Properties

Label 175.4.a.f.1.3
Level $175$
Weight $4$
Character 175.1
Self dual yes
Analytic conductor $10.325$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(1,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.14360.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 17x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-3.62456\) of defining polynomial
Character \(\chi\) \(=\) 175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.62456 q^{2} +8.38660 q^{3} +13.3866 q^{4} +38.7844 q^{6} -7.00000 q^{7} +24.9107 q^{8} +43.3350 q^{9} +O(q^{10})\) \(q+4.62456 q^{2} +8.38660 q^{3} +13.3866 q^{4} +38.7844 q^{6} -7.00000 q^{7} +24.9107 q^{8} +43.3350 q^{9} -30.1117 q^{11} +112.268 q^{12} -88.9295 q^{13} -32.3720 q^{14} +8.10818 q^{16} +4.73699 q^{17} +200.405 q^{18} +124.818 q^{19} -58.7062 q^{21} -139.253 q^{22} -20.2680 q^{23} +208.916 q^{24} -411.260 q^{26} +136.995 q^{27} -93.7062 q^{28} +134.088 q^{29} -2.03767 q^{31} -161.788 q^{32} -252.534 q^{33} +21.9065 q^{34} +580.108 q^{36} +141.137 q^{37} +577.228 q^{38} -745.816 q^{39} +95.2784 q^{41} -271.490 q^{42} +298.646 q^{43} -403.093 q^{44} -93.7305 q^{46} +129.054 q^{47} +68.0000 q^{48} +49.0000 q^{49} +39.7272 q^{51} -1190.46 q^{52} -388.429 q^{53} +633.542 q^{54} -174.375 q^{56} +1046.80 q^{57} +620.098 q^{58} +838.501 q^{59} +389.422 q^{61} -9.42333 q^{62} -303.345 q^{63} -813.067 q^{64} -1167.86 q^{66} -697.794 q^{67} +63.4122 q^{68} -169.979 q^{69} -523.450 q^{71} +1079.50 q^{72} -66.4684 q^{73} +652.699 q^{74} +1670.89 q^{76} +210.782 q^{77} -3449.07 q^{78} -526.982 q^{79} -21.1236 q^{81} +440.621 q^{82} -70.0265 q^{83} -785.876 q^{84} +1381.11 q^{86} +1124.54 q^{87} -750.101 q^{88} -9.27925 q^{89} +622.506 q^{91} -271.319 q^{92} -17.0891 q^{93} +596.817 q^{94} -1356.85 q^{96} +4.19493 q^{97} +226.604 q^{98} -1304.89 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} - 2 q^{3} + 13 q^{4} + 24 q^{6} - 21 q^{7} + 15 q^{8} + 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 3 q^{2} - 2 q^{3} + 13 q^{4} + 24 q^{6} - 21 q^{7} + 15 q^{8} + 81 q^{9} - 74 q^{11} + 152 q^{12} - 44 q^{13} - 21 q^{14} - 79 q^{16} + 52 q^{17} + 411 q^{18} + 168 q^{19} + 14 q^{21} - 184 q^{22} + 124 q^{23} + 420 q^{24} - 446 q^{26} - 170 q^{27} - 91 q^{28} + 332 q^{29} + 320 q^{31} + 183 q^{32} + 106 q^{33} + 582 q^{34} + 181 q^{36} + 54 q^{37} + 460 q^{38} - 982 q^{39} + 362 q^{41} - 168 q^{42} + 16 q^{43} - 264 q^{44} - 336 q^{46} + 730 q^{47} + 204 q^{48} + 147 q^{49} - 1178 q^{51} - 1202 q^{52} - 110 q^{53} - 180 q^{54} - 105 q^{56} + 956 q^{57} - 450 q^{58} - 180 q^{59} + 1222 q^{61} - 464 q^{62} - 567 q^{63} - 391 q^{64} - 532 q^{66} - 204 q^{67} - 918 q^{68} - 716 q^{69} - 136 q^{71} - 765 q^{72} - 310 q^{73} + 502 q^{74} + 1796 q^{76} + 518 q^{77} - 3788 q^{78} - 1034 q^{79} + 2283 q^{81} + 6 q^{82} + 1660 q^{83} - 1064 q^{84} + 764 q^{86} + 1574 q^{87} + 20 q^{88} + 242 q^{89} + 308 q^{91} - 96 q^{92} - 1376 q^{93} - 1108 q^{94} - 3156 q^{96} - 100 q^{97} + 147 q^{98} - 3488 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.62456 1.63503 0.817515 0.575907i \(-0.195351\pi\)
0.817515 + 0.575907i \(0.195351\pi\)
\(3\) 8.38660 1.61400 0.807001 0.590551i \(-0.201089\pi\)
0.807001 + 0.590551i \(0.201089\pi\)
\(4\) 13.3866 1.67332
\(5\) 0 0
\(6\) 38.7844 2.63894
\(7\) −7.00000 −0.377964
\(8\) 24.9107 1.10091
\(9\) 43.3350 1.60500
\(10\) 0 0
\(11\) −30.1117 −0.825364 −0.412682 0.910875i \(-0.635408\pi\)
−0.412682 + 0.910875i \(0.635408\pi\)
\(12\) 112.268 2.70075
\(13\) −88.9295 −1.89728 −0.948639 0.316362i \(-0.897539\pi\)
−0.948639 + 0.316362i \(0.897539\pi\)
\(14\) −32.3720 −0.617983
\(15\) 0 0
\(16\) 8.10818 0.126690
\(17\) 4.73699 0.0675817 0.0337909 0.999429i \(-0.489242\pi\)
0.0337909 + 0.999429i \(0.489242\pi\)
\(18\) 200.405 2.62422
\(19\) 124.818 1.50711 0.753557 0.657382i \(-0.228336\pi\)
0.753557 + 0.657382i \(0.228336\pi\)
\(20\) 0 0
\(21\) −58.7062 −0.610035
\(22\) −139.253 −1.34950
\(23\) −20.2680 −0.183746 −0.0918731 0.995771i \(-0.529285\pi\)
−0.0918731 + 0.995771i \(0.529285\pi\)
\(24\) 208.916 1.77686
\(25\) 0 0
\(26\) −411.260 −3.10211
\(27\) 136.995 0.976470
\(28\) −93.7062 −0.632457
\(29\) 134.088 0.858603 0.429301 0.903161i \(-0.358760\pi\)
0.429301 + 0.903161i \(0.358760\pi\)
\(30\) 0 0
\(31\) −2.03767 −0.0118057 −0.00590284 0.999983i \(-0.501879\pi\)
−0.00590284 + 0.999983i \(0.501879\pi\)
\(32\) −161.788 −0.893764
\(33\) −252.534 −1.33214
\(34\) 21.9065 0.110498
\(35\) 0 0
\(36\) 580.108 2.68568
\(37\) 141.137 0.627104 0.313552 0.949571i \(-0.398481\pi\)
0.313552 + 0.949571i \(0.398481\pi\)
\(38\) 577.228 2.46418
\(39\) −745.816 −3.06221
\(40\) 0 0
\(41\) 95.2784 0.362927 0.181463 0.983398i \(-0.441917\pi\)
0.181463 + 0.983398i \(0.441917\pi\)
\(42\) −271.490 −0.997426
\(43\) 298.646 1.05914 0.529571 0.848266i \(-0.322353\pi\)
0.529571 + 0.848266i \(0.322353\pi\)
\(44\) −403.093 −1.38110
\(45\) 0 0
\(46\) −93.7305 −0.300431
