Properties

Label 175.4.a.f.1.1
Level $175$
Weight $4$
Character 175.1
Self dual yes
Analytic conductor $10.325$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(1,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.14360.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 17x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(4.48565\) of defining polynomial
Character \(\chi\) \(=\) 175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.48565 q^{2} -0.850238 q^{3} +4.14976 q^{4} +2.96363 q^{6} -7.00000 q^{7} +13.4206 q^{8} -26.2771 q^{9} +O(q^{10})\) \(q-3.48565 q^{2} -0.850238 q^{3} +4.14976 q^{4} +2.96363 q^{6} -7.00000 q^{7} +13.4206 q^{8} -26.2771 q^{9} -6.90764 q^{11} -3.52829 q^{12} +22.1364 q^{13} +24.3996 q^{14} -79.9776 q^{16} -88.3030 q^{17} +91.5928 q^{18} +36.9560 q^{19} +5.95167 q^{21} +24.0776 q^{22} +95.5283 q^{23} -11.4107 q^{24} -77.1598 q^{26} +45.2982 q^{27} -29.0483 q^{28} +269.029 q^{29} +197.114 q^{31} +171.409 q^{32} +5.87314 q^{33} +307.793 q^{34} -109.044 q^{36} -2.14546 q^{37} -128.816 q^{38} -18.8212 q^{39} +174.127 q^{41} -20.7454 q^{42} +17.0345 q^{43} -28.6650 q^{44} -332.978 q^{46} +528.029 q^{47} +68.0000 q^{48} +49.0000 q^{49} +75.0786 q^{51} +91.8608 q^{52} +641.114 q^{53} -157.894 q^{54} -93.9441 q^{56} -31.4214 q^{57} -937.742 q^{58} -642.975 q^{59} +142.967 q^{61} -687.070 q^{62} +183.940 q^{63} +42.3480 q^{64} -20.4717 q^{66} -478.797 q^{67} -366.436 q^{68} -81.2218 q^{69} +105.550 q^{71} -352.654 q^{72} -986.512 q^{73} +7.47834 q^{74} +153.358 q^{76} +48.3534 q^{77} +65.6042 q^{78} -1099.86 q^{79} +670.967 q^{81} -606.947 q^{82} +1236.62 q^{83} +24.6980 q^{84} -59.3763 q^{86} -228.739 q^{87} -92.7045 q^{88} -711.698 q^{89} -154.955 q^{91} +396.420 q^{92} -167.594 q^{93} -1840.52 q^{94} -145.739 q^{96} +636.553 q^{97} -170.797 q^{98} +181.513 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} - 2 q^{3} + 13 q^{4} + 24 q^{6} - 21 q^{7} + 15 q^{8} + 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 3 q^{2} - 2 q^{3} + 13 q^{4} + 24 q^{6} - 21 q^{7} + 15 q^{8} + 81 q^{9} - 74 q^{11} + 152 q^{12} - 44 q^{13} - 21 q^{14} - 79 q^{16} + 52 q^{17} + 411 q^{18} + 168 q^{19} + 14 q^{21} - 184 q^{22} + 124 q^{23} + 420 q^{24} - 446 q^{26} - 170 q^{27} - 91 q^{28} + 332 q^{29} + 320 q^{31} + 183 q^{32} + 106 q^{33} + 582 q^{34} + 181 q^{36} + 54 q^{37} + 460 q^{38} - 982 q^{39} + 362 q^{41} - 168 q^{42} + 16 q^{43} - 264 q^{44} - 336 q^{46} + 730 q^{47} + 204 q^{48} + 147 q^{49} - 1178 q^{51} - 1202 q^{52} - 110 q^{53} - 180 q^{54} - 105 q^{56} + 956 q^{57} - 450 q^{58} - 180 q^{59} + 1222 q^{61} - 464 q^{62} - 567 q^{63} - 391 q^{64} - 532 q^{66} - 204 q^{67} - 918 q^{68} - 716 q^{69} - 136 q^{71} - 765 q^{72} - 310 q^{73} + 502 q^{74} + 1796 q^{76} + 518 q^{77} - 3788 q^{78} - 1034 q^{79} + 2283 q^{81} + 6 q^{82} + 1660 q^{83} - 1064 q^{84} + 764 q^{86} + 1574 q^{87} + 20 q^{88} + 242 q^{89} + 308 q^{91} - 96 q^{92} - 1376 q^{93} - 1108 q^{94} - 3156 q^{96} - 100 q^{97} + 147 q^{98} - 3488 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.48565 −1.23236 −0.616182 0.787604i \(-0.711321\pi\)
−0.616182 + 0.787604i \(0.711321\pi\)
\(3\) −0.850238 −0.163628 −0.0818142 0.996648i \(-0.526071\pi\)
−0.0818142 + 0.996648i \(0.526071\pi\)
\(4\) 4.14976 0.518720
\(5\) 0 0
\(6\) 2.96363 0.201650
\(7\) −7.00000 −0.377964
\(8\) 13.4206 0.593112
\(9\) −26.2771 −0.973226
\(10\) 0 0
\(11\) −6.90764 −0.189339 −0.0946696 0.995509i \(-0.530179\pi\)
−0.0946696 + 0.995509i \(0.530179\pi\)
\(12\) −3.52829 −0.0848774
\(13\) 22.1364 0.472272 0.236136 0.971720i \(-0.424119\pi\)
0.236136 + 0.971720i \(0.424119\pi\)
\(14\) 24.3996 0.465790
\(15\) 0 0
\(16\) −79.9776 −1.24965
\(17\) −88.3030 −1.25980 −0.629901 0.776676i \(-0.716904\pi\)
−0.629901 + 0.776676i \(0.716904\pi\)
\(18\) 91.5928 1.19937
\(19\) 36.9560 0.446225 0.223113 0.974793i \(-0.428378\pi\)
0.223113 + 0.974793i \(0.428378\pi\)
\(20\) 0 0
\(21\) 5.95167 0.0618457
\(22\) 24.0776 0.233335
\(23\) 95.5283 0.866045 0.433022 0.901383i \(-0.357447\pi\)
0.433022 + 0.901383i \(0.357447\pi\)
\(24\) −11.4107 −0.0970500
\(25\) 0 0
\(26\) −77.1598 −0.582010
\(27\) 45.2982 0.322876
\(28\) −29.0483 −0.196058
\(29\) 269.029 1.72267 0.861336 0.508035i \(-0.169628\pi\)
0.861336 + 0.508035i \(0.169628\pi\)
\(30\) 0 0
\(31\) 197.114 1.14202 0.571012 0.820942i \(-0.306551\pi\)
0.571012 + 0.820942i \(0.306551\pi\)
\(32\) 171.409 0.946911
\(33\) 5.87314 0.0309813
\(34\) 307.793 1.55253
\(35\) 0 0
\(36\) −109.044 −0.504832
\(37\) −2.14546 −0.00953276 −0.00476638 0.999989i \(-0.501517\pi\)
−0.00476638 + 0.999989i \(0.501517\pi\)
\(38\) −128.816 −0.549912
\(39\) −18.8212 −0.0772771
\(40\) 0 0
\(41\) 174.127 0.663271 0.331636 0.943408i \(-0.392400\pi\)
0.331636 + 0.943408i \(0.392400\pi\)
\(42\) −20.7454 −0.0762164
\(43\) 17.0345 0.0604125 0.0302062 0.999544i \(-0.490384\pi\)
0.0302062 + 0.999544i \(0.490384\pi\)
\(44\) −28.6650 −0.0982140
\(45\) 0 0
\(46\) −332.978 −1.06728
