\) 20876.0 0.884194 0.442097 0.896967i \(-0.354235\pi\)
0.442097 + 0.896967i \(0.354235\pi\)
\(824\) 6044.78 0.255558
\(825\) 0 0
\(826\) 6468.13 0.272464
\(827\) 41650.1 1.75129 0.875645 0.482955i \(-0.160437\pi\)
0.875645 + 0.482955i \(0.160437\pi\)
\(828\) −23396.0 −0.981964
\(829\) 17194.7 0.720380 0.360190 0.932879i \(-0.382712\pi\)
0.360190 + 0.932879i \(0.382712\pi\)
\(830\) 0 0
\(831\) −49736.1 −2.07621
\(832\) 62764.5 2.61535
\(833\) 3491.44 0.145223
\(834\) −30194.8 −1.25367
\(835\) 0 0
\(836\) 44513.0 1.84153
\(837\) −15218.7 −0.628477
\(838\) −25491.1 −1.05081
\(839\) 40583.7 1.66997 0.834985 0.550273i \(-0.185476\pi\)
0.834985 + 0.550273i \(0.185476\pi\)
\(840\) 0 0
\(841\) 11865.0 0.486489
\(842\) 9873.42 0.404110
\(843\) 1287.00 0.0525819
\(844\) −73549.7 −2.99963
\(845\) 0 0
\(846\) −7627.93 −0.309993
\(847\) −11146.8 −0.452192
\(848\) 3859.39 0.156288
\(849\) −5168.49 −0.208931
\(850\) 0 0
\(851\) 14413.0 0.580576
\(852\) −66821.0 −2.68691
\(853\) −23020.1 −0.924023 −0.462012 0.886874i \(-0.652872\pi\)
−0.462012 + 0.886874i \(0.652872\pi\)
\(854\) −5159.90 −0.206754
\(855\) 0 0
\(856\) −454.832 −0.0181610
\(857\) 18075.5 0.720476 0.360238 0.932861i \(-0.382696\pi\)
0.360238 + 0.932861i \(0.382696\pi\)
\(858\) 119259. 4.74525
\(859\) 20308.2 0.806643 0.403321 0.915058i \(-0.367856\pi\)
0.403321 + 0.915058i \(0.367856\pi\)
\(860\) 0 0
\(861\) 9817.46 0.388592
\(862\) −47148.9 −1.86299
\(863\) 31023.5 1.22370 0.611849 0.790975i \(-0.290426\pi\)
0.611849 + 0.790975i \(0.290426\pi\)
\(864\) 15419.3 0.607148
\(865\) 0 0
\(866\) 53857.2 2.11333
\(867\) −1061.17 −0.0415677
\(868\) 16987.4 0.664274
\(869\) 25308.7 0.987963
\(870\) 0 0
\(871\) 35918.1 1.39729
\(872\) 358.363 0.0139171
\(873\) 19472.6 0.754924
\(874\) −37341.2 −1.44518
\(875\) 0 0
\(876\) −64927.5 −2.50422
\(877\) 28344.1 1.09135 0.545674 0.837997i \(-0.316274\pi\)
0.545674 + 0.837997i \(0.316274\pi\)
\(878\) −2904.14 −0.111629
\(879\) 21356.3 0.819488
\(880\) 0 0
\(881\) 41264.5 1.57802 0.789010 0.614380i \(-0.210594\pi\)
0.789010 + 0.614380i \(0.210594\pi\)
\(882\) −3291.51 −0.125659
\(883\) 7995.59 0.304726 0.152363 0.988325i \(-0.451312\pi\)
0.152363 + 0.988325i \(0.451312\pi\)
\(884\) −67352.5 −2.56257
\(885\) 0 0
\(886\) −3876.84 −0.147003
\(887\) −24438.3 −0.925093 −0.462547 0.886595i \(-0.653064\pi\)
−0.462547 + 0.886595i \(0.653064\pi\)
\(888\) −15358.2 −0.580390
\(889\) 13034.2 0.491737
\(890\) 0 0
\(891\) 49176.8 1.84903
\(892\) 21610.1 0.811167
\(893\) −7439.02 −0.278765
\(894\) 41485.1 1.55198
\(895\) 0 0
\(896\) −15534.1 −0.579192
\(897\) −61129.8 −2.27543
\(898\) −15543.8 −0.577620
\(899\) −36768.0 −1.36405
\(900\) 0 0
\(901\) −41638.3 −1.53959
\(902\) 53184.0 1.96323
\(903\) 18695.3 0.688970
\(904\) 1218.26 0.0448218
\(905\) 0 0
\(906\) 61434.7 2.25279
\(907\) −17241.6 −0.631201 −0.315601 0.948892i \(-0.602206\pi\)
−0.315601 + 0.948892i \(0.602206\pi\)
\(908\) 71456.6 2.61164
\(909\) −5943.15 −0.216856
\(910\) 0 0
\(911\) 17407.8 0.633092 0.316546 0.948577i \(-0.397477\pi\)
0.316546 + 0.948577i \(0.397477\pi\)
\(912\) −2797.64 −0.101578
\(913\) −16779.2 −0.608226
\(914\) 7751.87 0.280535
\(915\) 0 0
\(916\) −38799.8 −1.39954
\(917\) −5426.13 −0.195405
\(918\) −25467.1 −0.915621
\(919\) 7704.64 0.276553 0.138277 0.990394i \(-0.455844\pi\)
