Properties

Label 175.2.x.a.47.1
Level $175$
Weight $2$
Character 175.47
Analytic conductor $1.397$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(3,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([21, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.x (of order \(60\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 47.1
Character \(\chi\) \(=\) 175.47
Dual form 175.2.x.a.108.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.139042 + 2.65307i) q^{2} +(0.171618 - 0.138973i) q^{3} +(-5.03041 - 0.528718i) q^{4} +(-2.22928 + 0.174120i) q^{5} +(0.344844 + 0.474637i) q^{6} +(-2.47603 - 0.932359i) q^{7} +(1.27096 - 8.02453i) q^{8} +(-0.613596 + 2.88674i) q^{9} +O(q^{10})\) \(q+(-0.139042 + 2.65307i) q^{2} +(0.171618 - 0.138973i) q^{3} +(-5.03041 - 0.528718i) q^{4} +(-2.22928 + 0.174120i) q^{5} +(0.344844 + 0.474637i) q^{6} +(-2.47603 - 0.932359i) q^{7} +(1.27096 - 8.02453i) q^{8} +(-0.613596 + 2.88674i) q^{9} +(-0.151991 - 5.93865i) q^{10} +(2.92528 - 0.621787i) q^{11} +(-0.936786 + 0.608356i) q^{12} +(-2.23475 + 4.38594i) q^{13} +(2.81788 - 6.43944i) q^{14} +(-0.358386 + 0.339692i) q^{15} +(11.2177 + 2.38441i) q^{16} +(-4.48584 + 1.72195i) q^{17} +(-7.57342 - 2.02929i) q^{18} +(0.376845 + 3.58544i) q^{19} +(11.3063 + 0.302763i) q^{20} +(-0.554503 + 0.184092i) q^{21} +(1.24291 + 7.84742i) q^{22} +(3.26342 + 0.171029i) q^{23} +(-0.897076 - 1.55378i) q^{24} +(4.93936 - 0.776324i) q^{25} +(-11.3255 - 6.53878i) q^{26} +(0.596641 + 1.17097i) q^{27} +(11.9625 + 5.99927i) q^{28} +(2.87272 - 3.95395i) q^{29} +(-0.851397 - 0.998054i) q^{30} +(-0.657478 + 1.47672i) q^{31} +(-3.68016 + 13.7345i) q^{32} +(0.415617 - 0.513245i) q^{33} +(-3.94475 - 12.1407i) q^{34} +(5.68209 + 1.64736i) q^{35} +(4.61291 - 14.1971i) q^{36} +(-0.731424 - 1.12629i) q^{37} +(-9.56484 + 0.501272i) q^{38} +(0.226006 + 1.06328i) q^{39} +(-1.43609 + 18.1102i) q^{40} +(-4.99103 + 1.62168i) q^{41} +(-0.411311 - 1.49673i) q^{42} +(-8.43891 + 8.43891i) q^{43} +(-15.0441 + 1.58120i) q^{44} +(0.865237 - 6.54219i) q^{45} +(-0.907502 + 8.63431i) q^{46} +(1.19805 - 3.12102i) q^{47} +(2.25653 - 1.14976i) q^{48} +(5.26142 + 4.61709i) q^{49} +(1.37287 + 13.2124i) q^{50} +(-0.530544 + 0.918929i) q^{51} +(13.5606 - 20.8816i) q^{52} +(-2.69056 - 3.32256i) q^{53} +(-3.18964 + 1.42012i) q^{54} +(-6.41299 + 1.89548i) q^{55} +(-10.6287 + 18.6840i) q^{56} +(0.562954 + 0.562954i) q^{57} +(10.0907 + 8.17129i) q^{58} +(0.374472 - 0.415893i) q^{59} +(1.98243 - 1.51931i) q^{60} +(7.43964 - 6.69868i) q^{61} +(-3.82643 - 1.94966i) q^{62} +(4.21076 - 6.57556i) q^{63} +(-14.1129 - 4.58555i) q^{64} +(4.21820 - 10.1666i) q^{65} +(1.30389 + 1.17403i) q^{66} +(3.34846 + 8.72305i) q^{67} +(23.4761 - 6.29039i) q^{68} +(0.583829 - 0.424177i) q^{69} +(-5.16061 + 14.8460i) q^{70} +(-0.293741 - 0.213415i) q^{71} +(22.3849 + 8.59275i) q^{72} +(2.45523 + 1.59444i) q^{73} +(3.08984 - 1.78392i) q^{74} +(0.739794 - 0.819671i) q^{75} -18.2355i q^{76} +(-7.82279 - 1.18785i) q^{77} +(-2.85237 + 0.451771i) q^{78} +(2.12904 + 4.78190i) q^{79} +(-25.4227 - 3.36227i) q^{80} +(-7.82313 - 3.48308i) q^{81} +(-3.60848 - 13.4670i) q^{82} +(0.898387 + 0.142291i) q^{83} +(2.88671 - 0.632885i) q^{84} +(9.70036 - 4.61979i) q^{85} +(-21.2157 - 23.5624i) q^{86} +(-0.0564851 - 1.07780i) q^{87} +(-1.27163 - 24.2642i) q^{88} +(6.04903 + 6.71813i) q^{89} +(17.2366 + 3.20517i) q^{90} +(9.62257 - 8.77612i) q^{91} +(-16.3259 - 2.58577i) q^{92} +(0.0923897 + 0.344803i) q^{93} +(8.11372 + 3.61246i) q^{94} +(-1.46439 - 7.92734i) q^{95} +(1.27715 + 2.86853i) q^{96} +(-7.15230 + 1.13281i) q^{97} +(-12.9810 + 13.3169i) q^{98} +8.82604i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9} - 36 q^{10} - 6 q^{11} - 36 q^{12} - 20 q^{14} - 28 q^{15} - 30 q^{16} - 42 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} + 32 q^{22} - 40 q^{23} + 2 q^{25} - 48 q^{26} + 22 q^{28} - 58 q^{30} - 18 q^{31} + 8 q^{32} - 30 q^{33} - 2 q^{35} + 40 q^{36} - 10 q^{37} + 72 q^{38} + 30 q^{39} - 48 q^{40} + 6 q^{42} - 108 q^{43} - 10 q^{44} + 186 q^{45} - 6 q^{46} - 54 q^{47} - 248 q^{50} - 16 q^{51} + 216 q^{52} + 50 q^{53} - 30 q^{54} + 4 q^{56} - 216 q^{57} - 4 q^{58} + 90 q^{59} + 96 q^{60} - 18 q^{61} - 66 q^{63} - 100 q^{64} + 14 q^{65} - 90 q^{66} + 4 q^{67} + 342 q^{68} - 60 q^{70} - 24 q^{71} + 58 q^{72} - 6 q^{73} + 216 q^{75} - 80 q^{77} - 132 q^{78} - 10 q^{79} - 6 q^{80} - 10 q^{81} + 216 q^{82} + 20 q^{84} - 48 q^{85} - 6 q^{86} - 48 q^{87} - 122 q^{88} + 120 q^{89} - 12 q^{91} - 4 q^{92} + 106 q^{93} - 30 q^{94} - 98 q^{95} - 90 q^{96} + 222 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.139042 + 2.65307i −0.0983173 + 1.87601i 0.293496 + 0.955960i \(0.405181\pi\)
−0.391813 + 0.920045i \(0.628152\pi\)
\(3\) 0.171618 0.138973i 0.0990835 0.0802363i −0.578499 0.815683i \(-0.696361\pi\)
0.677582 + 0.735447i \(0.263028\pi\)
\(4\) −5.03041 0.528718i −2.51521 0.264359i
\(5\) −2.22928 + 0.174120i −0.996964 + 0.0778689i
\(6\) 0.344844 + 0.474637i 0.140782 + 0.193770i
\(7\) −2.47603 0.932359i −0.935850 0.352398i
\(8\) 1.27096 8.02453i 0.449352 2.83710i
\(9\) −0.613596 + 2.88674i −0.204532 + 0.962247i
\(10\) −0.151991 5.93865i −0.0480636 1.87796i
\(11\) 2.92528 0.621787i 0.882004 0.187476i 0.255421 0.966830i \(-0.417786\pi\)
0.626583 + 0.779354i \(0.284453\pi\)
\(12\) −0.936786 + 0.608356i −0.270427 + 0.175617i
\(13\) −2.23475 + 4.38594i −0.619808 + 1.21644i 0.341218 + 0.939984i \(0.389161\pi\)
−0.961026 + 0.276458i \(0.910839\pi\)
\(14\) 2.81788 6.43944i 0.753111 1.72101i
\(15\) −0.358386 + 0.339692i −0.0925348 + 0.0877082i
\(16\) 11.2177 + 2.38441i 2.80444 + 0.596102i
\(17\) −4.48584 + 1.72195i −1.08798 + 0.417635i −0.835232 0.549898i \(-0.814666\pi\)
−0.252744 + 0.967533i \(0.581333\pi\)
\(18\) −7.57342 2.02929i −1.78507 0.478309i