\(47\) 528.029 1.63874 0.819371 0.573264i \(-0.194323\pi\)
0.819371 + 0.573264i \(0.194323\pi\)
\(48\) 68.0000 0.204478
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 75.0786 0.206139
\(52\) 91.8608 0.244977
\(53\) 641.114 1.66158 0.830790 0.556586i \(-0.187889\pi\)
0.830790 + 0.556586i \(0.187889\pi\)
\(54\) −157.894 −0.397900
\(55\) 0 0
\(56\) −93.9441 −0.224175
\(57\) −31.4214 −0.0730151
\(58\) −937.742 −2.12296
\(59\) −642.975 −1.41878 −0.709391 0.704815i \(-0.751030\pi\)
−0.709391 + 0.704815i \(0.751030\pi\)
\(60\) 0 0
\(61\) 142.967 0.300083 0.150042 0.988680i \(-0.452059\pi\)
0.150042 + 0.988680i \(0.452059\pi\)
\(62\) −687.070 −1.40739
\(63\) 183.940 0.367845
\(64\) 42.3480 0.0827109
\(65\) 0 0
\(66\) −20.4717 −0.0381802
\(67\) −478.797 −0.873050 −0.436525 0.899692i \(-0.643791\pi\)
−0.436525 + 0.899692i \(0.643791\pi\)
\(68\) −366.436 −0.653484
\(69\) −81.2218 −0.141710
\(70\) 0 0
\(71\) 105.550 0.176430 0.0882150 0.996101i \(-0.471884\pi\)
0.0882150 + 0.996101i \(0.471884\pi\)
\(72\) −352.654 −0.577232
\(73\) −986.512 −1.58168 −0.790839 0.612024i \(-0.790356\pi\)
−0.790839 + 0.612024i \(0.790356\pi\)
\(74\) 7.47834 0.0117478
\(75\) 0 0
\(76\) 153.358 0.231466
\(77\) 48.3534 0.0715635
\(78\) 65.6042 0.0952335
\(79\) −1099.86 −1.56638 −0.783190 0.621783i \(-0.786409\pi\)
−0.783190 + 0.621783i \(0.786409\pi\)
\(80\) 0 0
\(81\) 670.967 0.920394
\(82\) −606.947 −0.817391
\(83\) 1236.62 1.63538 0.817691 0.575657i \(-0.195254\pi\)
0.817691 + 0.575657i \(0.195254\pi\)
\(84\) 24.6980 0.0320806
\(85\) 0 0
\(86\) −59.3763 −0.0744501
\(87\) −228.739 −0.281878
\(88\) −92.7045 −0.112299
\(89\) −711.698 −0.847638 −0.423819 0.905747i \(-0.639311\pi\)
−0.423819 + 0.905747i \(0.639311\pi\)
\(90\) 0 0
\(91\) −154.955 −0.178502
\(92\) 396.420 0.449235
\(93\) −167.594 −0.186867
\(94\) −1840.52 −2.01953
\(95\) 0 0
\(96\) −145.739 −0.154942
\(97\) 636.553 0.666311 0.333156 0.942872i \(-0.391887\pi\)
0.333156 + 0.942872i \(0.391887\pi\)
\(98\) −170.797 −0.176052
\(99\) 181.513 0.184270
\(100\) 0 0
\(101\) 1742.05 1.71624 0.858121 0.513448i \(-0.171632\pi\)
0.858121 + 0.513448i \(0.171632\pi\)
\(102\) −261.698 −0.254039
\(103\) −1454.62 −1.39154 −0.695769 0.718266i \(-0.744936\pi\)
−0.695769 + 0.718266i \(0.744936\pi\)
\(104\) 297.083 0.280110
\(105\) 0 0
\(106\) −2234.70 −2.04767
\(107\) 1181.67 1.06763 0.533813 0.845603i \(-0.320759\pi\)
0.533813 + 0.845603i \(0.320759\pi\)
\(108\) 187.977 0.167482
\(109\) 2204.43 1.93712 0.968559 0.248784i \(-0.0800310\pi\)
0.968559 + 0.248784i \(0.0800310\pi\)
\(110\) 0 0
\(111\) 1.82416 0.00155983
\(112\) 559.843 0.472323
\(113\) −236.886 −0.197207 −0.0986034 0.995127i \(-0.531438\pi\)
−0.0986034 + 0.995127i \(0.531438\pi\)
\(114\) 109.524 0.0899812
\(115\) 0 0
\(116\) 1116.41 0.893585
\(117\) −581.680 −0.459627
\(118\) 2241.19 1.74846
\(119\) 618.121 0.476160
\(120\) 0 0
\(121\) −1283.28 −0.964151
\(122\) −498.334 −0.369811
\(123\) −148.050 −0.108530
\(124\) 817.976 0.592390
\(125\) 0 0
\(126\) −641.149 −0.453319
\(127\) 1667.21 1.16489 0.582446 0.812869i \(-0.302096\pi\)
0.582446 + 0.812869i \(0.302096\pi\)
\(128\) −1518.88 −1.04884
\(129\) −14.4834 −0.00988520
\(130\) 0 0
\(131\) 891.722 0.594733 0.297367 0.954763i \(-0.403892\pi\)
0.297367 + 0.954763i \(0.403892\pi\)
\(132\) 24.3721 0.0160706
\(133\) −258.692 −0.168657
\(134\) 1668.92 1.07591
\(135\) 0 0
\(136\) −1185.08 −0.747203
\(137\) 400.425 0.249713 0.124856 0.992175i \(-0.460153\pi\)
0.124856 + 0.992175i \(0.460153\pi\)
\(138\) 283.111 0.174638
\(139\) 515.050 0.314287 0.157144 0.987576i \(-0.449771\pi\)
0.157144 + 0.987576i \(0.449771\pi\)
\(140\) 0 0
\(141\) −448.950 −0.268145
\(142\) −367.912 −0.217426
\(143\) −152.910 −0.0894195
\(144\) 2101.58 1.21619
\(145\) 0 0
\(146\) 3438.64 1.94920
\(147\) −41.6617 −0.0233755
\(148\) −8.90316 −0.00494483
\(149\) 218.374 0.120066 0.0600332 0.998196i \(-0.480879\pi\)
0.0600332 + 0.998196i \(0.480879\pi\)
\(150\) 0 0
\(151\) −175.011 −0.0943190 −0.0471595 0.998887i \(-0.515017\pi\)
−0.0471595 + 0.998887i \(0.515017\pi\)
\(152\) 495.971 0.264661
\(153\) 2320.35 1.22607
\(154\) −168.543 −0.0881922
\(155\) 0 0
\(156\) −78.1036 −0.0400852
\(157\) 919.642 0.467487 0.233743 0.972298i \(-0.424902\pi\)
0.233743 + 0.972298i \(0.424902\pi\)
\(158\) 3833.73 1.93035
\(159\) −545.099 −0.271882
\(160\) 0 0
\(161\) −668.698 −0.327334
\(162\) −2338.76 −1.13426
\(163\) −2368.51 −1.13813 −0.569067 0.822291i \(-0.692695\pi\)
−0.569067 + 0.822291i \(0.692695\pi\)
\(164\) 722.587 0.344052
\(165\) 0 0
\(166\) −4310.43 −2.01539
\(167\) −1079.37 −0.500144 −0.250072 0.968227i \(-0.580454\pi\)
−0.250072 + 0.968227i \(0.580454\pi\)
\(168\) 79.8749 0.0366814
\(169\) −1706.98 −0.776959
\(170\) 0 0
\(171\) −971.095 −0.434278
\(172\) 70.6891 0.0313372
\(173\) 881.271 0.387294 0.193647 0.981071i \(-0.437968\pi\)
0.193647 + 0.981071i \(0.437968\pi\)
\(174\) 797.305 0.347376
\(175\) 0 0
\(176\) 552.456 0.236608
\(177\) 546.682 0.232153
\(178\) 2480.73 1.04460
