Properties

Label 175.2.x.a.47.4
Level $175$
Weight $2$
Character 175.47
Analytic conductor $1.397$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(3,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([21, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.x (of order \(60\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 47.4
Character \(\chi\) \(=\) 175.47
Dual form 175.2.x.a.108.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0935941 + 1.78588i) q^{2} +(0.279642 - 0.226450i) q^{3} +(-1.19157 - 0.125239i) q^{4} +(1.07995 - 1.95799i) q^{5} +(0.378240 + 0.520602i) q^{6} +(-0.314872 + 2.62695i) q^{7} +(-0.224327 + 1.41635i) q^{8} +(-0.596815 + 2.80779i) q^{9} +O(q^{10})\) \(q+(-0.0935941 + 1.78588i) q^{2} +(0.279642 - 0.226450i) q^{3} +(-1.19157 - 0.125239i) q^{4} +(1.07995 - 1.95799i) q^{5} +(0.378240 + 0.520602i) q^{6} +(-0.314872 + 2.62695i) q^{7} +(-0.224327 + 1.41635i) q^{8} +(-0.596815 + 2.80779i) q^{9} +(3.39566 + 2.11192i) q^{10} +(4.12989 - 0.877836i) q^{11} +(-0.361574 + 0.234809i) q^{12} +(0.268631 - 0.527217i) q^{13} +(-4.66195 - 0.808191i) q^{14} +(-0.141386 - 0.792089i) q^{15} +(-4.85234 - 1.03140i) q^{16} +(-0.811348 + 0.311447i) q^{17} +(-4.95853 - 1.32863i) q^{18} +(-0.667317 - 6.34910i) q^{19} +(-1.53205 + 2.19783i) q^{20} +(0.506820 + 0.805908i) q^{21} +(1.18118 + 7.45766i) q^{22} +(-1.61819 - 0.0848056i) q^{23} +(0.258000 + 0.446869i) q^{24} +(-2.66742 - 4.22905i) q^{25} +(0.916406 + 0.529087i) q^{26} +(0.959010 + 1.88216i) q^{27} +(0.704189 - 3.09076i) q^{28} +(-0.996818 + 1.37200i) q^{29} +(1.42781 - 0.178365i) q^{30} +(3.65980 - 8.22005i) q^{31} +(1.55381 - 5.79889i) q^{32} +(0.956106 - 1.18069i) q^{33} +(-0.480271 - 1.47812i) q^{34} +(4.80348 + 3.45348i) q^{35} +(1.06279 - 3.27094i) q^{36} +(-2.37321 - 3.65442i) q^{37} +(11.4012 - 0.597511i) q^{38} +(-0.0442678 - 0.208263i) q^{39} +(2.53093 + 1.96881i) q^{40} +(-5.70437 + 1.85346i) q^{41} +(-1.48669 + 0.829693i) q^{42} +(3.73281 - 3.73281i) q^{43} +(-5.03100 + 0.528779i) q^{44} +(4.85309 + 4.20083i) q^{45} +(0.302906 - 2.88195i) q^{46} +(-3.45442 + 8.99906i) q^{47} +(-1.59048 + 0.810389i) q^{48} +(-6.80171 - 1.65430i) q^{49} +(7.80224 - 4.36789i) q^{50} +(-0.156360 + 0.270823i) q^{51} +(-0.386121 + 0.594574i) q^{52} +(5.33703 + 6.59068i) q^{53} +(-3.45108 + 1.53652i) q^{54} +(2.74128 - 9.03429i) q^{55} +(-3.65004 - 1.03526i) q^{56} +(-1.62436 - 1.62436i) q^{57} +(-2.35694 - 1.90861i) q^{58} +(4.53398 - 5.03550i) q^{59} +(0.0692713 + 0.961538i) q^{60} +(-0.917861 + 0.826446i) q^{61} +(14.3375 + 7.30532i) q^{62} +(-7.18801 - 2.45190i) q^{63} +(0.774814 + 0.251752i) q^{64} +(-0.742177 - 1.09534i) q^{65} +(2.01909 + 1.81800i) q^{66} +(-4.10789 - 10.7014i) q^{67} +(1.00578 - 0.269499i) q^{68} +(-0.471717 + 0.342723i) q^{69} +(-6.61709 + 8.25523i) q^{70} +(-11.3299 - 8.23164i) q^{71} +(-3.84293 - 1.47516i) q^{72} +(2.92452 + 1.89921i) q^{73} +(6.74848 - 3.89623i) q^{74} +(-1.70359 - 0.578583i) q^{75} +7.64897i q^{76} +(1.00564 + 11.1254i) q^{77} +(0.376077 - 0.0595648i) q^{78} +(5.74668 + 12.9073i) q^{79} +(-7.25974 + 8.38696i) q^{80} +(-7.17266 - 3.19347i) q^{81} +(-2.77617 - 10.3608i) q^{82} +(3.01586 + 0.477665i) q^{83} +(-0.502981 - 1.02377i) q^{84} +(-0.266404 + 1.92496i) q^{85} +(6.31698 + 7.01572i) q^{86} +(0.0319372 + 0.609399i) q^{87} +(0.316873 + 6.04629i) q^{88} +(11.4094 + 12.6715i) q^{89} +(-7.95640 + 8.27388i) q^{90} +(1.30039 + 0.871684i) q^{91} +(1.91756 + 0.303712i) q^{92} +(-0.837993 - 3.12743i) q^{93} +(-15.7479 - 7.01144i) q^{94} +(-13.1521 - 5.55010i) q^{95} +(-0.878647 - 1.97347i) q^{96} +(-11.5748 + 1.83327i) q^{97} +(3.59099 - 11.9922i) q^{98} +12.1198i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9} - 36 q^{10} - 6 q^{11} - 36 q^{12} - 20 q^{14} - 28 q^{15} - 30 q^{16} - 42 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} + 32 q^{22} - 40 q^{23} + 2 q^{25} - 48 q^{26} + 22 q^{28} - 58 q^{30} - 18 q^{31} + 8 q^{32} - 30 q^{33} - 2 q^{35} + 40 q^{36} - 10 q^{37} + 72 q^{38} + 30 q^{39} - 48 q^{40} + 6 q^{42} - 108 q^{43} - 10 q^{44} + 186 q^{45} - 6 q^{46} - 54 q^{47} - 248 q^{50} - 16 q^{51} + 216 q^{52} + 50 q^{53} - 30 q^{54} + 4 q^{56} - 216 q^{57} - 4 q^{58} + 90 q^{59} + 96 q^{60} - 18 q^{61} - 66 q^{63} - 100 q^{64} + 14 q^{65} - 90 q^{66} + 4 q^{67} + 342 q^{68} - 60 q^{70} - 24 q^{71} + 58 q^{72} - 6 q^{73} + 216 q^{75} - 80 q^{77} - 132 q^{78} - 10 q^{79} - 6 q^{80} - 10 q^{81} + 216 q^{82} + 20 q^{84} - 48 q^{85} - 6 q^{86} - 48 q^{87} - 122 q^{88} + 120 q^{89} - 12 q^{91} - 4 q^{92} + 106 q^{93} - 30 q^{94} - 98 q^{95} - 90 q^{96} + 222 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0935941 + 1.78588i −0.0661810 + 1.26281i 0.740595 + 0.671952i \(0.234544\pi\)
−0.806776 + 0.590857i \(0.798790\pi\)
\(3\) 0.279642 0.226450i 0.161451 0.130741i −0.545190 0.838312i \(-0.683543\pi\)
0.706642 + 0.707572i \(0.250209\pi\)
\(4\) −1.19157 0.125239i −0.595785 0.0626196i
\(5\) 1.07995 1.95799i 0.482968 0.875638i
\(6\) 0.378240 + 0.520602i 0.154416 + 0.212535i
\(7\) −0.314872 + 2.62695i −0.119010 + 0.992893i
\(8\) −0.224327 + 1.41635i −0.0793117 + 0.500755i
\(9\) −0.596815 + 2.80779i −0.198938 + 0.935931i
\(10\) 3.39566 + 2.11192i 1.07380 + 0.667847i
\(11\) 4.12989 0.877836i 1.24521 0.264678i 0.462250 0.886750i \(-0.347042\pi\)
0.782960 + 0.622072i \(0.213709\pi\)
\(12\) −0.361574 + 0.234809i −0.104377 + 0.0677834i
\(13\) 0.268631 0.527217i 0.0745047 0.146224i −0.850749 0.525571i \(-0.823852\pi\)
0.925254 + 0.379348i \(0.123852\pi\)
\(14\) −4.66195 0.808191i −1.24596 0.215998i
\(15\) −0.141386 0.792089i −0.0365058 0.204517i
\(16\) −4.85234 1.03140i −1.21308 0.257849i
\(17\) −0.811348 + 0.311447i −0.196781 + 0.0755371i −0.454763 0.890613i \(-0.650276\pi\)
0.257982 + 0.966150i \(0.416943\pi\)
\(18\) −4.95853 1.32863i −1.16874 0.313162i
\(19\) −0.667317 6.34910i −0.153093 1.45658i −0.753795 0.657110i \(-0.771779\pi\)
0.600702 0.799473i \(-0.294888\pi\)
\(20\) −1.53205 + 2.19783i −0.342577 + 0.491449i
\(21\) 0.506820 + 0.805908i 0.110597 + 0.175863i
\(22\) 1.18118 + 7.45766i 0.251828 + 1.58998i
\(23\) −1.61819 0.0848056i −0.337415 0.0176832i −0.117124 0.993117i \(-0.537367\pi\)
−0.220291 + 0.975434i \(0.570701\pi\)
\(24\) 0.258000 + 0.446869i 0.0526640 + 0.0912168i
\(25\) −2.66742 4.22905i −0.533485 0.845810i
\(26\) 0.916406 + 0.529087i 0.179722 + 0.103762i
\(27\) 0.959010 + 1.88216i 0.184562 + 0.362223i