\(19\) 0.376845 + 3.58544i 0.0864543 + 0.822557i 0.948723 + 0.316107i \(0.102376\pi\)
−0.862269 + 0.506450i \(0.830957\pi\)
\(20\) 11.3063 + 0.302763i 2.52816 + 0.0676999i
\(21\) −0.554503 + 0.184092i −0.121002 + 0.0401722i
\(22\) 1.24291 + 7.84742i 0.264989 + 1.67308i
\(23\) 3.26342 + 0.171029i 0.680470 + 0.0356619i 0.389440 0.921052i \(-0.372669\pi\)
0.291030 + 0.956714i \(0.406002\pi\)
\(24\) −0.897076 1.55378i −0.183115 0.317164i
\(25\) 4.93936 0.776324i 0.987873 0.155265i
\(26\) −11.3255 6.53878i −2.22111 1.28236i
\(27\) 0.596641 + 1.17097i 0.114824 + 0.225354i
\(28\) 11.9625 + 5.99927i 2.26070 + 1.13376i
\(29\) 2.87272 3.95395i 0.533450 0.734231i −0.454201 0.890899i \(-0.650075\pi\)
0.987651 + 0.156668i \(0.0500753\pi\)
\(30\) −0.851397 0.998054i −0.155443 0.182219i
\(31\) −0.657478 + 1.47672i −0.118087 + 0.265227i −0.962912 0.269815i \(-0.913037\pi\)
0.844826 + 0.535042i \(0.179704\pi\)
\(32\) −3.68016 + 13.7345i −0.650566 + 2.42794i
\(33\) 0.415617 0.513245i 0.0723497 0.0893445i
\(34\) −3.94475 12.1407i −0.676518 2.08211i
\(35\) 5.68209 + 1.64736i 0.960449 + 0.278455i
\(36\) 4.61291 14.1971i 0.768819 2.36618i
\(37\) −0.731424 1.12629i −0.120245 0.185162i 0.773422 0.633891i \(-0.218543\pi\)
−0.893668 + 0.448730i \(0.851877\pi\)
\(38\) −9.56484 + 0.501272i −1.55162 + 0.0813171i
\(39\) 0.226006 + 1.06328i 0.0361900 + 0.170260i
\(40\) −1.43609 + 18.1102i −0.227066 + 2.86347i
\(41\) −4.99103 + 1.62168i −0.779468 + 0.253264i −0.671613 0.740902i \(-0.734398\pi\)
−0.107855 + 0.994167i \(0.534398\pi\)
\(42\) −0.411311 1.49673i −0.0634667 0.230951i
\(43\) −8.43891 + 8.43891i −1.28692 + 1.28692i −0.350276 + 0.936647i \(0.613912\pi\)
−0.936647 + 0.350276i \(0.886088\pi\)
\(44\) −15.0441 + 1.58120i −2.26798 + 0.238375i
\(45\) 0.865237 6.54219i 0.128982 0.975252i
\(46\) −0.907502 + 8.63431i −0.133804 + 1.27306i
\(47\) 1.19805 3.12102i 0.174753 0.455248i −0.818029 0.575177i \(-0.804933\pi\)
0.992782 + 0.119929i \(0.0382666\pi\)
\(48\) 2.25653 1.14976i 0.325703 0.165954i
\(49\) 5.26142 + 4.61709i 0.751631 + 0.659584i
\(50\) 1.37287 + 13.2124i 0.194153 + 1.86852i
\(51\) −0.530544 + 0.918929i −0.0742910 + 0.128676i
\(52\) 13.5606 20.8816i 1.88052 2.89575i
\(53\) −2.69056 3.32256i −0.369577 0.456389i 0.558100 0.829774i \(-0.311531\pi\)
−0.927677 + 0.373384i \(0.878197\pi\)
\(54\) −3.18964 + 1.42012i −0.434055 + 0.193254i
\(55\) −6.41299 + 1.89548i −0.864727 + 0.255587i
\(56\) −10.6287 + 18.6840i −1.42032 + 2.49675i
\(57\) 0.562954 + 0.562954i 0.0745651 + 0.0745651i
\(58\) 10.0907 + 8.17129i 1.32497 + 1.07294i
\(59\) 0.374472 0.415893i 0.0487521 0.0541447i −0.718276 0.695759i \(-0.755068\pi\)
0.767028 + 0.641614i \(0.221735\pi\)
\(60\) 1.98243 1.51931i 0.255931 0.196142i
\(61\) 7.43964 6.69868i 0.952549 0.857679i −0.0373720 0.999301i \(-0.511899\pi\)
0.989921 + 0.141623i \(0.0452320\pi\)
\(62\) −3.82643 1.94966i −0.485957 0.247607i
\(63\) 4.21076 6.57556i 0.530506 0.828443i
\(64\) −14.1129 4.58555i −1.76411 0.573194i
\(65\) 4.21820 10.1666i 0.523203 1.26101i
\(66\) 1.30389 + 1.17403i 0.160497 + 0.144513i
\(67\) 3.34846 + 8.72305i 0.409080 + 1.06569i 0.971122 + 0.238582i \(0.0766824\pi\)
−0.562042 + 0.827108i \(0.689984\pi\)
\(68\) 23.4761 6.29039i 2.84689 0.762822i
\(69\) 0.583829 0.424177i 0.0702848 0.0510649i
\(70\) −5.16061 + 14.8460i −0.616811 + 1.77443i
\(71\) −0.293741 0.213415i −0.0348607 0.0253278i 0.570218 0.821493i \(-0.306859\pi\)
−0.605079 + 0.796165i \(0.706859\pi\)
\(72\) 22.3849 + 8.59275i 2.63808 + 1.01267i
\(73\) 2.45523 + 1.59444i 0.287363 + 0.186615i 0.680268 0.732963i \(-0.261863\pi\)
−0.392905 + 0.919579i \(0.628530\pi\)
\(74\) 3.08984 1.78392i 0.359186 0.207376i
\(75\) 0.739794 0.819671i 0.0854241 0.0946474i
\(76\) 18.2355i 2.09176i
\(77\) −7.82279 1.18785i −0.891490 0.135368i
\(78\) −2.85237 + 0.451771i −0.322968 + 0.0511530i
\(79\) 2.12904 + 4.78190i 0.239536 + 0.538006i 0.992810 0.119701i \(-0.0381935\pi\)
−0.753274 + 0.657706i \(0.771527\pi\)
\(80\) −25.4227 3.36227i −2.84234 0.375913i
\(81\) −7.82313 3.48308i −0.869237 0.387009i
\(82\) −3.60848 13.4670i −0.398490 1.48719i
\(83\) 0.898387 + 0.142291i 0.0986108 + 0.0156184i 0.205545 0.978648i \(-0.434103\pi\)
−0.106934 + 0.994266i \(0.534103\pi\)
\(84\) 2.88671 0.632885i 0.314966 0.0690534i
\(85\) 9.70036 4.61979i 1.05215 0.501086i
\(86\) −21.2157 23.5624i −2.28775 2.54080i
\(87\) −0.0564851 1.07780i −0.00605584 0.115552i
\(88\) −1.27163 24.2642i −0.135557 2.58658i
\(89\) 6.04903 + 6.71813i 0.641196 + 0.712120i 0.972890 0.231267i \(-0.0742870\pi\)
−0.331695 + 0.943387i \(0.607620\pi\)
\(90\) 17.2366 + 3.20517i 1.81690 + 0.337855i
\(91\) 9.62257 8.77612i 1.00872 0.919988i
\(92\) −16.3259 2.58577i −1.70210 0.269585i
\(93\) 0.0923897 + 0.344803i 0.00958037 + 0.0357544i
\(94\) 8.11372 + 3.61246i 0.836866 + 0.372597i
\(95\) −1.46439 7.92734i −0.150243 0.813328i
\(96\) 1.27715 + 2.86853i 0.130349 + 0.292768i
\(97\) −7.15230 + 1.13281i −0.726206 + 0.115020i −0.508583 0.861013i \(-0.669830\pi\)
−0.217624 + 0.976033i \(0.569830\pi\)
\(98\) −12.9810 + 13.3169i −1.31128 + 1.34521i
\(99\) 8.82604i 0.887051i
\(100\) −25.2575 + 1.29370i −2.52575 + 0.129370i
\(101\) 2.36935 1.36795i 0.235759 0.136116i −0.377467 0.926023i \(-0.623205\pi\)
0.613226 + 0.789907i \(0.289871\pi\)
\(102\) −2.36422 1.53534i −0.234092 0.152021i
\(103\) 0.623225 + 0.239234i 0.0614082 + 0.0235724i 0.388878 0.921289i \(-0.372863\pi\)
−0.327470 + 0.944862i \(0.606196\pi\)
\(104\) 32.3548 + 23.5072i 3.17265 + 2.30507i
\(105\) 1.20409 0.506943i 0.117507 0.0494726i
\(106\) 9.18910 6.67627i 0.892524 0.648457i
\(107\) 2.61232 0.699970i 0.252543 0.0676686i −0.130327 0.991471i \(-0.541603\pi\)
0.382869 + 0.923802i \(0.374936\pi\)
\(108\) −2.38224 6.20594i −0.229231 0.597167i