\(179\) −3377.72 −1.41041 −0.705203 0.709006i \(-0.749144\pi\)
−0.705203 + 0.709006i \(0.749144\pi\)
\(180\) 0 0
\(181\) 1435.58 0.589533 0.294767 0.955569i \(-0.404758\pi\)
0.294767 + 0.955569i \(0.404758\pi\)
\(182\) 540.118 0.219979
\(183\) −121.556 −0.0491021
\(184\) 1282.05 0.513661
\(185\) 0 0
\(186\) 584.174 0.230289
\(187\) 609.965 0.238530
\(188\) 2191.19 0.850049
\(189\) −317.088 −0.122036
\(190\) 0 0
\(191\) −1588.14 −0.601642 −0.300821 0.953681i \(-0.597261\pi\)
−0.300821 + 0.953681i \(0.597261\pi\)
\(192\) −36.0059 −0.0135339
\(193\) 977.704 0.364646 0.182323 0.983239i \(-0.441638\pi\)
0.182323 + 0.983239i \(0.441638\pi\)
\(194\) −2218.80 −0.821138
\(195\) 0 0
\(196\) 203.338 0.0741029
\(197\) −359.682 −0.130083 −0.0650413 0.997883i \(-0.520718\pi\)
−0.0650413 + 0.997883i \(0.520718\pi\)
\(198\) −632.689 −0.227087
\(199\) 2818.38 1.00397 0.501983 0.864877i \(-0.332604\pi\)
0.501983 + 0.864877i \(0.332604\pi\)
\(200\) 0 0
\(201\) 407.091 0.142856
\(202\) −6072.18 −2.11503
\(203\) −1883.21 −0.651109
\(204\) 311.558 0.106929
\(205\) 0 0
\(206\) 5070.31 1.71488
\(207\) −2510.21 −0.842857
\(208\) −1770.42 −0.590174
\(209\) −255.278 −0.0844879
\(210\) 0 0
\(211\) −1009.64 −0.329415 −0.164708 0.986342i \(-0.552668\pi\)
−0.164708 + 0.986342i \(0.552668\pi\)
\(212\) 2660.47 0.861895
\(213\) −89.7430 −0.0288690
\(214\) −4118.88 −1.31570
\(215\) 0 0
\(216\) 607.929 0.191501
\(217\) −1379.80 −0.431644
\(218\) −7683.86 −2.38723
\(219\) 838.770 0.258808
\(220\) 0 0
\(221\) −1954.71 −0.594969
\(222\) −6.35837 −0.00192228
\(223\) −1277.28 −0.383555 −0.191778 0.981438i \(-0.561425\pi\)
−0.191778 + 0.981438i \(0.561425\pi\)
\(224\) −1199.86 −0.357899
\(225\) 0 0
\(226\) 825.702 0.243030
\(227\) −1399.87 −0.409307 −0.204654 0.978834i \(-0.565607\pi\)
−0.204654 + 0.978834i \(0.565607\pi\)
\(228\) −130.391 −0.0378744
\(229\) 3182.00 0.918222 0.459111 0.888379i \(-0.348168\pi\)
0.459111 + 0.888379i \(0.348168\pi\)
\(230\) 0 0
\(231\) −41.1120 −0.0117098
\(232\) 3610.53 1.02174
\(233\) 3027.84 0.851332 0.425666 0.904880i \(-0.360040\pi\)
0.425666 + 0.904880i \(0.360040\pi\)
\(234\) 2027.53 0.566428
\(235\) 0 0
\(236\) −2668.19 −0.735951
\(237\) 935.144 0.256304
\(238\) −2154.55 −0.586802
\(239\) −4995.69 −1.35207 −0.676034 0.736870i \(-0.736303\pi\)
−0.676034 + 0.736870i \(0.736303\pi\)
\(240\) 0 0
\(241\) −3756.52 −1.00406 −0.502030 0.864850i \(-0.667413\pi\)
−0.502030 + 0.864850i \(0.667413\pi\)
\(242\) 4473.08 1.18818
\(243\) −1793.53 −0.473479
\(244\) 593.280 0.155659
\(245\) 0 0
\(246\) 516.050 0.133748
\(247\) 818.072 0.210740
\(248\) 2645.39 0.677347
\(249\) −1051.42 −0.267595
\(250\) 0 0
\(251\) 6565.46 1.65103 0.825514 0.564381i \(-0.190885\pi\)
0.825514 + 0.564381i \(0.190885\pi\)
\(252\) 763.306 0.190809
\(253\) −659.875 −0.163976
\(254\) −5811.33 −1.43557
\(255\) 0 0
\(256\) 4955.51 1.20984
\(257\) 6879.44 1.66976 0.834879 0.550433i \(-0.185537\pi\)
0.834879 + 0.550433i \(0.185537\pi\)
\(258\) 50.4840 0.0121822
\(259\) 15.0182 0.00360304
\(260\) 0 0
\(261\) −7069.31 −1.67655
\(262\) −3108.23 −0.732928
\(263\) −3080.15 −0.722169 −0.361084 0.932533i \(-0.617593\pi\)
−0.361084 + 0.932533i \(0.617593\pi\)
\(264\) 78.8209 0.0183754
\(265\) 0 0
\(266\) 901.709 0.207847
\(267\) 605.113 0.138698
\(268\) −1986.89 −0.452869
\(269\) 6710.33 1.52095 0.760476 0.649366i \(-0.224966\pi\)
0.760476 + 0.649366i \(0.224966\pi\)
\(270\) 0 0
\(271\) 7842.95 1.75803 0.879014 0.476796i \(-0.158202\pi\)
0.879014 + 0.476796i \(0.158202\pi\)
\(272\) 7062.26 1.57431
\(273\) 131.749 0.0292080
\(274\) −1395.74 −0.307737
\(275\) 0 0
\(276\) −337.051 −0.0735076
\(277\) −5446.87 −1.18148 −0.590742 0.806861i \(-0.701165\pi\)
−0.590742 + 0.806861i \(0.701165\pi\)
\(278\) −1795.28 −0.387316
\(279\) −5179.58 −1.11145
\(280\) 0 0
\(281\) 2126.76 0.451501 0.225751 0.974185i \(-0.427517\pi\)
0.225751 + 0.974185i \(0.427517\pi\)
\(282\) 1564.88 0.330452
\(283\) 3426.38 0.719707 0.359853 0.933009i \(-0.382827\pi\)
0.359853 + 0.933009i \(0.382827\pi\)
\(284\) 438.009 0.0915178
\(285\) 0 0
\(286\) 532.991 0.110197
\(287\) −1218.89 −0.250693
\(288\) −4504.14 −0.921558
\(289\) 2884.42 0.587099
\(290\) 0 0
\(291\) −541.222 −0.109028
\(292\) −4093.79 −0.820448
\(293\) 1749.82 0.348894 0.174447 0.984667i \(-0.444186\pi\)
0.174447 + 0.984667i \(0.444186\pi\)
\(294\) 145.218 0.0288071
\(295\) 0 0
\(296\) −28.7934 −0.00565399
\(297\) −312.904 −0.0611330
\(298\) −761.176 −0.147966
\(299\) 2114.65 0.409008
\(300\) 0 0
\(301\) −119.241 −0.0228338
\(302\) 610.026 0.116235
\(303\) −1481.16 −0.280826
\(304\) −2955.65 −0.557625
\(305\) 0 0
\(306\) −8087.92 −1.51097
\(307\) −7970.33 −1.48173 −0.740864 0.671655i \(-0.765584\pi\)
−0.740864 + 0.671655i \(0.765584\pi\)
\(308\) 200.655 0.0371214
\(309\) 1236.78 0.227695
\(310\) 0 0
\(311\) −2560.72 −0.466898 −0.233449 0.972369i \(-0.575001\pi\)
−0.233449 + 0.972369i \(0.575001\pi\)
\(312\) −252.592 −0.0458339
\(313\) 4861.11 0.877848 0.438924 0.898524i \(-0.355360\pi\)