\(47\) 129.054 0.400519 0.200260 0.979743i \(-0.435821\pi\)
0.200260 + 0.979743i \(0.435821\pi\)
\(48\) 68.0000 0.204478
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 39.7272 0.109077
\(52\) −1190.46 −3.17476
\(53\) −388.429 −1.00669 −0.503347 0.864084i \(-0.667898\pi\)
−0.503347 + 0.864084i \(0.667898\pi\)
\(54\) 633.542 1.59656
\(55\) 0 0
\(56\) −174.375 −0.416103
\(57\) 1046.80 2.43248
\(58\) 620.098 1.40384
\(59\) 838.501 1.85023 0.925114 0.379688i \(-0.123969\pi\)
0.925114 + 0.379688i \(0.123969\pi\)
\(60\) 0 0
\(61\) 389.422 0.817384 0.408692 0.912672i \(-0.365985\pi\)
0.408692 + 0.912672i \(0.365985\pi\)
\(62\) −9.42333 −0.0193027
\(63\) −303.345 −0.606633
\(64\) −813.067 −1.58802
\(65\) 0 0
\(66\) −1167.86 −2.17809
\(67\) −697.794 −1.27237 −0.636187 0.771534i \(-0.719490\pi\)
−0.636187 + 0.771534i \(0.719490\pi\)
\(68\) 63.4122 0.113086
\(69\) −169.979 −0.296567
\(70\) 0 0
\(71\) −523.450 −0.874959 −0.437479 0.899228i \(-0.644129\pi\)
−0.437479 + 0.899228i \(0.644129\pi\)
\(72\) 1079.50 1.76695
\(73\) −66.4684 −0.106569 −0.0532845 0.998579i \(-0.516969\pi\)
−0.0532845 + 0.998579i \(0.516969\pi\)
\(74\) 652.699 1.02533
\(75\) 0 0
\(76\) 1670.89 2.52189
\(77\) 210.782 0.311958
\(78\) −3449.07 −5.00680
\(79\) −526.982 −0.750508 −0.375254 0.926922i \(-0.622444\pi\)
−0.375254 + 0.926922i \(0.622444\pi\)
\(80\) 0 0
\(81\) −21.1236 −0.0289762
\(82\) 440.621 0.593396
\(83\) −70.0265 −0.0926074 −0.0463037 0.998927i \(-0.514744\pi\)
−0.0463037 + 0.998927i \(0.514744\pi\)
\(84\) −785.876 −1.02079
\(85\) 0 0
\(86\) 1381.11 1.73173
\(87\) 1124.54 1.38579
\(88\) −750.101 −0.908649
\(89\) −9.27925 −0.0110517 −0.00552584 0.999985i \(-0.501759\pi\)
−0.00552584 + 0.999985i \(0.501759\pi\)
\(90\) 0 0
\(91\) 622.506 0.717103
\(92\) −271.319 −0.307467
\(93\) −17.0891 −0.0190544
\(94\) 596.817 0.654861
\(95\) 0 0
\(96\) −1356.85 −1.44254
\(97\) 4.19493 0.00439104 0.00219552 0.999998i \(-0.499301\pi\)
0.00219552 + 0.999998i \(0.499301\pi\)
\(98\) 226.604 0.233576
\(99\) −1304.89 −1.32471
\(100\) 0 0
\(101\) −865.844 −0.853016 −0.426508 0.904484i \(-0.640256\pi\)
−0.426508 + 0.904484i \(0.640256\pi\)
\(102\) 183.721 0.178344
\(103\) 1166.12 1.11554 0.557771 0.829995i \(-0.311657\pi\)
0.557771 + 0.829995i \(0.311657\pi\)
\(104\) −2215.29 −2.08872
\(105\) 0 0
\(106\) −1796.31 −1.64598
\(107\) −56.9652 −0.0514676 −0.0257338 0.999669i \(-0.508192\pi\)
−0.0257338 + 0.999669i \(0.508192\pi\)
\(108\) 1833.90 1.63395
\(109\) −1358.89 −1.19411 −0.597055 0.802200i \(-0.703663\pi\)
−0.597055 + 0.802200i \(0.703663\pi\)
\(110\) 0 0
\(111\) 1183.66 1.01215
\(112\) −56.7572 −0.0478844
\(113\) −436.038 −0.363000 −0.181500 0.983391i \(-0.558095\pi\)
−0.181500 + 0.983391i \(0.558095\pi\)
\(114\) 4840.98 3.97719
\(115\) 0 0
\(116\) 1794.98 1.43672
\(117\) −3853.76 −3.04513
\(118\) 3877.70 3.02518
\(119\) −33.1590 −0.0255435
\(120\) 0 0
\(121\) −424.288 −0.318774
\(122\) 1800.91 1.33645
\(123\) 799.062 0.585764
\(124\) −27.2775 −0.0197547
\(125\) 0 0
\(126\) −1402.84 −0.991863
\(127\) −1186.69 −0.829144 −0.414572 0.910017i \(-0.636069\pi\)
−0.414572 + 0.910017i \(0.636069\pi\)
\(128\) −2465.77 −1.70270
\(129\) 2504.62 1.70946
\(130\) 0 0
\(131\) 1034.56 0.689997 0.344999 0.938603i \(-0.387879\pi\)
0.344999 + 0.938603i \(0.387879\pi\)
\(132\) −3380.57 −2.22910
\(133\) −873.725 −0.569636
\(134\) −3226.99 −2.08037
\(135\) 0 0
\(136\) 118.002 0.0744011
\(137\) −646.219 −0.402994 −0.201497 0.979489i \(-0.564581\pi\)
−0.201497 + 0.979489i \(0.564581\pi\)
\(138\) −786.080 −0.484895
\(139\) 506.484 0.309061 0.154530 0.987988i \(-0.450614\pi\)
0.154530 + 0.987988i \(0.450614\pi\)
\(140\) 0 0
\(141\) 1082.32 0.646439
\(142\) −2420.73 −1.43058
\(143\) 2677.81 1.56594
\(144\) 351.368 0.203338
\(145\) 0 0
\(146\) −307.387 −0.174244
\(147\) 410.943 0.230572
\(148\) 1889.35 1.04935
\(149\) −1828.12 −1.00513 −0.502567 0.864538i \(-0.667611\pi\)
−0.502567 + 0.864538i \(0.667611\pi\)
\(150\) 0 0
\(151\) 2975.17 1.60342 0.801708 0.597716i \(-0.203925\pi\)
0.801708 + 0.597716i \(0.203925\pi\)
\(152\) 3109.29 1.65919
\(153\) 205.278 0.108469
\(154\) 974.773 0.510061
\(155\) 0 0
\(156\) −9983.93 −5.12407
\(157\) 2131.74 1.08364 0.541820 0.840495i \(-0.317736\pi\)
0.541820 + 0.840495i \(0.317736\pi\)
\(158\) −2437.06 −1.22710
\(159\) −3257.59 −1.62481
\(160\) 0 0
\(161\) 141.876 0.0694495
\(162\) −97.6876 −0.0473769
\(163\) 593.939 0.285404 0.142702 0.989766i \(-0.454421\pi\)
0.142702 + 0.989766i \(0.454421\pi\)
\(164\) 1275.45 0.607294
\(165\) 0 0
\(166\) −323.842 −0.151416
\(167\) 2936.30 1.36059 0.680293 0.732941i \(-0.261853\pi\)
0.680293 + 0.732941i \(0.261853\pi\)
\(168\) −1462.41 −0.671591
\(169\) 5711.45 2.59966
\(170\) 0 0
\(171\) 5408.98 2.41892
\(172\) 3997.85 1.77229
\(173\) −2347.31 −1.03158 −0.515788 0.856716i \(-0.672501\pi\)
−0.515788 + 0.856716i \(0.672501\pi\)
\(174\) 5200.51 2.26580
\(175\) 0 0
\(176\) −244.151 −0.104566
\(177\) 7032.17 2.98627