\(28\) 0.704189 3.09076i 0.133079 0.584099i
\(29\) −0.996818 + 1.37200i −0.185104 + 0.254774i −0.891477 0.453066i \(-0.850330\pi\)
0.706373 + 0.707840i \(0.250330\pi\)
\(30\) 1.42781 0.178365i 0.260681 0.0325648i
\(31\) 3.65980 8.22005i 0.657320 1.47636i −0.209534 0.977801i \(-0.567195\pi\)
0.866853 0.498563i \(-0.166139\pi\)
\(32\) 1.55381 5.79889i 0.274677 1.02511i
\(33\) 0.956106 1.18069i 0.166437 0.205532i
\(34\) −0.480271 1.47812i −0.0823657 0.253496i
\(35\) 4.80348 + 3.45348i 0.811937 + 0.583745i
\(36\) 1.06279 3.27094i 0.177132 0.545157i
\(37\) −2.37321 3.65442i −0.390153 0.600782i 0.587952 0.808896i \(-0.299934\pi\)
−0.978105 + 0.208113i \(0.933268\pi\)
\(38\) 11.4012 0.597511i 1.84952 0.0969291i
\(39\) −0.0442678 0.208263i −0.00708851 0.0333488i
\(40\) 2.53093 + 1.96881i 0.400175 + 0.311297i
\(41\) −5.70437 + 1.85346i −0.890873 + 0.289462i −0.718465 0.695563i \(-0.755155\pi\)
−0.172408 + 0.985026i \(0.555155\pi\)
\(42\) −1.48669 + 0.829693i −0.229401 + 0.128024i
\(43\) 3.73281 3.73281i 0.569248 0.569248i −0.362670 0.931918i \(-0.618135\pi\)
0.931918 + 0.362670i \(0.118135\pi\)
\(44\) −5.03100 + 0.528779i −0.758452 + 0.0797165i
\(45\) 4.85309 + 4.20083i 0.723456 + 0.626222i
\(46\) 0.302906 2.88195i 0.0446610 0.424921i
\(47\) −3.45442 + 8.99906i −0.503878 + 1.31265i 0.411997 + 0.911185i \(0.364831\pi\)
−0.915875 + 0.401463i \(0.868502\pi\)
\(48\) −1.59048 + 0.810389i −0.229566 + 0.116970i
\(49\) −6.80171 1.65430i −0.971673 0.236329i
\(50\) 7.80224 4.36789i 1.10340 0.617713i
\(51\) −0.156360 + 0.270823i −0.0218948 + 0.0379228i
\(52\) −0.386121 + 0.594574i −0.0535453 + 0.0824525i
\(53\) 5.33703 + 6.59068i 0.733098 + 0.905300i 0.998264 0.0589026i \(-0.0187601\pi\)
−0.265166 + 0.964203i \(0.585427\pi\)
\(54\) −3.45108 + 1.53652i −0.469632 + 0.209094i
\(55\) 2.74128 9.03429i 0.369634 1.21818i
\(56\) −3.65004 1.03526i −0.487757 0.138343i
\(57\) −1.62436 1.62436i −0.215152 0.215152i
\(58\) −2.35694 1.90861i −0.309481 0.250613i
\(59\) 4.53398 5.03550i 0.590274 0.655566i −0.371813 0.928308i \(-0.621264\pi\)
0.962087 + 0.272742i \(0.0879305\pi\)
\(60\) 0.0692713 + 0.961538i 0.00894289 + 0.124134i
\(61\) −0.917861 + 0.826446i −0.117520 + 0.105816i −0.725796 0.687910i \(-0.758528\pi\)
0.608276 + 0.793726i \(0.291862\pi\)
\(62\) 14.3375 + 7.30532i 1.82086 + 0.927777i
\(63\) −7.18801 2.45190i −0.905604 0.308910i
\(64\) 0.774814 + 0.251752i 0.0968517 + 0.0314690i
\(65\) −0.742177 1.09534i −0.0920557 0.135861i
\(66\) 2.01909 + 1.81800i 0.248533 + 0.223780i
\(67\) −4.10789 10.7014i −0.501859 1.30739i −0.917455 0.397838i \(-0.869760\pi\)
0.415596 0.909549i \(-0.363573\pi\)
\(68\) 1.00578 0.269499i 0.121969 0.0326815i
\(69\) −0.471717 + 0.342723i −0.0567881 + 0.0412590i
\(70\) −6.61709 + 8.25523i −0.790894 + 0.986689i
\(71\) −11.3299 8.23164i −1.34461 0.976915i −0.999261 0.0384406i \(-0.987761\pi\)
−0.345348 0.938475i \(-0.612239\pi\)
\(72\) −3.84293 1.47516i −0.452894 0.173850i
\(73\) 2.92452 + 1.89921i 0.342289 + 0.222285i 0.704323 0.709880i \(-0.251251\pi\)
−0.362033 + 0.932165i \(0.617917\pi\)
\(74\) 6.74848 3.89623i 0.784494 0.452928i
\(75\) −1.70359 0.578583i −0.196714 0.0668090i
\(76\) 7.64897i 0.877397i
\(77\) 1.00564 + 11.1254i 0.114604 + 1.26786i
\(78\) 0.376077 0.0595648i 0.0425823 0.00674438i
\(79\) 5.74668 + 12.9073i 0.646552 + 1.45218i 0.877675 + 0.479255i \(0.159093\pi\)
−0.231123 + 0.972924i \(0.574240\pi\)
\(80\) −7.25974 + 8.38696i −0.811663 + 0.937691i
\(81\) −7.17266 3.19347i −0.796962 0.354830i
\(82\) −2.77617 10.3608i −0.306577 1.14416i
\(83\) 3.01586 + 0.477665i 0.331033 + 0.0524305i 0.319739 0.947506i \(-0.396405\pi\)
0.0112944 + 0.999936i \(0.496405\pi\)
\(84\) −0.502981 1.02377i −0.0548797 0.111702i
\(85\) −0.266404 + 1.92496i −0.0288956 + 0.208791i
\(86\) 6.31698 + 7.01572i 0.681178 + 0.756525i
\(87\) 0.0319372 + 0.609399i 0.00342403 + 0.0653344i
\(88\) 0.316873 + 6.04629i 0.0337787 + 0.644537i
\(89\) 11.4094 + 12.6715i 1.20940 + 1.34317i 0.922875 + 0.385100i \(0.125833\pi\)
0.286523 + 0.958073i \(0.407500\pi\)
\(90\) −7.95640 + 8.27388i −0.838678 + 0.872143i
\(91\) 1.30039 + 0.871684i 0.136318 + 0.0913774i
\(92\) 1.91756 + 0.303712i 0.199920 + 0.0316642i
\(93\) −0.837993 3.12743i −0.0868958 0.324300i
\(94\) −15.7479 7.01144i −1.62428 0.723174i
\(95\) −13.1521 5.55010i −1.34938 0.569428i
\(96\) −0.878647 1.97347i −0.0896765 0.201417i
\(97\) −11.5748 + 1.83327i −1.17524 + 0.186140i −0.713358 0.700800i \(-0.752826\pi\)
−0.461884 + 0.886940i \(0.652826\pi\)
\(98\) 3.59099 11.9922i 0.362745 1.21140i
\(99\) 12.1198i 1.21809i
\(100\) 2.64878 + 5.37328i 0.264878 + 0.537328i
\(101\) 3.84878 2.22209i 0.382967 0.221106i −0.296141 0.955144i \(-0.595700\pi\)
0.679109 + 0.734038i \(0.262367\pi\)
\(102\) −0.469024 0.304588i −0.0464403 0.0301587i
\(103\) −1.95677 0.751133i −0.192806 0.0740114i 0.260049 0.965595i \(-0.416261\pi\)
−0.452855 + 0.891584i \(0.649595\pi\)
\(104\) 0.686462 + 0.498744i 0.0673131 + 0.0489058i
\(105\) 2.12530 0.122008i 0.207408 0.0119068i
\(106\) −12.2697 + 8.91446i −1.19174 + 0.865849i
\(107\) 3.97800 1.06590i 0.384568 0.103045i −0.0613552 0.998116i \(-0.519542\pi\)
0.445923 + 0.895071i \(0.352876\pi\)
\(108\) −0.907008 2.36284i −0.0872769 0.227364i
\(109\) 8.87403 + 7.99021i 0.849977 + 0.765323i 0.973902 0.226968i \(-0.0728814\pi\)
−0.123925 + 0.992292i \(0.539548\pi\)
\(110\) 15.8776 + 5.74116i 1.51387 + 0.547398i
\(111\) −1.49119 0.484517i −0.141537 0.0459883i
\(112\) 4.23729 12.4221i 0.400386 1.17378i
\(113\) −3.18186 1.62124i −0.299324 0.152513i 0.297878 0.954604i \(-0.403721\pi\)
−0.597202 + 0.802091i \(0.703721\pi\)
\(114\) 3.05295 2.74889i 0.285935 0.257457i
\(115\) −1.91361 + 3.07680i −0.178445 + 0.286913i
\(116\) 1.35961 1.51000i 0.126236 0.140200i
\(117\) 1.31999 + 1.06891i 0.122034 + 0.0988208i
\(118\) 8.56845 + 8.56845i 0.788789 + 0.788789i
\(119\) −0.562685 2.22943i −0.0515813 0.204372i
\(120\) 1.15359 0.0225650i 0.105308 0.00205989i
\(121\) 6.23643 2.77664i 0.566948 0.252421i
\(122\) −1.39003 1.71654i −0.125847 0.155408i
\(123\) −1.17547 + 1.81006i −0.105988 + 0.163207i
\(124\) −5.39038 + 9.33642i −0.484071 + 0.838435i
\(125\) −11.1611 + 0.655624i −0.998279 + 0.0586408i
\(126\) 5.05155 12.6074i 0.450028 1.12316i
\(127\) −2.93160 + 1.49373i −0.260138 + 0.132547i −0.579196 0.815188i \(-0.696633\pi\)
0.319058 + 0.947735i \(0.396633\pi\)
