Properties

Label 175.4.a.f.1.2
Level $175$
Weight $4$
Character 175.1
Self dual yes
Analytic conductor $10.325$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(1,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.14360.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 17x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.861086\) of defining polynomial
Character \(\chi\) \(=\) 175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.86109 q^{2} -9.53636 q^{3} -4.53636 q^{4} -17.7480 q^{6} -7.00000 q^{7} -23.3312 q^{8} +63.9421 q^{9} +O(q^{10})\) \(q+1.86109 q^{2} -9.53636 q^{3} -4.53636 q^{4} -17.7480 q^{6} -7.00000 q^{7} -23.3312 q^{8} +63.9421 q^{9} -36.9807 q^{11} +43.2603 q^{12} +22.7931 q^{13} -13.0276 q^{14} -7.13061 q^{16} +135.566 q^{17} +119.002 q^{18} +6.22620 q^{19} +66.7545 q^{21} -68.8243 q^{22} +48.7397 q^{23} +222.495 q^{24} +42.4199 q^{26} -352.293 q^{27} +31.7545 q^{28} -71.1172 q^{29} +124.924 q^{31} +173.379 q^{32} +352.661 q^{33} +252.300 q^{34} -290.064 q^{36} -84.9919 q^{37} +11.5875 q^{38} -217.363 q^{39} +92.5942 q^{41} +124.236 q^{42} -299.680 q^{43} +167.758 q^{44} +90.7088 q^{46} +72.9178 q^{47} +68.0000 q^{48} +49.0000 q^{49} -1292.81 q^{51} -103.398 q^{52} -362.685 q^{53} -655.648 q^{54} +163.319 q^{56} -59.3753 q^{57} -132.355 q^{58} -375.526 q^{59} +689.610 q^{61} +232.494 q^{62} -447.595 q^{63} +379.719 q^{64} +656.333 q^{66} +972.591 q^{67} -614.976 q^{68} -464.799 q^{69} +281.900 q^{71} -1491.85 q^{72} +742.980 q^{73} -158.177 q^{74} -28.2443 q^{76} +258.865 q^{77} -404.532 q^{78} +592.843 q^{79} +1633.16 q^{81} +172.326 q^{82} +493.406 q^{83} -302.822 q^{84} -557.731 q^{86} +678.199 q^{87} +862.806 q^{88} +962.977 q^{89} -159.552 q^{91} -221.101 q^{92} -1191.32 q^{93} +135.706 q^{94} -1653.41 q^{96} -740.748 q^{97} +91.1932 q^{98} -2364.62 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} - 2 q^{3} + 13 q^{4} + 24 q^{6} - 21 q^{7} + 15 q^{8} + 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 3 q^{2} - 2 q^{3} + 13 q^{4} + 24 q^{6} - 21 q^{7} + 15 q^{8} + 81 q^{9} - 74 q^{11} + 152 q^{12} - 44 q^{13} - 21 q^{14} - 79 q^{16} + 52 q^{17} + 411 q^{18} + 168 q^{19} + 14 q^{21} - 184 q^{22} + 124 q^{23} + 420 q^{24} - 446 q^{26} - 170 q^{27} - 91 q^{28} + 332 q^{29} + 320 q^{31} + 183 q^{32} + 106 q^{33} + 582 q^{34} + 181 q^{36} + 54 q^{37} + 460 q^{38} - 982 q^{39} + 362 q^{41} - 168 q^{42} + 16 q^{43} - 264 q^{44} - 336 q^{46} + 730 q^{47} + 204 q^{48} + 147 q^{49} - 1178 q^{51} - 1202 q^{52} - 110 q^{53} - 180 q^{54} - 105 q^{56} + 956 q^{57} - 450 q^{58} - 180 q^{59} + 1222 q^{61} - 464 q^{62} - 567 q^{63} - 391 q^{64} - 532 q^{66} - 204 q^{67} - 918 q^{68} - 716 q^{69} - 136 q^{71} - 765 q^{72} - 310 q^{73} + 502 q^{74} + 1796 q^{76} + 518 q^{77} - 3788 q^{78} - 1034 q^{79} + 2283 q^{81} + 6 q^{82} + 1660 q^{83} - 1064 q^{84} + 764 q^{86} + 1574 q^{87} + 20 q^{88} + 242 q^{89} + 308 q^{91} - 96 q^{92} - 1376 q^{93} - 1108 q^{94} - 3156 q^{96} - 100 q^{97} + 147 q^{98} - 3488 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.86109 0.657993 0.328997 0.944331i \(-0.393289\pi\)
0.328997 + 0.944331i \(0.393289\pi\)
\(3\) −9.53636 −1.83527 −0.917636 0.397421i \(-0.869905\pi\)
−0.917636 + 0.397421i \(0.869905\pi\)
\(4\) −4.53636 −0.567045
\(5\) 0 0
\(6\) −17.7480 −1.20760
\(7\) −7.00000 −0.377964
\(8\) −23.3312 −1.03111
\(9\) 63.9421 2.36823
\(10\) 0 0
\(11\) −36.9807 −1.01365 −0.506823 0.862050i \(-0.669180\pi\)
−0.506823 + 0.862050i \(0.669180\pi\)
\(12\) 43.2603 1.04068
\(13\) 22.7931 0.486282 0.243141 0.969991i \(-0.421822\pi\)
0.243141 + 0.969991i \(0.421822\pi\)
\(14\) −13.0276 −0.248698
\(15\) 0 0
\(16\) −7.13061 −0.111416
\(17\) 135.566 1.93409 0.967047 0.254599i \(-0.0819436\pi\)
0.967047 + 0.254599i \(0.0819436\pi\)
\(18\) 119.002 1.55828
\(19\) 6.22620 0.0751784 0.0375892 0.999293i \(-0.488032\pi\)
0.0375892 + 0.999293i \(0.488032\pi\)
\(20\) 0 0
\(21\) 66.7545 0.693668
\(22\) −68.8243 −0.666972
\(23\) 48.7397 0.441866 0.220933 0.975289i \(-0.429090\pi\)
0.220933 + 0.975289i \(0.429090\pi\)
\(24\) 222.495 1.89236
\(25\) 0 0
\(26\) 42.4199 0.319970
\(27\) −352.293 −2.51107
\(28\) 31.7545 0.214323
\(29\) −71.1172 −0.455384 −0.227692 0.973733i \(-0.573118\pi\)
−0.227692 + 0.973733i \(0.573118\pi\)
\(30\) 0 0
\(31\) 124.924 0.723773 0.361886 0.932222i \(-0.382133\pi\)
0.361886 + 0.932222i \(0.382133\pi\)
\(32\) 173.379 0.957794
\(33\) 352.661 1.86032
\(34\) 252.300 1.27262
\(35\) 0 0
\(36\) −290.064 −1.34289
\(37\) −84.9919 −0.377638 −0.188819 0.982012i \(-0.560466\pi\)
−0.188819 + 0.982012i \(0.560466\pi\)
\(38\) 11.5875 0.0494669
\(39\) −217.363 −0.892460
\(40\) 0 0
\(41\) 92.5942 0.352702 0.176351 0.984327i \(-0.443571\pi\)
0.176351 + 0.984327i \(0.443571\pi\)
\(42\) 124.236 0.456429
\(43\) −299.680 −1.06281 −0.531405 0.847118i \(-0.678336\pi\)
−0.531405 + 0.847118i \(0.678336\pi\)
\(44\) 167.758 0.574782
\(45\) 0 0
\(46\) 90.7088 0.290745
