Properties

Label 175.4.a.a
Level $175$
Weight $4$
Character orbit 175.a
Self dual yes
Analytic conductor $10.325$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(1,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{2} + 8 q^{3} - 7 q^{4} - 8 q^{6} - 7 q^{7} + 15 q^{8} + 37 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{2} + 8 q^{3} - 7 q^{4} - 8 q^{6} - 7 q^{7} + 15 q^{8} + 37 q^{9} + 12 q^{11} - 56 q^{12} + 78 q^{13} + 7 q^{14} + 41 q^{16} + 94 q^{17} - 37 q^{18} + 40 q^{19} - 56 q^{21} - 12 q^{22} - 32 q^{23} + 120 q^{24} - 78 q^{26} + 80 q^{27} + 49 q^{28} - 50 q^{29} - 248 q^{31} - 161 q^{32} + 96 q^{33} - 94 q^{34} - 259 q^{36} + 434 q^{37} - 40 q^{38} + 624 q^{39} + 402 q^{41} + 56 q^{42} + 68 q^{43} - 84 q^{44} + 32 q^{46} - 536 q^{47} + 328 q^{48} + 49 q^{49} + 752 q^{51} - 546 q^{52} - 22 q^{53} - 80 q^{54} - 105 q^{56} + 320 q^{57} + 50 q^{58} - 560 q^{59} - 278 q^{61} + 248 q^{62} - 259 q^{63} - 167 q^{64} - 96 q^{66} + 164 q^{67} - 658 q^{68} - 256 q^{69} + 672 q^{71} + 555 q^{72} - 82 q^{73} - 434 q^{74} - 280 q^{76} - 84 q^{77} - 624 q^{78} - 1000 q^{79} - 359 q^{81} - 402 q^{82} + 448 q^{83} + 392 q^{84} - 68 q^{86} - 400 q^{87} + 180 q^{88} - 870 q^{89} - 546 q^{91} + 224 q^{92} - 1984 q^{93} + 536 q^{94} - 1288 q^{96} - 1026 q^{97} - 49 q^{98} + 444 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 8.00000 −7.00000 0 −8.00000 −7.00000 15.0000 37.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 175.4.a.a 1
3.b odd 2 1 1575.4.a.g 1
5.b even 2 1 35.4.a.a 1
5.c odd 4 2 175.4.b.a 2
7.b odd 2 1 1225.4.a.e 1
15.d odd 2 1 315.4.a.c 1
20.d odd 2 1 560.4.a.p 1
35.c odd 2 1 245.4.a.d 1
35.i odd 6 2 245.4.e.b 2
35.j even 6 2 245.4.e.e 2
40.e odd 2 1 2240.4.a.b 1
40.f even 2 1 2240.4.a.bk 1
105.g even 2 1 2205.4.a.i 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.4.a.a 1 5.b even 2 1
175.4.a.a 1 1.a even 1 1 trivial
175.4.b.a 2 5.c odd 4 2
245.4.a.d 1 35.c odd 2 1
245.4.e.b 2 35.i odd 6 2
245.4.e.e 2 35.j even 6 2
315.4.a.c 1 15.d odd 2 1
560.4.a.p 1 20.d odd 2 1
1225.4.a.e 1 7.b odd 2 1
1575.4.a.g 1 3.b odd 2 1
2205.4.a.i 1 105.g even 2 1
2240.4.a.b 1 40.e odd 2 1
2240.4.a.bk 1 40.f even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} + 1 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(175))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T - 8 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 7 \) Copy content Toggle raw display
$11$ \( T - 12 \) Copy content Toggle raw display
$13$ \( T - 78 \) Copy content Toggle raw display
$17$ \( T - 94 \) Copy content Toggle raw display
$19$ \( T - 40 \) Copy content Toggle raw display
$23$ \( T + 32 \) Copy content Toggle raw display
$29$ \( T + 50 \) Copy content Toggle raw display
$31$ \( T + 248 \) Copy content Toggle raw display
$37$ \( T - 434 \) Copy content Toggle raw display
$41$ \( T - 402 \) Copy content Toggle raw display
$43$ \( T - 68 \) Copy content Toggle raw display
$47$ \( T + 536 \) Copy content Toggle raw display
$53$ \( T + 22 \) Copy content Toggle raw display
$59$ \( T + 560 \) Copy content Toggle raw display
$61$ \( T + 278 \) Copy content Toggle raw display
$67$ \( T - 164 \) Copy content Toggle raw display
$71$ \( T - 672 \) Copy content Toggle raw display
$73$ \( T + 82 \) Copy content Toggle raw display
$79$ \( T + 1000 \) Copy content Toggle raw display
$83$ \( T - 448 \) Copy content Toggle raw display
$89$ \( T + 870 \) Copy content Toggle raw display
$97$ \( T + 1026 \) Copy content Toggle raw display
show more
show less