\(109\) −3.45588 3.11169i −0.331013 0.298046i 0.486818 0.873503i \(-0.338157\pi\)
−0.817832 + 0.575458i \(0.804824\pi\)
\(110\) −4.13719 17.2777i −0.394465 1.64736i
\(111\) −0.282050 0.0916436i −0.0267710 0.00869843i
\(112\) −25.5523 16.3628i −2.41447 1.54614i
\(113\) 15.5844 + 7.94063i 1.46605 + 0.746991i 0.991112 0.133026i \(-0.0424695\pi\)
0.474941 + 0.880018i \(0.342470\pi\)
\(114\) −1.57183 + 1.41528i −0.147216 + 0.132554i
\(115\) −7.30485 + 0.186957i −0.681181 + 0.0174338i
\(116\) −16.5415 + 18.3712i −1.53584 + 1.70572i
\(117\) −11.2899 9.14234i −1.04375 0.845210i
\(118\) 1.05133 + 1.05133i 0.0967825 + 0.0967825i
\(119\) 12.7125 0.0811892i 1.16536 0.00744260i
\(120\) 2.27038 + 3.30761i 0.207256 + 0.301942i
\(121\) −1.87838 + 0.836308i −0.170762 + 0.0760280i
\(122\) 16.7377 + 20.6693i 1.51536 + 1.87131i
\(123\) −0.631178 + 0.971930i −0.0569114 + 0.0876359i
\(124\) 4.08816 7.08089i 0.367127 0.635883i
\(125\) −10.8760 + 2.59069i −0.972783 + 0.231718i
\(126\) 16.8600 + 12.0857i 1.50200 + 1.07668i
\(127\) −4.64631 + 2.36741i −0.412293 + 0.210074i −0.647819 0.761794i \(-0.724319\pi\)
0.235526 + 0.971868i \(0.424319\pi\)
\(128\) 3.93679 10.2557i 0.347966 0.906483i
\(129\) −0.275484 + 2.62105i −0.0242550 + 0.230771i
\(130\) 26.3862 + 12.6048i 2.31422 + 1.10551i
\(131\) 3.74207 0.393308i 0.326946 0.0343634i 0.0603664 0.998176i \(-0.480773\pi\)
0.266580 + 0.963813i \(0.414106\pi\)
\(132\) −2.36209 + 2.36209i −0.205594 + 0.205594i
\(133\) 2.40984 9.22901i 0.208960 0.800257i
\(134\) −23.6085 + 7.67085i −2.03946 + 0.662661i
\(135\) −1.53397 2.50654i −0.132023 0.215729i
\(136\) 8.11653 + 38.1853i 0.695987 + 3.27436i
\(137\) 3.98957 0.209084i 0.340852 0.0178633i 0.118858 0.992911i \(-0.462077\pi\)
0.221994 + 0.975048i \(0.428743\pi\)
\(138\) 1.04419 + 1.60792i 0.0888877 + 0.136875i
\(139\) −2.53686 + 7.80766i −0.215174 + 0.662237i 0.783967 + 0.620802i \(0.213193\pi\)
−0.999141 + 0.0414349i \(0.986807\pi\)
\(140\) −27.7123 11.2911i −2.34212 0.954275i
\(141\) −0.228132 0.702119i −0.0192122 0.0591291i
\(142\) 0.607049 0.749643i 0.0509424 0.0629086i
\(143\) −3.81014 + 14.2196i −0.318620 + 1.18911i
\(144\) −13.7663 + 30.9197i −1.14719 + 2.57664i
\(145\) −5.71562 + 9.31466i −0.474656 + 0.773541i
\(146\) −4.57155 + 6.29220i −0.378344 + 0.520746i
\(147\) 1.54460 + 0.0611781i 0.127397 + 0.00504589i
\(148\) 3.08387 + 6.05244i 0.253493 + 0.497508i
\(149\) −18.8977 10.9106i −1.54816 0.893830i −0.998282 0.0585846i \(-0.981341\pi\)
−0.549877 0.835246i \(-0.685325\pi\)
\(150\) 2.07178 + 2.07670i 0.169160 + 0.169561i
\(151\) 1.20290 + 2.08349i 0.0978908 + 0.169552i 0.910811 0.412823i \(-0.135457\pi\)
−0.812921 + 0.582375i \(0.802124\pi\)
\(152\) 29.2505 + 1.53295i 2.37253 + 0.124339i
\(153\) −2.21834 14.0060i −0.179342 1.13232i
\(154\) 4.23913 20.5893i 0.341599 1.65913i
\(155\) 1.20858 3.40650i 0.0970751 0.273617i
\(156\) −0.574732 5.46821i −0.0460154 0.437807i
\(157\) −21.1941 5.67894i −1.69147 0.453229i −0.720703 0.693244i \(-0.756181\pi\)
−0.970769 + 0.240016i \(0.922847\pi\)
\(158\) −12.9827 + 4.98361i −1.03285 + 0.396475i
\(159\) −0.923495 0.196295i −0.0732379 0.0155672i
\(160\) 5.81264 31.2589i 0.459529 2.47123i
\(161\) −7.92085 3.46615i −0.624251 0.273171i
\(162\) 10.3286 20.2710i 0.811492 1.59264i
\(163\) 7.44756 4.83650i 0.583338 0.378824i −0.218973 0.975731i \(-0.570271\pi\)
0.802310 + 0.596907i \(0.203604\pi\)
\(164\) 25.9644 5.51889i 2.02748 0.430953i
\(165\) −0.837161 + 1.21653i −0.0651729 + 0.0947070i
\(166\) −0.502420 + 2.36370i −0.0389954 + 0.183459i
\(167\) −1.64313 + 10.3743i −0.127149 + 0.802786i 0.838873 + 0.544327i \(0.183215\pi\)
−0.966022 + 0.258460i \(0.916785\pi\)
\(168\) 0.772502 + 4.68360i 0.0595999 + 0.361347i
\(169\) −6.60118 9.08574i −0.507783 0.698903i
\(170\) 10.9079 + 26.3781i 0.836595 + 2.02311i
\(171\) −10.5815 1.11216i −0.809186 0.0850489i
\(172\) 46.9130 37.9894i 3.57709 2.89667i
\(173\) 0.942653 17.9869i 0.0716686 1.36752i −0.691994 0.721903i \(-0.743268\pi\)
0.763663 0.645615i \(-0.223399\pi\)
\(174\) 2.86733 0.217372
\(175\) −12.9538 2.68306i −0.979216 0.202820i
\(176\) 34.2976 2.58528
\(177\) 0.00646797 0.123416i 0.000486162 0.00927653i
\(178\) −18.6647 + 15.1144i −1.39898 + 1.13287i
\(179\) 6.45610 + 0.678563i 0.482552 + 0.0507182i 0.342681 0.939452i \(-0.388665\pi\)
0.139870 + 0.990170i \(0.455332\pi\)
\(180\) −7.81147 + 32.4525i −0.582233 + 2.41886i
\(181\) 10.3669 + 14.2688i 0.770563 + 1.06059i 0.996261 + 0.0863916i \(0.0275336\pi\)
−0.225698 + 0.974197i \(0.572466\pi\)
\(182\) 21.9457 + 26.7496i 1.62673 + 1.98281i
\(183\) 0.345836 2.18352i 0.0255650 0.161411i
\(184\) 5.52010 25.9700i 0.406947 1.91454i
\(185\) 1.82666 + 2.38347i 0.134299 + 0.175236i
\(186\) −0.927634 + 0.197175i −0.0680174 + 0.0144575i
\(187\) −12.0516 + 7.82642i −0.881303 + 0.572325i
\(188\) −7.67682 + 15.0666i −0.559890 + 1.09885i
\(189\) −0.385532 3.45565i −0.0280433 0.251361i
\(190\) 21.2354 2.78291i 1.54058 0.201893i
\(191\) 11.8497 + 2.51873i 0.857414 + 0.182249i 0.615586 0.788070i \(-0.288920\pi\)
0.241828 + 0.970319i \(0.422253\pi\)
\(192\) −3.05929 + 1.17435i −0.220785 + 0.0847515i
\(193\) −8.29161 2.22173i −0.596843 0.159924i −0.0522644 0.998633i \(-0.516644\pi\)
−0.544579 + 0.838710i \(0.683311\pi\)
\(194\) −2.01097 19.1331i −0.144379 1.37368i
\(195\) −0.688969 2.33099i −0.0493381 0.166925i
\(196\) −24.0260 26.0077i −1.71614 1.85769i
\(197\) 0.621240 + 3.92235i 0.0442615 + 0.279456i 0.999885 0.0151331i \(-0.00481720\pi\)
−0.955624 + 0.294589i \(0.904817\pi\)
\(198\) −23.4161 1.22719i −1.66411 0.0872124i
\(199\) 6.13171 + 10.6204i 0.434666 + 0.752863i 0.997268 0.0738644i \(-0.0235332\pi\)
−0.562603 + 0.826727i \(0.690200\pi\)
\(200\) 0.0481015 40.6227i 0.00340129 2.87246i
\(201\) 1.78693 + 1.03168i 0.126040 + 0.0727693i
\(202\) 3.29982 + 6.47626i 0.232174 + 0.455668i