\(47\) 72.9178 0.226301 0.113151 0.993578i \(-0.463906\pi\)
0.113151 + 0.993578i \(0.463906\pi\)
\(48\) 68.0000 0.204478
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −1292.81 −3.54959
\(52\) −103.398 −0.275744
\(53\) −362.685 −0.939974 −0.469987 0.882673i \(-0.655741\pi\)
−0.469987 + 0.882673i \(0.655741\pi\)
\(54\) −655.648 −1.65227
\(55\) 0 0
\(56\) 163.319 0.389721
\(57\) −59.3753 −0.137973
\(58\) −132.355 −0.299640
\(59\) −375.526 −0.828633 −0.414316 0.910133i \(-0.635979\pi\)
−0.414316 + 0.910133i \(0.635979\pi\)
\(60\) 0 0
\(61\) 689.610 1.44747 0.723734 0.690079i \(-0.242424\pi\)
0.723734 + 0.690079i \(0.242424\pi\)
\(62\) 232.494 0.476238
\(63\) −447.595 −0.895105
\(64\) 379.719 0.741638
\(65\) 0 0
\(66\) 656.333 1.22408
\(67\) 972.591 1.77345 0.886723 0.462301i \(-0.152976\pi\)
0.886723 + 0.462301i \(0.152976\pi\)
\(68\) −614.976 −1.09672
\(69\) −464.799 −0.810945
\(70\) 0 0
\(71\) 281.900 0.471202 0.235601 0.971850i \(-0.424294\pi\)
0.235601 + 0.971850i \(0.424294\pi\)
\(72\) −1491.85 −2.44189
\(73\) 742.980 1.19122 0.595612 0.803273i \(-0.296910\pi\)
0.595612 + 0.803273i \(0.296910\pi\)
\(74\) −158.177 −0.248483
\(75\) 0 0
\(76\) −28.2443 −0.0426295
\(77\) 258.865 0.383122
\(78\) −404.532 −0.587233
\(79\) 592.843 0.844304 0.422152 0.906525i \(-0.361275\pi\)
0.422152 + 0.906525i \(0.361275\pi\)
\(80\) 0 0
\(81\) 1633.16 2.24027
\(82\) 172.326 0.232076
\(83\) 493.406 0.652510 0.326255 0.945282i \(-0.394213\pi\)
0.326255 + 0.945282i \(0.394213\pi\)
\(84\) −302.822 −0.393341
\(85\) 0 0
\(86\) −557.731 −0.699322
\(87\) 678.199 0.835753
\(88\) 862.806 1.04518
\(89\) 962.977 1.14691 0.573457 0.819236i \(-0.305602\pi\)
0.573457 + 0.819236i \(0.305602\pi\)
\(90\) 0 0
\(91\) −159.552 −0.183797
\(92\) −221.101 −0.250558
\(93\) −1191.32 −1.32832
\(94\) 135.706 0.148905
\(95\) 0 0
\(96\) −1653.41 −1.75781
\(97\) −740.748 −0.775377 −0.387689 0.921790i \(-0.626726\pi\)
−0.387689 + 0.921790i \(0.626726\pi\)
\(98\) 91.1932 0.0939991
\(99\) −2364.62 −2.40054
\(100\) 0 0
\(101\) 613.794 0.604701 0.302351 0.953197i \(-0.402229\pi\)
0.302351 + 0.953197i \(0.402229\pi\)
\(102\) −2406.02 −2.33561
\(103\) −805.493 −0.770559 −0.385280 0.922800i \(-0.625895\pi\)
−0.385280 + 0.922800i \(0.625895\pi\)
\(104\) −531.791 −0.501408
\(105\) 0 0
\(106\) −674.988 −0.618497
\(107\) 1931.30 1.74491 0.872457 0.488691i \(-0.162526\pi\)
0.872457 + 0.488691i \(0.162526\pi\)
\(108\) 1598.13 1.42389
\(109\) 106.462 0.0935522 0.0467761 0.998905i \(-0.485105\pi\)
0.0467761 + 0.998905i \(0.485105\pi\)
\(110\) 0 0
\(111\) 810.514 0.693068
\(112\) 49.9142 0.0421112
\(113\) −309.076 −0.257305 −0.128652 0.991690i \(-0.541065\pi\)
−0.128652 + 0.991690i \(0.541065\pi\)
\(114\) −110.503 −0.0907852
\(115\) 0 0
\(116\) 322.613 0.258223
\(117\) 1457.44 1.15163
\(118\) −698.887 −0.545235
\(119\) −948.962 −0.731019
\(120\) 0 0
\(121\) 36.5724 0.0274774
\(122\) 1283.42 0.952425
\(123\) −883.012 −0.647305
\(124\) −566.699 −0.410412
\(125\) 0 0
\(126\) −833.013 −0.588973
\(127\) 199.470 0.139371 0.0696856 0.997569i \(-0.477800\pi\)
0.0696856 + 0.997569i \(0.477800\pi\)
\(128\) −680.345 −0.469801
\(129\) 2857.86 1.95055
\(130\) 0 0
\(131\) 601.722 0.401318 0.200659 0.979661i \(-0.435692\pi\)
0.200659 + 0.979661i \(0.435692\pi\)
\(132\) −1599.80 −1.05488
\(133\) −43.5834 −0.0284147
\(134\) 1810.08 1.16692
\(135\) 0 0
\(136\) −3162.92 −1.99425
\(137\) −2092.21 −1.30474 −0.652370 0.757901i \(-0.726225\pi\)
−0.652370 + 0.757901i \(0.726225\pi\)
\(138\) −865.031 −0.533597
\(139\) 834.466 0.509198 0.254599 0.967047i \(-0.418057\pi\)
0.254599 + 0.967047i \(0.418057\pi\)
\(140\) 0 0
\(141\) −695.370 −0.415324
\(142\) 524.639 0.310048
\(143\) −842.905 −0.492918
\(144\) −455.946 −0.263858
\(145\) 0 0
\(146\) 1382.75 0.783817
\(147\) −467.282 −0.262182
\(148\) 385.554 0.214137
\(149\) −244.258 −0.134298 −0.0671491 0.997743i \(-0.521390\pi\)
−0.0671491 + 0.997743i \(0.521390\pi\)
\(150\) 0 0
\(151\) −802.158 −0.432309 −0.216155 0.976359i \(-0.569352\pi\)
−0.216155 + 0.976359i \(0.569352\pi\)
\(152\) −145.265 −0.0775168
\(153\) 8668.38 4.58037
\(154\) 481.770 0.252092
\(155\) 0 0
\(156\) 986.037 0.506065
\(157\) −3541.38 −1.80021 −0.900105 0.435673i \(-0.856510\pi\)
−0.900105 + 0.435673i \(0.856510\pi\)
\(158\) 1103.33 0.555546
\(159\) 3458.69 1.72511
\(160\) 0 0
\(161\) −341.178 −0.167010
\(162\) 3039.45 1.47408
\(163\) 2214.57 1.06416 0.532081 0.846693i \(-0.321410\pi\)
0.532081 + 0.846693i \(0.321410\pi\)
\(164\) −420.041 −0.199998
\(165\) 0 0
\(166\) 918.271 0.429347
\(167\) 2617.07 1.21266 0.606332 0.795212i \(-0.292640\pi\)
0.606332 + 0.795212i \(0.292640\pi\)
\(168\) −1557.47 −0.715245
\(169\) −1677.47 −0.763530
\(170\) 0 0
\(171\) 398.117 0.178039
\(172\) 1359.46 0.602661
\(173\) 1634.04 0.718114 0.359057 0.933316i \(-0.383098\pi\)
0.359057 + 0.933316i \(0.383098\pi\)
\(174\) 1262.19 0.549920
\(175\) 0 0
\(176\) 263.695 0.112936
\(177\) 3581.15 1.52077
\(178\) 1792.18 0.754662