0.438924 + 0.898524i \(0.355360\pi\)
\(314\) −3205.55 −0.576114
\(315\) 0 0
\(316\) −4564.16 −0.812513
\(317\) −8166.16 −1.44687 −0.723434 0.690394i \(-0.757437\pi\)
−0.723434 + 0.690394i \(0.757437\pi\)
\(318\) 1900.03 0.335057
\(319\) −1858.36 −0.326169
\(320\) 0 0
\(321\) −1004.70 −0.174694
\(322\) 2330.85 0.403395
\(323\) −3263.32 −0.562155
\(324\) 2784.35 0.477427
\(325\) 0 0
\(326\) 8255.79 1.40259
\(327\) −1874.29 −0.316968
\(328\) 2336.89 0.393394
\(329\) −3696.20 −0.619386
\(330\) 0 0
\(331\) 2974.89 0.494002 0.247001 0.969015i \(-0.420555\pi\)
0.247001 + 0.969015i \(0.420555\pi\)
\(332\) 5131.68 0.848306
\(333\) 56.3766 0.00927753
\(334\) 3762.30 0.616359
\(335\) 0 0
\(336\) −476.000 −0.0772855
\(337\) −3496.34 −0.565157 −0.282578 0.959244i \(-0.591190\pi\)
−0.282578 + 0.959244i \(0.591190\pi\)
\(338\) 5949.94 0.957497
\(339\) 201.410 0.0322686
\(340\) 0 0
\(341\) −1361.59 −0.216230
\(342\) 3384.90 0.535188
\(343\) −343.000 −0.0539949
\(344\) 228.613 0.0358314
\(345\) 0 0
\(346\) −3071.80 −0.477287
\(347\) −3959.08 −0.612491 −0.306246 0.951953i \(-0.599073\pi\)
−0.306246 + 0.951953i \(0.599073\pi\)
\(348\) −949.213 −0.146216
\(349\) 5581.65 0.856099 0.428050 0.903755i \(-0.359201\pi\)
0.428050 + 0.903755i \(0.359201\pi\)
\(350\) 0 0
\(351\) 1002.74 0.152485
\(352\) −1184.03 −0.179287
\(353\) 9896.43 1.49216 0.746082 0.665854i \(-0.231933\pi\)
0.746082 + 0.665854i \(0.231933\pi\)
\(354\) −1905.54 −0.286097
\(355\) 0 0
\(356\) −2953.38 −0.439687
\(357\) −525.550 −0.0779133
\(358\) 11773.5 1.73813
\(359\) 11917.6 1.75205 0.876025 0.482265i \(-0.160186\pi\)
0.876025 + 0.482265i \(0.160186\pi\)
\(360\) 0 0
\(361\) −5493.26 −0.800883
\(362\) −5003.92 −0.726519
\(363\) 1091.10 0.157762
\(364\) −643.025 −0.0925926
\(365\) 0 0
\(366\) 423.702 0.0605117
\(367\) 7101.58 1.01008 0.505040 0.863096i \(-0.331478\pi\)
0.505040 + 0.863096i \(0.331478\pi\)
\(368\) −7640.12 −1.08225
\(369\) −4575.56 −0.645513
\(370\) 0 0
\(371\) −4487.80 −0.628018
\(372\) −695.475 −0.0969319
\(373\) −294.316 −0.0408555 −0.0204277 0.999791i \(-0.506503\pi\)
−0.0204277 + 0.999791i \(0.506503\pi\)
\(374\) −2126.12 −0.293955
\(375\) 0 0
\(376\) 7086.45 0.971957
\(377\) 5955.34 0.813569
\(378\) 1105.26 0.150392
\(379\) −9436.57 −1.27896 −0.639478 0.768810i \(-0.720849\pi\)
−0.639478 + 0.768810i \(0.720849\pi\)
\(380\) 0 0
\(381\) −1417.53 −0.190610
\(382\) 5535.70 0.741442
\(383\) 3160.82 0.421699 0.210849 0.977519i \(-0.432377\pi\)
0.210849 + 0.977519i \(0.432377\pi\)
\(384\) 1291.41 0.171620
\(385\) 0 0
\(386\) −3407.93 −0.449376
\(387\) −447.617 −0.0587950
\(388\) 2641.55 0.345629
\(389\) 7822.76 1.01961 0.509807 0.860289i \(-0.329717\pi\)
0.509807 + 0.860289i \(0.329717\pi\)
\(390\) 0 0
\(391\) −8435.43 −1.09104
\(392\) 657.609 0.0847302
\(393\) −758.176 −0.0973153
\(394\) 1253.73 0.160309
\(395\) 0 0
\(396\) 753.234 0.0955844
\(397\) 7935.18 1.00316 0.501581 0.865111i \(-0.332752\pi\)
0.501581 + 0.865111i \(0.332752\pi\)
\(398\) −9823.87 −1.23725
\(399\) 219.950 0.0275971
\(400\) 0 0
\(401\) −488.380 −0.0608193 −0.0304097 0.999538i \(-0.509681\pi\)
−0.0304097 + 0.999538i \(0.509681\pi\)
\(402\) −1418.98 −0.176050
\(403\) 4363.39 0.539345
\(404\) 7229.09 0.890249
\(405\) 0 0
\(406\) 6564.20 0.802403
\(407\) 14.8201 0.00180492
\(408\) 1007.60 0.122264
\(409\) 11230.6 1.35775 0.678874 0.734254i \(-0.262468\pi\)
0.678874 + 0.734254i \(0.262468\pi\)
\(410\) 0 0
\(411\) −340.457 −0.0408601
\(412\) −6036.34 −0.721818
\(413\) 4500.82 0.536249
\(414\) 8749.70 1.03871
\(415\) 0 0
\(416\) 3794.38 0.447199
\(417\) −437.915 −0.0514263
\(418\) 889.811 0.104120
\(419\) −7369.62 −0.859259 −0.429629 0.903005i \(-0.641356\pi\)
−0.429629 + 0.903005i \(0.641356\pi\)
\(420\) 0 0
\(421\) 11972.5 1.38599 0.692997 0.720941i \(-0.256290\pi\)
0.692997 + 0.720941i \(0.256290\pi\)
\(422\) 3519.26 0.405959
\(423\) −13875.1 −1.59487
\(424\) 8604.12 0.985503
\(425\) 0 0
\(426\) 312.813 0.0355770
\(427\) −1000.77 −0.113421
\(428\) 4903.63 0.553799
\(429\) 130.010 0.0146316
\(430\) 0 0
\(431\) −3568.60 −0.398825 −0.199412 0.979916i \(-0.563903\pi\)
−0.199412 + 0.979916i \(0.563903\pi\)
\(432\) −3622.84 −0.403482
\(433\) −2291.60 −0.254335 −0.127168 0.991881i \(-0.540589\pi\)
−0.127168 + 0.991881i \(0.540589\pi\)
\(434\) 4809.49 0.531943
\(435\) 0 0
\(436\) 9147.85 1.00482
\(437\) 3530.34 0.386451
\(438\) −2923.66 −0.318945
\(439\) −7329.66 −0.796870 −0.398435 0.917197i \(-0.630446\pi\)
−0.398435 + 0.917197i \(0.630446\pi\)
\(440\) 0 0
\(441\) −1287.58 −0.139032
\(442\) 6813.44 0.733218
\(443\) −8297.38 −0.889889 −0.444944 0.895558i \(-0.646777\pi\)
−0.444944 + 0.895558i \(0.646777\pi\)
\(444\) 7.56981 0.000809116 0
\(445\) 0 0
\(446\) 4452.14 0.472679
\(447\) −185.670 −0.0196463
\(448\) −296.436 −0.0312618
\(449\) 9758.62 1.02570 0.512848 0.858479i \(-0.328590\pi\)
0.512848 + 0.858479i \(0.328590\pi\)
\(450\) 0 0
\(451\) −1202.81 −0.125583
\(452\) −983.021 −0.102295
\(453\) 148.801 0.0154333