\(178\) −42.9125 −0.0180698
\(179\) 3036.56 1.26795 0.633975 0.773354i \(-0.281422\pi\)
0.633975 + 0.773354i \(0.281422\pi\)
\(180\) 0 0
\(181\) −899.776 −0.369502 −0.184751 0.982785i \(-0.559148\pi\)
−0.184751 + 0.982785i \(0.559148\pi\)
\(182\) 2878.82 1.17249
\(183\) 3265.93 1.31926
\(184\) −504.888 −0.202287
\(185\) 0 0
\(186\) −79.0297 −0.0311545
\(187\) −142.639 −0.0557796
\(188\) 1727.59 0.670199
\(189\) −958.964 −0.369071
\(190\) 0 0
\(191\) 416.168 0.157659 0.0788294 0.996888i \(-0.474882\pi\)
0.0788294 + 0.996888i \(0.474882\pi\)
\(192\) −6818.86 −2.56307
\(193\) 5181.05 1.93233 0.966166 0.257922i \(-0.0830376\pi\)
0.966166 + 0.257922i \(0.0830376\pi\)
\(194\) 19.3997 0.00717948
\(195\) 0 0
\(196\) 655.943 0.239046
\(197\) −1452.34 −0.525255 −0.262627 0.964897i \(-0.584589\pi\)
−0.262627 + 0.964897i \(0.584589\pi\)
\(198\) −6034.54 −2.16594
\(199\) −1277.23 −0.454978 −0.227489 0.973781i \(-0.573052\pi\)
−0.227489 + 0.973781i \(0.573052\pi\)
\(200\) 0 0
\(201\) −5852.12 −2.05361
\(202\) −4004.15 −1.39471
\(203\) −938.615 −0.324521
\(204\) 531.813 0.182521
\(205\) 0 0
\(206\) 5392.78 1.82395
\(207\) −878.312 −0.294913
\(208\) −721.056 −0.240367
\(209\) −3758.47 −1.24392
\(210\) 0 0
\(211\) −3259.09 −1.06334 −0.531670 0.846951i \(-0.678436\pi\)
−0.531670 + 0.846951i \(0.678436\pi\)
\(212\) −5199.74 −1.68453
\(213\) −4389.96 −1.41218
\(214\) −263.439 −0.0841511
\(215\) 0 0
\(216\) 3412.63 1.07500
\(217\) 14.2637 0.00446213
\(218\) −6284.27 −1.95241
\(219\) −557.444 −0.172002
\(220\) 0 0
\(221\) −421.258 −0.128221
\(222\) 5473.92 1.65489
\(223\) −4373.35 −1.31328 −0.656639 0.754205i \(-0.728023\pi\)
−0.656639 + 0.754205i \(0.728023\pi\)
\(224\) 1132.52 0.337811
\(225\) 0 0
\(226\) −2016.48 −0.593516
\(227\) 61.1145 0.0178692 0.00893461 0.999960i \(-0.497156\pi\)
0.00893461 + 0.999960i \(0.497156\pi\)
\(228\) 14013.0 4.07034
\(229\) 3019.41 0.871302 0.435651 0.900116i \(-0.356518\pi\)
0.435651 + 0.900116i \(0.356518\pi\)
\(230\) 0 0
\(231\) 1767.74 0.503501
\(232\) 3340.22 0.945241
\(233\) 3531.17 0.992851 0.496426 0.868079i \(-0.334646\pi\)
0.496426 + 0.868079i \(0.334646\pi\)
\(234\) −17822.0 −4.97888
\(235\) 0 0
\(236\) 11224.7 3.09603
\(237\) −4419.58 −1.21132
\(238\) −153.346 −0.0417644
\(239\) 2282.62 0.617785 0.308893 0.951097i \(-0.400042\pi\)
0.308893 + 0.951097i \(0.400042\pi\)
\(240\) 0 0
\(241\) −2215.68 −0.592217 −0.296109 0.955154i \(-0.595689\pi\)
−0.296109 + 0.955154i \(0.595689\pi\)
\(242\) −1962.15 −0.521205
\(243\) −3876.02 −1.02324
\(244\) 5213.04 1.36775
\(245\) 0 0
\(246\) 3695.31 0.957742
\(247\) −11100.0 −2.85941
\(248\) −50.7597 −0.0129970
\(249\) −587.284 −0.149468
\(250\) 0 0
\(251\) −3082.55 −0.775174 −0.387587 0.921833i \(-0.626691\pi\)
−0.387587 + 0.921833i \(0.626691\pi\)
\(252\) −4060.76 −1.01509
\(253\) 610.302 0.151658
\(254\) −5487.90 −1.35568
\(255\) 0 0
\(256\) −4898.58 −1.19594
\(257\) 6032.40 1.46417 0.732083 0.681215i \(-0.238548\pi\)
0.732083 + 0.681215i \(0.238548\pi\)
\(258\) 11582.8 2.79501
\(259\) −987.962 −0.237023
\(260\) 0 0
\(261\) 5810.69 1.37806
\(262\) 4784.37 1.12817
\(263\) −5923.81 −1.38889 −0.694445 0.719546i \(-0.744350\pi\)
−0.694445 + 0.719546i \(0.744350\pi\)
\(264\) −6290.80 −1.46656
\(265\) 0 0
\(266\) −4040.60 −0.931372
\(267\) −77.8213 −0.0178374
\(268\) −9341.09 −2.12910
\(269\) 3252.80 0.737273 0.368637 0.929574i \(-0.379825\pi\)
0.368637 + 0.929574i \(0.379825\pi\)
\(270\) 0 0
\(271\) −6246.26 −1.40012 −0.700061 0.714083i \(-0.746844\pi\)
−0.700061 + 0.714083i \(0.746844\pi\)
\(272\) 38.4084 0.00856195
\(273\) 5220.71 1.15741
\(274\) −2988.48 −0.658907
\(275\) 0 0
\(276\) −2275.44 −0.496252
\(277\) 1572.17 0.341020 0.170510 0.985356i \(-0.445459\pi\)
0.170510 + 0.985356i \(0.445459\pi\)
\(278\) 2342.27 0.505324
\(279\) −88.3024 −0.0189481
\(280\) 0 0
\(281\) −7846.03 −1.66567 −0.832837 0.553518i \(-0.813285\pi\)
−0.832837 + 0.553518i \(0.813285\pi\)
\(282\) 5005.26 1.05695
\(283\) −6265.58 −1.31608 −0.658039 0.752984i \(-0.728614\pi\)
−0.658039 + 0.752984i \(0.728614\pi\)
\(284\) −7007.21 −1.46409
\(285\) 0 0
\(286\) 12383.7 2.56037
\(287\) −666.949 −0.137173
\(288\) −7011.10 −1.43449
\(289\) −4890.56 −0.995433
\(290\) 0 0
\(291\) 35.1812 0.00708714
\(292\) −889.785 −0.178325
\(293\) 7264.99 1.44855 0.724276 0.689511i \(-0.242174\pi\)
0.724276 + 0.689511i \(0.242174\pi\)
\(294\) 1900.43 0.376992
\(295\) 0 0
\(296\) 3515.83 0.690382
\(297\) −4125.14 −0.805943
\(298\) −8454.24 −1.64343
\(299\) 1802.42 0.348617
\(300\) 0 0
\(301\) −2090.52 −0.400318
\(302\) 13758.9 2.62163
\(303\) −7261.48 −1.37677
\(304\) 1012.05 0.190937
\(305\) 0 0
\(306\) 949.319 0.177350
\(307\) −1328.32 −0.246943 −0.123471 0.992348i \(-0.539403\pi\)
−0.123471 + 0.992348i \(0.539403\pi\)
\(308\) 2821.65 0.522008
\(309\) 9779.75 1.80049
\(310\) 0 0
\(311\) 4868.68 0.887709 0.443855 0.896099i \(-0.353611\pi\)
0.443855 + 0.896099i \(0.353611\pi\)
\(312\) −18578.8 −3.37120