\(128\) 3.78077 9.84925i 0.334176 0.870559i
\(129\) 0.198557 1.88914i 0.0174820 0.166330i
\(130\) 2.02562 1.22292i 0.177658 0.107257i
\(131\) −3.66772 + 0.385493i −0.320450 + 0.0336806i −0.263388 0.964690i \(-0.584840\pi\)
−0.0570620 + 0.998371i \(0.518173\pi\)
\(132\) −1.28714 + 1.28714i −0.112031 + 0.112031i
\(133\) 16.8889 + 0.246144i 1.46445 + 0.0213434i
\(134\) 19.4960 6.33462i 1.68419 0.547228i
\(135\) 4.72093 + 0.154910i 0.406313 + 0.0133326i
\(136\) −0.259110 1.21902i −0.0222185 0.104530i
\(137\) −1.00746 + 0.0527989i −0.0860734 + 0.00451092i −0.0953240 0.995446i \(-0.530389\pi\)
0.00925064 + 0.999957i \(0.497055\pi\)
\(138\) −0.567912 0.874508i −0.0483439 0.0744431i
\(139\) 3.10037 9.54195i 0.262970 0.809337i −0.729185 0.684317i \(-0.760100\pi\)
0.992154 0.125020i \(-0.0398996\pi\)
\(140\) −5.29118 4.71665i −0.447186 0.398630i
\(141\) 1.07183 + 3.29877i 0.0902647 + 0.277806i
\(142\) 15.7611 19.4634i 1.32265 1.63333i
\(143\) 0.646606 2.41316i 0.0540719 0.201799i
\(144\) 5.79190 13.0088i 0.482658 1.08407i
\(145\) 1.60985 + 3.43345i 0.133691 + 0.285132i
\(146\) −3.66548 + 5.04510i −0.303357 + 0.417535i
\(147\) −2.27666 + 1.07763i −0.187776 + 0.0888816i
\(148\) 2.37017 + 4.65171i 0.194827 + 0.382369i
\(149\) 6.19698 + 3.57783i 0.507676 + 0.293107i 0.731878 0.681436i \(-0.238644\pi\)
−0.224202 + 0.974543i \(0.571977\pi\)
\(150\) 1.19273 2.98826i 0.0973857 0.243990i
\(151\) 12.2345 + 21.1907i 0.995627 + 1.72448i 0.578718 + 0.815527i \(0.303553\pi\)
0.416908 + 0.908949i \(0.363114\pi\)
\(152\) 9.14223 + 0.479124i 0.741532 + 0.0388621i
\(153\) −0.390255 2.46397i −0.0315502 0.199200i
\(154\) −19.9628 + 0.754685i −1.60865 + 0.0608142i
\(155\) −12.1423 16.0431i −0.975297 1.28861i
\(156\) 0.0266654 + 0.253705i 0.00213494 + 0.0203126i
\(157\) −19.3989 5.19791i −1.54820 0.414838i −0.619294 0.785159i \(-0.712581\pi\)
−0.928904 + 0.370321i \(0.879248\pi\)
\(158\) −23.5887 + 9.05485i −1.87662 + 0.720365i
\(159\) 2.98492 + 0.634464i 0.236719 + 0.0503162i
\(160\) −9.67612 9.30484i −0.764964 0.735612i
\(161\) 0.732301 4.22419i 0.0577134 0.332913i
\(162\) 6.37449 12.5106i 0.500827 0.982928i
\(163\) −13.5326 + 8.78818i −1.05996 + 0.688343i −0.952089 0.305822i \(-0.901069\pi\)
−0.107867 + 0.994165i \(0.534402\pi\)
\(164\) 7.02929 1.49412i 0.548895 0.116671i
\(165\) −1.27924 3.14713i −0.0995883 0.245004i
\(166\) −1.13532 + 5.34126i −0.0881179 + 0.414562i
\(167\) 1.58959 10.0363i 0.123006 0.776630i −0.846649 0.532152i \(-0.821383\pi\)
0.969655 0.244478i \(-0.0786165\pi\)
\(168\) −1.25514 + 0.537046i −0.0968361 + 0.0414340i
\(169\) 7.43541 + 10.2340i 0.571955 + 0.787228i
\(170\) −3.41281 0.655931i −0.261750 0.0503076i
\(171\) 18.2252 + 1.91555i 1.39372 + 0.146486i
\(172\) −4.91540 + 3.98041i −0.374795 + 0.303503i
\(173\) −0.175568 + 3.35004i −0.0133482 + 0.254699i 0.983802 + 0.179258i \(0.0573698\pi\)
−0.997150 + 0.0754409i \(0.975964\pi\)
\(174\) −1.09130 −0.0827315
\(175\) 11.9494 5.67557i 0.903289 0.429033i
\(176\) −20.9450 −1.57879
\(177\) 0.127605 2.43485i 0.00959140 0.183015i
\(178\) −23.6976 + 19.1899i −1.77621 + 1.43835i
\(179\) −2.88851 0.303595i −0.215897 0.0226917i −0.00403785 0.999992i \(-0.501285\pi\)
−0.211860 + 0.977300i \(0.567952\pi\)
\(180\) −5.25669 5.61338i −0.391811 0.418397i
\(181\) 4.64922 + 6.39910i 0.345574 + 0.475641i 0.946059 0.323994i \(-0.105026\pi\)
−0.600485 + 0.799636i \(0.705026\pi\)
\(182\) −1.67843 + 2.24076i −0.124414 + 0.166096i
\(183\) −0.0695242 + 0.438958i −0.00513937 + 0.0324487i
\(184\) 0.483118 2.27289i 0.0356159 0.167560i
\(185\) −9.71824 + 0.700124i −0.714499 + 0.0514741i
\(186\) 5.66366 1.20385i 0.415279 0.0882704i
\(187\) −3.07738 + 1.99847i −0.225040 + 0.146143i
\(188\) 5.24321 10.2904i 0.382401 0.750504i
\(189\) −5.24631 + 1.92663i −0.381613 + 0.140142i
\(190\) 11.1428 22.9687i 0.808382 1.66632i
\(191\) 14.2348 + 3.02570i 1.03000 + 0.218932i 0.691758 0.722129i \(-0.256836\pi\)
0.338237 + 0.941061i \(0.390170\pi\)
\(192\) 0.273680 0.105056i 0.0197511 0.00758175i
\(193\) 0.600403 + 0.160877i 0.0432179 + 0.0115802i 0.280363 0.959894i \(-0.409545\pi\)
−0.237145 + 0.971474i \(0.576212\pi\)
\(194\) −2.19067 20.8428i −0.157281 1.49643i
\(195\) −0.455584 0.138238i −0.0326250 0.00989943i
\(196\) 7.89754 + 2.82306i 0.564110 + 0.201647i
\(197\) 3.81776 + 24.1044i 0.272004 + 1.71736i 0.624052 + 0.781383i \(0.285485\pi\)
−0.352048 + 0.935982i \(0.614515\pi\)
\(198\) −21.6445 1.13434i −1.53821 0.0806141i
\(199\) −4.29215 7.43422i −0.304262 0.526998i 0.672835 0.739793i \(-0.265077\pi\)
−0.977097 + 0.212795i \(0.931743\pi\)
\(200\) 6.58818 2.82931i 0.465855 0.200062i
\(201\) −3.57207 2.06234i −0.251955 0.145466i
\(202\) 3.60817 + 7.08143i 0.253870 + 0.498248i
\(203\) −3.29031 3.05059i −0.230934 0.214110i
\(204\) 0.220231 0.303123i 0.0154193 0.0212228i
\(205\) −2.53137 + 13.1707i −0.176799 + 0.919883i
\(206\) 1.52458 3.42426i 0.106222 0.238579i
\(207\) 1.20387 4.49292i 0.0836751 0.312280i
\(208\) −1.84726 + 2.28117i −0.128084 + 0.158171i
\(209\) −8.32941 25.6353i −0.576158 1.77323i
\(210\) 0.0189771 + 3.80695i 0.00130954 + 0.262704i
\(211\) 1.28435 3.95282i 0.0884183 0.272123i −0.897064 0.441900i \(-0.854305\pi\)
0.985483 + 0.169777i \(0.0543046\pi\)
\(212\) −5.53404 8.52167i −0.380079 0.585271i
\(213\) −5.03236 + 0.263735i −0.344812 + 0.0180708i
\(214\) 1.53126 + 7.20400i 0.104675 + 0.492455i
\(215\) −3.27755 11.3400i −0.223527 0.773383i
\(216\) −2.88093 + 0.936071i −0.196023 + 0.0636916i
\(217\) 20.4413 + 12.2024i 1.38764 + 0.828351i
\(218\) −15.1001 + 15.1001i −1.02271 + 1.02271i
\(219\) 1.24789 0.131159i 0.0843249 0.00886290i
\(220\) −4.39788 + 10.4217i −0.296505 + 0.702630i
\(221\) −0.0537525 + 0.511421i −0.00361578 + 0.0344019i
\(222\) 1.00486 2.61774i 0.0674416 0.175691i
\(223\) 11.3328 5.77436i 0.758902 0.386680i −0.0313132 0.999510i \(-0.509969\pi\)
0.790215 + 0.612830i \(0.209969\pi\)
\(224\) 14.7441 + 5.90768i 0.985134 + 0.394723i
\(225\) 13.4663 4.96561i 0.897750 0.331041i
\(226\) 3.19314 5.53069i 0.212405 0.367896i
\(227\) 3.81371 5.87260i 0.253125 0.389778i −0.689150 0.724619i \(-0.742016\pi\)
0.942275 + 0.334841i \(0.108682\pi\)
\(228\) 1.73211 + 2.13897i 0.114712 + 0.141657i
\(229\) −13.5136 + 6.01664i −0.893003 + 0.397591i −0.801347 0.598200i \(-0.795883\pi\)
−0.0916563 + 0.995791i \(0.529216\pi\)
\(230\) −5.31570 3.70545i −0.350507 0.244330i
\(231\) 2.80057 + 2.88341i 0.184264 + 0.189714i