\(454\) 4879.47 0.504416
\(455\) 0 0
\(456\) −421.693 −0.0433061
\(457\) 11745.0 1.20220 0.601102 0.799172i \(-0.294728\pi\)
0.601102 + 0.799172i \(0.294728\pi\)
\(458\) −11091.4 −1.13158
\(459\) −3999.97 −0.406759
\(460\) 0 0
\(461\) −10748.6 −1.08593 −0.542963 0.839756i \(-0.682698\pi\)
−0.542963 + 0.839756i \(0.682698\pi\)
\(462\) 143.302 0.0144308
\(463\) 9862.51 0.989957 0.494978 0.868905i \(-0.335176\pi\)
0.494978 + 0.868905i \(0.335176\pi\)
\(464\) −21516.3 −2.15274
\(465\) 0 0
\(466\) −10554.0 −1.04915
\(467\) 4660.78 0.461831 0.230916 0.972974i \(-0.425828\pi\)
0.230916 + 0.972974i \(0.425828\pi\)
\(468\) −2413.83 −0.238418
\(469\) 3351.58 0.329982
\(470\) 0 0
\(471\) −781.915 −0.0764941
\(472\) −8629.10 −0.841497
\(473\) −117.668 −0.0114384
\(474\) −3259.58 −0.315860
\(475\) 0 0
\(476\) 2565.05 0.246994
\(477\) −16846.6 −1.61709
\(478\) 17413.2 1.66624
\(479\) −16293.2 −1.55419 −0.777094 0.629385i \(-0.783307\pi\)
−0.777094 + 0.629385i \(0.783307\pi\)
\(480\) 0 0
\(481\) −47.4928 −0.00450205
\(482\) 13093.9 1.23737
\(483\) 568.553 0.0535612
\(484\) −5325.33 −0.500124
\(485\) 0 0
\(486\) 6251.63 0.583498
\(487\) 3515.00 0.327063 0.163531 0.986538i \(-0.447711\pi\)
0.163531 + 0.986538i \(0.447711\pi\)
\(488\) 1918.70 0.177983
\(489\) 2013.80 0.186231
\(490\) 0 0
\(491\) −2516.79 −0.231326 −0.115663 0.993288i \(-0.536899\pi\)
−0.115663 + 0.993288i \(0.536899\pi\)
\(492\) −614.371 −0.0562967
\(493\) −23756.1 −2.17023
\(494\) −2851.51 −0.259708
\(495\) 0 0
\(496\) −15764.7 −1.42713
\(497\) −738.853 −0.0666842
\(498\) 3664.89 0.329775
\(499\) −8747.48 −0.784751 −0.392376 0.919805i \(-0.628347\pi\)
−0.392376 + 0.919805i \(0.628347\pi\)
\(500\) 0 0
\(501\) 917.720 0.0818377
\(502\) −22884.9 −2.03467
\(503\) −11426.1 −1.01285 −0.506426 0.862284i \(-0.669034\pi\)
−0.506426 + 0.862284i \(0.669034\pi\)
\(504\) 2468.58 0.218173
\(505\) 0 0
\(506\) 2300.09 0.202078
\(507\) 1451.34 0.127133
\(508\) 6918.54 0.604254
\(509\) −8078.44 −0.703478 −0.351739 0.936098i \(-0.614410\pi\)
−0.351739 + 0.936098i \(0.614410\pi\)
\(510\) 0 0
\(511\) 6905.58 0.597818
\(512\) −5122.12 −0.442125
\(513\) 1674.04 0.144075
\(514\) −23979.3 −2.05775
\(515\) 0 0
\(516\) −60.1026 −0.00512765
\(517\) −3647.43 −0.310278
\(518\) −52.3484 −0.00444026
\(519\) −749.290 −0.0633723
\(520\) 0 0
\(521\) 7226.14 0.607645 0.303822 0.952729i \(-0.401737\pi\)
0.303822 + 0.952729i \(0.401737\pi\)
\(522\) 24641.1 2.06612
\(523\) −9333.06 −0.780318 −0.390159 0.920748i \(-0.627580\pi\)
−0.390159 + 0.920748i \(0.627580\pi\)
\(524\) 3700.43 0.308500
\(525\) 0 0
\(526\) 10736.3 0.889974
\(527\) −17405.8 −1.43872
\(528\) −469.719 −0.0387157
\(529\) −3041.35 −0.249967
\(530\) 0 0
\(531\) 16895.5 1.38080
\(532\) −1073.51 −0.0874859
\(533\) 3854.55 0.313244
\(534\) −2109.21 −0.170926
\(535\) 0 0
\(536\) −6425.73 −0.517816
\(537\) 2871.87 0.230782
\(538\) −23389.9 −1.87437
\(539\) −338.474 −0.0270484
\(540\) 0 0
\(541\) 15263.1 1.21296 0.606482 0.795097i \(-0.292580\pi\)
0.606482 + 0.795097i \(0.292580\pi\)
\(542\) −27337.8 −2.16653
\(543\) −1220.58 −0.0964644
\(544\) −15135.9 −1.19292
\(545\) 0 0
\(546\) −459.229 −0.0359949
\(547\) 13226.0 1.03382 0.516912 0.856039i \(-0.327082\pi\)
0.516912 + 0.856039i \(0.327082\pi\)
\(548\) 1661.67 0.129531
\(549\) −3756.76 −0.292049
\(550\) 0 0
\(551\) 9942.24 0.768700
\(552\) −1090.04 −0.0840496
\(553\) 7699.03 0.592036
\(554\) 18985.9 1.45602
\(555\) 0 0
\(556\) 2137.33 0.163027
\(557\) −6993.63 −0.532010 −0.266005 0.963972i \(-0.585704\pi\)
−0.266005 + 0.963972i \(0.585704\pi\)
\(558\) 18054.2 1.36971
\(559\) 377.082 0.0285311
\(560\) 0 0
\(561\) −518.616 −0.0390302
\(562\) −7413.14 −0.556413
\(563\) −392.197 −0.0293590 −0.0146795 0.999892i \(-0.504673\pi\)
−0.0146795 + 0.999892i \(0.504673\pi\)
\(564\) −1863.04 −0.139092
\(565\) 0 0
\(566\) −11943.2 −0.886940
\(567\) −4696.77 −0.347876
\(568\) 1416.55 0.104643
\(569\) 8811.72 0.649221 0.324610 0.945848i \(-0.394767\pi\)
0.324610 + 0.945848i \(0.394767\pi\)
\(570\) 0 0
\(571\) −24775.6 −1.81581 −0.907905 0.419175i \(-0.862319\pi\)
−0.907905 + 0.419175i \(0.862319\pi\)
\(572\) −634.541 −0.0463837
\(573\) 1350.30 0.0984458
\(574\) 4248.63 0.308945
\(575\) 0 0
\(576\) −1112.78 −0.0804964
\(577\) 8850.62 0.638572 0.319286 0.947658i \(-0.396557\pi\)
0.319286 + 0.947658i \(0.396557\pi\)
\(578\) −10054.1 −0.723520
\(579\) −831.281 −0.0596664
\(580\) 0 0
\(581\) −8656.35 −0.618117
\(582\) 1886.51 0.134362
\(583\) −4428.58 −0.314602
\(584\) −13239.6 −0.938112
\(585\) 0 0
\(586\) −6099.28 −0.429964
\(587\) 46.0232 0.00323608 0.00161804 0.999999i \(-0.499485\pi\)
0.00161804 + 0.999999i \(0.499485\pi\)
\(588\) −172.886 −0.0121253
\(589\) 7284.54 0.509600
\(590\) 0 0
\(591\) 305.815 0.0212852
\(592\) 171.589 0.0119126
\(593\) 2729.93 0.189047 0.0945235 0.995523i \(-0.469867\pi\)
0.0945235 + 0.995523i \(0.469867\pi\)
\(594\) 1090.67 0.0753381
\(595\) 0 0
\(596\) 906.200 0.0622809
\(597\) −2396.29 −0.164277
\(598\) −7370.94 −0.504047