\(313\) −7733.39 −1.39654 −0.698270 0.715835i \(-0.746046\pi\)
−0.698270 + 0.715835i \(0.746046\pi\)
\(314\) 9858.37 1.77178
\(315\) 0 0
\(316\) −7054.49 −1.25584
\(317\) 8175.03 1.44844 0.724220 0.689569i \(-0.242200\pi\)
0.724220 + 0.689569i \(0.242200\pi\)
\(318\) −15065.0 −2.65661
\(319\) −4037.61 −0.708660
\(320\) 0 0
\(321\) −477.744 −0.0830688
\(322\) 656.114 0.113552
\(323\) 591.261 0.101853
\(324\) −282.774 −0.0484865
\(325\) 0 0
\(326\) 2746.71 0.466644
\(327\) −11396.5 −1.92729
\(328\) 2373.45 0.399548
\(329\) −903.375 −0.151382
\(330\) 0 0
\(331\) −2040.76 −0.338884 −0.169442 0.985540i \(-0.554197\pi\)
−0.169442 + 0.985540i \(0.554197\pi\)
\(332\) −937.417 −0.154962
\(333\) 6116.19 1.00650
\(334\) 13579.1 2.22460
\(335\) 0 0
\(336\) −476.000 −0.0772855
\(337\) −7349.73 −1.18803 −0.594013 0.804455i \(-0.702457\pi\)
−0.594013 + 0.804455i \(0.702457\pi\)
\(338\) 26413.0 4.25052
\(339\) −3656.87 −0.585882
\(340\) 0 0
\(341\) 61.3576 0.00974399
\(342\) 25014.2 3.95500
\(343\) −343.000 −0.0539949
\(344\) 7439.47 1.16602
\(345\) 0 0
\(346\) −10855.3 −1.68666
\(347\) 12069.9 1.86728 0.933642 0.358207i \(-0.116612\pi\)
0.933642 + 0.358207i \(0.116612\pi\)
\(348\) 15053.8 2.31887
\(349\) −4484.96 −0.687892 −0.343946 0.938989i \(-0.611764\pi\)
−0.343946 + 0.938989i \(0.611764\pi\)
\(350\) 0 0
\(351\) −12182.9 −1.85263
\(352\) 4871.72 0.737681
\(353\) 12762.5 1.92430 0.962151 0.272517i \(-0.0878561\pi\)
0.962151 + 0.272517i \(0.0878561\pi\)
\(354\) 32520.7 4.88264
\(355\) 0 0
\(356\) −124.218 −0.0184930
\(357\) −278.091 −0.0412272
\(358\) 14042.8 2.07314
\(359\) −2419.42 −0.355689 −0.177844 0.984059i \(-0.556912\pi\)
−0.177844 + 0.984059i \(0.556912\pi\)
\(360\) 0 0
\(361\) 8720.49 1.27139
\(362\) −4161.07 −0.604147
\(363\) −3558.33 −0.514501
\(364\) 8333.24 1.19995
\(365\) 0 0
\(366\) 15103.5 2.15703
\(367\) 7129.74 1.01409 0.507043 0.861921i \(-0.330739\pi\)
0.507043 + 0.861921i \(0.330739\pi\)
\(368\) −164.336 −0.0232789
\(369\) 4128.89 0.582497
\(370\) 0 0
\(371\) 2719.00 0.380495
\(372\) −228.765 −0.0318842
\(373\) −11596.9 −1.60983 −0.804914 0.593391i \(-0.797789\pi\)
−0.804914 + 0.593391i \(0.797789\pi\)
\(374\) −659.642 −0.0912013
\(375\) 0 0
\(376\) 3214.81 0.440934
\(377\) −11924.4 −1.62901
\(378\) −4434.79 −0.603442
\(379\) −12770.8 −1.73085 −0.865424 0.501040i \(-0.832951\pi\)
−0.865424 + 0.501040i \(0.832951\pi\)
\(380\) 0 0
\(381\) −9952.25 −1.33824
\(382\) 1924.59 0.257777
\(383\) −7470.10 −0.996617 −0.498308 0.867000i \(-0.666045\pi\)
−0.498308 + 0.867000i \(0.666045\pi\)
\(384\) −20679.4 −2.74816
\(385\) 0 0
\(386\) 23960.1 3.15942
\(387\) 12941.8 1.69992
\(388\) 56.1558 0.00734763
\(389\) 8749.77 1.14044 0.570220 0.821492i \(-0.306858\pi\)
0.570220 + 0.821492i \(0.306858\pi\)
\(390\) 0 0
\(391\) −96.0092 −0.0124179
\(392\) 1220.62 0.157272
\(393\) 8676.41 1.11366
\(394\) −6716.46 −0.858808
\(395\) 0 0
\(396\) −17468.0 −2.21667
\(397\) −5375.25 −0.679537 −0.339769 0.940509i \(-0.610349\pi\)
−0.339769 + 0.940509i \(0.610349\pi\)
\(398\) −5906.65 −0.743903
\(399\) −7327.58 −0.919393
\(400\) 0 0
\(401\) 7361.33 0.916727 0.458363 0.888765i \(-0.348436\pi\)
0.458363 + 0.888765i \(0.348436\pi\)
\(402\) −27063.5 −3.35772
\(403\) 181.209 0.0223987
\(404\) −11590.7 −1.42737
\(405\) 0 0
\(406\) −4340.68 −0.530602
\(407\) −4249.88 −0.517589
\(408\) 989.632 0.120084
\(409\) −2612.45 −0.315837 −0.157919 0.987452i \(-0.550478\pi\)
−0.157919 + 0.987452i \(0.550478\pi\)
\(410\) 0 0
\(411\) −5419.57 −0.650433
\(412\) 15610.3 1.86667
\(413\) −5869.51 −0.699321
\(414\) −4061.81 −0.482191
\(415\) 0 0
\(416\) 14387.8 1.69572
\(417\) 4247.68 0.498824
\(418\) −17381.3 −2.03384
\(419\) 4398.21 0.512808 0.256404 0.966570i \(-0.417462\pi\)
0.256404 + 0.966570i \(0.417462\pi\)
\(420\) 0 0
\(421\) 9723.32 1.12562 0.562810 0.826587i \(-0.309720\pi\)
0.562810 + 0.826587i \(0.309720\pi\)
\(422\) −15071.9 −1.73859
\(423\) 5592.54 0.642833
\(424\) −9676.01 −1.10828
\(425\) 0 0
\(426\) −20301.7 −2.30896
\(427\) −2725.96 −0.308942
\(428\) −762.570 −0.0861220
\(429\) 22457.7 2.52744
\(430\) 0 0
\(431\) −14314.5 −1.59978 −0.799892 0.600144i \(-0.795110\pi\)
−0.799892 + 0.600144i \(0.795110\pi\)
\(432\) 1110.78 0.123709
\(433\) 2373.62 0.263438 0.131719 0.991287i \(-0.457950\pi\)
0.131719 + 0.991287i \(0.457950\pi\)
\(434\) 65.9633 0.00729572
\(435\) 0 0
\(436\) −18190.9 −1.99813
\(437\) −2529.80 −0.276927
\(438\) −2577.93 −0.281229
\(439\) −9533.46 −1.03646 −0.518231 0.855240i \(-0.673409\pi\)
−0.518231 + 0.855240i \(0.673409\pi\)
\(440\) 0 0
\(441\) 2123.41 0.229286
\(442\) −1948.14 −0.209646
\(443\) −6647.94 −0.712987 −0.356493 0.934298i \(-0.616028\pi\)
−0.356493 + 0.934298i \(0.616028\pi\)
\(444\) 15845.2 1.69365
\(445\) 0 0
\(446\) −20224.8 −2.14725
\(447\) −15331.7 −1.62229
\(448\) 5691.47 0.600215
\(449\) −768.256 −0.0807489 −0.0403744 0.999185i \(-0.512855\pi\)
−0.0403744 + 0.999185i \(0.512855\pi\)
\(450\) 0 0
\(451\) −2868.99 −0.299547