\(232\) −1.71962 1.71962i −0.112899 0.112899i
\(233\) 1.98260 + 1.60547i 0.129884 + 0.105178i 0.692061 0.721839i \(-0.256703\pi\)
−0.562177 + 0.827017i \(0.690036\pi\)
\(234\) −2.03249 + 2.25731i −0.132868 + 0.147565i
\(235\) 13.8894 + 16.4822i 0.906048 + 1.07518i
\(236\) −6.03320 + 5.43232i −0.392728 + 0.353614i
\(237\) 4.52986 + 2.30808i 0.294246 + 0.149926i
\(238\) 4.03417 0.796227i 0.261496 0.0516118i
\(239\) −0.945911 0.307345i −0.0611859 0.0198805i 0.278264 0.960505i \(-0.410241\pi\)
−0.339450 + 0.940624i \(0.610241\pi\)
\(240\) −0.130903 + 3.98931i −0.00844977 + 0.257509i
\(241\) −3.98537 3.58844i −0.256720 0.231152i 0.530713 0.847551i \(-0.321924\pi\)
−0.787434 + 0.616399i \(0.788591\pi\)
\(242\) 4.37505 + 11.3974i 0.281239 + 0.732653i
\(243\) −8.85021 + 2.37141i −0.567741 + 0.152126i
\(244\) 1.19720 0.869816i 0.0766428 0.0556843i
\(245\) −10.5846 + 11.5311i −0.676225 + 0.736695i
\(246\) −3.12253 2.26865i −0.199086 0.144644i
\(247\) −3.52661 1.35374i −0.224393 0.0861364i
\(248\) 10.8215 + 7.02754i 0.687163 + 0.446249i
\(249\) 0.951527 0.549365i 0.0603006 0.0348146i
\(250\) −0.126253 19.9938i −0.00798496 1.26452i
\(251\) 15.5071i 0.978800i 0.872059 + 0.489400i \(0.162784\pi\)
−0.872059 + 0.489400i \(0.837216\pi\)
\(252\) 8.25794 + 3.82183i 0.520202 + 0.240753i
\(253\) −6.75739 + 1.07026i −0.424833 + 0.0672870i
\(254\) −2.39324 5.37530i −0.150165 0.337277i
\(255\) 0.361408 + 0.598626i 0.0226322 + 0.0374874i
\(256\) 18.7242 + 8.33657i 1.17027 + 0.521036i
\(257\) 4.03975 + 15.0766i 0.251993 + 0.940449i 0.969739 + 0.244145i \(0.0785072\pi\)
−0.717746 + 0.696305i \(0.754826\pi\)
\(258\) 3.35520 + 0.531412i 0.208886 + 0.0330842i
\(259\) 10.3472 5.08362i 0.642945 0.315881i
\(260\) 0.747177 + 1.39813i 0.0463379 + 0.0867082i
\(261\) −3.25738 3.61769i −0.201627 0.223929i
\(262\) −0.345168 6.58619i −0.0213245 0.406896i
\(263\) 0.215114 + 4.10463i 0.0132645 + 0.253102i 0.997211 + 0.0746370i \(0.0237798\pi\)
−0.983946 + 0.178465i \(0.942887\pi\)
\(264\) 1.45779 + 1.61904i 0.0897208 + 0.0996451i
\(265\) 18.6682 3.33224i 1.14678 0.204698i
\(266\) −2.02028 + 30.1385i −0.123872 + 1.84791i
\(267\) 6.06001 + 0.959811i 0.370866 + 0.0587395i
\(268\) 3.55461 + 13.2660i 0.217132 + 0.810349i
\(269\) −10.7761 4.79784i −0.657032 0.292529i 0.0510119 0.998698i \(-0.483755\pi\)
−0.708044 + 0.706169i \(0.750422\pi\)
\(270\) −0.718503 + 8.41653i −0.0437267 + 0.512214i
\(271\) −2.73943 6.15287i −0.166409 0.373760i 0.811022 0.585015i \(-0.198912\pi\)
−0.977431 + 0.211255i \(0.932245\pi\)
\(272\) 4.25816 0.674426i 0.258189 0.0408931i
\(273\) 0.561036 0.0507128i 0.0339554 0.00306928i
\(274\) 1.80415i 0.108993i
\(275\) −14.7286 15.1240i −0.888167 0.912009i
\(276\) 0.605007 0.349301i 0.0364171 0.0210254i
\(277\) −25.5422 16.5873i −1.53468 0.996635i −0.987140 0.159857i \(-0.948897\pi\)
−0.547543 0.836778i \(-0.684437\pi\)
\(278\) 16.7506 + 6.42996i 1.00464 + 0.385643i
\(279\) 20.8960 + 15.1818i 1.25101 + 0.908911i
\(280\) −5.96889 + 6.02869i −0.356709 + 0.360283i
\(281\) 3.78178 2.74762i 0.225602 0.163909i −0.469243 0.883069i \(-0.655473\pi\)
0.694845 + 0.719160i \(0.255473\pi\)
\(282\) −5.99152 + 1.60542i −0.356790 + 0.0956016i
\(283\) −2.00715 5.22881i −0.119313 0.310821i 0.860898 0.508778i \(-0.169903\pi\)
−0.980211 + 0.197957i \(0.936569\pi\)
\(284\) 12.4694 + 11.2275i 0.739924 + 0.666231i
\(285\) −4.93470 + 1.42625i −0.292306 + 0.0844838i
\(286\) 4.24911 + 1.38062i 0.251255 + 0.0816377i
\(287\) −3.07280 15.5687i −0.181382 0.918991i
\(288\) 15.3547 + 7.82364i 0.904787 + 0.461012i
\(289\) −12.0722 + 10.8698i −0.710128 + 0.639402i
\(290\) −6.28241 + 2.55365i −0.368916 + 0.149956i
\(291\) −2.82166 + 3.13377i −0.165408 + 0.183705i
\(292\) −3.24692 2.62930i −0.190012 0.153868i
\(293\) −7.38400 7.38400i −0.431378 0.431378i 0.457719 0.889097i \(-0.348667\pi\)
−0.889097 + 0.457719i \(0.848667\pi\)
\(294\) −1.71144 4.16671i −0.0998133 0.243007i
\(295\) −4.96297 14.3155i −0.288955 0.833483i
\(296\) 5.70830 2.54150i 0.331788 0.147722i
\(297\) 5.61284 + 6.93128i 0.325690 + 0.402194i
\(298\) −6.96958 + 10.7322i −0.403737 + 0.621700i
\(299\) −0.479406 + 0.830355i −0.0277247 + 0.0480207i
\(300\) 1.95749 + 0.902779i 0.113016 + 0.0521219i
\(301\) 8.63053 + 10.9812i 0.497456 + 0.632948i
\(302\) −38.9892 + 19.8660i −2.24358 + 1.14316i
\(303\) 0.573087 1.49294i 0.0329230 0.0857674i
\(304\) −3.31039 + 31.4962i −0.189864 + 1.80643i
\(305\) 0.626927 + 2.68968i 0.0358977 + 0.154011i
\(306\) 4.43689 0.466336i 0.253640 0.0266587i
\(307\) 19.4310 19.4310i 1.10899 1.10899i 0.115702 0.993284i \(-0.463088\pi\)
0.993284 0.115702i \(-0.0369117\pi\)
\(308\) 0.195044 13.3827i 0.0111137 0.762549i
\(309\) −0.717289 + 0.233061i −0.0408051 + 0.0132584i
\(310\) 29.7875 20.1833i 1.69182 1.14633i
\(311\) 3.11924 + 14.6749i 0.176876 + 0.832135i 0.973684 + 0.227902i \(0.0731867\pi\)
−0.796808 + 0.604232i \(0.793480\pi\)
\(312\) 0.304904 0.0159793i 0.0172618 0.000904652i
\(313\) −16.6103 25.5775i −0.938867 1.44573i −0.894681 0.446705i \(-0.852597\pi\)
−0.0441858 0.999023i \(-0.514069\pi\)
\(314\) 11.0985 34.1576i 0.626323 1.92762i
\(315\) −12.5635 + 11.4261i −0.707871 + 0.643788i
\(316\) −5.23108 16.0996i −0.294271 0.905674i
\(317\) −15.9146 + 19.6529i −0.893852 + 1.10382i 0.100206 + 0.994967i \(0.468050\pi\)
−0.994058 + 0.108849i \(0.965283\pi\)
\(318\) −1.41245 + 5.27133i −0.0792061 + 0.295601i
\(319\) −2.91236 + 6.54127i −0.163061 + 0.366241i
\(320\) 1.32969 1.24520i 0.0743317 0.0696085i
\(321\) 0.871043 1.19889i 0.0486169 0.0669154i
\(322\) 7.47537 + 1.70316i 0.416586 + 0.0949136i
\(323\) 2.51883 + 4.94349i 0.140152 + 0.275063i
\(324\) 8.14678 + 4.70355i 0.452599 + 0.261308i
\(325\) −2.94618 + 0.270259i −0.163425 + 0.0149913i
\(326\) −14.4281 24.9902i −0.799097 1.38408i
\(327\) 4.29093 + 0.224878i 0.237289 + 0.0124358i
\(328\) −1.34550 8.49516i −0.0742928 0.469066i
\(329\) −22.5524 11.9081i −1.24335 0.656516i
\(330\) 5.74013 1.99001i 0.315984 0.109546i
\(331\) 0.691950 + 6.58346i 0.0380330 + 0.361860i 0.996942 + 0.0781459i \(0.0249000\pi\)
−0.958909 + 0.283714i \(0.908433\pi\)
\(332\) −3.53378 0.946875i −0.193942 0.0519665i
\(333\) 11.6772 4.48246i 0.639907 0.245637i
\(334\) 17.7748 + 3.77815i 0.972595 + 0.206731i
\(335\) −25.3896 3.51379i −1.38718 0.191979i
\(336\) −1.62805 4.43327i −0.0888175 0.241855i
\(337\) 2.24236 4.40088i 0.122149 0.239731i −0.821833 0.569729i \(-0.807048\pi\)