\(599\) −5505.07 −0.375511 −0.187756 0.982216i \(-0.560121\pi\)
−0.187756 + 0.982216i \(0.560121\pi\)
\(600\) 0 0
\(601\) −7446.97 −0.505438 −0.252719 0.967540i \(-0.581325\pi\)
−0.252719 + 0.967540i \(0.581325\pi\)
\(602\) 415.634 0.0281395
\(603\) 12581.4 0.849674
\(604\) −726.253 −0.0489252
\(605\) 0 0
\(606\) 5162.80 0.346080
\(607\) 24071.4 1.60960 0.804799 0.593547i \(-0.202273\pi\)
0.804799 + 0.593547i \(0.202273\pi\)
\(608\) 6334.59 0.422536
\(609\) 1601.17 0.106540
\(610\) 0 0
\(611\) 11688.7 0.773932
\(612\) 9628.88 0.635988
\(613\) 4108.61 0.270710 0.135355 0.990797i \(-0.456782\pi\)
0.135355 + 0.990797i \(0.456782\pi\)
\(614\) 27781.8 1.82603
\(615\) 0 0
\(616\) 648.932 0.0424451
\(617\) −3542.46 −0.231141 −0.115571 0.993299i \(-0.536870\pi\)
−0.115571 + 0.993299i \(0.536870\pi\)
\(618\) −4310.97 −0.280603
\(619\) 6484.81 0.421077 0.210538 0.977586i \(-0.432478\pi\)
0.210538 + 0.977586i \(0.432478\pi\)
\(620\) 0 0
\(621\) 4327.26 0.279625
\(622\) 8925.79 0.575388
\(623\) 4981.88 0.320377
\(624\) 1505.28 0.0965693
\(625\) 0 0
\(626\) −16944.1 −1.08183
\(627\) 217.047 0.0138246
\(628\) 3816.29 0.242495
\(629\) 189.451 0.0120094
\(630\) 0 0
\(631\) 3250.84 0.205094 0.102547 0.994728i \(-0.467301\pi\)
0.102547 + 0.994728i \(0.467301\pi\)
\(632\) −14760.8 −0.929038
\(633\) 858.436 0.0539017
\(634\) 28464.4 1.78307
\(635\) 0 0
\(636\) −2262.03 −0.141031
\(637\) 1084.68 0.0674674
\(638\) 6477.58 0.401959
\(639\) −2773.56 −0.171706
\(640\) 0 0
\(641\) 2800.61 0.172570 0.0862852 0.996270i \(-0.472500\pi\)
0.0862852 + 0.996270i \(0.472500\pi\)
\(642\) 3502.03 0.215287
\(643\) −18910.6 −1.15982 −0.579908 0.814682i \(-0.696911\pi\)
−0.579908 + 0.814682i \(0.696911\pi\)
\(644\) −2774.94 −0.169795
\(645\) 0 0
\(646\) 11374.8 0.692780
\(647\) 24522.7 1.49009 0.745043 0.667016i \(-0.232429\pi\)
0.745043 + 0.667016i \(0.232429\pi\)
\(648\) 9004.77 0.545897
\(649\) 4441.43 0.268631
\(650\) 0 0
\(651\) 1173.16 0.0706293
\(652\) −9828.74 −0.590373
\(653\) 15299.6 0.916875 0.458438 0.888727i \(-0.348409\pi\)
0.458438 + 0.888727i \(0.348409\pi\)
\(654\) 6533.12 0.390619
\(655\) 0 0
\(656\) −13926.3 −0.828857
\(657\) 25922.7 1.53933
\(658\) 12883.7 0.763309
\(659\) −2203.13 −0.130230 −0.0651151 0.997878i \(-0.520741\pi\)
−0.0651151 + 0.997878i \(0.520741\pi\)
\(660\) 0 0
\(661\) −3162.36 −0.186084 −0.0930421 0.995662i \(-0.529659\pi\)
−0.0930421 + 0.995662i \(0.529659\pi\)
\(662\) −10369.4 −0.608790
\(663\) 1661.97 0.0973538
\(664\) 16596.2 0.969965
\(665\) 0 0
\(666\) −196.509 −0.0114333
\(667\) 25699.9 1.49191
\(668\) −4479.12 −0.259435
\(669\) 1085.99 0.0627605
\(670\) 0 0
\(671\) −987.565 −0.0568175
\(672\) 1020.17 0.0585624
\(673\) 4443.07 0.254484 0.127242 0.991872i \(-0.459387\pi\)
0.127242 + 0.991872i \(0.459387\pi\)
\(674\) 12187.0 0.696479
\(675\) 0 0
\(676\) −7083.56 −0.403025
\(677\) −4456.32 −0.252984 −0.126492 0.991968i \(-0.540372\pi\)
−0.126492 + 0.991968i \(0.540372\pi\)
\(678\) −702.044 −0.0397667
\(679\) −4455.87 −0.251842
\(680\) 0 0
\(681\) 1190.23 0.0669743
\(682\) 4746.03 0.266474
\(683\) 10046.8 0.562858 0.281429 0.959582i \(-0.409192\pi\)
0.281429 + 0.959582i \(0.409192\pi\)
\(684\) −4029.81 −0.225269
\(685\) 0 0
\(686\) 1195.58 0.0665414
\(687\) −2705.46 −0.150247
\(688\) −1362.38 −0.0754944
\(689\) 14191.9 0.784717
\(690\) 0 0
\(691\) 31811.2 1.75131 0.875655 0.482938i \(-0.160430\pi\)
0.875655 + 0.482938i \(0.160430\pi\)
\(692\) 3657.06 0.200897
\(693\) −1270.59 −0.0696474
\(694\) 13800.0 0.754812
\(695\) 0 0
\(696\) −3069.81 −0.167185
\(697\) −15376.0 −0.835590
\(698\) −19455.7 −1.05503
\(699\) −2574.39 −0.139302
\(700\) 0 0
\(701\) −13907.2 −0.749312 −0.374656 0.927164i \(-0.622239\pi\)
−0.374656 + 0.927164i \(0.622239\pi\)
\(702\) −3495.20 −0.187917
\(703\) −79.2877 −0.00425376
\(704\) −292.524 −0.0156604
\(705\) 0 0
\(706\) −34495.5 −1.83889
\(707\) −12194.3 −0.648678
\(708\) 2268.60 0.120423
\(709\) −228.952 −0.0121276 −0.00606381 0.999982i \(-0.501930\pi\)
−0.00606381 + 0.999982i \(0.501930\pi\)
\(710\) 0 0
\(711\) 28901.1 1.52444
\(712\) −9551.40 −0.502744
\(713\) 18830.0 0.989043
\(714\) 1831.88 0.0960176
\(715\) 0 0
\(716\) −14016.7 −0.731606
\(717\) 4247.53 0.221237
\(718\) −41540.5 −2.15916
\(719\) 36162.2 1.87569 0.937846 0.347052i \(-0.112817\pi\)
0.937846 + 0.347052i \(0.112817\pi\)
\(720\) 0 0
\(721\) 10182.4 0.525952
\(722\) 19147.6 0.986979
\(723\) 3193.93 0.164293
\(724\) 5957.30 0.305803
\(725\) 0 0
\(726\) −3803.19 −0.194421
\(727\) −22268.3 −1.13602 −0.568010 0.823021i \(-0.692287\pi\)
−0.568010 + 0.823021i \(0.692287\pi\)
\(728\) −2079.58 −0.105872
\(729\) −16591.2 −0.842919
\(730\) 0 0
\(731\) −1504.20 −0.0761077
\(732\) −504.429 −0.0254703
\(733\) 2333.20 0.117570 0.0587848 0.998271i \(-0.481277\pi\)
0.0587848 + 0.998271i \(0.481277\pi\)
\(734\) −24753.6 −1.24479
\(735\) 0 0
\(736\) 16374.4 0.820067
\(737\) 3307.35 0.165302
\(738\) 15948.8 0.795506
\(739\) −4829.15 −0.240383 −0.120192 0.992751i \(-0.538351\pi\)