\(452\) −5837.06 −0.607416
\(453\) 24951.5 2.58791
\(454\) 282.628 0.0292167
\(455\) 0 0
\(456\) 26076.4 2.67794
\(457\) 3323.50 0.340190 0.170095 0.985428i \(-0.445593\pi\)
0.170095 + 0.985428i \(0.445593\pi\)
\(458\) 13963.5 1.42461
\(459\) 648.944 0.0659915
\(460\) 0 0
\(461\) −18840.7 −1.90347 −0.951733 0.306926i \(-0.900700\pi\)
−0.951733 + 0.306926i \(0.900700\pi\)
\(462\) 8175.03 0.823240
\(463\) 10759.1 1.07995 0.539977 0.841679i \(-0.318433\pi\)
0.539977 + 0.841679i \(0.318433\pi\)
\(464\) 1087.21 0.108777
\(465\) 0 0
\(466\) 16330.1 1.62334
\(467\) −7441.70 −0.737390 −0.368695 0.929550i \(-0.620195\pi\)
−0.368695 + 0.929550i \(0.620195\pi\)
\(468\) −51588.7 −5.09549
\(469\) 4884.56 0.480913
\(470\) 0 0
\(471\) 17878.0 1.74899
\(472\) 20887.6 2.03693
\(473\) −8992.73 −0.874178
\(474\) −20438.7 −1.98055
\(475\) 0 0
\(476\) −443.885 −0.0427426
\(477\) −16832.6 −1.61574
\(478\) 10556.1 1.01010
\(479\) 5691.97 0.542949 0.271475 0.962446i \(-0.412489\pi\)
0.271475 + 0.962446i \(0.412489\pi\)
\(480\) 0 0
\(481\) −12551.3 −1.18979
\(482\) −10246.5 −0.968293
\(483\) 1189.85 0.112092
\(484\) −5679.77 −0.533412
\(485\) 0 0
\(486\) −17924.9 −1.67302
\(487\) 2020.25 0.187980 0.0939899 0.995573i \(-0.470038\pi\)
0.0939899 + 0.995573i \(0.470038\pi\)
\(488\) 9700.77 0.899863
\(489\) 4981.12 0.460642
\(490\) 0 0
\(491\) 7636.02 0.701851 0.350925 0.936403i \(-0.385867\pi\)
0.350925 + 0.936403i \(0.385867\pi\)
\(492\) 10696.7 0.980173
\(493\) 635.173 0.0580259
\(494\) −51332.6 −4.67523
\(495\) 0 0
\(496\) −16.5218 −0.00149567
\(497\) 3664.15 0.330703
\(498\) −2715.93 −0.244385
\(499\) 6284.56 0.563799 0.281900 0.959444i \(-0.409036\pi\)
0.281900 + 0.959444i \(0.409036\pi\)
\(500\) 0 0
\(501\) 24625.6 2.19599
\(502\) −14255.4 −1.26743
\(503\) −11310.9 −1.00264 −0.501319 0.865262i \(-0.667152\pi\)
−0.501319 + 0.865262i \(0.667152\pi\)
\(504\) −7556.52 −0.667846
\(505\) 0 0
\(506\) 2822.38 0.247965
\(507\) 47899.7 4.19586
\(508\) −15885.7 −1.38743
\(509\) 10712.7 0.932876 0.466438 0.884554i \(-0.345537\pi\)
0.466438 + 0.884554i \(0.345537\pi\)
\(510\) 0 0
\(511\) 465.279 0.0402793
\(512\) −2927.65 −0.252705
\(513\) 17099.4 1.47165
\(514\) 27897.2 2.39396
\(515\) 0 0
\(516\) 33528.4 2.86047
\(517\) −3886.02 −0.330574
\(518\) −4568.89 −0.387540
\(519\) −19685.9 −1.66496
\(520\) 0 0
\(521\) 17721.9 1.49023 0.745116 0.666935i \(-0.232394\pi\)
0.745116 + 0.666935i \(0.232394\pi\)
\(522\) 26871.9 2.25317
\(523\) −237.193 −0.0198312 −0.00991562 0.999951i \(-0.503156\pi\)
−0.00991562 + 0.999951i \(0.503156\pi\)
\(524\) 13849.2 1.15459
\(525\) 0 0
\(526\) −27395.0 −2.27088
\(527\) −9.65243 −0.000797849 0
\(528\) −2047.59 −0.168769
\(529\) −11756.2 −0.966237
\(530\) 0 0
\(531\) 36336.4 2.96962
\(532\) −11696.2 −0.953185
\(533\) −8473.06 −0.688572
\(534\) −359.890 −0.0291647
\(535\) 0 0
\(536\) −17382.5 −1.40077
\(537\) 25466.4 2.04647
\(538\) 15042.8 1.20546
\(539\) −1475.47 −0.117909
\(540\) 0 0
\(541\) −5352.94 −0.425399 −0.212699 0.977118i \(-0.568226\pi\)
−0.212699 + 0.977118i \(0.568226\pi\)
\(542\) −28886.2 −2.28924
\(543\) −7546.06 −0.596376
\(544\) −766.391 −0.0604021
\(545\) 0 0
\(546\) 24143.5 1.89239
\(547\) 192.162 0.0150206 0.00751030 0.999972i \(-0.497609\pi\)
0.00751030 + 0.999972i \(0.497609\pi\)
\(548\) −8650.67 −0.674340
\(549\) 16875.6 1.31190
\(550\) 0 0
\(551\) 16736.5 1.29401
\(552\) −4234.29 −0.326492
\(553\) 3688.87 0.283665
\(554\) 7270.60 0.557578
\(555\) 0 0
\(556\) 6780.10 0.517159
\(557\) 4850.62 0.368990 0.184495 0.982833i \(-0.440935\pi\)
0.184495 + 0.982833i \(0.440935\pi\)
\(558\) −408.360 −0.0309808
\(559\) −26558.4 −2.00949
\(560\) 0 0
\(561\) −1196.25 −0.0900283
\(562\) −36284.4 −2.72343
\(563\) −9699.11 −0.726055 −0.363027 0.931778i \(-0.618257\pi\)
−0.363027 + 0.931778i \(0.618257\pi\)
\(564\) 14488.6 1.08170
\(565\) 0 0
\(566\) −28975.6 −2.15183
\(567\) 147.865 0.0109520
\(568\) −13039.5 −0.963247
\(569\) 3109.53 0.229100 0.114550 0.993417i \(-0.463457\pi\)
0.114550 + 0.993417i \(0.463457\pi\)
\(570\) 0 0
\(571\) −14476.2 −1.06097 −0.530483 0.847695i \(-0.677990\pi\)
−0.530483 + 0.847695i \(0.677990\pi\)
\(572\) 35846.8 2.62033
\(573\) 3490.23 0.254461
\(574\) −3084.35 −0.224283
\(575\) 0 0
\(576\) −35234.2 −2.54877
\(577\) 2208.23 0.159323 0.0796617 0.996822i \(-0.474616\pi\)
0.0796617 + 0.996822i \(0.474616\pi\)
\(578\) −22616.7 −1.62756
\(579\) 43451.4 3.11879
\(580\) 0 0
\(581\) 490.186 0.0350023
\(582\) 162.698 0.0115877
\(583\) 11696.2 0.830889
\(584\) −1655.77 −0.117322
\(585\) 0 0
\(586\) 33597.4 2.36843
\(587\) 23988.7 1.68675 0.843374 0.537327i \(-0.180566\pi\)
0.843374 + 0.537327i \(0.180566\pi\)
\(588\) 5501.13 0.385821
\(589\) −254.338 −0.0177925
\(590\) 0 0
\(591\) −12180.2 −0.847762
\(592\) 1144.37 0.0794480
\(593\) 15869.4 1.09895 0.549474 0.835511i \(-0.314828\pi\)
0.549474 + 0.835511i \(0.314828\pi\)
\(594\) −19077.0 −1.31774
\(595\) 0 0
\(596\) −24472.2 −1.68192