0.943982 + 0.329998i \(0.107048\pi\)
\(338\) −18.9726 + 12.3209i −1.03197 + 0.670170i
\(339\) −1.25691 + 0.267165i −0.0682660 + 0.0145104i
\(340\) 0.558519 2.26036i 0.0302900 0.122585i
\(341\) 7.89874 37.1606i 0.427741 2.01236i
\(342\) −5.12671 + 32.3688i −0.277221 + 1.75030i
\(343\) 6.48744 17.3468i 0.350289 0.936642i
\(344\) 4.44958 + 6.12432i 0.239905 + 0.330201i
\(345\) 0.161616 + 1.29374i 0.00870112 + 0.0696526i
\(346\) −5.96635 0.627089i −0.320753 0.0337125i
\(347\) 20.0098 16.2036i 1.07418 0.869857i 0.0822499 0.996612i \(-0.473789\pi\)
0.991934 + 0.126755i \(0.0404561\pi\)
\(348\) 0.0382651 0.730141i 0.00205122 0.0391397i
\(349\) −23.8148 −1.27478 −0.637389 0.770543i \(-0.719985\pi\)
−0.637389 + 0.770543i \(0.719985\pi\)
\(350\) 9.01751 + 21.8714i 0.482006 + 1.16908i
\(351\) 1.24993 0.0667163
\(352\) 1.32659 25.3128i 0.0707073 1.34918i
\(353\) 24.6090 19.9280i 1.30980 1.06066i 0.316089 0.948730i \(-0.397630\pi\)
0.993716 0.111929i \(-0.0357031\pi\)
\(354\) 4.33642 + 0.455776i 0.230478 + 0.0242242i
\(355\) −28.3531 + 13.2940i −1.50483 + 0.705572i
\(356\) −12.0082 16.5279i −0.636433 0.875975i
\(357\) −0.662205 0.496024i −0.0350476 0.0262524i
\(358\) 0.812532 5.13013i 0.0429437 0.271136i
\(359\) −2.63745 + 12.4082i −0.139199 + 0.654881i 0.852114 + 0.523357i \(0.175320\pi\)
−0.991313 + 0.131524i \(0.958013\pi\)
\(360\) −7.03851 + 5.93131i −0.370962 + 0.312607i
\(361\) −21.2809 + 4.52340i −1.12005 + 0.238073i
\(362\) −11.8632 + 7.70404i −0.623515 + 0.404915i
\(363\) 1.11520 2.18870i 0.0585328 0.114877i
\(364\) −1.44034 1.20153i −0.0754941 0.0629775i
\(365\) 6.87696 3.67513i 0.359956 0.192365i
\(366\) −0.777421 0.165246i −0.0406364 0.00863754i
\(367\) −7.32836 + 2.81310i −0.382538 + 0.146842i −0.542035 0.840356i \(-0.682346\pi\)
0.159497 + 0.987198i \(0.449013\pi\)
\(368\) 7.76452 + 2.08050i 0.404754 + 0.108453i
\(369\) −1.79969 17.1229i −0.0936879 0.891381i
\(370\) −0.340769 17.4212i −0.0177157 0.905683i
\(371\) −18.9939 + 11.9449i −0.986112 + 0.620147i
\(372\) 0.606851 + 3.83151i 0.0314638 + 0.198654i
\(373\) 3.64111 + 0.190823i 0.188530 + 0.00988042i 0.146367 0.989230i \(-0.453242\pi\)
0.0421626 + 0.999111i \(0.486575\pi\)
\(374\) −3.28101 5.68288i −0.169657 0.293855i
\(375\) −2.97265 + 2.71077i −0.153507 + 0.139983i
\(376\) −11.9709 6.91139i −0.617351 0.356428i
\(377\) 0.455567 + 0.894102i 0.0234629 + 0.0460486i
\(378\) −2.94971 9.54961i −0.151717 0.491179i
\(379\) 12.1944 16.7841i 0.626384 0.862143i −0.371414 0.928467i \(-0.621127\pi\)
0.997798 + 0.0663239i \(0.0211271\pi\)
\(380\) 14.9766 + 8.26049i 0.768283 + 0.423754i
\(381\) −0.481546 + 1.08157i −0.0246703 + 0.0554105i
\(382\) −6.73584 + 25.1385i −0.344636 + 1.28620i
\(383\) −12.2271 + 15.0992i −0.624775 + 0.771533i −0.987028 0.160546i \(-0.948674\pi\)
0.362253 + 0.932080i \(0.382008\pi\)
\(384\) −1.17310 3.61042i −0.0598643 0.184243i
\(385\) 22.8695 + 10.0458i 1.16554 + 0.511984i
\(386\) −0.343502 + 1.05719i −0.0174838 + 0.0538096i
\(387\) 8.25315 + 12.7087i 0.419531 + 0.646022i
\(388\) 14.0218 0.734850i 0.711848 0.0373064i
\(389\) 3.18105 + 14.9656i 0.161285 + 0.758788i 0.982215 + 0.187759i \(0.0601224\pi\)
−0.820930 + 0.571029i \(0.806544\pi\)
\(390\) 0.289517 0.800681i 0.0146603 0.0405440i
\(391\) 1.33933 0.435173i 0.0677326 0.0220077i
\(392\) 3.86888 9.26248i 0.195408 0.467826i
\(393\) −0.938353 + 0.938353i −0.0473337 + 0.0473337i
\(394\) −43.4049 + 4.56204i −2.18671 + 0.229832i
\(395\) 31.4784 + 2.68725i 1.58385 + 0.135210i
\(396\) 1.51787 14.4416i 0.0762760 0.725717i
\(397\) 10.4769 27.2933i 0.525822 1.36981i −0.371499 0.928434i \(-0.621156\pi\)
0.897321 0.441379i \(-0.145511\pi\)
\(398\) 13.6784 6.96947i 0.685634 0.349348i
\(399\) 4.77858 3.75565i 0.239228 0.188017i
\(400\) 8.58141 + 23.2719i 0.429071 + 1.16360i
\(401\) 10.9327 18.9359i 0.545952 0.945616i −0.452595 0.891716i \(-0.649502\pi\)
0.998546 0.0538996i \(-0.0171651\pi\)
\(402\) 4.01742 6.18628i 0.200371 0.308544i
\(403\) −3.35062 4.13767i −0.166906 0.206112i
\(404\) −4.86438 + 2.16576i −0.242012 + 0.107751i
\(405\) −13.9989 + 10.5952i −0.695610 + 0.526479i
\(406\) 5.75595 5.59059i 0.285663 0.277456i
\(407\) −13.0091 13.0091i −0.644836 0.644836i
\(408\) −0.348504 0.282213i −0.0172535 0.0139716i
\(409\) 20.5599 22.8341i 1.01662 1.12907i 0.0250261 0.999687i \(-0.492033\pi\)
0.991594 0.129385i \(-0.0413002\pi\)
\(410\) −23.2844 5.75343i −1.14994 0.284142i
\(411\) −0.269773 + 0.242904i −0.0133069 + 0.0119816i
\(412\) 2.23756 + 1.14009i 0.110237 + 0.0561683i
\(413\) 11.8004 + 13.4961i 0.580658 + 0.664098i
\(414\) 7.91115 + 2.57049i 0.388812 + 0.126333i
\(415\) 4.19223 5.38915i 0.205789 0.264543i
\(416\) −2.63987 2.37695i −0.129431 0.116540i
\(417\) −1.29378 3.37041i −0.0633566 0.165049i
\(418\) 46.5612 12.4760i 2.27738 0.610223i
\(419\) −8.60424 + 6.25134i −0.420345 + 0.305398i −0.777776 0.628541i \(-0.783652\pi\)
0.357432 + 0.933939i \(0.383652\pi\)
\(420\) −2.54772 0.120789i −0.124316 0.00589389i
\(421\) 17.2687 + 12.5464i 0.841623 + 0.611475i 0.922824 0.385223i \(-0.125875\pi\)
−0.0812007 + 0.996698i \(0.525875\pi\)
\(422\) 6.93906 + 2.66366i 0.337788 + 0.129665i
\(423\) −23.2059 15.0701i −1.12831 0.732731i
\(424\) −10.5319 + 6.08062i −0.511476 + 0.295301i
\(425\) 3.48133 + 2.60047i 0.168869 + 0.126141i
\(426\) 9.01188i 0.436627i
\(427\) −1.88202 2.67140i −0.0910774 0.129278i
\(428\) −4.87356 + 0.771896i −0.235572 + 0.0373110i
\(429\) −0.365642 0.821246i −0.0176534 0.0396501i
\(430\) 20.5587 4.79195i 0.991429 0.231088i
\(431\) −7.00187 3.11743i −0.337268 0.150161i 0.231113 0.972927i \(-0.425763\pi\)
−0.568381 + 0.822765i \(0.692430\pi\)
\(432\) −2.71219 10.1220i −0.130490 0.486996i
\(433\) 20.2759 + 3.21139i 0.974399 + 0.154330i 0.623278 0.782000i \(-0.285801\pi\)
0.351121 + 0.936330i \(0.385801\pi\)
\(434\) −23.7052 + 35.3636i −1.13788 + 1.69751i
\(435\) 1.22768 + 0.595586i 0.0588630 + 0.0285562i
\(436\) −9.57334 10.6323i −0.458480 0.509194i
\(437\) 0.541405 + 10.3306i 0.0258989 + 0.494180i
\(438\) 0.117439 + 2.24087i 0.00561145 + 0.107073i
\(439\) 8.37290 + 9.29905i 0.399617 + 0.443820i 0.909048 0.416692i \(-0.136811\pi\)
−0.509431 + 0.860512i \(0.670144\pi\)
\(440\) 12.1808 + 5.90925i 0.580695 + 0.281712i
\(441\) 8.70430 18.1105i 0.414491 0.862404i
\(442\) −0.908306 0.143862i −0.0432037 0.00684280i
\(443\) −9.05910 33.8090i −0.430411 1.60632i −0.751816 0.659373i \(-0.770822\pi\)