\(179\) 969.160 0.404684 0.202342 0.979315i \(-0.435145\pi\)
0.202342 + 0.979315i \(0.435145\pi\)
\(180\) 0 0
\(181\) 4358.20 1.78974 0.894869 0.446329i \(-0.147269\pi\)
0.894869 + 0.446329i \(0.147269\pi\)
\(182\) −296.939 −0.120937
\(183\) −6576.37 −2.65650
\(184\) −1137.16 −0.455611
\(185\) 0 0
\(186\) −2217.14 −0.874026
\(187\) −5013.33 −1.96049
\(188\) −330.781 −0.128323
\(189\) 2466.05 0.949095
\(190\) 0 0
\(191\) 2909.97 1.10240 0.551199 0.834374i \(-0.314170\pi\)
0.551199 + 0.834374i \(0.314170\pi\)
\(192\) −3621.13 −1.36111
\(193\) 3719.25 1.38714 0.693568 0.720391i \(-0.256038\pi\)
0.693568 + 0.720391i \(0.256038\pi\)
\(194\) −1378.60 −0.510193
\(195\) 0 0
\(196\) −222.282 −0.0810064
\(197\) 1550.03 0.560582 0.280291 0.959915i \(-0.409569\pi\)
0.280291 + 0.959915i \(0.409569\pi\)
\(198\) −4400.77 −1.57954
\(199\) −3605.14 −1.28423 −0.642115 0.766608i \(-0.721943\pi\)
−0.642115 + 0.766608i \(0.721943\pi\)
\(200\) 0 0
\(201\) −9274.97 −3.25476
\(202\) 1142.32 0.397889
\(203\) 497.820 0.172119
\(204\) 5864.63 2.01278
\(205\) 0 0
\(206\) −1499.09 −0.507023
\(207\) 3116.52 1.04644
\(208\) −162.529 −0.0541795
\(209\) −230.249 −0.0762042
\(210\) 0 0
\(211\) −3305.27 −1.07841 −0.539204 0.842175i \(-0.681275\pi\)
−0.539204 + 0.842175i \(0.681275\pi\)
\(212\) 1645.27 0.533007
\(213\) −2688.29 −0.864784
\(214\) 3594.31 1.14814
\(215\) 0 0
\(216\) 8219.44 2.58918
\(217\) −874.466 −0.273560
\(218\) 198.135 0.0615567
\(219\) −7085.33 −2.18622
\(220\) 0 0
\(221\) 3089.97 0.940515
\(222\) 1508.44 0.456034
\(223\) −3451.37 −1.03642 −0.518209 0.855254i \(-0.673401\pi\)
−0.518209 + 0.855254i \(0.673401\pi\)
\(224\) −1213.65 −0.362012
\(225\) 0 0
\(226\) −575.218 −0.169305
\(227\) −2047.24 −0.598591 −0.299296 0.954160i \(-0.596752\pi\)
−0.299296 + 0.954160i \(0.596752\pi\)
\(228\) 269.348 0.0782367
\(229\) −1387.42 −0.400362 −0.200181 0.979759i \(-0.564153\pi\)
−0.200181 + 0.979759i \(0.564153\pi\)
\(230\) 0 0
\(231\) −2468.63 −0.703133
\(232\) 1659.25 0.469549
\(233\) 374.993 0.105436 0.0527181 0.998609i \(-0.483212\pi\)
0.0527181 + 0.998609i \(0.483212\pi\)
\(234\) 2712.42 0.757762
\(235\) 0 0
\(236\) 1703.52 0.469872
\(237\) −5653.56 −1.54953
\(238\) −1766.10 −0.481005
\(239\) −5560.93 −1.50505 −0.752525 0.658564i \(-0.771164\pi\)
−0.752525 + 0.658564i \(0.771164\pi\)
\(240\) 0 0
\(241\) 4706.19 1.25789 0.628947 0.777448i \(-0.283486\pi\)
0.628947 + 0.777448i \(0.283486\pi\)
\(242\) 68.0644 0.0180799
\(243\) −6062.45 −1.60044
\(244\) −3128.32 −0.820779
\(245\) 0 0
\(246\) −1643.36 −0.425922
\(247\) 141.914 0.0365579
\(248\) −2914.63 −0.746286
\(249\) −4705.29 −1.19753
\(250\) 0 0
\(251\) 589.085 0.148138 0.0740692 0.997253i \(-0.476401\pi\)
0.0740692 + 0.997253i \(0.476401\pi\)
\(252\) 2030.45 0.507565
\(253\) −1802.43 −0.447896
\(254\) 371.232 0.0917053
\(255\) 0 0
\(256\) −4303.93 −1.05076
\(257\) 4666.16 1.13256 0.566278 0.824214i \(-0.308383\pi\)
0.566278 + 0.824214i \(0.308383\pi\)
\(258\) 5318.72 1.28345
\(259\) 594.944 0.142734
\(260\) 0 0
\(261\) −4547.38 −1.07845
\(262\) 1119.86 0.264065
\(263\) 4471.96 1.04849 0.524246 0.851567i \(-0.324347\pi\)
0.524246 + 0.851567i \(0.324347\pi\)
\(264\) −8228.02 −1.91818
\(265\) 0 0
\(266\) −81.1125 −0.0186967
\(267\) −9183.29 −2.10490
\(268\) −4412.02 −1.00562
\(269\) −4257.13 −0.964913 −0.482457 0.875920i \(-0.660255\pi\)
−0.482457 + 0.875920i \(0.660255\pi\)
\(270\) 0 0
\(271\) −3868.69 −0.867182 −0.433591 0.901110i \(-0.642754\pi\)
−0.433591 + 0.901110i \(0.642754\pi\)
\(272\) −966.668 −0.215488
\(273\) 1521.54 0.337318
\(274\) −3893.78 −0.858510
\(275\) 0 0
\(276\) 2108.49 0.459842
\(277\) −8207.30 −1.78025 −0.890124 0.455718i \(-0.849382\pi\)
−0.890124 + 0.455718i \(0.849382\pi\)
\(278\) 1553.01 0.335049
\(279\) 7987.88 1.71406
\(280\) 0 0
\(281\) 6471.27 1.37382 0.686910 0.726743i \(-0.258967\pi\)
0.686910 + 0.726743i \(0.258967\pi\)
\(282\) −1294.14 −0.273281
\(283\) −1470.80 −0.308940 −0.154470 0.987997i \(-0.549367\pi\)
−0.154470 + 0.987997i \(0.549367\pi\)
\(284\) −1278.80 −0.267192
\(285\) 0 0
\(286\) −1568.72 −0.324337
\(287\) −648.160 −0.133309
\(288\) 11086.2 2.26827
\(289\) 13465.1 2.74072
\(290\) 0 0
\(291\) 7064.04 1.42303
\(292\) −3370.42 −0.675477
\(293\) 5489.18 1.09448 0.547238 0.836977i \(-0.315679\pi\)
0.547238 + 0.836977i \(0.315679\pi\)
\(294\) −869.651 −0.172514
\(295\) 0 0
\(296\) 1982.97 0.389384
\(297\) 13028.0 2.54533
\(298\) −454.586 −0.0883673
\(299\) 1110.93 0.214872
\(300\) 0 0
\(301\) 2097.76 0.401705
\(302\) −1492.89 −0.284457
\(303\) −5853.36 −1.10979
\(304\) −44.3966 −0.00837605
\(305\) 0 0
\(306\) 16132.6 3.01385
\(307\) −1035.35 −0.192477 −0.0962383 0.995358i \(-0.530681\pi\)
−0.0962383 + 0.995358i \(0.530681\pi\)
\(308\) −1174.30 −0.217247
\(309\) 7681.47 1.41419
\(310\) 0 0
\(311\) 2544.04 0.463856 0.231928 0.972733i \(-0.425497\pi\)
0.231928 + 0.972733i \(0.425497\pi\)
\(312\) 5071.35 0.920220
\(313\) −2599.72 −0.469473 −0.234737 0.972059i \(-0.575423\pi\)