−0.120192 + 0.992751i \(0.538351\pi\)
\(740\) 0 0
\(741\) −695.556 −0.0344830
\(742\) 15642.9 0.773947
\(743\) 25459.0 1.25707 0.628533 0.777783i \(-0.283656\pi\)
0.628533 + 0.777783i \(0.283656\pi\)
\(744\) −2249.21 −0.110833
\(745\) 0 0
\(746\) 1025.88 0.0503488
\(747\) −32494.8 −1.59160
\(748\) 2531.21 0.123730
\(749\) −8271.66 −0.403525
\(750\) 0 0
\(751\) −5707.08 −0.277303 −0.138651 0.990341i \(-0.544277\pi\)
−0.138651 + 0.990341i \(0.544277\pi\)
\(752\) −42230.4 −2.04785
\(753\) −5582.21 −0.270155
\(754\) −20758.2 −1.00261
\(755\) 0 0
\(756\) −1315.84 −0.0633023
\(757\) 1900.91 0.0912677 0.0456339 0.998958i \(-0.485469\pi\)
0.0456339 + 0.998958i \(0.485469\pi\)
\(758\) 32892.6 1.57614
\(759\) 561.051 0.0268312
\(760\) 0 0
\(761\) −11583.8 −0.551791 −0.275896 0.961188i \(-0.588974\pi\)
−0.275896 + 0.961188i \(0.588974\pi\)
\(762\) 4941.01 0.234900
\(763\) −15431.0 −0.732162
\(764\) −6590.40 −0.312084
\(765\) 0 0
\(766\) −11017.5 −0.519686
\(767\) −14233.1 −0.670051
\(768\) −4213.37 −0.197965
\(769\) −26059.7 −1.22202 −0.611012 0.791622i \(-0.709237\pi\)
−0.611012 + 0.791622i \(0.709237\pi\)
\(770\) 0 0
\(771\) −5849.17 −0.273220
\(772\) 4057.24 0.189149
\(773\) 16213.6 0.754413 0.377206 0.926129i \(-0.376885\pi\)
0.377206 + 0.926129i \(0.376885\pi\)
\(774\) 1560.24 0.0724568
\(775\) 0 0
\(776\) 8542.92 0.395197
\(777\) −12.7691 −0.000589561 0
\(778\) −27267.4 −1.25653
\(779\) 6435.04 0.295968
\(780\) 0 0
\(781\) −729.103 −0.0334051
\(782\) 29403.0 1.34456
\(783\) 12186.6 0.556209
\(784\) −3918.90 −0.178521
\(785\) 0 0
\(786\) 2642.74 0.119928
\(787\) 1371.34 0.0621131 0.0310565 0.999518i \(-0.490113\pi\)
0.0310565 + 0.999518i \(0.490113\pi\)
\(788\) −1492.59 −0.0674765
\(789\) 2618.86 0.118167
\(790\) 0 0
\(791\) 1658.20 0.0745371
\(792\) 2436.01 0.109293
\(793\) 3164.78 0.141721
\(794\) −27659.3 −1.23626
\(795\) 0 0
\(796\) 11695.6 0.520778
\(797\) −7991.49 −0.355173 −0.177587 0.984105i \(-0.556829\pi\)
−0.177587 + 0.984105i \(0.556829\pi\)
\(798\) −766.668 −0.0340097
\(799\) −46626.5 −2.06449
\(800\) 0 0
\(801\) 18701.3 0.824943
\(802\) 1702.32 0.0749515
\(803\) 6814.47 0.299474
\(804\) 1689.33 0.0741022
\(805\) 0 0
\(806\) −15209.3 −0.664669
\(807\) −5705.38 −0.248871
\(808\) 23379.3 1.01792
\(809\) −17661.4 −0.767542 −0.383771 0.923428i \(-0.625375\pi\)
−0.383771 + 0.923428i \(0.625375\pi\)
\(810\) 0 0
\(811\) −24180.6 −1.04697 −0.523486 0.852034i \(-0.675369\pi\)
−0.523486 + 0.852034i \(0.675369\pi\)
\(812\) −7814.85 −0.337743
\(813\) −6668.38 −0.287663
\(814\) −51.6576 −0.00222432
\(815\) 0 0
\(816\) −6004.60 −0.257602
\(817\) 629.526 0.0269576
\(818\) −39146.1 −1.67324
\(819\) 4071.76 0.173723
\(820\) 0 0
\(821\) −23340.9 −0.992208 −0.496104 0.868263i \(-0.665237\pi\)
−0.496104 + 0.868263i \(0.665237\pi\)
\(822\) 1186.71 0.0503545
\(823\) −20630.4 −0.873792 −0.436896 0.899512i \(-0.643922\pi\)
−0.436896 + 0.899512i \(0.643922\pi\)
\(824\) −19521.9 −0.825337
\(825\) 0 0
\(826\) −15688.3 −0.660854
\(827\) −24113.7 −1.01393 −0.506963 0.861968i \(-0.669232\pi\)
−0.506963 + 0.861968i \(0.669232\pi\)
\(828\) −10416.8 −0.437207
\(829\) 41738.9 1.74868 0.874338 0.485317i \(-0.161296\pi\)
0.874338 + 0.485317i \(0.161296\pi\)
\(830\) 0 0
\(831\) 4631.14 0.193324
\(832\) 937.432 0.0390620
\(833\) −4326.85 −0.179972
\(834\) 1526.42 0.0633760
\(835\) 0 0
\(836\) −1059.34 −0.0438256
\(837\) 8928.91 0.368732
\(838\) 25687.9 1.05892
\(839\) 30403.0 1.25105 0.625523 0.780205i \(-0.284886\pi\)
0.625523 + 0.780205i \(0.284886\pi\)
\(840\) 0 0
\(841\) 47987.8 1.96760
\(842\) −41731.9 −1.70805
\(843\) −1808.25 −0.0738784
\(844\) −4189.77 −0.170874
\(845\) 0 0
\(846\) 48363.6 1.96545
\(847\) 8982.99 0.364415
\(848\) −51274.7 −2.07639
\(849\) −2913.24 −0.117764
\(850\) 0 0
\(851\) −204.952 −0.00825579
\(852\) −372.412 −0.0149749
\(853\) −5900.43 −0.236843 −0.118421 0.992963i \(-0.537783\pi\)
−0.118421 + 0.992963i \(0.537783\pi\)
\(854\) 3488.33 0.139776
\(855\) 0 0
\(856\) 15858.7 0.633221
\(857\) 18226.2 0.726480 0.363240 0.931696i \(-0.381670\pi\)
0.363240 + 0.931696i \(0.381670\pi\)
\(858\) −453.170 −0.0180314
\(859\) −19944.2 −0.792186 −0.396093 0.918210i \(-0.629634\pi\)
−0.396093 + 0.918210i \(0.629634\pi\)
\(860\) 0 0
\(861\) 1036.35 0.0410205
\(862\) 12438.9 0.491497
\(863\) −30830.3 −1.21608 −0.608038 0.793908i \(-0.708043\pi\)
−0.608038 + 0.793908i \(0.708043\pi\)
\(864\) 7764.53 0.305735
\(865\) 0 0
\(866\) 7987.70 0.313433
\(867\) −2452.44 −0.0960662
\(868\) −5725.83 −0.223903
\(869\) 7597.44 0.296577
\(870\) 0 0
\(871\) −10598.8 −0.412317
\(872\) 29584.7 1.14893
\(873\) −16726.8 −0.648471
\(874\) −12305.5 −0.476248
\(875\) 0 0
\(876\) 3480.70 0.134249
\(877\) 45885.6 1.76676 0.883379 0.468659i \(-0.155263\pi\)
0.883379 + 0.468659i \(0.155263\pi\)
\(878\) 25548.6 0.982033
\(879\) −1487.77 −0.0570889
\(880\) 0 0
\(881\) 41132.6 1.57298 0.786489 0.617605i \(-0.211897\pi\)
0.786489 + 0.617605i \(0.211897\pi\)
\(882\) 4488.05 0.171338