0.321405 0.946942i \(-0.395845\pi\)
\(444\) 1.71618 + 0.764091i 0.0814462 + 0.0362622i
\(445\) 37.1322 8.65500i 1.76023 0.410286i
\(446\) 9.25164 + 20.7795i 0.438078 + 0.983939i
\(447\) 2.54313 0.402793i 0.120286 0.0190514i
\(448\) −0.905307 + 1.95613i −0.0427717 + 0.0924182i
\(449\) 4.28525i 0.202233i −0.994875 0.101117i \(-0.967758\pi\)
0.994875 0.101117i \(-0.0322416\pi\)
\(450\) 7.60764 + 24.5139i 0.358627 + 1.15560i
\(451\) −21.9314 + 12.6621i −1.03271 + 0.596235i
\(452\) 3.58837 + 2.33031i 0.168783 + 0.109609i
\(453\) 8.21990 + 3.15532i 0.386205 + 0.148250i
\(454\) 10.1308 + 7.36048i 0.475464 + 0.345445i
\(455\) 3.11110 1.60477i 0.145851 0.0752327i
\(456\) 2.66505 1.93627i 0.124802 0.0906742i
\(457\) 17.0829 4.57736i 0.799107 0.214120i 0.163915 0.986474i \(-0.447588\pi\)
0.635192 + 0.772355i \(0.280921\pi\)
\(458\) −9.48021 24.6968i −0.442981 1.15401i
\(459\) −1.36429 1.22841i −0.0636794 0.0573372i
\(460\) 2.66553 3.42657i 0.124281 0.159765i
\(461\) −23.7965 7.73195i −1.10831 0.360113i −0.303017 0.952985i \(-0.597994\pi\)
−0.805297 + 0.592872i \(0.797994\pi\)
\(462\) −5.41154 + 4.73161i −0.251768 + 0.220135i
\(463\) 24.3244 + 12.3939i 1.13045 + 0.575994i 0.916175 0.400779i \(-0.131260\pi\)
0.214277 + 0.976773i \(0.431260\pi\)
\(464\) 6.25198 5.62931i 0.290241 0.261334i
\(465\) −7.02846 1.73669i −0.325937 0.0805369i
\(466\) −3.05275 + 3.39042i −0.141416 + 0.157058i
\(467\) −5.50117 4.45476i −0.254564 0.206142i 0.493541 0.869723i \(-0.335702\pi\)
−0.748104 + 0.663581i \(0.769036\pi\)
\(468\) −1.43900 1.43900i −0.0665177 0.0665177i
\(469\) 29.4056 7.42165i 1.35782 0.342700i
\(470\) −30.7353 + 23.2623i −1.41771 + 1.07301i
\(471\) −6.60180 + 2.93931i −0.304195 + 0.135436i
\(472\) 6.11492 + 7.55129i 0.281462 + 0.347576i
\(473\) 12.1393 18.6929i 0.558166 0.859500i
\(474\) −4.54592 + 7.87377i −0.208801 + 0.361654i
\(475\) −25.0706 + 19.7578i −1.15032 + 0.906552i
\(476\) 0.391267 + 2.72700i 0.0179337 + 0.124992i
\(477\) −21.6905 + 11.0519i −0.993140 + 0.506030i
\(478\) 0.637414 1.66052i 0.0291546 0.0759504i
\(479\) −3.94813 + 37.5639i −0.180394 + 1.71634i 0.412415 + 0.910996i \(0.364685\pi\)
−0.592809 + 0.805343i \(0.701981\pi\)
\(480\) −4.81293 0.410870i −0.219679 0.0187536i
\(481\) −2.56419 + 0.269507i −0.116917 + 0.0122885i
\(482\) 6.78154 6.78154i 0.308891 0.308891i
\(483\) −0.751784 1.34709i −0.0342074 0.0612947i
\(484\) −7.77889 + 2.52751i −0.353586 + 0.114887i
\(485\) −8.91067 + 24.6431i −0.404612 + 1.11899i
\(486\) −3.40672 16.0274i −0.154532 0.727017i
\(487\) −13.1253 + 0.687869i −0.594765 + 0.0311703i −0.347344 0.937738i \(-0.612916\pi\)
−0.247421 + 0.968908i \(0.579583\pi\)
\(488\) −0.964633 1.48540i −0.0436669 0.0672411i
\(489\) −1.79421 + 5.52200i −0.0811368 + 0.249713i
\(490\) −19.6025 19.9821i −0.885552 0.902699i
\(491\) −7.21929 22.2187i −0.325802 1.00272i −0.971077 0.238765i \(-0.923257\pi\)
0.645275 0.763950i \(-0.276743\pi\)
\(492\) 1.62734 2.00960i 0.0733662 0.0905997i
\(493\) 0.381460 1.42363i 0.0171801 0.0641170i
\(494\) 2.74769 6.17142i 0.123624 0.277665i
\(495\) 23.7304 + 13.0888i 1.06660 + 0.588296i
\(496\) −26.2367 + 36.1118i −1.17806 + 1.62147i
\(497\) 25.1915 27.1711i 1.12999 1.21879i
\(498\) 0.892043 + 1.75073i 0.0399734 + 0.0784522i
\(499\) −7.78986 4.49748i −0.348722 0.201335i 0.315400 0.948959i \(-0.397861\pi\)
−0.664122 + 0.747624i \(0.731195\pi\)
\(500\) 13.3814 + 0.616585i 0.598432 + 0.0275745i
\(501\) −1.82819 3.16652i −0.0816777 0.141470i
\(502\) −27.6939 1.45137i −1.23604 0.0647780i
\(503\) 5.63363 + 35.5693i 0.251191 + 1.58596i 0.714419 + 0.699718i \(0.246691\pi\)
−0.463228 + 0.886239i \(0.653309\pi\)
\(504\) 5.08521 9.63069i 0.226513 0.428985i
\(505\) −0.194347 9.93559i −0.00864831 0.442128i
\(506\) −1.27892 12.1681i −0.0568547 0.540937i
\(507\) 4.39673 + 1.17810i 0.195266 + 0.0523213i
\(508\) 3.68029 1.41273i 0.163286 0.0626797i
\(509\) −8.98152 1.90908i −0.398099 0.0846185i 0.00451185 0.999990i \(-0.498564\pi\)
−0.402611 + 0.915371i \(0.631897\pi\)
\(510\) −1.10290 + 0.589403i −0.0488372 + 0.0260992i
\(511\) −5.90997 + 7.08456i −0.261442 + 0.313403i
\(512\) −7.06144 + 13.8588i −0.312074 + 0.612480i
\(513\) 11.3101 7.34485i 0.499352 0.324283i
\(514\) −27.3030 + 5.80344i −1.20429 + 0.255979i
\(515\) −3.58392 + 3.02014i −0.157926 + 0.133083i
\(516\) −0.473189 + 2.22618i −0.0208310 + 0.0980021i
\(517\) −6.36667 + 40.1976i −0.280006 + 1.76789i
\(518\) 8.11030 + 18.9547i 0.356346 + 0.832822i
\(519\) 0.709520 + 0.976571i 0.0311445 + 0.0428667i
\(520\) 1.71788 0.805466i 0.0753339 0.0353220i
\(521\) −12.1370 1.27565i −0.531732 0.0558872i −0.165142 0.986270i \(-0.552808\pi\)
−0.366590 + 0.930383i \(0.619475\pi\)
\(522\) 6.76564 5.47871i 0.296124 0.239796i
\(523\) −1.06831 + 20.3847i −0.0467141 + 0.891359i 0.870304 + 0.492514i \(0.163922\pi\)
−0.917019 + 0.398845i \(0.869411\pi\)
\(524\) 4.41862 0.193028
\(525\) 2.05632 4.29306i 0.0897451 0.187365i
\(526\) −7.35051 −0.320498
\(527\) −0.409260 + 7.80915i −0.0178277 + 0.340172i
\(528\) −5.85711 + 4.74300i −0.254898 + 0.206412i
\(529\) −20.2627 2.12969i −0.880985 0.0925953i
\(530\) 4.20375 + 33.6511i 0.182599 + 1.46171i
\(531\) 11.4327 + 15.7357i 0.496136 + 0.682873i
\(532\) −20.0934 2.40845i −0.871162 0.104419i
\(533\) −0.555191 + 3.50534i −0.0240480 + 0.151833i
\(534\) −2.28129 + 10.7326i −0.0987211 + 0.464446i
\(535\) 2.20901 8.93999i 0.0955039 0.386509i
\(536\) 16.0785 3.41758i 0.694484 0.147617i
\(537\) −0.876498 + 0.569204i −0.0378237 + 0.0245630i
\(538\) 9.57695 18.7958i 0.412892 0.810346i
\(539\) −29.5426 0.861311i −1.27249 0.0370993i
\(540\) −5.60592 0.775832i −0.241241 0.0333865i
\(541\) 17.2586 + 3.66843i 0.742006 + 0.157718i 0.563379 0.826199i \(-0.309501\pi\)
0.178627 + 0.983917i \(0.442835\pi\)
\(542\) 11.2447 4.31643i 0.483001 0.185407i
\(543\) 2.74919 + 0.736644i 0.117979 + 0.0316124i
\(544\) 0.545370 + 5.18885i 0.0233825 + 0.222470i
\(545\) 25.2282 8.74621i 1.08066 0.374646i
\(546\) 0.0380575 + 1.00669i 0.00162871 + 0.0430824i
\(547\) 0.468776 + 2.95974i 0.0200434 + 0.126549i 0.995681 0.0928385i \(-0.0295940\pi\)
−0.975638 + 0.219388i \(0.929594\pi\)
\(548\) 1.20708 + 0.0632602i 0.0515637 + 0.00270234i
\(549\) −1.77270 3.07040i −0.0756568 0.131041i
\(550\) 28.3881 24.8880i 1.21047 1.06123i
\(551\) 9.37617 + 5.41333i 0.399438 + 0.230616i
\(552\) −0.379595 0.744998i −0.0161567 0.0317092i