−0.234737 + 0.972059i \(0.575423\pi\)
\(314\) −6590.82 −1.18453
\(315\) 0 0
\(316\) −2689.35 −0.478758
\(317\) 2725.13 0.482835 0.241417 0.970421i \(-0.422388\pi\)
0.241417 + 0.970421i \(0.422388\pi\)
\(318\) 6436.93 1.13511
\(319\) 2629.96 0.461598
\(320\) 0 0
\(321\) −18417.6 −3.20239
\(322\) −634.961 −0.109891
\(323\) 844.061 0.145402
\(324\) −7408.58 −1.27033
\(325\) 0 0
\(326\) 4121.50 0.700212
\(327\) −1015.26 −0.171694
\(328\) −2160.34 −0.363673
\(329\) −510.425 −0.0855338
\(330\) 0 0
\(331\) −5178.12 −0.859865 −0.429933 0.902861i \(-0.641463\pi\)
−0.429933 + 0.902861i \(0.641463\pi\)
\(332\) −2238.26 −0.370002
\(333\) −5434.56 −0.894331
\(334\) 4870.59 0.797924
\(335\) 0 0
\(336\) −476.000 −0.0772855
\(337\) 3656.07 0.590975 0.295488 0.955347i \(-0.404518\pi\)
0.295488 + 0.955347i \(0.404518\pi\)
\(338\) −3121.93 −0.502398
\(339\) 2947.46 0.472225
\(340\) 0 0
\(341\) −4619.77 −0.733649
\(342\) 740.929 0.117149
\(343\) −343.000 −0.0539949
\(344\) 6991.92 1.09587
\(345\) 0 0
\(346\) 3041.09 0.472514
\(347\) 1673.15 0.258846 0.129423 0.991589i \(-0.458688\pi\)
0.129423 + 0.991589i \(0.458688\pi\)
\(348\) −3076.55 −0.473910
\(349\) 777.313 0.119222 0.0596112 0.998222i \(-0.481014\pi\)
0.0596112 + 0.998222i \(0.481014\pi\)
\(350\) 0 0
\(351\) −8029.85 −1.22109
\(352\) −6411.69 −0.970864
\(353\) −4422.92 −0.666879 −0.333439 0.942772i \(-0.608209\pi\)
−0.333439 + 0.942772i \(0.608209\pi\)
\(354\) 6664.83 1.00065
\(355\) 0 0
\(356\) −4368.41 −0.650351
\(357\) 9049.64 1.34162
\(358\) 1803.69 0.266279
\(359\) −962.163 −0.141451 −0.0707256 0.997496i \(-0.522531\pi\)
−0.0707256 + 0.997496i \(0.522531\pi\)
\(360\) 0 0
\(361\) −6820.23 −0.994348
\(362\) 8110.99 1.17764
\(363\) −348.767 −0.0504285
\(364\) 723.783 0.104221
\(365\) 0 0
\(366\) −12239.2 −1.74796
\(367\) 7282.68 1.03584 0.517919 0.855430i \(-0.326707\pi\)
0.517919 + 0.855430i \(0.326707\pi\)
\(368\) −347.543 −0.0492308
\(369\) 5920.67 0.835279
\(370\) 0 0
\(371\) 2538.79 0.355277
\(372\) 5404.24 0.753217
\(373\) 1149.24 0.159532 0.0797658 0.996814i \(-0.474583\pi\)
0.0797658 + 0.996814i \(0.474583\pi\)
\(374\) −9330.23 −1.28999
\(375\) 0 0
\(376\) −1701.26 −0.233340
\(377\) −1620.98 −0.221445
\(378\) 4589.54 0.624498
\(379\) −10452.6 −1.41666 −0.708332 0.705879i \(-0.750552\pi\)
−0.708332 + 0.705879i \(0.750552\pi\)
\(380\) 0 0
\(381\) −1902.22 −0.255784
\(382\) 5415.71 0.725371
\(383\) 13469.3 1.79699 0.898496 0.438982i \(-0.144661\pi\)
0.898496 + 0.438982i \(0.144661\pi\)
\(384\) 6488.01 0.862214
\(385\) 0 0
\(386\) 6921.84 0.912727
\(387\) −19162.2 −2.51698
\(388\) 3360.30 0.439674
\(389\) 10635.5 1.38622 0.693110 0.720832i \(-0.256240\pi\)
0.693110 + 0.720832i \(0.256240\pi\)
\(390\) 0 0
\(391\) 6607.44 0.854611
\(392\) −1143.23 −0.147301
\(393\) −5738.23 −0.736528
\(394\) 2884.73 0.368860
\(395\) 0 0
\(396\) 10726.8 1.36121
\(397\) −1031.93 −0.130456 −0.0652282 0.997870i \(-0.520778\pi\)
−0.0652282 + 0.997870i \(0.520778\pi\)
\(398\) −6709.48 −0.845015
\(399\) 415.627 0.0521488
\(400\) 0 0
\(401\) −6468.95 −0.805596 −0.402798 0.915289i \(-0.631962\pi\)
−0.402798 + 0.915289i \(0.631962\pi\)
\(402\) −17261.5 −2.14161
\(403\) 2847.40 0.351958
\(404\) −2784.39 −0.342893
\(405\) 0 0
\(406\) 926.487 0.113253
\(407\) 3143.06 0.382791
\(408\) 30162.8 3.66000
\(409\) −8652.18 −1.04602 −0.523011 0.852326i \(-0.675191\pi\)
−0.523011 + 0.852326i \(0.675191\pi\)
\(410\) 0 0
\(411\) 19952.0 2.39455
\(412\) 3654.01 0.436942
\(413\) 2628.68 0.313194
\(414\) 5800.11 0.688550
\(415\) 0 0
\(416\) 3951.85 0.465758
\(417\) −7957.77 −0.934517
\(418\) −428.514 −0.0501419
\(419\) 7303.41 0.851539 0.425770 0.904832i \(-0.360003\pi\)
0.425770 + 0.904832i \(0.360003\pi\)
\(420\) 0 0
\(421\) −11599.8 −1.34285 −0.671425 0.741072i \(-0.734317\pi\)
−0.671425 + 0.741072i \(0.734317\pi\)
\(422\) −6151.39 −0.709585
\(423\) 4662.52 0.535933
\(424\) 8461.89 0.969212
\(425\) 0 0
\(426\) −5003.15 −0.569022
\(427\) −4827.27 −0.547092
\(428\) −8761.06 −0.989444
\(429\) 8038.24 0.904638
\(430\) 0 0
\(431\) −1506.87 −0.168407 −0.0842034 0.996449i \(-0.526835\pi\)
−0.0842034 + 0.996449i \(0.526835\pi\)
\(432\) 2512.06 0.279772
\(433\) −2112.02 −0.234405 −0.117203 0.993108i \(-0.537393\pi\)
−0.117203 + 0.993108i \(0.537393\pi\)
\(434\) −1627.46 −0.180001
\(435\) 0 0
\(436\) −482.949 −0.0530483
\(437\) 303.463 0.0332188
\(438\) −13186.4 −1.43852
\(439\) −3492.88 −0.379740 −0.189870 0.981809i \(-0.560807\pi\)
−0.189870 + 0.981809i \(0.560807\pi\)
\(440\) 0 0
\(441\) 3133.16 0.338318
\(442\) 5750.70 0.618853
\(443\) −974.674 −0.104533 −0.0522666 0.998633i \(-0.516645\pi\)
−0.0522666 + 0.998633i \(0.516645\pi\)
\(444\) −3676.78 −0.393000
\(445\) 0 0
\(446\) −6423.30 −0.681956
\(447\) 2329.34 0.246474
\(448\) −2658.03 −0.280313
\(449\) 6113.63 0.642584 0.321292 0.946980i \(-0.395883\pi\)
0.321292 + 0.946980i \(0.395883\pi\)
\(450\) 0 0
\(451\) −3424.20 −0.357515
\(452\) 1402.08 0.145903