\(597\) −10711.6 −0.734335
\(598\) 8335.41 0.570000
\(599\) −15236.6 −1.03932 −0.519660 0.854373i \(-0.673941\pi\)
−0.519660 + 0.854373i \(0.673941\pi\)
\(600\) 0 0
\(601\) 12258.8 0.832026 0.416013 0.909359i \(-0.363427\pi\)
0.416013 + 0.909359i \(0.363427\pi\)
\(602\) −9667.75 −0.654532
\(603\) −30238.9 −2.04216
\(604\) 39827.4 2.68303
\(605\) 0 0
\(606\) −33581.2 −2.25106
\(607\) −23487.2 −1.57054 −0.785269 0.619155i \(-0.787475\pi\)
−0.785269 + 0.619155i \(0.787475\pi\)
\(608\) −20194.1 −1.34700
\(609\) −7871.78 −0.523778
\(610\) 0 0
\(611\) −11476.7 −0.759896
\(612\) 2747.97 0.181503
\(613\) 22305.3 1.46966 0.734830 0.678251i \(-0.237262\pi\)
0.734830 + 0.678251i \(0.237262\pi\)
\(614\) −6142.92 −0.403759
\(615\) 0 0
\(616\) 5250.71 0.343437
\(617\) −3285.91 −0.214402 −0.107201 0.994237i \(-0.534189\pi\)
−0.107201 + 0.994237i \(0.534189\pi\)
\(618\) 45227.1 2.94385
\(619\) −11613.1 −0.754069 −0.377035 0.926199i \(-0.623056\pi\)
−0.377035 + 0.926199i \(0.623056\pi\)
\(620\) 0 0
\(621\) −2776.61 −0.179423
\(622\) 22515.5 1.45143
\(623\) 64.9548 0.00417714
\(624\) −6047.21 −0.387952
\(625\) 0 0
\(626\) −35763.5 −2.28338
\(627\) −31520.8 −2.00769
\(628\) 28536.7 1.81328
\(629\) 668.567 0.0423808
\(630\) 0 0
\(631\) 6890.91 0.434743 0.217372 0.976089i \(-0.430252\pi\)
0.217372 + 0.976089i \(0.430252\pi\)
\(632\) −13127.5 −0.826238
\(633\) −27332.7 −1.71623
\(634\) 37805.9 2.36824
\(635\) 0 0
\(636\) −43608.1 −2.71883
\(637\) −4357.55 −0.271040
\(638\) −18672.2 −1.15868
\(639\) −22683.7 −1.40431
\(640\) 0 0
\(641\) 18769.3 1.15654 0.578269 0.815846i \(-0.303728\pi\)
0.578269 + 0.815846i \(0.303728\pi\)
\(642\) −2209.36 −0.135820
\(643\) 3142.30 0.192722 0.0963609 0.995346i \(-0.469280\pi\)
0.0963609 + 0.995346i \(0.469280\pi\)
\(644\) 1899.23 0.116212
\(645\) 0 0
\(646\) 2734.33 0.166533
\(647\) −19038.1 −1.15683 −0.578413 0.815744i \(-0.696328\pi\)
−0.578413 + 0.815744i \(0.696328\pi\)
\(648\) −526.204 −0.0319000
\(649\) −25248.7 −1.52711
\(650\) 0 0
\(651\) 119.624 0.00720188
\(652\) 7950.82 0.477574
\(653\) 20538.6 1.23084 0.615420 0.788199i \(-0.288986\pi\)
0.615420 + 0.788199i \(0.288986\pi\)
\(654\) −52703.6 −3.15119
\(655\) 0 0
\(656\) 772.534 0.0459793
\(657\) −2880.41 −0.171043
\(658\) −4177.72 −0.247514
\(659\) −937.046 −0.0553902 −0.0276951 0.999616i \(-0.508817\pi\)
−0.0276951 + 0.999616i \(0.508817\pi\)
\(660\) 0 0
\(661\) 21116.5 1.24257 0.621283 0.783586i \(-0.286612\pi\)
0.621283 + 0.783586i \(0.286612\pi\)
\(662\) −9437.65 −0.554085
\(663\) −3532.92 −0.206949
\(664\) −1744.41 −0.101952
\(665\) 0 0
\(666\) 28284.7 1.64566
\(667\) −2717.69 −0.157765
\(668\) 39307.1 2.27670
\(669\) −36677.5 −2.11963
\(670\) 0 0
\(671\) −11726.2 −0.674640
\(672\) 9497.98 0.545227
\(673\) −13825.9 −0.791903 −0.395952 0.918271i \(-0.629585\pi\)
−0.395952 + 0.918271i \(0.629585\pi\)
\(674\) −33989.3 −1.94246
\(675\) 0 0
\(676\) 76456.9 4.35008
\(677\) 16928.4 0.961021 0.480510 0.876989i \(-0.340451\pi\)
0.480510 + 0.876989i \(0.340451\pi\)
\(678\) −16911.4 −0.957935
\(679\) −29.3645 −0.00165966
\(680\) 0 0
\(681\) 512.543 0.0288409
\(682\) 283.752 0.0159317
\(683\) 13817.3 0.774091 0.387045 0.922061i \(-0.373496\pi\)
0.387045 + 0.922061i \(0.373496\pi\)
\(684\) 72407.8 4.04763
\(685\) 0 0
\(686\) −1586.23 −0.0882833
\(687\) 25322.6 1.40628
\(688\) 2421.47 0.134183
\(689\) 34542.8 1.90998
\(690\) 0 0
\(691\) −23671.6 −1.30320 −0.651600 0.758563i \(-0.725902\pi\)
−0.651600 + 0.758563i \(0.725902\pi\)
\(692\) −31422.5 −1.72616
\(693\) 9134.22 0.500693
\(694\) 55818.2 3.05307
\(695\) 0 0
\(696\) 28013.0 1.52562
\(697\) 451.333 0.0245272
\(698\) −20741.0 −1.12472
\(699\) 29614.5 1.60246
\(700\) 0 0
\(701\) −17009.7 −0.916472 −0.458236 0.888831i \(-0.651519\pi\)
−0.458236 + 0.888831i \(0.651519\pi\)
\(702\) −56340.6 −3.02911
\(703\) 17616.5 0.945117
\(704\) 24482.8 1.31070
\(705\) 0 0
\(706\) 59020.9 3.14629
\(707\) 6060.91 0.322410
\(708\) 94136.8 4.99700
\(709\) 22038.9 1.16740 0.583701 0.811969i \(-0.301604\pi\)
0.583701 + 0.811969i \(0.301604\pi\)
\(710\) 0 0
\(711\) −22836.8 −1.20456
\(712\) −231.152 −0.0121669
\(713\) 41.2994 0.00216925
\(714\) −1286.05 −0.0674078
\(715\) 0 0
\(716\) 40649.2 2.12169
\(717\) 19143.4 0.997106
\(718\) −11188.8 −0.581562
\(719\) 7287.44 0.377991 0.188996 0.981978i \(-0.439477\pi\)
0.188996 + 0.981978i \(0.439477\pi\)
\(720\) 0 0
\(721\) −8162.82 −0.421636
\(722\) 40328.5 2.07877
\(723\) −18582.0 −0.955839
\(724\) −12044.9 −0.618297
\(725\) 0 0
\(726\) −16455.7 −0.841225
\(727\) 29676.7 1.51396 0.756980 0.653438i \(-0.226674\pi\)
0.756980 + 0.653438i \(0.226674\pi\)
\(728\) 15507.0 0.789463
\(729\) −31936.3 −1.62253
\(730\) 0 0
\(731\) 1414.68 0.0715786
\(732\) 43719.7 2.20755
\(733\) −23111.8 −1.16460 −0.582300 0.812974i \(-0.697847\pi\)
−0.582300 + 0.812974i \(0.697847\pi\)
\(734\) 32971.9 1.65806
\(735\) 0 0
\(736\) 3279.12 0.164226
\(737\) 21011.7 1.05017
\(738\) 19094.3 0.952400