\(553\) −35.7162 + 11.0321i −1.51881 + 0.469133i
\(554\) 32.0136 44.0629i 1.36013 1.87205i
\(555\) −2.55909 + 2.39648i −0.108627 + 0.101725i
\(556\) −4.88933 + 10.9816i −0.207354 + 0.465724i
\(557\) −8.10705 + 30.2559i −0.343507 + 1.28198i 0.550841 + 0.834610i \(0.314307\pi\)
−0.894347 + 0.447373i \(0.852359\pi\)
\(558\) −29.0687 + 35.8968i −1.23057 + 1.51963i
\(559\) −0.965254 2.97075i −0.0408259 0.125649i
\(560\) −19.7462 21.7118i −0.834430 0.917490i
\(561\) −0.408011 + 1.25573i −0.0172262 + 0.0530169i
\(562\) 4.55298 + 7.01097i 0.192056 + 0.295740i
\(563\) −18.5816 + 0.973818i −0.783119 + 0.0410415i −0.439705 0.898142i \(-0.644917\pi\)
−0.343414 + 0.939184i \(0.611584\pi\)
\(564\) −0.864032 4.06495i −0.0363823 0.171165i
\(565\) −6.61061 + 4.47919i −0.278110 + 0.188441i
\(566\) 9.52590 3.09515i 0.400404 0.130099i
\(567\) 10.6476 17.8367i 0.447155 0.749070i
\(568\) 14.2005 14.2005i 0.595838 0.595838i
\(569\) −1.55796 + 0.163748i −0.0653132 + 0.00686469i −0.137129 0.990553i \(-0.543787\pi\)
0.0718155 + 0.997418i \(0.477121\pi\)
\(570\) −2.08526 8.94628i −0.0873418 0.374719i
\(571\) 1.38221 13.1509i 0.0578437 0.550346i −0.926773 0.375621i \(-0.877430\pi\)
0.984617 0.174725i \(-0.0559038\pi\)
\(572\) −1.07270 + 2.79448i −0.0448518 + 0.116843i
\(573\) 4.66582 2.37736i 0.194918 0.0993154i
\(574\) 28.0914 4.03053i 1.17251 0.168231i
\(575\) 3.95774 + 7.06961i 0.165049 + 0.294823i
\(576\) −1.16929 + 2.02527i −0.0487204 + 0.0843861i
\(577\) 5.05877 7.78982i 0.210599 0.324294i −0.717547 0.696510i \(-0.754735\pi\)
0.928146 + 0.372216i \(0.121402\pi\)
\(578\) −18.2824 22.5768i −0.760446 0.939073i
\(579\) 0.204328 0.0909729i 0.00849160 0.00378070i
\(580\) −1.48825 4.29281i −0.0617961 0.178249i
\(581\) −2.20441 + 7.77210i −0.0914543 + 0.322441i
\(582\) −5.33245 5.33245i −0.221037 0.221037i
\(583\) 27.8269 + 22.5338i 1.15247 + 0.933254i
\(584\) −3.34599 + 3.71610i −0.138458 + 0.153773i
\(585\) 3.51844 1.43016i 0.145469 0.0591300i
\(586\) 13.8781 12.4959i 0.573297 0.516199i
\(587\) 11.8830 + 6.05467i 0.490462 + 0.249903i 0.681688 0.731643i \(-0.261246\pi\)
−0.191226 + 0.981546i \(0.561246\pi\)
\(588\) 2.84776 0.998948i 0.117440 0.0411959i
\(589\) −54.6321 17.7511i −2.25108 0.731419i
\(590\) 26.0304 7.52342i 1.07165 0.309734i
\(591\) 6.52603 + 5.87606i 0.268445 + 0.241709i
\(592\) 7.74645 + 20.1802i 0.318377 + 0.829400i
\(593\) −35.2829 + 9.45404i −1.44890 + 0.388231i −0.895640 0.444780i \(-0.853282\pi\)
−0.553257 + 0.833011i \(0.686615\pi\)
\(594\) −12.9038 + 9.37515i −0.529449 + 0.384667i
\(595\) −4.97287 1.30594i −0.203868 0.0535385i
\(596\) −6.93605 5.03934i −0.284112 0.206419i
\(597\) −2.88374 1.10696i −0.118024 0.0453050i
\(598\) −1.43805 0.933878i −0.0588061 0.0381891i
\(599\) 0.214739 0.123980i 0.00877399 0.00506567i −0.495607 0.868547i \(-0.665054\pi\)
0.504381 + 0.863481i \(0.331721\pi\)
\(600\) 1.20164 2.28308i 0.0490566 0.0932065i
\(601\) 19.3484i 0.789237i −0.918845 0.394618i \(-0.870877\pi\)
0.918845 0.394618i \(-0.129123\pi\)
\(602\) −20.4190 + 14.3853i −0.832215 + 0.586302i
\(603\) 32.4991 5.14734i 1.32346 0.209616i
\(604\) −11.9243 26.7825i −0.485194 1.08976i
\(605\) 1.29840 15.2095i 0.0527876 0.618353i
\(606\) 2.61258 + 1.16320i 0.106129 + 0.0472517i
\(607\) 9.35079 + 34.8976i 0.379537 + 1.41645i 0.846601 + 0.532227i \(0.178645\pi\)
−0.467065 + 0.884223i \(0.654688\pi\)
\(608\) −37.8546 5.99558i −1.53521 0.243153i
\(609\) −1.61091 0.107985i −0.0652776 0.00437577i
\(610\) −4.86212 + 0.867880i −0.196862 + 0.0351394i
\(611\) 3.81650 + 4.23865i 0.154399 + 0.171477i
\(612\) 0.156431 + 2.98487i 0.00632333 + 0.120656i
\(613\) −0.817047 15.5902i −0.0330002 0.629681i −0.964201 0.265174i \(-0.914571\pi\)
0.931200 0.364508i \(-0.118763\pi\)
\(614\) 32.8828 + 36.5201i 1.32704 + 1.47383i
\(615\) 2.27463 + 4.25632i 0.0917219 + 0.171631i
\(616\) −15.9831 1.07140i −0.643976 0.0431679i
\(617\) 27.4606 + 4.34934i 1.10552 + 0.175098i 0.682403 0.730976i \(-0.260935\pi\)
0.423120 + 0.906074i \(0.360935\pi\)
\(618\) −0.349086 1.30281i −0.0140423 0.0524065i
\(619\) 32.8458 + 14.6239i 1.32018 + 0.587784i 0.941272 0.337648i \(-0.109631\pi\)
0.378913 + 0.925432i \(0.376298\pi\)
\(620\) 12.4592 + 20.6372i 0.500375 + 0.828808i
\(621\) −1.39224 3.12702i −0.0558687 0.125483i
\(622\) −26.4995 + 4.19711i −1.06253 + 0.168289i
\(623\) −36.8798 + 25.9821i −1.47756 + 1.04095i
\(624\) 1.05622i 0.0422827i
\(625\) −10.7697 + 22.5613i −0.430788 + 0.902453i
\(626\) 47.2331 27.2700i 1.88781 1.08993i
\(627\) −8.13436 5.28251i −0.324855 0.210963i
\(628\) 22.4641 + 8.62317i 0.896416 + 0.344102i
\(629\) 3.06365 + 2.22587i 0.122156 + 0.0887514i
\(630\) −19.2298 23.5063i −0.766133 0.936512i
\(631\) 23.2118 16.8644i 0.924048 0.671360i −0.0204802 0.999790i \(-0.506520\pi\)
0.944528 + 0.328430i \(0.106520\pi\)
\(632\) −19.5703 + 5.24385i −0.778465 + 0.208589i
\(633\) −0.535957 1.39622i −0.0213024 0.0554946i
\(634\) −33.6082 30.2610i −1.33475 1.20182i
\(635\) −0.241284 + 7.35319i −0.00957506 + 0.291802i
\(636\) −3.47728 1.12984i −0.137883 0.0448009i
\(637\) −2.69933 + 3.14158i −0.106951 + 0.124474i
\(638\) −11.4094 5.81335i −0.451701 0.230153i
\(639\) 29.8746 26.8992i 1.18182 1.06412i
\(640\) −15.2017 18.0394i −0.600898 0.713069i
\(641\) 12.0398 13.3716i 0.475545 0.528146i −0.456871 0.889533i \(-0.651030\pi\)
0.932416 + 0.361387i \(0.117697\pi\)
\(642\) 2.05955 + 1.66779i 0.0812838 + 0.0658223i
\(643\) −9.47610 9.47610i −0.373701 0.373701i 0.495122 0.868823i \(-0.335123\pi\)
−0.868823 + 0.495122i \(0.835123\pi\)
\(644\) −1.40162 + 4.94171i −0.0552317 + 0.194731i
\(645\) −3.48448 2.42895i −0.137201 0.0956397i
\(646\) −9.06424 + 4.03566i −0.356628 + 0.158781i
\(647\) −8.71831 10.7662i −0.342752 0.423264i 0.576399 0.817168i \(-0.304457\pi\)
−0.919151 + 0.393905i \(0.871124\pi\)
\(648\) 6.13209 9.44260i 0.240891 0.370940i
\(649\) 14.3045 24.7762i 0.561502 0.972549i
\(650\) −0.206906 5.28682i −0.00811554 0.207366i
\(651\) 8.47946 1.21662i 0.332336 0.0476832i
\(652\) 17.2257 8.77692i 0.674610 0.343731i
\(653\) 13.1540 34.2673i 0.514754 1.34098i −0.392249 0.919859i \(-0.628303\pi\)
0.907004 0.421122i \(-0.138364\pi\)
\(654\) −0.803212 + 7.64205i −0.0314081 + 0.298828i
\(655\) −3.20616 + 7.59765i −0.125275 + 0.296865i
\(656\) 29.5912 3.11016i 1.15534 0.121431i
\(657\) −7.07798 + 7.07798i −0.276138 + 0.276138i
\(658\) 23.3773 39.1613i 0.911341 1.52667i