\(453\) 7649.66 0.793405
\(454\) −3810.09 −0.393869
\(455\) 0 0
\(456\) 1385.30 0.142264
\(457\) 1553.51 0.159015 0.0795077 0.996834i \(-0.474665\pi\)
0.0795077 + 0.996834i \(0.474665\pi\)
\(458\) −2582.10 −0.263436
\(459\) −47759.0 −4.85664
\(460\) 0 0
\(461\) 9419.28 0.951626 0.475813 0.879546i \(-0.342154\pi\)
0.475813 + 0.879546i \(0.342154\pi\)
\(462\) −4594.33 −0.462657
\(463\) 11458.4 1.15014 0.575070 0.818104i \(-0.304975\pi\)
0.575070 + 0.818104i \(0.304975\pi\)
\(464\) 507.109 0.0507369
\(465\) 0 0
\(466\) 697.895 0.0693763
\(467\) −2121.08 −0.210175 −0.105087 0.994463i \(-0.533512\pi\)
−0.105087 + 0.994463i \(0.533512\pi\)
\(468\) −6611.46 −0.653023
\(469\) −6808.14 −0.670300
\(470\) 0 0
\(471\) 33771.9 3.30388
\(472\) 8761.49 0.854407
\(473\) 11082.4 1.07731
\(474\) −10521.8 −1.01958
\(475\) 0 0
\(476\) 4304.83 0.414520
\(477\) −23190.8 −2.22607
\(478\) −10349.4 −0.990313
\(479\) 17261.2 1.64653 0.823263 0.567660i \(-0.192151\pi\)
0.823263 + 0.567660i \(0.192151\pi\)
\(480\) 0 0
\(481\) −1937.23 −0.183638
\(482\) 8758.63 0.827686
\(483\) 3253.59 0.306508
\(484\) −165.905 −0.0155809
\(485\) 0 0
\(486\) −11282.7 −1.05308
\(487\) 18516.8 1.72295 0.861473 0.507804i \(-0.169543\pi\)
0.861473 + 0.507804i \(0.169543\pi\)
\(488\) −16089.5 −1.49249
\(489\) −21118.9 −1.95303
\(490\) 0 0
\(491\) 7914.77 0.727472 0.363736 0.931502i \(-0.381501\pi\)
0.363736 + 0.931502i \(0.381501\pi\)
\(492\) 4005.66 0.367051
\(493\) −9641.07 −0.880755
\(494\) 264.115 0.0240549
\(495\) 0 0
\(496\) −890.782 −0.0806397
\(497\) −1973.30 −0.178097
\(498\) −8756.96 −0.787969
\(499\) 2388.91 0.214314 0.107157 0.994242i \(-0.465825\pi\)
0.107157 + 0.994242i \(0.465825\pi\)
\(500\) 0 0
\(501\) −24957.3 −2.22557
\(502\) 1096.34 0.0974740
\(503\) −18073.0 −1.60206 −0.801030 0.598624i \(-0.795715\pi\)
−0.801030 + 0.598624i \(0.795715\pi\)
\(504\) 10442.9 0.922948
\(505\) 0 0
\(506\) −3354.47 −0.294713
\(507\) 15997.0 1.40129
\(508\) −904.869 −0.0790296
\(509\) 18671.7 1.62595 0.812975 0.582299i \(-0.197847\pi\)
0.812975 + 0.582299i \(0.197847\pi\)
\(510\) 0 0
\(511\) −5200.86 −0.450240
\(512\) −2567.23 −0.221595
\(513\) −2193.45 −0.188778
\(514\) 8684.12 0.745214
\(515\) 0 0
\(516\) −12964.3 −1.10605
\(517\) −2696.55 −0.229389
\(518\) 1107.24 0.0939178
\(519\) −15582.8 −1.31793
\(520\) 0 0
\(521\) −3526.04 −0.296504 −0.148252 0.988950i \(-0.547365\pi\)
−0.148252 + 0.988950i \(0.547365\pi\)
\(522\) −8463.07 −0.709614
\(523\) 10966.3 0.916865 0.458433 0.888729i \(-0.348411\pi\)
0.458433 + 0.888729i \(0.348411\pi\)
\(524\) −2729.62 −0.227565
\(525\) 0 0
\(526\) 8322.71 0.689900
\(527\) 16935.4 1.39984
\(528\) −2514.69 −0.207268
\(529\) −9791.44 −0.804754
\(530\) 0 0
\(531\) −24011.9 −1.96239
\(532\) 197.710 0.0161124
\(533\) 2110.51 0.171513
\(534\) −17090.9 −1.38501
\(535\) 0 0
\(536\) −22691.8 −1.82861
\(537\) −9242.26 −0.742705
\(538\) −7922.88 −0.634907
\(539\) −1812.05 −0.144807
\(540\) 0 0
\(541\) 11349.8 0.901971 0.450985 0.892531i \(-0.351073\pi\)
0.450985 + 0.892531i \(0.351073\pi\)
\(542\) −7199.97 −0.570600
\(543\) −41561.4 −3.28466
\(544\) 23504.3 1.85246
\(545\) 0 0
\(546\) 2831.72 0.221953
\(547\) −11206.1 −0.875940 −0.437970 0.898989i \(-0.644302\pi\)
−0.437970 + 0.898989i \(0.644302\pi\)
\(548\) 9491.00 0.739845
\(549\) 44095.1 3.42793
\(550\) 0 0
\(551\) −442.790 −0.0342350
\(552\) 10844.3 0.836170
\(553\) −4149.90 −0.319117
\(554\) −15274.5 −1.17139
\(555\) 0 0
\(556\) −3785.44 −0.288738
\(557\) −12631.0 −0.960847 −0.480424 0.877037i \(-0.659517\pi\)
−0.480424 + 0.877037i \(0.659517\pi\)
\(558\) 14866.1 1.12784
\(559\) −6830.65 −0.516826
\(560\) 0 0
\(561\) 47808.9 3.59803
\(562\) 12043.6 0.903964
\(563\) −7000.69 −0.524057 −0.262028 0.965060i \(-0.584391\pi\)
−0.262028 + 0.965060i \(0.584391\pi\)
\(564\) 3154.45 0.235508
\(565\) 0 0
\(566\) −2737.29 −0.203281
\(567\) −11432.1 −0.846742
\(568\) −6577.07 −0.485858
\(569\) −8659.25 −0.637987 −0.318994 0.947757i \(-0.603345\pi\)
−0.318994 + 0.947757i \(0.603345\pi\)
\(570\) 0 0
\(571\) 25631.9 1.87857 0.939283 0.343145i \(-0.111492\pi\)
0.939283 + 0.343145i \(0.111492\pi\)
\(572\) 3823.72 0.279506
\(573\) −27750.5 −2.02320
\(574\) −1206.28 −0.0877164
\(575\) 0 0
\(576\) 24280.0 1.75637
\(577\) −2546.85 −0.183755 −0.0918775 0.995770i \(-0.529287\pi\)
−0.0918775 + 0.995770i \(0.529287\pi\)
\(578\) 25059.8 1.80337
\(579\) −35468.1 −2.54577
\(580\) 0 0
\(581\) −3453.84 −0.246626
\(582\) 13146.8 0.936344
\(583\) 13412.3 0.952800
\(584\) −17334.7 −1.22828
\(585\) 0 0
\(586\) 10215.8 0.720158
\(587\) −17798.8 −1.25150 −0.625752 0.780022i \(-0.715208\pi\)
−0.625752 + 0.780022i \(0.715208\pi\)
\(588\) 2119.76 0.148669
\(589\) 777.800 0.0544121
\(590\) 0 0
\(591\) −14781.6 −1.02882
\(592\) 606.044 0.0420748
\(593\) −3191.29 −0.220996 −0.110498 0.993876i \(-0.535245\pi\)
−0.110498 + 0.993876i \(0.535245\pi\)
\(594\) 24246.3 1.67481
\(595\) 0 0
\(596\) 1108.04 0.0761531
\(597\) 34379.9 2.35691