\(883\) −19850.0 −0.756520 −0.378260 0.925699i \(-0.623477\pi\)
−0.378260 + 0.925699i \(0.623477\pi\)
\(884\) −8111.58 −0.308622
\(885\) 0 0
\(886\) 28921.8 1.09667
\(887\) −29029.3 −1.09888 −0.549441 0.835532i \(-0.685159\pi\)
−0.549441 + 0.835532i \(0.685159\pi\)
\(888\) 24.4812 0.000925154 0
\(889\) −11670.5 −0.440288
\(890\) 0 0
\(891\) −4634.80 −0.174267
\(892\) −5300.40 −0.198958
\(893\) 19513.8 0.731248
\(894\) 647.181 0.0242114
\(895\) 0 0
\(896\) 10632.2 0.396425
\(897\) −1797.96 −0.0669254
\(898\) −34015.2 −1.26403
\(899\) 53029.4 1.96733
\(900\) 0 0
\(901\) −56612.3 −2.09326
\(902\) 4192.57 0.154764
\(903\) 101.384 0.00373625
\(904\) −3179.15 −0.116966
\(905\) 0 0
\(906\) −518.668 −0.0190194
\(907\) 21029.1 0.769856 0.384928 0.922947i \(-0.374226\pi\)
0.384928 + 0.922947i \(0.374226\pi\)
\(908\) −5809.14 −0.212316
\(909\) −45776.0 −1.67029
\(910\) 0 0
\(911\) −19225.5 −0.699198 −0.349599 0.936899i \(-0.613682\pi\)
−0.349599 + 0.936899i \(0.613682\pi\)
\(912\) 2513.01 0.0912433
\(913\) −8542.13 −0.309642
\(914\) −40938.9 −1.48155
\(915\) 0 0
\(916\) 13204.6 0.476300
\(917\) −6242.05 −0.224788
\(918\) 13942.5 0.501276
\(919\) 21316.8 0.765154 0.382577 0.923924i \(-0.375037\pi\)
0.382577 + 0.923924i \(0.375037\pi\)
\(920\) 0 0
\(921\) 6776.68 0.242453
\(922\) 37465.9 1.33826
\(923\) 2336.50 0.0833229
\(924\) −170.605 −0.00607412
\(925\) 0 0
\(926\) −34377.3 −1.21999
\(927\) 38223.3 1.35428
\(928\) 46114.1 1.63122
\(929\) 19989.6 0.705959 0.352979 0.935631i \(-0.385169\pi\)
0.352979 + 0.935631i \(0.385169\pi\)
\(930\) 0 0
\(931\) 1810.84 0.0637465
\(932\) 12564.8 0.441603
\(933\) 2177.23 0.0763978
\(934\) −16245.9 −0.569144
\(935\) 0 0
\(936\) −7806.49 −0.272610
\(937\) −55676.4 −1.94116 −0.970580 0.240779i \(-0.922597\pi\)
−0.970580 + 0.240779i \(0.922597\pi\)
\(938\) −11682.4 −0.406658
\(939\) −4133.10 −0.143641
\(940\) 0 0
\(941\) −108.842 −0.00377062 −0.00188531 0.999998i \(-0.500600\pi\)
−0.00188531 + 0.999998i \(0.500600\pi\)
\(942\) 2725.48 0.0942686
\(943\) 16634.1 0.574422
\(944\) 51423.6 1.77298
\(945\) 0 0
\(946\) 410.150 0.0140963
\(947\) 7785.95 0.267169 0.133585 0.991037i \(-0.457351\pi\)
0.133585 + 0.991037i \(0.457351\pi\)
\(948\) 3880.62 0.132950
\(949\) −21837.8 −0.746982
\(950\) 0 0
\(951\) 6943.18 0.236749
\(952\) 8295.55 0.282416
\(953\) −41445.5 −1.40876 −0.704381 0.709822i \(-0.748776\pi\)
−0.704381 + 0.709822i \(0.748776\pi\)
\(954\) 58721.4 1.99285
\(955\) 0 0
\(956\) −20730.9 −0.701345
\(957\) 1580.05 0.0533706
\(958\) 56792.5 1.91532
\(959\) −2802.98 −0.0943825
\(960\) 0 0
\(961\) 9062.92 0.304217
\(962\) 165.543 0.00554817
\(963\) −31050.8 −1.03904
\(964\) −15588.7 −0.520826
\(965\) 0 0
\(966\) −1981.78 −0.0660068
\(967\) −39155.0 −1.30211 −0.651055 0.759030i \(-0.725673\pi\)
−0.651055 + 0.759030i \(0.725673\pi\)
\(968\) −17222.4 −0.571849
\(969\) 2774.60 0.0919846
\(970\) 0 0
\(971\) −43440.8 −1.43572 −0.717859 0.696189i \(-0.754878\pi\)
−0.717859 + 0.696189i \(0.754878\pi\)
\(972\) −7442.74 −0.245603
\(973\) −3605.35 −0.118789
\(974\) −12252.0 −0.403061
\(975\) 0 0
\(976\) −11434.2 −0.374999
\(977\) −11297.8 −0.369957 −0.184978 0.982743i \(-0.559222\pi\)
−0.184978 + 0.982743i \(0.559222\pi\)
\(978\) −7019.39 −0.229504
\(979\) 4916.15 0.160491
\(980\) 0 0
\(981\) −57925.9 −1.88525
\(982\) 8772.66 0.285078
\(983\) −10865.9 −0.352563 −0.176282 0.984340i \(-0.556407\pi\)
−0.176282 + 0.984340i \(0.556407\pi\)
\(984\) −1986.91 −0.0643704
\(985\) 0 0
\(986\) 82805.5 2.67451
\(987\) 3142.65 0.101349
\(988\) 3394.80 0.109315
\(989\) 1627.28 0.0523199
\(990\) 0 0
\(991\) 13884.1 0.445048 0.222524 0.974927i \(-0.428570\pi\)
0.222524 + 0.974927i \(0.428570\pi\)
\(992\) 33787.1 1.08139
\(993\) −2529.36 −0.0808328
\(994\) 2575.38 0.0821792
\(995\) 0 0
\(996\) −4363.15 −0.138807
\(997\) −31665.7 −1.00588 −0.502940 0.864321i \(-0.667748\pi\)
−0.502940 + 0.864321i \(0.667748\pi\)
\(998\) 30490.7 0.967099
\(999\) −97.1857 −0.00307790
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.4.a.f.1.1 3
3.2 odd 2 1575.4.a.ba.1.3 3
5.2 odd 4 175.4.b.e.99.2 6
5.3 odd 4 175.4.b.e.99.5 6
5.4 even 2 35.4.a.c.1.3 3
7.6 odd 2 1225.4.a.y.1.1 3
15.14 odd 2 315.4.a.p.1.1 3
20.19 odd 2 560.4.a.u.1.2 3
35.4 even 6 245.4.e.m.226.1 6
35.9 even 6 245.4.e.m.116.1 6
35.19 odd 6 245.4.e.n.116.1 6
35.24 odd 6 245.4.e.n.226.1 6
35.34 odd 2 245.4.a.l.1.3 3
40.19 odd 2 2240.4.a.bv.1.2 3
40.29 even 2 2240.4.a.bt.1.2 3
105.104 even 2 2205.4.a.bm.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.a.c.1.3 3 5.4 even 2
175.4.a.f.1.1 3 1.1 even 1 trivial
175.4.b.e.99.2 6 5.2 odd 4
175.4.b.e.99.5 6 5.3 odd 4
245.4.a.l.1.3 3 35.34 odd 2
245.4.e.m.116.1 6 35.9 even 6
245.4.e.m.226.1 6 35.4 even 6
245.4.e.n.116.1 6 35.19 odd 6
245.4.e.n.226.1 6 35.24 odd 6
315.4.a.p.1.1 3 15.14 odd 2
560.4.a.u.1.2 3 20.19 odd 2
1225.4.a.y.1.1 3 7.6 odd 2
1575.4.a.ba.1.3 3 3.2 odd 2
2205.4.a.bm.1.1 3 105.104 even 2
2240.4.a.bt.1.2 3 40.29 even 2
2240.4.a.bv.1.2 3 40.19 odd 2