\(659\) −17.1826 + 5.58297i −0.669340 + 0.217482i −0.623922 0.781486i \(-0.714462\pi\)
−0.0454175 + 0.998968i \(0.514462\pi\)
\(660\) 1.13016 + 3.91024i 0.0439912 + 0.152206i
\(661\) 5.47564 + 25.7609i 0.212978 + 1.00198i 0.946596 + 0.322421i \(0.104497\pi\)
−0.733619 + 0.679561i \(0.762170\pi\)
\(662\) −11.8221 + 0.619568i −0.459477 + 0.0240802i
\(663\) 0.100780 + 0.155187i 0.00391396 + 0.00602696i
\(664\) −1.35308 + 4.16435i −0.0525097 + 0.161608i
\(665\) 18.7210 32.8023i 0.725971 1.27202i
\(666\) 6.91223 + 21.2737i 0.267843 + 0.824337i
\(667\) 1.72939 2.13562i 0.0669623 0.0826916i
\(668\) −3.15104 + 11.7598i −0.121917 + 0.455002i
\(669\) 1.86153 4.18107i 0.0719709 0.161649i
\(670\) 8.65153 45.0139i 0.334238 1.73904i
\(671\) −3.06518 + 4.21886i −0.118330 + 0.162867i
\(672\) 5.46087 1.68677i 0.210658 0.0650685i
\(673\) 23.2205 + 45.5727i 0.895083 + 1.75670i 0.597187 + 0.802102i \(0.296285\pi\)
0.297896 + 0.954598i \(0.403715\pi\)
\(674\) 7.64957 + 4.41648i 0.294651 + 0.170117i
\(675\) 5.40168 9.07623i 0.207911 0.349344i
\(676\) −7.57813 13.1257i −0.291466 0.504835i
\(677\) 39.4906 + 2.06961i 1.51775 + 0.0795417i 0.792893 0.609361i \(-0.208574\pi\)
0.724854 + 0.688903i \(0.241907\pi\)
\(678\) −0.359485 2.26970i −0.0138059 0.0871673i
\(679\) −1.17132 30.9836i −0.0449512 1.18904i
\(680\) −2.66664 0.809141i −0.102261 0.0310292i
\(681\) −0.263374 2.50584i −0.0100925 0.0960240i
\(682\) 65.6252 + 17.5842i 2.51292 + 0.673335i
\(683\) 10.1751 3.90584i 0.389338 0.149453i −0.155822 0.987785i \(-0.549802\pi\)
0.545159 + 0.838332i \(0.316469\pi\)
\(684\) −21.4767 4.56502i −0.821183 0.174548i
\(685\) −0.984629 + 2.02962i −0.0376207 + 0.0775478i
\(686\) 30.3722 + 13.2094i 1.15962 + 0.504336i
\(687\) −2.41650 + 4.74265i −0.0921953 + 0.180943i
\(688\) −21.9628 + 14.2628i −0.837326 + 0.543766i
\(689\) 4.90841 1.04332i 0.186996 0.0397471i
\(690\) −2.32559 + 0.167541i −0.0885338 + 0.00637817i
\(691\) −7.18035 + 33.7809i −0.273153 + 1.28509i 0.600927 + 0.799304i \(0.294798\pi\)
−0.874080 + 0.485782i \(0.838535\pi\)
\(692\) 0.628759 3.96983i 0.0239018 0.150910i
\(693\) −31.8381 3.81618i −1.20943 0.144965i
\(694\) 27.0650 + 37.2518i 1.02737 + 1.41406i
\(695\) −15.3348 16.3753i −0.581681 0.621150i
\(696\) −0.870285 0.0914706i −0.0329881 0.00346719i
\(697\) 4.05097 3.28041i 0.153442 0.124255i
\(698\) 2.22893 42.5304i 0.0843661 1.60980i
\(699\) 0.917976 0.0347211
\(700\) −14.9493 + 5.26632i −0.565032 + 0.199048i
\(701\) 16.6461 0.628716 0.314358 0.949305i \(-0.398211\pi\)
0.314358 + 0.949305i \(0.398211\pi\)
\(702\) −0.116986 + 2.23223i −0.00441535 + 0.0842499i
\(703\) −21.6186 + 17.5064i −0.815360 + 0.660265i
\(704\) 3.42090 + 0.359551i 0.128930 + 0.0135511i
\(705\) 7.61647 + 1.46386i 0.286853 + 0.0551322i
\(706\) 33.2858 + 45.8139i 1.25273 + 1.72423i
\(707\) 4.62545 + 10.8102i 0.173958 + 0.406560i
\(708\) −0.456990 + 2.88532i −0.0171747 + 0.108437i
\(709\) −3.91289 + 18.4087i −0.146952 + 0.691353i 0.841555 + 0.540172i \(0.181641\pi\)
−0.988506 + 0.151181i \(0.951692\pi\)
\(710\) −21.0878 51.8795i −0.791412 1.94700i
\(711\) −39.6706 + 8.43225i −1.48776 + 0.316234i
\(712\) −20.5067 + 13.3172i −0.768519 + 0.499082i
\(713\) −6.61935 + 12.9912i −0.247897 + 0.486525i
\(714\) 0.947818 1.13620i 0.0354712 0.0425210i
\(715\) −4.02664 3.87214i −0.150588 0.144810i
\(716\) 3.40384 + 0.723509i 0.127208 + 0.0270388i
\(717\) −0.334115 + 0.128255i −0.0124777 + 0.00478976i
\(718\) −21.9128 5.87151i −0.817777 0.219123i
\(719\) −4.33832 41.2764i −0.161792 1.53935i −0.710718 0.703477i \(-0.751630\pi\)
0.548926 0.835871i \(-0.315037\pi\)
\(720\) −19.2161 25.3893i −0.716143 0.946203i
\(721\) 2.58932 4.90382i 0.0964313 0.182628i
\(722\) −6.08648 38.4285i −0.226515 1.43016i
\(723\) −1.92708 0.100994i −0.0716688 0.00375601i
\(724\) −4.73846 8.20725i −0.176103 0.305020i
\(725\) 8.46120 + 0.555882i 0.314241 + 0.0206449i
\(726\) 3.80439 + 2.19646i 0.141194 + 0.0815184i
\(727\) −9.01500 17.6929i −0.334348 0.656195i 0.661225 0.750188i \(-0.270037\pi\)
−0.995573 + 0.0939929i \(0.970037\pi\)
\(728\) −1.52632 + 1.64626i −0.0565692 + 0.0610144i
\(729\) 11.9070 16.3886i 0.441001 0.606985i
\(730\) 5.91971 + 12.6254i 0.219098 + 0.467287i
\(731\) −1.86603 + 4.19118i −0.0690177 + 0.155016i
\(732\) 0.137818 0.514343i 0.00509389 0.0190107i
\(733\) −6.23862 + 7.70405i −0.230429 + 0.284556i −0.879225 0.476406i \(-0.841939\pi\)
0.648797 + 0.760962i \(0.275273\pi\)
\(734\) −4.33796 13.3509i −0.160117 0.492790i
\(735\) −0.348687 + 5.62146i −0.0128615 + 0.207351i
\(736\) −3.00613 + 9.25192i −0.110807 + 0.341030i
\(737\) −26.3593 40.5897i −0.970956 1.49514i
\(738\) 30.7479 1.61143i 1.13184 0.0593174i
\(739\) 1.91774 + 9.02225i 0.0705451 + 0.331889i 0.999241 0.0389534i \(-0.0124024\pi\)
−0.928696 + 0.370842i \(0.879069\pi\)
\(740\) 11.6677 + 0.382857i 0.428911 + 0.0140741i
\(741\) −1.29274 + 0.420038i −0.0474901 + 0.0154305i
\(742\) −19.5544 35.0388i −0.717866 1.28631i
\(743\) −31.8855 + 31.8855i −1.16976 + 1.16976i −0.187500 + 0.982265i \(0.560038\pi\)
−0.982265 + 0.187500i \(0.939962\pi\)
\(744\) 4.61752 0.485321i 0.169286 0.0177927i
\(745\) 13.6978 8.26973i 0.501847 0.302980i
\(746\) −0.681574 + 6.48474i −0.0249542 + 0.237423i
\(747\) −3.14109 + 8.18282i −0.114927 + 0.299394i
\(748\) 3.91720 1.99592i 0.143227 0.0729779i
\(749\) 1.54751 + 10.7856i 0.0565447 + 0.394098i
\(750\) −4.56289 5.56251i −0.166613 0.203114i
\(751\) −4.83420 + 8.37308i −0.176403 + 0.305538i −0.940646 0.339390i \(-0.889779\pi\)
0.764243 + 0.644928i \(0.223113\pi\)
\(752\) 26.0436 40.1036i 0.949712 1.46243i
\(753\) 3.51158 + 4.33644i 0.127969 + 0.158029i
\(754\) −1.63940 + 0.729907i −0.0597034 + 0.0265816i
\(755\) 54.7037 1.07004i 1.99087 0.0389427i
\(756\) 6.49264 1.63867i 0.236135 0.0595979i
\(757\) −29.1640 29.1640i −1.05998 1.05998i −0.998082 0.0619022i \(-0.980283\pi\)
−0.0619022 0.998082i \(-0.519717\pi\)
\(758\) 28.8332 + 23.3486i 1.04727 + 0.848061i
\(759\) −1.64729 + 1.82950i −0.0597928 + 0.0664066i
\(760\) 10.8113 17.3829i 0.392165 0.630545i
\(761\) −2.78122 + 2.50423i −0.100819 + 0.0907781i −0.717999 0.696044i \(-0.754942\pi\)
0.617180 + 0.786822i \(0.288275\pi\)
\(762\) −1.88649 0.961213i −0.0683402 0.0348211i
\(763\) −23.7840 + 20.7957i −0.861040 + 0.752855i
\(764\) −16.5829 5.38810i −0.599947 0.194934i
\(765\) −5.24588 1.89685i −0.189665 0.0685807i
\(766\) −25.8210 23.2493i −0.9