\(739\) −31171.4 −1.55164 −0.775818 0.630957i \(-0.782662\pi\)
−0.775818 + 0.630957i \(0.782662\pi\)
\(740\) 0 0
\(741\) −93091.1 −4.61510
\(742\) 12574.2 0.622120
\(743\) 31324.4 1.54668 0.773338 0.633993i \(-0.218585\pi\)
0.773338 + 0.633993i \(0.218585\pi\)
\(744\) −425.701 −0.0209771
\(745\) 0 0
\(746\) −53630.7 −2.63212
\(747\) −3034.60 −0.148635
\(748\) −1909.45 −0.0933373
\(749\) 398.756 0.0194529
\(750\) 0 0
\(751\) 4032.20 0.195922 0.0979608 0.995190i \(-0.468768\pi\)
0.0979608 + 0.995190i \(0.468768\pi\)
\(752\) 1046.39 0.0507419
\(753\) −25852.1 −1.25113
\(754\) −55145.0 −2.66348
\(755\) 0 0
\(756\) −12837.3 −0.617575
\(757\) −34263.7 −1.64509 −0.822546 0.568699i \(-0.807447\pi\)
−0.822546 + 0.568699i \(0.807447\pi\)
\(758\) −59059.3 −2.82999
\(759\) 5118.36 0.244775
\(760\) 0 0
\(761\) 7265.88 0.346108 0.173054 0.984912i \(-0.444637\pi\)
0.173054 + 0.984912i \(0.444637\pi\)
\(762\) −46024.8 −2.18806
\(763\) 9512.22 0.451331
\(764\) 5571.07 0.263814
\(765\) 0 0
\(766\) −34546.0 −1.62950
\(767\) −74567.5 −3.51040
\(768\) −41082.4 −1.93025
\(769\) 38116.2 1.78739 0.893695 0.448674i \(-0.148104\pi\)
0.893695 + 0.448674i \(0.148104\pi\)
\(770\) 0 0
\(771\) 50591.3 2.36317
\(772\) 69356.6 3.23342
\(773\) −16158.2 −0.751838 −0.375919 0.926652i \(-0.622673\pi\)
−0.375919 + 0.926652i \(0.622673\pi\)
\(774\) 59850.3 2.77942
\(775\) 0 0
\(776\) 104.498 0.00483412
\(777\) −8285.64 −0.382555
\(778\) 40463.9 1.86465
\(779\) 11892.4 0.546972
\(780\) 0 0
\(781\) 15761.9 0.722160
\(782\) −444.001 −0.0203036
\(783\) 18369.3 0.838400
\(784\) 397.301 0.0180986
\(785\) 0 0
\(786\) 40124.6 1.82086
\(787\) −5092.49 −0.230658 −0.115329 0.993327i \(-0.536792\pi\)
−0.115329 + 0.993327i \(0.536792\pi\)
\(788\) −19441.9 −0.878922
\(789\) −49680.6 −2.24167
\(790\) 0 0
\(791\) 3052.26 0.137201
\(792\) −32505.6 −1.45838
\(793\) −34631.1 −1.55080
\(794\) −24858.2 −1.11106
\(795\) 0 0
\(796\) −17097.8 −0.761326
\(797\) 34666.2 1.54070 0.770350 0.637621i \(-0.220081\pi\)
0.770350 + 0.637621i \(0.220081\pi\)
\(798\) −33886.9 −1.50323
\(799\) 611.326 0.0270678
\(800\) 0 0
\(801\) −402.116 −0.0177379
\(802\) 34043.0 1.49888
\(803\) 2001.47 0.0879582
\(804\) −78339.9 −3.43636
\(805\) 0 0
\(806\) 838.012 0.0366225
\(807\) 27279.9 1.18996
\(808\) −21568.7 −0.939091
\(809\) 15126.2 0.657365 0.328683 0.944440i \(-0.393395\pi\)
0.328683 + 0.944440i \(0.393395\pi\)
\(810\) 0 0
\(811\) 29416.5 1.27368 0.636840 0.770996i \(-0.280241\pi\)
0.636840 + 0.770996i \(0.280241\pi\)
\(812\) −12564.9 −0.543030
\(813\) −52384.9 −2.25980
\(814\) −19653.9 −0.846274
\(815\) 0 0
\(816\) 322.116 0.0138190
\(817\) 37276.3 1.59625
\(818\) −12081.5 −0.516404
\(819\) 26976.3 1.15095
\(820\) 0 0
\(821\) −15334.4 −0.651856 −0.325928 0.945395i \(-0.605677\pi\)
−0.325928 + 0.945395i \(0.605677\pi\)
\(822\) −25063.2 −1.06348
\(823\) 11003.7 0.466056 0.233028 0.972470i \(-0.425137\pi\)
0.233028 + 0.972470i \(0.425137\pi\)
\(824\) 29048.7 1.22811
\(825\) 0 0
\(826\) −27143.9 −1.14341
\(827\) 3261.59 0.137142 0.0685711 0.997646i \(-0.478156\pi\)
0.0685711 + 0.997646i \(0.478156\pi\)
\(828\) −11757.6 −0.493484
\(829\) 5163.30 0.216319 0.108160 0.994134i \(-0.465504\pi\)
0.108160 + 0.994134i \(0.465504\pi\)
\(830\) 0 0
\(831\) 13185.1 0.550406
\(832\) 72305.6 3.01292
\(833\) 232.113 0.00965453
\(834\) 19643.7 0.815593
\(835\) 0 0
\(836\) −50313.1 −2.08148
\(837\) −279.150 −0.0115279
\(838\) 20339.8 0.838457
\(839\) −5641.70 −0.232149 −0.116075 0.993241i \(-0.537031\pi\)
−0.116075 + 0.993241i \(0.537031\pi\)
\(840\) 0 0
\(841\) −6409.46 −0.262801
\(842\) 44966.1 1.84042
\(843\) −65801.4 −2.68840
\(844\) −43628.1 −1.77931
\(845\) 0 0
\(846\) 25863.0 1.05105
\(847\) 2970.01 0.120485
\(848\) −3149.45 −0.127538
\(849\) −52546.8 −2.12415
\(850\) 0 0
\(851\) −2860.57 −0.115228
\(852\) −58766.7 −2.36304
\(853\) 7799.52 0.313072 0.156536 0.987672i \(-0.449967\pi\)
0.156536 + 0.987672i \(0.449967\pi\)
\(854\) −12606.4 −0.505130
\(855\) 0 0
\(856\) −1419.04 −0.0566610
\(857\) 21540.0 0.858568 0.429284 0.903170i \(-0.358766\pi\)
0.429284 + 0.903170i \(0.358766\pi\)
\(858\) 103857. 4.13244
\(859\) 4447.97 0.176674 0.0883370 0.996091i \(-0.471845\pi\)
0.0883370 + 0.996091i \(0.471845\pi\)
\(860\) 0 0
\(861\) −5593.43 −0.221398
\(862\) −66198.5 −2.61569
\(863\) 9425.21 0.371770 0.185885 0.982571i \(-0.440485\pi\)
0.185885 + 0.982571i \(0.440485\pi\)
\(864\) −22164.2 −0.872733
\(865\) 0 0
\(866\) 10977.0 0.430730
\(867\) −41015.2 −1.60663
\(868\) 190.942 0.00746659
\(869\) 15868.3 0.619442
\(870\) 0 0
\(871\) 62054.5 2.41405
\(872\) −33850.8 −1.31460
\(873\) 181.787 0.00704761
\(874\) −11699.2 −0.452783
\(875\) 0 0
\(876\) −7462.27 −0.287816
\(877\) −22346.1 −0.860403 −0.430201 0.902733i \(-0.641557\pi\)
−0.430201 + 0.902733i \(0.641557\pi\)
\(878\) −44088.1 −1.69465
\(879\) 60928.6 2.33796
\(880\) 0 0
\(881\) 12074.9 0.461762 0.230881 0.972982i \(-0.425839\pi\)
0.230881 + 0.972982i \(0.425839\pi\)