\(203\) −10.7994 + 7.11169i −0.757971 + 0.499143i
\(204\) 3.15471 4.34209i 0.220874 0.304007i
\(205\) 10.8440 4.48422i 0.757380 0.313192i
\(206\) −0.721358 + 1.62020i −0.0502594 + 0.112885i
\(207\) −2.49614 + 9.31571i −0.173494 + 0.647487i
\(208\) −35.5267 + 43.8719i −2.46334 + 3.04197i
\(209\) 3.33176 + 10.2541i 0.230463 + 0.709291i
\(210\) 1.17754 + 3.26502i 0.0812579 + 0.225308i
\(211\) −6.78037 + 20.8678i −0.466780 + 1.43660i 0.389950 + 0.920836i \(0.372492\pi\)
−0.856730 + 0.515765i \(0.827508\pi\)
\(212\) 11.7779 + 18.1364i 0.808912 + 1.24561i
\(213\) −0.0800702 + 0.00419630i −0.00548632 + 0.000287526i
\(214\) 1.49385 + 7.02801i 0.102117 + 0.480425i
\(215\) 17.3433 20.2821i 1.18280 1.38323i
\(216\) 10.1548 3.29950i 0.690948 0.224503i
\(217\) 3.00477 3.04339i 0.203977 0.206599i
\(218\) 8.73604 8.73604i 0.591679 0.591679i
\(219\) 0.642945 0.0675763i 0.0434462 0.00456638i
\(220\) 33.2622 6.14441i 2.24253 0.414256i
\(221\) 2.47234 23.5228i 0.166308 1.58231i
\(222\) 0.282354 0.735557i 0.0189504 0.0493674i
\(223\) 1.26491 0.644506i 0.0847049 0.0431593i −0.411125 0.911579i \(-0.634864\pi\)
0.495830 + 0.868420i \(0.334864\pi\)
\(224\) 21.9177 30.5758i 1.46444 2.04293i
\(225\) −0.789727 + 14.7350i −0.0526484 + 0.982335i
\(226\) −23.2339 + 40.2423i −1.54550 + 2.67688i
\(227\) 15.4376 23.7719i 1.02463 1.57779i 0.227692 0.973733i \(-0.426882\pi\)
0.796939 0.604060i \(-0.206451\pi\)
\(228\) −2.53425 3.12954i −0.167835 0.207259i
\(229\) 0.553987 0.246651i 0.0366085 0.0162992i −0.388351 0.921512i \(-0.626955\pi\)
0.424959 + 0.905212i \(0.360288\pi\)
\(230\) 0.519669 19.4063i 0.0342660 1.27961i
\(231\) −1.50761 + 0.883303i −0.0991933 + 0.0581171i
\(232\) −28.0775 28.0775i −1.84338 1.84338i
\(233\) 3.49716 + 2.83194i 0.229106 + 0.185527i 0.736999 0.675894i \(-0.236242\pi\)
−0.507893 + 0.861420i \(0.669575\pi\)
\(234\) 25.8251 28.6816i 1.68824 1.87498i
\(235\) −2.12735 + 7.16623i −0.138773 + 0.467473i
\(236\) −2.10364 + 1.89412i −0.136935 + 0.123297i
\(237\) 1.02994 + 0.524779i 0.0669016 + 0.0340881i
\(238\) −1.55217 + 33.7386i −0.100612 + 2.18695i
\(239\) −12.4990 4.06118i −0.808494 0.262696i −0.124534 0.992215i \(-0.539744\pi\)
−0.683960 + 0.729520i \(0.739744\pi\)
\(240\) −4.83024 + 2.95605i −0.311791 + 0.190812i
\(241\) −12.3140 11.0876i −0.793216 0.714215i 0.169263 0.985571i \(-0.445861\pi\)
−0.962479 + 0.271356i \(0.912528\pi\)
\(242\) −1.95761 5.09975i −0.125840 0.327824i
\(243\) −5.63495 + 1.50988i −0.361482 + 0.0968588i
\(244\) −40.9662 + 29.7637i −2.62259 + 1.90542i
\(245\) −12.5331 9.37666i −0.800710 0.599053i
\(246\) −2.49084 1.80970i −0.158810 0.115382i
\(247\) −16.5677 6.35975i −1.05418 0.404661i
\(248\) 11.0144 + 7.15280i 0.699412 + 0.454203i
\(249\) 0.173954 0.100432i 0.0110239 0.00636464i
\(250\) −5.36105 29.2151i −0.339063 1.84773i
\(251\) 21.3400i 1.34697i −0.739200 0.673486i \(-0.764796\pi\)
0.739200 0.673486i \(-0.235204\pi\)
\(252\) −24.6585 + 30.8515i −1.55334 + 1.94346i
\(253\) 9.65275 1.52885i 0.606863 0.0961177i
\(254\) −5.63488 12.6562i −0.353564 0.794118i
\(255\) 1.02273 2.14093i 0.0640456 0.134070i
\(256\) −0.450797 0.200708i −0.0281748 0.0125442i
\(257\) 5.79368 + 21.6223i 0.361400 + 1.34876i 0.872236 + 0.489085i \(0.162669\pi\)
−0.510836 + 0.859678i \(0.670664\pi\)
\(258\) −6.91553 1.09531i −0.430542 0.0681912i
\(259\) 0.760915 + 3.47068i 0.0472810 + 0.215658i
\(260\) −26.5945 + 48.9120i −1.64932 + 3.03339i
\(261\) 9.65136 + 10.7189i 0.597404 + 0.663485i
\(262\) 0.523170 + 9.98267i 0.0323215 + 0.616731i
\(263\) 1.28540 + 24.5269i 0.0792610 + 1.51239i 0.691880 + 0.722012i \(0.256783\pi\)
−0.612619 + 0.790378i \(0.709884\pi\)
\(264\) −3.59031 3.98745i −0.220969 0.245410i
\(265\) 6.57653 + 6.93844i 0.403993 + 0.426225i
\(266\) 24.1502 + 7.67670i 1.48074 + 0.470689i
\(267\) 1.97176 + 0.312296i 0.120670 + 0.0191122i
\(268\) −12.2321 45.6509i −0.747196 2.78857i
\(269\) −21.7527 9.68493i −1.32629 0.590501i −0.383390 0.923587i \(-0.625243\pi\)
−0.942897 + 0.333086i \(0.891910\pi\)
\(270\) 6.86332 3.72122i 0.417688 0.226466i
\(271\) 11.5585 + 25.9608i 0.702129 + 1.57701i 0.812397 + 0.583105i \(0.198162\pi\)
−0.110268 + 0.993902i \(0.535171\pi\)
\(272\) −54.4269 + 8.62037i −3.30011 + 0.522687i
\(273\) 0.431757 2.84342i 0.0261311 0.172092i
\(274\) 10.6137i 0.641196i
\(275\) 13.9663 5.34219i 0.842199 0.322146i
\(276\) −3.16117 + 1.82510i −0.190280 + 0.109858i
\(277\) 10.1183 + 6.57090i 0.607950 + 0.394807i 0.811581 0.584240i \(-0.198607\pi\)
−0.203631 + 0.979048i \(0.565274\pi\)
\(278\) −20.3615 7.81606i −1.22120 0.468776i
\(279\) −3.85948 2.80408i −0.231061 0.167876i
\(280\) 20.4410 43.5024i 1.22158 2.59977i
\(281\) 5.98822 4.35069i 0.357227 0.259541i −0.394668 0.918824i \(-0.629140\pi\)
0.751895 + 0.659283i \(0.229140\pi\)
\(282\) 1.89449 0.507628i 0.112815 0.0302288i
\(283\) −9.16617 23.8787i −0.544872 1.41944i −0.878959 0.476898i \(-0.841761\pi\)
0.334087 0.942542i \(-0.391572\pi\)
\(284\) 1.36480 + 1.22887i 0.0809862 + 0.0729203i
\(285\) −1.35300 1.15696i −0.0801450 0.0685324i
\(286\) −37.1959 12.0857i −2.19944 0.714642i
\(287\) 13.8699 + 0.638097i 0.818715 + 0.0376657i
\(288\) −37.3899 19.0511i −2.20322 1.12260i
\(289\) 4.52417 4.07358i 0.266128 0.239623i
\(290\) −23.9178 16.4591i −1.40450 0.966510i
\(291\) −1.07003 + 1.18839i −0.0627263 + 0.0696647i
\(292\) −11.5078 9.31883i −0.673443 0.545343i
\(293\) −1.98458 1.98458i −0.115941 0.115941i 0.646756 0.762697i \(-0.276125\pi\)
−0.762697 + 0.646756i \(0.776125\pi\)
\(294\) −0.377074 + 4.08944i −0.0219914 + 0.238501i
\(295\) −0.762387 + 0.992345i −0.0443879 + 0.0577765i
\(296\) −9.96759 + 4.43786i −0.579354 + 0.257945i
\(297\) 2.47344 + 3.05444i 0.143523 + 0.177237i
\(298\) 31.5741 48.6199i 1.82904 2.81648i
\(299\) −8.04305 + 13.9310i −0.465141 + 0.805649i