\(598\) 2067.53 0.141384
\(599\) 20511.7 1.39914 0.699571 0.714563i \(-0.253374\pi\)
0.699571 + 0.714563i \(0.253374\pi\)
\(600\) 0 0
\(601\) 22802.2 1.54762 0.773810 0.633418i \(-0.218349\pi\)
0.773810 + 0.633418i \(0.218349\pi\)
\(602\) 3904.12 0.264319
\(603\) 62189.5 4.19992
\(604\) 3638.87 0.245139
\(605\) 0 0
\(606\) −10893.6 −0.730236
\(607\) −3130.15 −0.209306 −0.104653 0.994509i \(-0.533373\pi\)
−0.104653 + 0.994509i \(0.533373\pi\)
\(608\) 1079.49 0.0720054
\(609\) −4747.39 −0.315885
\(610\) 0 0
\(611\) 1662.02 0.110046
\(612\) −39322.9 −2.59727
\(613\) 12736.1 0.839162 0.419581 0.907718i \(-0.362177\pi\)
0.419581 + 0.907718i \(0.362177\pi\)
\(614\) −1926.87 −0.126648
\(615\) 0 0
\(616\) −6039.64 −0.395039
\(617\) 16662.4 1.08720 0.543600 0.839345i \(-0.317061\pi\)
0.543600 + 0.839345i \(0.317061\pi\)
\(618\) 14295.9 0.930526
\(619\) −9967.73 −0.647232 −0.323616 0.946188i \(-0.604899\pi\)
−0.323616 + 0.946188i \(0.604899\pi\)
\(620\) 0 0
\(621\) −17170.7 −1.10956
\(622\) 4734.68 0.305215
\(623\) −6740.84 −0.433493
\(624\) 1549.93 0.0994341
\(625\) 0 0
\(626\) −4838.31 −0.308910
\(627\) 2195.74 0.139856
\(628\) 16065.0 1.02080
\(629\) −11522.0 −0.730386
\(630\) 0 0
\(631\) −6243.76 −0.393914 −0.196957 0.980412i \(-0.563106\pi\)
−0.196957 + 0.980412i \(0.563106\pi\)
\(632\) −13831.8 −0.870566
\(633\) 31520.2 1.97917
\(634\) 5071.70 0.317702
\(635\) 0 0
\(636\) −15689.9 −0.978214
\(637\) 1116.86 0.0694689
\(638\) 4894.59 0.303728
\(639\) 18025.3 1.11591
\(640\) 0 0
\(641\) −25915.9 −1.59690 −0.798452 0.602059i \(-0.794347\pi\)
−0.798452 + 0.602059i \(0.794347\pi\)
\(642\) −34276.7 −2.10715
\(643\) −11833.7 −0.725778 −0.362889 0.931832i \(-0.618210\pi\)
−0.362889 + 0.931832i \(0.618210\pi\)
\(644\) 1547.70 0.0947020
\(645\) 0 0
\(646\) 1570.87 0.0956735
\(647\) −7268.54 −0.441662 −0.220831 0.975312i \(-0.570877\pi\)
−0.220831 + 0.975312i \(0.570877\pi\)
\(648\) −38103.6 −2.30995
\(649\) 13887.2 0.839940
\(650\) 0 0
\(651\) 8339.22 0.502058
\(652\) −10046.1 −0.603427
\(653\) 30455.8 1.82515 0.912577 0.408904i \(-0.134089\pi\)
0.912577 + 0.408904i \(0.134089\pi\)
\(654\) −1889.48 −0.112973
\(655\) 0 0
\(656\) −660.253 −0.0392966
\(657\) 47507.7 2.82109
\(658\) −949.945 −0.0562807
\(659\) 16170.2 0.955843 0.477922 0.878403i \(-0.341390\pi\)
0.477922 + 0.878403i \(0.341390\pi\)
\(660\) 0 0
\(661\) 10331.9 0.607962 0.303981 0.952678i \(-0.401684\pi\)
0.303981 + 0.952678i \(0.401684\pi\)
\(662\) −9636.93 −0.565786
\(663\) −29467.0 −1.72610
\(664\) −11511.8 −0.672806
\(665\) 0 0
\(666\) −10114.2 −0.588464
\(667\) −3466.23 −0.201219
\(668\) −11872.0 −0.687634
\(669\) 32913.5 1.90211
\(670\) 0 0
\(671\) −25502.3 −1.46722
\(672\) 11573.8 0.664391
\(673\) −18387.1 −1.05315 −0.526576 0.850128i \(-0.676525\pi\)
−0.526576 + 0.850128i \(0.676525\pi\)
\(674\) 6804.25 0.388858
\(675\) 0 0
\(676\) 7609.63 0.432955
\(677\) 1795.92 0.101954 0.0509770 0.998700i \(-0.483766\pi\)
0.0509770 + 0.998700i \(0.483766\pi\)
\(678\) 5485.48 0.310721
\(679\) 5185.24 0.293065
\(680\) 0 0
\(681\) 19523.2 1.09858
\(682\) −8597.78 −0.482736
\(683\) 5203.86 0.291537 0.145769 0.989319i \(-0.453434\pi\)
0.145769 + 0.989319i \(0.453434\pi\)
\(684\) −1806.00 −0.100956
\(685\) 0 0
\(686\) −638.353 −0.0355283
\(687\) 13230.9 0.734774
\(688\) 2136.90 0.118414
\(689\) −8266.71 −0.457092
\(690\) 0 0
\(691\) −8903.56 −0.490170 −0.245085 0.969502i \(-0.578816\pi\)
−0.245085 + 0.969502i \(0.578816\pi\)
\(692\) −7412.58 −0.407202
\(693\) 16552.4 0.907320
\(694\) 3113.88 0.170319
\(695\) 0 0
\(696\) −15823.2 −0.861750
\(697\) 12552.6 0.682159
\(698\) 1446.65 0.0784476
\(699\) −3576.07 −0.193504
\(700\) 0 0
\(701\) −8343.11 −0.449522 −0.224761 0.974414i \(-0.572160\pi\)
−0.224761 + 0.974414i \(0.572160\pi\)
\(702\) −14944.2 −0.803468
\(703\) −529.177 −0.0283902
\(704\) −14042.3 −0.751758
\(705\) 0 0
\(706\) −8231.43 −0.438802
\(707\) −4296.56 −0.228556
\(708\) −16245.4 −0.862343
\(709\) −28590.0 −1.51441 −0.757206 0.653176i \(-0.773436\pi\)
−0.757206 + 0.653176i \(0.773436\pi\)
\(710\) 0 0
\(711\) 37907.6 1.99950
\(712\) −22467.4 −1.18259
\(713\) 6088.74 0.319811
\(714\) 16842.2 0.882776
\(715\) 0 0
\(716\) −4396.46 −0.229474
\(717\) 53031.0 2.76218
\(718\) −1790.67 −0.0930740
\(719\) 26730.4 1.38647 0.693237 0.720710i \(-0.256184\pi\)
0.693237 + 0.720710i \(0.256184\pi\)
\(720\) 0 0
\(721\) 5638.45 0.291244
\(722\) −12693.0 −0.654275
\(723\) −44879.9 −2.30858
\(724\) −19770.4 −1.01486
\(725\) 0 0
\(726\) −649.086 −0.0331816
\(727\) 8903.62 0.454219 0.227109 0.973869i \(-0.427073\pi\)
0.227109 + 0.973869i \(0.427073\pi\)
\(728\) 3722.54 0.189514
\(729\) 13718.4 0.696969
\(730\) 0 0
\(731\) −40626.5 −2.05557
\(732\) 29832.8 1.50635
\(733\) 6022.56 0.303477 0.151738 0.988421i \(-0.451513\pi\)
0.151738 + 0.988421i \(0.451513\pi\)
\(734\) 13553.7 0.681575
\(735\) 0 0
\(736\) 8450.45 0.423217
\(737\) −35967.1 −1.79765
\(738\) 11018.9 0.549608
\(739\) 14078.5 0.700795 0.350398 0.936601i \(-0.386046\pi\)