\(882\) 9819.87 0.374889
\(883\) 30499.6 1.16239 0.581196 0.813764i \(-0.302585\pi\)
0.581196 + 0.813764i \(0.302585\pi\)
\(884\) −5639.22 −0.214556
\(885\) 0 0
\(886\) −30743.8 −1.16576
\(887\) −23344.2 −0.883675 −0.441838 0.897095i \(-0.645673\pi\)
−0.441838 + 0.897095i \(0.645673\pi\)
\(888\) 29485.8 1.11428
\(889\) 8306.80 0.313387
\(890\) 0 0
\(891\) 636.068 0.0239159
\(892\) −58544.3 −2.19754
\(893\) 16108.2 0.603628
\(894\) −70902.3 −2.65249
\(895\) 0 0
\(896\) 17260.4 0.643560
\(897\) 15116.2 0.562669
\(898\) −3552.85 −0.132027
\(899\) −273.227 −0.0101364
\(900\) 0 0
\(901\) −1839.98 −0.0680341
\(902\) −13267.8 −0.489768
\(903\) −17532.4 −0.646113
\(904\) −10862.0 −0.399629
\(905\) 0 0
\(906\) 115390. 4.23132
\(907\) 15092.5 0.552523 0.276262 0.961082i \(-0.410904\pi\)
0.276262 + 0.961082i \(0.410904\pi\)
\(908\) 818.115 0.0299010
\(909\) −37521.3 −1.36909
\(910\) 0 0
\(911\) −15207.8 −0.553081 −0.276541 0.961002i \(-0.589188\pi\)
−0.276541 + 0.961002i \(0.589188\pi\)
\(912\) 8487.61 0.308172
\(913\) 2108.62 0.0764348
\(914\) 15369.7 0.556221
\(915\) 0 0
\(916\) 40419.6 1.45797
\(917\) −7241.90 −0.260794
\(918\) 3001.08 0.107898
\(919\) 24818.1 0.890831 0.445415 0.895324i \(-0.353056\pi\)
0.445415 + 0.895324i \(0.353056\pi\)
\(920\) 0 0
\(921\) −11140.1 −0.398566
\(922\) −87130.0 −3.11223
\(923\) 46550.1 1.66004
\(924\) 23664.0 0.842521
\(925\) 0 0
\(926\) 49756.3 1.76576
\(927\) 50533.7 1.79045
\(928\) −21693.9 −0.767388
\(929\) 39906.4 1.40935 0.704675 0.709530i \(-0.251093\pi\)
0.704675 + 0.709530i \(0.251093\pi\)
\(930\) 0 0
\(931\) 6116.07 0.215302
\(932\) 47270.3 1.66136
\(933\) 40831.7 1.43276
\(934\) −34414.6 −1.20565
\(935\) 0 0
\(936\) −95999.7 −3.35240
\(937\) −16923.0 −0.590020 −0.295010 0.955494i \(-0.595323\pi\)
−0.295010 + 0.955494i \(0.595323\pi\)
\(938\) 22589.0 0.786307
\(939\) −64856.8 −2.25402
\(940\) 0 0
\(941\) −53014.1 −1.83657 −0.918285 0.395921i \(-0.870426\pi\)
−0.918285 + 0.395921i \(0.870426\pi\)
\(942\) 82678.1 2.85966
\(943\) −1931.10 −0.0666864
\(944\) 6798.71 0.234406
\(945\) 0 0
\(946\) −41587.4 −1.42931
\(947\) 25798.9 0.885271 0.442636 0.896702i \(-0.354043\pi\)
0.442636 + 0.896702i \(0.354043\pi\)
\(948\) −59163.2 −2.02693
\(949\) 5911.00 0.202191
\(950\) 0 0
\(951\) 68560.6 2.33778
\(952\) −826.011 −0.0281210
\(953\) 17942.7 0.609885 0.304943 0.952371i \(-0.401363\pi\)
0.304943 + 0.952371i \(0.401363\pi\)
\(954\) −77843.2 −2.64179
\(955\) 0 0
\(956\) 30556.6 1.03375
\(957\) −33861.8 −1.14378
\(958\) 26322.9 0.887739
\(959\) 4523.53 0.152317
\(960\) 0 0
\(961\) −29786.8 −0.999861
\(962\) −58044.2 −1.94534
\(963\) −2468.59 −0.0826055
\(964\) −29660.4 −0.990971
\(965\) 0 0
\(966\) 5502.56 0.183273
\(967\) −19668.3 −0.654073 −0.327036 0.945012i \(-0.606050\pi\)
−0.327036 + 0.945012i \(0.606050\pi\)
\(968\) −10569.3 −0.350940
\(969\) 4958.67 0.164392
\(970\) 0 0
\(971\) 6332.97 0.209304 0.104652 0.994509i \(-0.466627\pi\)
0.104652 + 0.994509i \(0.466627\pi\)
\(972\) −51886.7 −1.71221
\(973\) −3545.39 −0.116814
\(974\) 9342.76 0.307353
\(975\) 0 0
\(976\) 3157.51 0.103555
\(977\) 11334.1 0.371145 0.185573 0.982631i \(-0.440586\pi\)
0.185573 + 0.982631i \(0.440586\pi\)
\(978\) 23035.5 0.753164
\(979\) 279.414 0.00912166
\(980\) 0 0
\(981\) −58887.4 −1.91655
\(982\) 35313.3 1.14755
\(983\) 37654.3 1.22175 0.610877 0.791725i \(-0.290817\pi\)
0.610877 + 0.791725i \(0.290817\pi\)
\(984\) 19905.1 0.644871
\(985\) 0 0
\(986\) 2937.40 0.0948741
\(987\) −7576.24 −0.244331
\(988\) −148591. −4.78473
\(989\) −6052.95 −0.194613
\(990\) 0 0
\(991\) −53441.5 −1.71304 −0.856522 0.516111i \(-0.827379\pi\)
−0.856522 + 0.516111i \(0.827379\pi\)
\(992\) 329.671 0.0105515
\(993\) −17115.1 −0.546959
\(994\) 16945.1 0.540710
\(995\) 0 0
\(996\) −7861.74 −0.250109
\(997\) −37919.3 −1.20453 −0.602266 0.798296i \(-0.705735\pi\)
−0.602266 + 0.798296i \(0.705735\pi\)
\(998\) 29063.4 0.921829
\(999\) 19335.1 0.612348
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.4.a.f.1.3 3
3.2 odd 2 1575.4.a.ba.1.1 3
5.2 odd 4 175.4.b.e.99.6 6
5.3 odd 4 175.4.b.e.99.1 6
5.4 even 2 35.4.a.c.1.1 3
7.6 odd 2 1225.4.a.y.1.3 3
15.14 odd 2 315.4.a.p.1.3 3
20.19 odd 2 560.4.a.u.1.3 3
35.4 even 6 245.4.e.m.226.3 6
35.9 even 6 245.4.e.m.116.3 6
35.19 odd 6 245.4.e.n.116.3 6
35.24 odd 6 245.4.e.n.226.3 6
35.34 odd 2 245.4.a.l.1.1 3
40.19 odd 2 2240.4.a.bv.1.1 3
40.29 even 2 2240.4.a.bt.1.3 3
105.104 even 2 2205.4.a.bm.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.a.c.1.1 3 5.4 even 2
175.4.a.f.1.3 3 1.1 even 1 trivial
175.4.b.e.99.1 6 5.3 odd 4
175.4.b.e.99.6 6 5.2 odd 4
245.4.a.l.1.1 3 35.34 odd 2
245.4.e.m.116.3 6 35.9 even 6
245.4.e.m.226.3 6 35.4 even 6
245.4.e.n.116.3 6 35.19 odd 6
245.4.e.n.226.3 6 35.24 odd 6
315.4.a.p.1.3 3 15.14 odd 2
560.4.a.u.1.3 3 20.19 odd 2
1225.4.a.y.1.3 3 7.6 odd 2
1575.4.a.ba.1.1 3 3.2 odd 2
2205.4.a.bm.1.3 3 105.104 even 2
2240.4.a.bt.1.3 3 40.29 even 2
2240.4.a.bv.1.1 3 40.19 odd 2