\(300\) −4.15485 + 3.73214i −0.239880 + 0.215475i
\(301\) 28.7631 13.0269i 1.65788 0.750857i
\(302\) −5.69490 + 2.90170i −0.327705 + 0.166974i
\(303\) 0.216515 0.564040i 0.0124384 0.0324033i
\(304\) −4.32180 + 41.1192i −0.247872 + 2.35835i
\(305\) −15.4187 + 16.2286i −0.882870 + 0.929248i
\(306\) 37.4675 3.93799i 2.14187 0.225120i
\(307\) 17.0423 17.0423i 0.972656 0.972656i −0.0269795 0.999636i \(-0.508589\pi\)
0.999636 + 0.0269795i \(0.00858889\pi\)
\(308\) 38.7238 + 10.1114i 2.20650 + 0.576151i
\(309\) 0.140204 0.0455549i 0.00797590 0.00259153i
\(310\) 8.86965 + 3.68008i 0.503762 + 0.209015i
\(311\) 5.89343 + 27.7264i 0.334186 + 1.57222i 0.749161 + 0.662388i \(0.230457\pi\)
−0.414975 + 0.909833i \(0.636210\pi\)
\(312\) 8.81953 0.462212i 0.499308 0.0261676i
\(313\) 11.7313 + 18.0646i 0.663091 + 1.02107i 0.996919 + 0.0784364i \(0.0249927\pi\)
−0.333828 + 0.942634i \(0.608341\pi\)
\(314\) 18.0135 55.4398i 1.01656 3.12865i
\(315\) −8.24202 + 15.3919i −0.464385 + 0.867237i
\(316\) −8.18167 25.1806i −0.460255 1.41652i
\(317\) 0.142171 0.175566i 0.00798511 0.00986079i −0.773138 0.634238i \(-0.781314\pi\)
0.781123 + 0.624377i \(0.214647\pi\)
\(318\) 0.649189 2.42281i 0.0364047 0.135864i
\(319\) 5.94497 13.3526i 0.332855 0.747603i
\(320\) 32.2600 + 7.76514i 1.80339 + 0.434085i
\(321\) 0.351044 0.483170i 0.0195934 0.0269679i
\(322\) 10.2973 20.5327i 0.573844 1.14424i
\(323\) −7.86443 15.4348i −0.437589 0.858816i
\(324\) 37.5120 + 21.6576i 2.08400 + 1.20320i
\(325\) −7.63333 + 23.3987i −0.423421 + 1.29792i
\(326\) 11.7961 + 20.4314i 0.653323 + 1.13159i
\(327\) −1.02553 0.0537458i −0.0567120 0.00297215i
\(328\) 6.66985 + 42.1118i 0.368281 + 2.32523i
\(329\) −5.87631 + 6.61072i −0.323972 + 0.364461i
\(330\) −3.11115 2.39020i −0.171263 0.131576i
\(331\) 1.99845 + 19.0140i 0.109845 + 1.04510i 0.901099 + 0.433614i \(0.142762\pi\)
−0.791254 + 0.611488i \(0.790571\pi\)
\(332\) −4.44403 1.19077i −0.243898 0.0653522i
\(333\) 3.70012 1.42034i 0.202765 0.0778343i
\(334\) −27.2953 5.80179i −1.49353 0.317460i
\(335\) −8.98352 18.8631i −0.490822 1.03060i
\(336\) −6.65923 + 0.742941i −0.363291 + 0.0405308i
\(337\) −0.693845 + 1.36175i −0.0377961 + 0.0741791i −0.909132 0.416507i \(-0.863254\pi\)
0.871336 + 0.490687i \(0.163254\pi\)
\(338\) 25.0230 16.2501i 1.36107 0.883889i
\(339\) 3.77809 0.803057i 0.205198 0.0436161i
\(340\) −51.2394 + 18.1107i −2.77885 + 0.982190i
\(341\) −1.00510 + 4.72863i −0.0544292 + 0.256069i
\(342\) 4.42190 27.9188i 0.239109 1.50968i
\(343\) −8.72262 16.3376i −0.470977 0.882145i
\(344\) 56.9928 + 78.4438i 3.07284 + 4.22941i
\(345\) −1.22766 + 1.04726i −0.0660950 + 0.0563828i
\(346\) 47.5894 + 5.00185i 2.55842 + 0.268901i
\(347\) 15.4209 12.4876i 0.827835 0.670368i −0.118714 0.992929i \(-0.537877\pi\)
0.946549 + 0.322561i \(0.104544\pi\)
\(348\) −0.285708 + 5.45164i −0.0153156 + 0.292239i
\(349\) 7.02028 0.375787 0.187894 0.982189i \(-0.439834\pi\)
0.187894 + 0.982189i \(0.439834\pi\)
\(350\) 8.91947 33.9943i 0.476766 1.81707i
\(351\) −6.46917 −0.345299
\(352\) −2.22553 + 42.4656i −0.118621 + 2.26342i
\(353\) 20.9689 16.9803i 1.11606 0.903768i 0.120029 0.992770i \(-0.461701\pi\)
0.996031 + 0.0890029i \(0.0283680\pi\)
\(354\) 0.326533 + 0.0343200i 0.0173550 + 0.00182409i
\(355\) 0.691991 + 0.424616i 0.0367271 + 0.0225363i
\(356\) −26.8771 36.9932i −1.42448 1.96063i
\(357\) 2.17041 1.78064i 0.114870 0.0942413i
\(358\) −2.69794 + 17.0341i −0.142591 + 0.900283i
\(359\) −2.90347 + 13.6598i −0.153239 + 0.720934i 0.832686 + 0.553746i \(0.186802\pi\)
−0.985925 + 0.167188i \(0.946531\pi\)
\(360\) −51.3983 15.2580i −2.70893 0.804166i
\(361\) 5.87140 1.24800i 0.309021 0.0656845i
\(362\) −39.2975 + 25.5201i −2.06543 + 1.34131i
\(363\) −0.206138 + 0.404570i −0.0108195 + 0.0212344i
\(364\) −53.0456 + 39.0599i −2.78035 + 2.04730i
\(365\) −5.75101 3.12695i −0.301022 0.163672i
\(366\) 5.74496 + 1.22113i 0.300294 + 0.0638295i
\(367\) 26.5370 10.1866i 1.38522 0.531737i 0.452317 0.891857i \(-0.350598\pi\)
0.932906 + 0.360120i \(0.117264\pi\)
\(368\) 36.2004 + 9.69987i 1.88708 + 0.505641i
\(369\) −1.61891 15.4029i −0.0842770 0.801842i
\(370\) −6.57749 + 4.51485i −0.341948 + 0.234716i
\(371\) 3.56408 + 10.7353i 0.185038 + 0.557350i
\(372\) −0.282455 1.78335i −0.0146446 0.0924624i
\(373\) 22.0879 + 1.15758i 1.14367 + 0.0599372i 0.614741 0.788729i \(-0.289261\pi\)
0.528929 + 0.848666i \(0.322594\pi\)
\(374\) −19.0884 33.0620i −0.987037 1.70960i
\(375\) −1.50649 + 1.95609i −0.0777946 + 0.101012i
\(376\) −23.5221 13.5805i −1.21306 0.700359i
\(377\) 10.9220 + 21.4357i 0.562512 + 1.10399i
\(378\) 9.22169 0.542364i 0.474312 0.0278962i
\(379\) 19.8453 27.3147i 1.01938 1.40306i 0.106747 0.994286i \(-0.465956\pi\)
0.912636 0.408774i \(-0.134044\pi\)
\(380\) 3.17517 + 40.6520i 0.162883 + 2.08541i
\(381\) −0.468382 + 1.05200i −0.0239959 + 0.0538957i
\(382\) −8.32997 + 31.0879i −0.426199 + 1.59059i
\(383\) 23.8477 29.4495i 1.21856 1.50480i 0.414725 0.909947i \(-0.363878\pi\)
0.803836 0.594851i \(-0.202789\pi\)
\(384\) −0.749644 2.30717i −0.0382551 0.117737i
\(385\) 17.6460 + 1.28593i 0.899324 + 0.0655373i
\(386\) 7.04729 21.6893i 0.358698 1.10396i
\(387\) −19.1829 29.5391i −0.975121 1.50155i
\(388\) 36.5780 1.91697i 1.85697 0.0973195i
\(389\) 2.63857 + 12.4135i 0.133781 + 0.629388i 0.993033 + 0.117836i \(0.0375958\pi\)
−0.859252 + 0.511552i \(0.829071\pi\)
\(390\) 6.28007 1.50378i 0.318004 0.0761468i
\(391\) −14.9337 + 4.85225i −0.755229 + 0.245389i
\(392\) 43.7370 36.3522i 2.20905 1.83606i
\(393\) 0.587546 0.587546i 0.0296378 0.0296378i
\(394\) −10.4927 + 1.10282i −0.528613 + 0.0555594i
\(395\) −5.57884 10.2895i −0.280702 0.517720i
\(396\) 4.66649 44.3987i 0.234500 2.23112i
\(397\) −9.62248 + 25.0674i −0.482938 + 1.25810i 0.448364 + 0.893851i \(0.352007\pi\)