0.350398 + 0.936601i \(0.386046\pi\)
\(740\) 0 0
\(741\) −1353.35 −0.0670937
\(742\) 4724.92 0.233770
\(743\) −31431.4 −1.55196 −0.775980 0.630757i \(-0.782744\pi\)
−0.775980 + 0.630757i \(0.782744\pi\)
\(744\) 27794.9 1.36964
\(745\) 0 0
\(746\) 2138.83 0.104971
\(747\) 31549.4 1.54529
\(748\) 22742.2 1.11168
\(749\) −13519.1 −0.659515
\(750\) 0 0
\(751\) −2463.12 −0.119681 −0.0598405 0.998208i \(-0.519059\pi\)
−0.0598405 + 0.998208i \(0.519059\pi\)
\(752\) −519.948 −0.0252135
\(753\) −5617.73 −0.271874
\(754\) −3016.79 −0.145709
\(755\) 0 0
\(756\) −11186.9 −0.538179
\(757\) −37987.2 −1.82387 −0.911935 0.410335i \(-0.865412\pi\)
−0.911935 + 0.410335i \(0.865412\pi\)
\(758\) −19453.3 −0.932156
\(759\) 17188.6 0.822011
\(760\) 0 0
\(761\) 18691.9 0.890384 0.445192 0.895435i \(-0.353135\pi\)
0.445192 + 0.895435i \(0.353135\pi\)
\(762\) −3540.20 −0.168304
\(763\) −745.232 −0.0353594
\(764\) −13200.7 −0.625109
\(765\) 0 0
\(766\) 25067.5 1.18241
\(767\) −8559.40 −0.402949
\(768\) 41043.8 1.92844
\(769\) −27250.5 −1.27786 −0.638932 0.769263i \(-0.720624\pi\)
−0.638932 + 0.769263i \(0.720624\pi\)
\(770\) 0 0
\(771\) −44498.1 −2.07855
\(772\) −16871.8 −0.786568
\(773\) 1092.67 0.0508417 0.0254209 0.999677i \(-0.491907\pi\)
0.0254209 + 0.999677i \(0.491907\pi\)
\(774\) −35662.5 −1.65615
\(775\) 0 0
\(776\) 17282.6 0.799495
\(777\) −5673.59 −0.261955
\(778\) 19793.5 0.912124
\(779\) 576.511 0.0265156
\(780\) 0 0
\(781\) −10424.8 −0.477631
\(782\) 12297.0 0.562328
\(783\) 25054.1 1.14350
\(784\) −349.400 −0.0159165
\(785\) 0 0
\(786\) −10679.3 −0.484631
\(787\) 12639.1 0.572474 0.286237 0.958159i \(-0.407596\pi\)
0.286237 + 0.958159i \(0.407596\pi\)
\(788\) −7031.47 −0.317875
\(789\) −42646.3 −1.92427
\(790\) 0 0
\(791\) 2163.53 0.0972521
\(792\) 55169.6 2.47521
\(793\) 15718.4 0.703878
\(794\) −1920.51 −0.0858394
\(795\) 0 0
\(796\) 16354.2 0.728216
\(797\) −8666.66 −0.385180 −0.192590 0.981279i \(-0.561689\pi\)
−0.192590 + 0.981279i \(0.561689\pi\)
\(798\) 773.518 0.0343136
\(799\) 9885.18 0.437688
\(800\) 0 0
\(801\) 61574.8 2.71615
\(802\) −12039.3 −0.530077
\(803\) −27475.9 −1.20748
\(804\) 42074.6 1.84559
\(805\) 0 0
\(806\) 5299.25 0.231586
\(807\) 40597.5 1.77088
\(808\) −14320.6 −0.623511
\(809\) 3555.20 0.154504 0.0772522 0.997012i \(-0.475385\pi\)
0.0772522 + 0.997012i \(0.475385\pi\)
\(810\) 0 0
\(811\) 21940.0 0.949961 0.474981 0.879996i \(-0.342455\pi\)
0.474981 + 0.879996i \(0.342455\pi\)
\(812\) −2258.29 −0.0975991
\(813\) 36893.2 1.59152
\(814\) 5849.51 0.251874
\(815\) 0 0
\(816\) 9218.49 0.395480
\(817\) −1865.87 −0.0799003
\(818\) −16102.5 −0.688275
\(819\) −10202.1 −0.435274
\(820\) 0 0
\(821\) −29572.7 −1.25712 −0.628560 0.777761i \(-0.716355\pi\)
−0.628560 + 0.777761i \(0.716355\pi\)
\(822\) 37132.5 1.57560
\(823\) 19314.7 0.818067 0.409034 0.912519i \(-0.365866\pi\)
0.409034 + 0.912519i \(0.365866\pi\)
\(824\) 18793.2 0.794528
\(825\) 0 0
\(826\) 4892.21 0.206079
\(827\) −21107.8 −0.887535 −0.443768 0.896142i \(-0.646358\pi\)
−0.443768 + 0.896142i \(0.646358\pi\)
\(828\) −14137.6 −0.593378
\(829\) 10799.8 0.452463 0.226231 0.974074i \(-0.427359\pi\)
0.226231 + 0.974074i \(0.427359\pi\)
\(830\) 0 0
\(831\) 78267.7 3.26724
\(832\) 8654.96 0.360645
\(833\) 6642.73 0.276299
\(834\) −14810.1 −0.614906
\(835\) 0 0
\(836\) 1044.49 0.0432112
\(837\) −44009.8 −1.81744
\(838\) 13592.3 0.560307
\(839\) −11829.3 −0.486761 −0.243381 0.969931i \(-0.578256\pi\)
−0.243381 + 0.969931i \(0.578256\pi\)
\(840\) 0 0
\(841\) −19331.3 −0.792626
\(842\) −21588.2 −0.883587
\(843\) −61712.3 −2.52133
\(844\) 14993.9 0.611506
\(845\) 0 0
\(846\) 8677.35 0.352640
\(847\) −256.007 −0.0103855
\(848\) 2586.16 0.104728
\(849\) 14026.1 0.566989
\(850\) 0 0
\(851\) −4142.48 −0.166865
\(852\) 12195.1 0.490371
\(853\) 3426.91 0.137556 0.0687779 0.997632i \(-0.478090\pi\)
0.0687779 + 0.997632i \(0.478090\pi\)
\(854\) −8983.97 −0.359983
\(855\) 0 0
\(856\) −45059.6 −1.79919
\(857\) −7308.16 −0.291298 −0.145649 0.989336i \(-0.546527\pi\)
−0.145649 + 0.989336i \(0.546527\pi\)
\(858\) 14959.9 0.595246
\(859\) −22539.8 −0.895282 −0.447641 0.894213i \(-0.647736\pi\)
−0.447641 + 0.894213i \(0.647736\pi\)
\(860\) 0 0
\(861\) 6181.08 0.244658
\(862\) −2804.41 −0.110811
\(863\) −1690.95 −0.0666983 −0.0333491 0.999444i \(-0.510617\pi\)
−0.0333491 + 0.999444i \(0.510617\pi\)
\(864\) −61080.3 −2.40509
\(865\) 0 0
\(866\) −3930.66 −0.154237
\(867\) −128408. −5.02996
\(868\) 3966.89 0.155121
\(869\) −21923.7 −0.855825
\(870\) 0 0
\(871\) 22168.4 0.862395
\(872\) −2483.89 −0.0964621
\(873\) −47365.0 −1.83627
\(874\) 564.771 0.0218577
\(875\) 0 0
\(876\) 32141.6 1.23968
\(877\) −33021.5 −1.27145 −0.635723 0.771917i \(-0.719298\pi\)
−0.635723 + 0.771917i \(0.719298\pi\)
\(878\) −6500.54 −0.249866
\(879\) −52346.8 −2.00866
\(880\) 0 0
\(881\) −29413.5 −1.12482 −0.562410 0.826859i \(-0.690126\pi\)
−0.562410 + 0.826859i \(0.690126\pi\)