0.138277 + 0.990394i \(0.455844\pi\)
\(920\) 0 0
\(921\) −55791.6 −1.99609
\(922\) −10209.3 −0.364671
\(923\) −61849.5 −2.20564
\(924\) −30755.9 −1.09501
\(925\) 0 0
\(926\) −14515.9 −0.515144
\(927\) −4322.78 −0.153159
\(928\) 37252.8 1.31776
\(929\) −48184.3 −1.70170 −0.850849 0.525411i \(-0.823912\pi\)
−0.850849 + 0.525411i \(0.823912\pi\)
\(930\) 0 0
\(931\) −3209.99 −0.113000
\(932\) −50237.7 −1.76565
\(933\) 31688.4 1.11193
\(934\) 24840.5 0.870242
\(935\) 0 0
\(936\) 23075.5 0.805818
\(937\) −23371.6 −0.814853 −0.407427 0.913238i \(-0.633574\pi\)
−0.407427 + 0.913238i \(0.633574\pi\)
\(938\) −15159.7 −0.527697
\(939\) −58934.7 −2.04820
\(940\) 0 0
\(941\) 18048.6 0.625258 0.312629 0.949875i \(-0.398790\pi\)
0.312629 + 0.949875i \(0.398790\pi\)
\(942\) 20805.9 0.719631
\(943\) −27261.1 −0.941405
\(944\) −1345.64 −0.0463948
\(945\) 0 0
\(946\) 101278. 3.48079
\(947\) −10346.2 −0.355022 −0.177511 0.984119i \(-0.556805\pi\)
−0.177511 + 0.984119i \(0.556805\pi\)
\(948\) 38037.6 1.30317
\(949\) −60096.9 −2.05567
\(950\) 0 0
\(951\) −51877.3 −1.76891
\(952\) 10330.8 0.351706
\(953\) −8691.77 −0.295440 −0.147720 0.989029i \(-0.547193\pi\)
−0.147720 + 0.989029i \(0.547193\pi\)
\(954\) 39254.0 1.33217
\(955\) 0 0
\(956\) −56549.5 −1.91312
\(957\) 66568.9 2.24856
\(958\) 64316.6 2.16908
\(959\) −7195.67 −0.242294
\(960\) 0 0
\(961\) 7498.41 0.251701
\(962\) −39116.2 −1.31097
\(963\) 325.262 0.0108841
\(964\) 45659.6 1.52552
\(965\) 0 0
\(966\) 25800.5 0.859335
\(967\) −8971.58 −0.298352 −0.149176 0.988811i \(-0.547662\pi\)
−0.149176 + 0.988811i \(0.547662\pi\)
\(968\) −32982.2 −1.09513
\(969\) 30183.3 1.00065
\(970\) 0 0
\(971\) 29275.1 0.967541 0.483771 0.875195i \(-0.339267\pi\)
0.483771 + 0.875195i \(0.339267\pi\)
\(972\) 47168.5 1.55651
\(973\) 7207.64 0.237478
\(974\) −24130.5 −0.793831
\(975\) 0 0
\(976\) 1073.47 0.0352059
\(977\) 16477.5 0.539572 0.269786 0.962920i \(-0.413047\pi\)
0.269786 + 0.962920i \(0.413047\pi\)
\(978\) −96075.2 −3.14125
\(979\) −71094.6 −2.32093
\(980\) 0 0
\(981\) −256.275 −0.00834071
\(982\) 29817.4 0.968952
\(983\) −45912.9 −1.48972 −0.744859 0.667222i \(-0.767483\pi\)
−0.744859 + 0.667222i \(0.767483\pi\)
\(984\) 29048.9 0.941104
\(985\) 0 0
\(986\) −61528.0 −1.98727
\(987\) 5139.92 0.165760
\(988\) 61923.2 1.99397
\(989\) −51913.1 −1.66910
\(990\) 0 0
\(991\) 46124.8 1.47851 0.739255 0.673426i \(-0.235178\pi\)
0.739255 + 0.673426i \(0.235178\pi\)
\(992\) −37781.0 −1.20922
\(993\) 8623.22 0.275579
\(994\) 26104.3 0.832975
\(995\) 0 0
\(996\) −25218.2 −0.802278
\(997\) 30984.5 0.984240 0.492120 0.870527i \(-0.336222\pi\)
0.492120 + 0.870527i \(0.336222\pi\)
\(998\) 6837.47 0.216870
\(999\) −9037.42 −0.286218
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.4.a.g.1.2 4
3.2 odd 2 1575.4.a.bl.1.3 4
5.2 odd 4 175.4.b.f.99.3 8
5.3 odd 4 175.4.b.f.99.6 8
5.4 even 2 175.4.a.h.1.3 yes 4
7.6 odd 2 1225.4.a.z.1.2 4
15.14 odd 2 1575.4.a.bg.1.2 4
35.34 odd 2 1225.4.a.bd.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.4.a.g.1.2 4 1.1 even 1 trivial
175.4.a.h.1.3 yes 4 5.4 even 2
175.4.b.f.99.3 8 5.2 odd 4
175.4.b.f.99.6 8 5.3 odd 4
1225.4.a.z.1.2 4 7.6 odd 2
1225.4.a.bd.1.3 4 35.34 odd 2
1575.4.a.bg.1.2 4 15.14 odd 2
1575.4.a.bl.1.3 4 3.2 odd 2