−0.931303 + 0.364246i \(0.881327\pi\)
\(398\) −29.0294 + 14.7912i −1.45511 + 0.741416i
\(399\) −0.869015 1.91877i −0.0435052 0.0960584i
\(400\) 57.2596 + 3.06884i 2.86298 + 0.153442i
\(401\) 1.13896 1.97273i 0.0568769 0.0985137i −0.836185 0.548447i \(-0.815219\pi\)
0.893062 + 0.449934i \(0.148552\pi\)
\(402\) −2.98559 + 4.59740i −0.148907 + 0.229297i
\(403\) −5.00751 6.18376i −0.249442 0.308035i
\(404\) −12.6421 + 5.62861i −0.628967 + 0.280034i
\(405\) 18.0464 + 6.40260i 0.896733 + 0.318148i
\(406\) −17.3663 29.6405i −0.861873 1.47103i
\(407\) −2.83993 2.83993i −0.140770 0.140770i
\(408\) 6.69967 + 5.42529i 0.331683 + 0.268592i
\(409\) −19.4149 + 21.5624i −0.960005 + 1.06619i 0.0377539 + 0.999287i \(0.487980\pi\)
−0.997759 + 0.0669069i \(0.978687\pi\)
\(410\) 10.3892 + 29.3935i 0.513086 + 1.45164i
\(411\) 0.655623 0.590326i 0.0323395 0.0291186i
\(412\) −3.00859 1.53295i −0.148223 0.0755233i
\(413\) −1.31496 + 0.680620i −0.0647051 + 0.0334911i
\(414\) −24.3682 7.91770i −1.19763 0.389134i
\(415\) −2.02753 0.160778i −0.0995276 0.00789229i
\(416\) −52.0146 46.8342i −2.55023 2.29624i
\(417\) 0.649685 + 1.69249i 0.0318152 + 0.0828815i
\(418\) −27.6681 + 7.41365i −1.35329 + 0.362613i
\(419\) −4.33888 + 3.15238i −0.211968 + 0.154004i −0.688704 0.725043i \(-0.741820\pi\)
0.476736 + 0.879047i \(0.341820\pi\)
\(420\) −6.32509 + 1.91351i −0.308633 + 0.0933698i
\(421\) −15.3126 11.1253i −0.746290 0.542212i 0.148385 0.988930i \(-0.452593\pi\)
−0.894675 + 0.446718i \(0.852593\pi\)
\(422\) −54.4211 20.8903i −2.64918 1.01692i
\(423\) 8.27447 + 5.37350i 0.402318 + 0.261269i
\(424\) −30.0816 + 17.3676i −1.46089 + 0.843446i
\(425\) −20.8204 + 11.9878i −1.00994 + 0.581494i
\(426\) 0.213016i 0.0103206i
\(427\) −24.6663 + 9.64971i −1.19369 + 0.466982i
\(428\) −13.5112 + 2.13996i −0.653086 + 0.103439i
\(429\) 1.32226 + 2.96985i 0.0638394 + 0.143386i
\(430\) 51.3984 + 48.8331i 2.47865 + 2.35494i
\(431\) −21.2587 9.46500i −1.02400 0.455913i −0.175145 0.984543i \(-0.556039\pi\)
−0.848853 + 0.528630i \(0.822706\pi\)
\(432\) 3.90089 + 14.5583i 0.187682 + 0.700438i
\(433\) −5.95872 0.943769i −0.286358 0.0453546i 0.0116031 0.999933i \(-0.496307\pi\)
−0.297961 + 0.954578i \(0.596307\pi\)
\(434\) 7.65655 + 8.39502i 0.367526 + 0.402974i
\(435\) 0.313587 + 2.39288i 0.0150354 + 0.114730i
\(436\) 15.7393 + 17.4803i 0.753776 + 0.837153i
\(437\) 0.616591 + 11.7653i 0.0294956 + 0.562809i
\(438\) 0.0898886 + 1.71518i 0.00429504 + 0.0819543i
\(439\) 23.9122 + 26.5572i 1.14127 + 1.26751i 0.958733 + 0.284307i \(0.0917636\pi\)
0.182535 + 0.983199i \(0.441570\pi\)
\(440\) 7.05971 + 53.8703i 0.336559 + 2.56817i
\(441\) −16.5567 + 12.3553i −0.788416 + 0.588349i
\(442\) 62.0638 + 9.82995i 2.95208 + 0.467563i
\(443\) 5.44524 + 20.3219i 0.258711 + 0.965523i 0.965988 + 0.258586i \(0.0832567\pi\)
−0.707277 + 0.706936i \(0.750077\pi\)
\(444\) 1.37038 + 0.610130i 0.0650351 + 0.0289555i
\(445\) −14.6547 13.9233i −0.694701 0.660029i
\(446\) 1.53404 + 3.44552i 0.0726391 + 0.163150i
\(447\) −4.75946 + 0.753824i −0.225115 + 0.0356547i
\(448\) 30.6685 + 24.5122i 1.44895 + 1.15809i
\(449\) 17.1662i 0.810122i −0.914290 0.405061i \(-0.867250\pi\)
0.914290 0.405061i \(-0.132750\pi\)
\(450\) −38.9833 4.14398i −1.83769 0.195349i
\(451\) −13.5918 + 7.84723i −0.640013 + 0.369512i
\(452\) −74.1974 48.1844i −3.48995 2.26640i
\(453\) 0.495989 + 0.190392i 0.0233036 + 0.00894541i
\(454\) 60.9220 + 44.2624i 2.85921 + 2.07734i
\(455\) −19.9233 + 21.2399i −0.934018 + 0.995742i
\(456\) 5.23294 3.80195i 0.245055 0.178043i
\(457\) 22.4126 6.00543i 1.04842 0.280922i 0.306819 0.951768i \(-0.400735\pi\)
0.741597 + 0.670845i \(0.234069\pi\)
\(458\) 0.577355 + 1.50406i 0.0269780 + 0.0702802i
\(459\) −4.69280 4.22542i −0.219041 0.197226i
\(460\) 36.8453 + 2.92174i 1.71792 + 0.136227i
\(461\) 15.9507 + 5.18270i 0.742899 + 0.241383i 0.655923 0.754828i \(-0.272280\pi\)
0.0869763 + 0.996210i \(0.472280\pi\)
\(462\) −2.13385 4.12261i −0.0992756 0.191801i
\(463\) −25.0376 12.7573i −1.16360 0.592882i −0.237952 0.971277i \(-0.576476\pi\)
−0.925644 + 0.378395i \(0.876476\pi\)
\(464\) 41.6532 37.5047i 1.93370 1.74111i
\(465\) −0.266000 0.752575i −0.0123354 0.0348999i
\(466\) −7.99959 + 8.88445i −0.370574 + 0.411564i
\(467\) 4.43522 + 3.59157i 0.205238 + 0.166198i 0.726429 0.687242i \(-0.241179\pi\)
−0.521191 + 0.853440i \(0.674512\pi\)
\(468\) 51.9589 + 51.9589i 2.40180 + 2.40180i
\(469\) −0.157878 24.7205i −0.00729015 1.14149i
\(470\) −18.7167 6.64042i −0.863339 0.306300i
\(471\) −4.42650 + 1.97081i −0.203962 + 0.0908099i
\(472\) −2.86141 3.53354i −0.131707 0.162645i
\(473\) −19.4390 + 29.9334i −0.893804 + 1.37634i
\(474\) −1.53548 + 2.65953i −0.0705270 + 0.122156i
\(475\) 4.64484 + 17.4173i 0.213120 + 0.799159i
\(476\) −63.9922 6.31293i −2.93308 0.289353i
\(477\) 11.2423 5.72824i 0.514750 0.262278i
\(478\) 12.5125 32.5961i 0.572308 1.49091i
\(479\) 1.95747 18.6240i 0.0894389 0.850954i −0.854193 0.519957i \(-0.825948\pi\)
0.943632 0.330998i \(-0.107385\pi\)
\(480\) −3.34660 6.17238i −0.152751 0.281729i
\(481\) 6.57441 0.690999i 0.299767 0.0315068i
\(482\) 31.1284 31.1284i 1.41786 1.41786i
\(483\) −1.84106 + 0.505935i −0.0837712 + 0.0230208i
\(484\) 9.89119 3.21384i 0.449599 0.146084i
\(485\) 15.7472 3.77072i 0.715045 0.171219i
\(486\) −3.22233 15.1599i −0.146168 0.687665i
\(487\) 22.7688 1.19326i 1.03175 0.0540719i 0.471065 0.882098i \(-0.343870\pi\)
0.560689 + 0.828027i \(0.310536\pi\)
\(488\) −44.2983 68.2134i −2.00529 3.08787i
\(489\) 0.605988 1.86504i 0.0274037 0.0843400i
\(490\) 26.6196 31.9474i 1.20255 1.44324i
\(491\) 3.66657 + 11.2845i 0.165470 + 0.509264i 0.999071 0.0431034i \(-0.0137245\pi\)
−0.833601 + 0.552368i \(0.813724\pi\)
\(492\) 3.68897 4.55549i 0.166311 0.205377i
\(493\) −6.07802 + 22.6835i −0.273740 + 1.02161i