\(882\) 5831.09 0.222611
\(883\) −22413.5 −0.854218 −0.427109 0.904200i \(-0.640468\pi\)
−0.427109 + 0.904200i \(0.640468\pi\)
\(884\) −14017.2 −0.533314
\(885\) 0 0
\(886\) −1813.95 −0.0687821
\(887\) 49069.5 1.85749 0.928744 0.370723i \(-0.120890\pi\)
0.928744 + 0.370723i \(0.120890\pi\)
\(888\) −18910.3 −0.714626
\(889\) −1396.29 −0.0526773
\(890\) 0 0
\(891\) −60395.3 −2.27084
\(892\) 15656.7 0.587695
\(893\) 454.001 0.0170130
\(894\) 4335.10 0.162178
\(895\) 0 0
\(896\) 4762.41 0.177568
\(897\) −10594.2 −0.394348
\(898\) 11378.0 0.422816
\(899\) −8884.22 −0.329594
\(900\) 0 0
\(901\) −49167.8 −1.81800
\(902\) −6372.73 −0.235243
\(903\) −20005.0 −0.737237
\(904\) 7211.13 0.265308
\(905\) 0 0
\(906\) 14236.7 0.522055
\(907\) 42854.4 1.56886 0.784431 0.620216i \(-0.212955\pi\)
0.784431 + 0.620216i \(0.212955\pi\)
\(908\) 9287.02 0.339428
\(909\) 39247.3 1.43207
\(910\) 0 0
\(911\) −48846.7 −1.77647 −0.888234 0.459391i \(-0.848068\pi\)
−0.888234 + 0.459391i \(0.848068\pi\)
\(912\) 423.382 0.0153723
\(913\) −18246.5 −0.661414
\(914\) 2891.21 0.104631
\(915\) 0 0
\(916\) 6293.81 0.227023
\(917\) −4212.05 −0.151684
\(918\) −88883.6 −3.19564
\(919\) −22400.9 −0.804067 −0.402033 0.915625i \(-0.631696\pi\)
−0.402033 + 0.915625i \(0.631696\pi\)
\(920\) 0 0
\(921\) 9873.43 0.353247
\(922\) 17530.1 0.626164
\(923\) 6425.36 0.229137
\(924\) 11198.6 0.398708
\(925\) 0 0
\(926\) 21325.0 0.756785
\(927\) −51504.9 −1.82486
\(928\) −12330.2 −0.436164
\(929\) 2298.05 0.0811587 0.0405794 0.999176i \(-0.487080\pi\)
0.0405794 + 0.999176i \(0.487080\pi\)
\(930\) 0 0
\(931\) 305.084 0.0107398
\(932\) −1701.10 −0.0597870
\(933\) −24260.9 −0.851303
\(934\) −3947.51 −0.138294
\(935\) 0 0
\(936\) −34003.9 −1.18745
\(937\) 47163.3 1.64435 0.822176 0.569233i \(-0.192760\pi\)
0.822176 + 0.569233i \(0.192760\pi\)
\(938\) −12670.5 −0.441053
\(939\) 24791.9 0.861611
\(940\) 0 0
\(941\) 40457.0 1.40155 0.700776 0.713382i \(-0.252837\pi\)
0.700776 + 0.713382i \(0.252837\pi\)
\(942\) 62852.4 2.17393
\(943\) 4513.01 0.155847
\(944\) 2677.73 0.0923227
\(945\) 0 0
\(946\) 20625.3 0.708865
\(947\) 6363.14 0.218347 0.109173 0.994023i \(-0.465180\pi\)
0.109173 + 0.994023i \(0.465180\pi\)
\(948\) 25646.6 0.878652
\(949\) 16934.8 0.579270
\(950\) 0 0
\(951\) −25987.8 −0.886133
\(952\) 22140.5 0.753757
\(953\) 48268.8 1.64069 0.820346 0.571867i \(-0.193781\pi\)
0.820346 + 0.571867i \(0.193781\pi\)
\(954\) −43160.2 −1.46474
\(955\) 0 0
\(956\) 25226.4 0.853430
\(957\) −25080.3 −0.847158
\(958\) 32124.7 1.08340
\(959\) 14645.4 0.493145
\(960\) 0 0
\(961\) −14185.1 −0.476153
\(962\) −3605.35 −0.120833
\(963\) 123491. 4.13235
\(964\) −21349.0 −0.713282
\(965\) 0 0
\(966\) 6055.22 0.201681
\(967\) 26795.3 0.891084 0.445542 0.895261i \(-0.353011\pi\)
0.445542 + 0.895261i \(0.353011\pi\)
\(968\) −853.280 −0.0283321
\(969\) −8049.27 −0.266852
\(970\) 0 0
\(971\) 21583.8 0.713345 0.356672 0.934230i \(-0.383911\pi\)
0.356672 + 0.934230i \(0.383911\pi\)
\(972\) 27501.4 0.907519
\(973\) −5841.26 −0.192459
\(974\) 34461.3 1.13369
\(975\) 0 0
\(976\) −4917.34 −0.161271
\(977\) −51106.3 −1.67353 −0.836763 0.547565i \(-0.815555\pi\)
−0.836763 + 0.547565i \(0.815555\pi\)
\(978\) −39304.1 −1.28508
\(979\) −35611.6 −1.16256
\(980\) 0 0
\(981\) 6807.39 0.221553
\(982\) 14730.1 0.478672
\(983\) 41585.7 1.34932 0.674658 0.738131i \(-0.264291\pi\)
0.674658 + 0.738131i \(0.264291\pi\)
\(984\) 20601.8 0.667439
\(985\) 0 0
\(986\) −17942.9 −0.579531
\(987\) 4867.59 0.156978
\(988\) −643.775 −0.0207300
\(989\) −14606.3 −0.469620
\(990\) 0 0
\(991\) −29082.5 −0.932227 −0.466114 0.884725i \(-0.654346\pi\)
−0.466114 + 0.884725i \(0.654346\pi\)
\(992\) 21659.2 0.693226
\(993\) 49380.4 1.57809
\(994\) −3672.48 −0.117187
\(995\) 0 0
\(996\) 21344.9 0.679055
\(997\) −34503.0 −1.09601 −0.548004 0.836476i \(-0.684612\pi\)
−0.548004 + 0.836476i \(0.684612\pi\)
\(998\) 4445.98 0.141017
\(999\) 29942.1 0.948274
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.4.a.f.1.2 3
3.2 odd 2 1575.4.a.ba.1.2 3
5.2 odd 4 175.4.b.e.99.4 6
5.3 odd 4 175.4.b.e.99.3 6
5.4 even 2 35.4.a.c.1.2 3
7.6 odd 2 1225.4.a.y.1.2 3
15.14 odd 2 315.4.a.p.1.2 3
20.19 odd 2 560.4.a.u.1.1 3
35.4 even 6 245.4.e.m.226.2 6
35.9 even 6 245.4.e.m.116.2 6
35.19 odd 6 245.4.e.n.116.2 6
35.24 odd 6 245.4.e.n.226.2 6
35.34 odd 2 245.4.a.l.1.2 3
40.19 odd 2 2240.4.a.bv.1.3 3
40.29 even 2 2240.4.a.bt.1.1 3
105.104 even 2 2205.4.a.bm.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.a.c.1.2 3 5.4 even 2
175.4.a.f.1.2 3 1.1 even 1 trivial
175.4.b.e.99.3 6 5.3 odd 4
175.4.b.e.99.4 6 5.2 odd 4
245.4.a.l.1.2 3 35.34 odd 2
245.4.e.m.116.2 6 35.9 even 6
245.4.e.m.226.2 6 35.4 even 6
245.4.e.n.116.2 6 35.19 odd 6
245.4.e.n.226.2 6 35.24 odd 6
315.4.a.p.1.2 3 15.14 odd 2
560.4.a.u.1.1 3 20.19 odd 2
1225.4.a.y.1.2 3 7.6 odd 2
1575.4.a.ba.1.2 3 3.2 odd 2
2205.4.a.bm.1.2 3 105.104 even 2
2240.4.a.bt.1.1 3 40.29 even 2
2240.4.a.bv.1.3 3 40.19 odd 2