\(494\) 19.1765 43.0711i 0.862790 1.93786i
\(495\) −1.53679 19.6757i −0.0690736 0.884357i
\(496\) −10.8965 + 14.9978i −0.489268 + 0.673420i
\(497\) 0.528331 + 0.802294i 0.0236989 + 0.0359878i
\(498\) 0.242267 + 0.475476i 0.0108563 + 0.0213066i
\(499\) −8.20677 4.73818i −0.367385 0.212110i 0.304930 0.952375i \(-0.401367\pi\)
−0.672316 + 0.740265i \(0.734700\pi\)
\(500\) 56.0807 7.28186i 2.50801 0.325655i
\(501\) 1.15976 + 2.00876i 0.0518142 + 0.0897449i
\(502\) 56.6167 + 2.96715i 2.52693 + 0.132431i
\(503\) 3.15307 + 19.9077i 0.140588 + 0.887640i 0.952650 + 0.304069i \(0.0983452\pi\)
−0.812062 + 0.583572i \(0.801655\pi\)
\(504\) −47.4140 42.1466i −2.11199 1.87736i
\(505\) −5.04376 + 3.46208i −0.224444 + 0.154061i
\(506\) 2.71400 + 25.8220i 0.120652 + 1.14793i
\(507\) −2.39556 0.641887i −0.106390 0.0285072i
\(508\) 24.6245 9.45248i 1.09254 0.419386i
\(509\) −17.3660 3.69127i −0.769737 0.163613i −0.193727 0.981055i \(-0.562058\pi\)
−0.576010 + 0.817443i \(0.695391\pi\)
\(510\) 5.53783 + 3.01105i 0.245219 + 0.133331i
\(511\) −4.59261 6.23703i −0.203165 0.275910i
\(512\) 10.5696 20.7441i 0.467117 0.916768i
\(513\) −3.97362 + 2.58050i −0.175440 + 0.113932i
\(514\) −58.1711 + 12.3647i −2.56582 + 0.545382i
\(515\) −1.43100 0.424803i −0.0630573 0.0187190i
\(516\) 2.77159 13.0393i 0.122013 0.574024i
\(517\) 1.56401 9.87478i 0.0687852 0.434292i
\(518\) −9.31377 + 1.53619i −0.409224 + 0.0674965i
\(519\) −2.33792 3.21787i −0.102623 0.141249i
\(520\) −76.2210 46.7704i −3.34251 2.05102i
\(521\) 14.6625 + 1.54109i 0.642376 + 0.0675164i 0.420115 0.907471i \(-0.361990\pi\)
0.222261 + 0.974987i \(0.428656\pi\)
\(522\) −29.7800 + 24.1154i −1.30344 + 1.05550i
\(523\) −0.217309 + 4.14649i −0.00950224 + 0.181314i 0.989755 + 0.142777i \(0.0456031\pi\)
−0.999257 + 0.0385369i \(0.987730\pi\)
\(524\) −19.0321 −0.831422
\(525\) −2.59598 + 1.33977i −0.113298 + 0.0584725i
\(526\) −65.2502 −2.84504
\(527\) 0.406500 7.75647i 0.0177074 0.337877i
\(528\) 5.88608 4.76645i 0.256159 0.207433i
\(529\) −12.2533 1.28788i −0.532754 0.0559947i
\(530\) −19.3226 + 16.4833i −0.839320 + 0.715988i
\(531\) 0.970802 + 1.33619i 0.0421292 + 0.0579859i
\(532\) −17.0020 + 45.1516i −0.737132 + 1.95757i
\(533\) 4.04109 25.5144i 0.175039 1.10515i
\(534\) −1.10270 + 5.18780i −0.0477185 + 0.224498i
\(535\) −5.70172 + 2.01529i −0.246507 + 0.0871284i
\(536\) 74.2541 15.7832i 3.20729 0.681730i
\(537\) 1.20228 0.780772i 0.0518824 0.0336928i
\(538\) 28.7194 56.3649i 1.23818 2.43006i
\(539\) 18.2619 + 10.2348i 0.786597 + 0.440843i
\(540\) 6.39125 + 13.4200i 0.275036 + 0.577504i
\(541\) −29.5536 6.28181i −1.27061 0.270076i −0.477216 0.878786i \(-0.658354\pi\)
−0.793393 + 0.608710i \(0.791687\pi\)
\(542\) −70.4830 + 27.0559i −3.02750 + 1.16215i
\(543\) 3.76211 + 1.00806i 0.161448 + 0.0432598i
\(544\) −7.14162 67.9480i −0.306194 2.91324i
\(545\) 8.24592 + 6.33508i 0.353217 + 0.271365i
\(546\) 7.48376 + 1.54084i 0.320275 + 0.0659417i
\(547\) −1.01423 6.40362i −0.0433655 0.273799i 0.956472 0.291824i \(-0.0942622\pi\)
−0.999838 + 0.0180249i \(0.994262\pi\)
\(548\) −20.1797 1.05757i −0.862035 0.0451773i
\(549\) 14.7724 + 25.5866i 0.630472 + 1.09201i
\(550\) 12.2313 + 37.7964i 0.521546 + 1.61164i
\(551\) 15.2593 + 8.80994i 0.650066 + 0.375316i
\(552\) −2.66179 5.22406i −0.113293 0.222351i
\(553\) −0.813112 13.8251i −0.0345770 0.587905i
\(554\) −18.8399 + 25.9310i −0.800433 + 1.10170i
\(555\) 0.644725 + 0.155189i 0.0273671 + 0.00658739i
\(556\) 16.8895 37.9345i 0.716275 1.60878i
\(557\) 3.18632 11.8915i 0.135009 0.503860i −0.864989 0.501791i \(-0.832675\pi\)
0.999998 0.00206894i \(-0.000658565\pi\)
\(558\) 7.97605 9.84960i 0.337653 0.416967i
\(559\) −18.1537 55.8715i −0.767821 2.36311i
\(560\) 59.8123 + 32.0281i 2.52753 + 1.35343i
\(561\) −0.980610 + 3.01801i −0.0414014 + 0.127420i
\(562\) 10.7101 + 16.4921i 0.451778 + 0.695677i
\(563\) 8.51592 0.446300i 0.358903 0.0188093i 0.127968 0.991778i \(-0.459155\pi\)
0.230936 + 0.972969i \(0.425821\pi\)
\(564\) 0.776378 + 3.65257i 0.0326914 + 0.153801i
\(565\) −36.1245 14.9883i −1.51977 0.630563i
\(566\) 64.6263 20.9984i 2.71645 0.882627i
\(567\) 16.1228 + 15.9182i 0.677094 + 0.668500i
\(568\) −2.08589 + 2.08589i −0.0875221 + 0.0875221i
\(569\) −31.0809 + 3.26674i −1.30298 + 0.136949i −0.730468 0.682947i \(-0.760698\pi\)
−0.572512 + 0.819896i \(0.694031\pi\)
\(570\) 3.25762 3.42875i 0.136447 0.143615i
\(571\) −0.883002 + 8.40120i −0.0369525 + 0.351579i 0.960386 + 0.278672i \(0.0898943\pi\)
−0.997339 + 0.0729071i \(0.976772\pi\)
\(572\) 26.6847 69.5161i 1.11575 2.90662i
\(573\) 2.38365 1.21453i 0.0995786 0.0507378i
\(574\) −3.62141 + 36.7092i −0.151155 + 1.53221i
\(575\) 16.2520 1.68870i 0.677755 0.0704236i
\(576\) 21.8969 37.9266i 0.912372 1.58027i
\(577\) −7.64659 + 11.7747i −0.318332 + 0.490188i −0.961224 0.275769i \(-0.911068\pi\)
0.642892 + 0.765957i \(0.277734\pi\)
\(578\) 10.1785 + 12.5694i 0.423368 + 0.522816i
\(579\) −1.73175 + 0.771024i −0.0719690 + 0.0320427i
\(580\) 33.6768 43.8347i 1.39835 1.82014i
\(581\) −2.09177 1.18993i −0.0867811 0.0493668i
\(582\) −3.00411 3.00411i −0.124524 0.124524i
\(583\) −9.93656 8.04646i −0.411530 0.333251i
\(584\) 15.9151 17.6756i 0.658573 0.731420i
\(585\) 26.7601 + 18.4150i 1.10639 + 0.761368i
\(586\) 5.54118 4.98931i 0.228904 0.206106i
\(587\) 17.5353 + 8.93468i 0.723759 + 0.368774i 0.776740 0.629822i \(-0.216872\pi\)
−0.0529805 + 0.998596i \(0.516872\pi\)
\(588\) −7.73765 1.12441i −0.319095 0.0463699i
\(589\) −5.54247 1.80086i −0.228373 0.0742030i
\(590\) −2.52676 2.16064i −0.104025 0.0889523i
\(591\) 0.651718 + 0.586810i 0.0268081 + 0.0241381i
\(592\) −5.51939 14.3785i −0.226845 0.590953i
\(593\) −4.03167 + 1.08028i −0.165561 + 0.0443619i −0.340647 0.940191i \(-0.610646\pi\)
0.175086 + 0.984553i \(0.443980\pi\)
\(594\) −8.44756 + 6.13751i −0.346608 + 0.251825i
\(595\) −28.3256 + 2.39450i −1.16124 + 0.0981650i
\(596\) 89.2946 + 64.8763i 3.65765 + 2.65744i
\(597\) 2.52827 + 0.970511i 0.103475 + 0.0397204i
\(598\) −35.8415 23.2758i −1.46567 0.951817i
\(599\) −0.232901 + 0.134465i −0.00951606 + 0.00549410i −0.504750 0.863265i \(-0.668416\pi\)
0.495234 + 0.868759i \(0.335082\pi\)
\(600\) −5.63722 6.97827i −0.230139 0.284887i
\(601\) 10.5831i 0.431694i −0.976427 0.215847i \(-0.930749\pi\)
0.976427 0.215847i \(-0.0692513\pi\)
\(602\) 30.5620 + 78.1218i 1.24561 + 3.18401i
\(603\) −27.2358 + 4.31373i −1.10913 + 0.175669i
\(604\) −4.94952 11.1168i −0.201393 0.452336i
\(605\) 4.04181 2.19143i 0.164323 0.0890941i
\(606\) 1.46633 + 0.652854i 0.0595658 + 0.0265204i
\(607\) −0.323127 1.20593i −0.0131153 0.0489470i 0.959058 0.283209i \(-0.0913992\pi\)
−0.972173 + 0.234262i \(0.924732\pi\)
\(608\) −50.6313 8.01920i −2.05337 0.325222i
\(609\) −0.865037 + 2.72132i −0.0350531 + 0.110274i
\(610\) −40.9119 43.1633i −1.65647 1.74763i
\(611\) 11.0113 + 12.2293i 0.445469 + 0.494743i
\(612\) 3.75392 + 71.6291i 0.151743 + 2.89543i
\(613\) 1.40509 + 26.8108i 0.0567512 + 1.08288i 0.867485 + 0.497463i \(0.165735\pi\)
−0.810734 + 0.585415i \(0.800932\pi\)
\(614\) 42.8449 + 47.5841i 1.72908 + 1.92034i
\(615\) 1.23784 2.27660i 0.0499145 0.0918015i
\(616\) −19.4744 + 61.2645i −0.784644 + 2.46842i
\(617\) −9.11291 1.44334i −0.366872 0.0581068i −0.0297232 0.999558i \(-0.509463\pi\)
−0.337149 + 0.941451i \(0.609463\pi\)
\(618\) 0.101366 + 0.378304i 0.00407755 + 0.0152176i
\(619\) 7.43093 + 3.30846i 0.298674 + 0.132978i 0.550602 0.834768i \(-0.314398\pi\)
−0.251928 + 0.967746i \(0.581065\pi\)
\(620\) −7.88071 + 16.4971i −0.316497 + 0.662540i
\(621\) 1.74682 + 3.92342i 0.0700975 + 0.157442i
\(622\) −74.3796 + 11.7806i −2.98235 + 0.472358i
\(623\) −8.71385 22.2741i −0.349113 0.892394i
\(624\) 12.4665i 0.499058i
\(625\) 23.7946 7.66910i 0.951786 0.306764i
\(626\) −49.5578 + 28.6122i −1.98073 + 1.14357i
\(627\) 1.99683 + 1.29676i 0.0797459 + 0.0517876i
\(628\) 103.612 + 39.7731i 4.13459 + 1.58712i
\(629\) 5.22048 + 3.79290i 0.208154 + 0.151233i
\(630\) −39.6899 24.0068i −1.58128 0.956453i
\(631\) −26.1031 + 18.9650i −1.03915 + 0.754985i −0.970119 0.242629i \(-0.921990\pi\)
−0.0690289 + 0.997615i \(0.521990\pi\)
\(632\) 41.0784 11.0069i 1.63401 0.437832i
\(633\) 1.73644 + 4.52358i 0.0690173 + 0.179796i
\(634\) 0.446023 + 0.401601i 0.0177138 + 0.0159496i
\(635\) 9.94570 6.08664i 0.394683 0.241541i
\(636\) 4.54178 + 1.47571i 0.180093 + 0.0585158i
\(637\) −32.0082 + 12.7582i −1.26821 + 0.505499i
\(638\) 34.5989 + 17.6290i 1.36978 + 0.697939i
\(639\) 0.796314 0.717004i 0.0315017 0.0283642i
\(640\) −6.99048 + 23.5483i −0.276323 + 0.930827i
\(641\) 19.6339 21.8057i 0.775494 0.861273i −0.217907 0.975970i \(-0.569923\pi\)
0.993401 + 0.114697i \(0.0365896\pi\)
\(642\) 1.23308 + 0.998525i 0.0486656 + 0.0394086i
\(643\) −23.5100 23.5100i −0.927145 0.927145i 0.0703751 0.997521i \(-0.477580\pi\)
−0.997521 + 0.0703751i \(0.977580\pi\)
\(644\) 38.0126 + 21.6241i 1.49790 + 0.852107i
\(645\) 0.157752 5.89102i 0.00621148 0.231959i
\(646\) 42.0432 18.7188i 1.65417 0.736482i
\(647\) 1.06439 + 1.31441i 0.0418455 + 0.0516749i 0.797639 0.603135i \(-0.206082\pi\)
−0.755794 + 0.654810i \(0.772749\pi\)
\(648\) −37.8930 + 58.3501i −1.48858 + 2.29221i
\(649\) 0.836837 1.44944i 0.0328487 0.0568956i
\(650\) −61.0170 23.5052i −2.39328 0.921948i
\(651\) 0.0927208 0.939882i 0.00363401 0.0368369i
\(652\) −40.0214 + 20.3919i −1.56736 + 0.798610i
\(653\) −6.29260 + 16.3928i −0.246249 + 0.641499i −0.999875 0.0158035i \(-0.994969\pi\)
0.753627 + 0.657303i \(0.228303\pi\)
\(654\) 0.285183 2.71334i 0.0111515 0.106100i
\(655\) −8.27364 + 1.52836i −0.323278 + 0.0597180i
\(656\) −59.8549 + 6.29100i −2.33694 + 0.245622i
\(657\) −6.10926 + 6.10926i −0.238345 + 0.238345i
\(658\) −16.7217 16.5094i −0.651879 0.643605i
\(659\) −12.1353 + 3.94299i −0.472724 + 0.153597i −0.535684 0.844419i \(-0.679946\pi\)
0.0629598 + 0.998016i \(0.479946\pi\)
\(660\) 4.85447 5.67704i 0.188960 0.220979i
\(661\) −9.56810 45.0144i −0.372156 1.75086i −0.622424 0.782680i \(-0.713852\pi\)
0.250268 0.968177i \(-0.419481\pi\)
\(662\) −50.7233 + 2.65829i −1.97142 + 0.103318i
\(663\) −2.84474 4.38051i −0.110480 0.170125i
\(664\) 2.28363 7.02829i 0.0886220 0.272751i
\(665\) −3.76525 + 20.9936i −0.146010 + 0.814098i
\(666\) 3.25380 + 10.0142i 0.126082 + 0.388041i
\(667\) 10.0511 12.4121i 0.389181 0.480598i
\(668\) 13.7507 51.3182i 0.532029 1.98556i
\(669\) 0.127513 0.286398i 0.00492992 0.0110728i
\(670\) 51.2942 21.2112i 1.98167 0.819459i
\(671\) 17.5979 24.2214i 0.679358 0.935056i
\(672\) −0.487764 8.29333i −0.0188159 0.319922i
\(673\) 13.5468 + 26.5870i 0.522189 + 1.02485i 0.990006 + 0.141028i \(0.0450409\pi\)
−0.467816 + 0.883826i \(0.654959\pi\)
\(674\) −3.51634 2.03016i −0.135444 0.0781988i
\(675\) 3.85608 + 5.32068i 0.148421 + 0.204793i
\(676\) 28.4029 + 49.1952i 1.09242 + 1.89212i
\(677\) −28.8246 1.51063i −1.10782 0.0580583i −0.510362 0.859960i \(-0.670488\pi\)
−0.597456 + 0.801902i \(0.703822\pi\)
\(678\) 1.60526 + 10.1352i 0.0616495 + 0.389240i
\(679\) 18.7655 + 3.86364i 0.720153 + 0.148273i
\(680\) −24.7428 83.7124i −0.948844 3.21022i
\(681\) −0.654283 6.22509i −0.0250722 0.238546i
\(682\) −12.4056 3.32408i −0.475036 0.127286i
\(683\) −14.8084 + 5.68441i −0.566628 + 0.217508i −0.624782 0.780800i \(-0.714812\pi\)
0.0581537 + 0.998308i \(0.481479\pi\)
\(684\) 52.6412 + 11.1892i 2.01279 + 0.427831i
\(685\) −8.85745 + 1.16077i −0.338426 + 0.0443508i
\(686\) 44.5575 20.8701i 1.70121 0.796826i
\(687\) 0.0607961 0.119319i 0.00231952 0.00455231i
\(688\) −114.787 + 74.5438i −4.37623 + 2.84196i
\(689\) 20.5853 4.37554i 0.784238 0.166695i
\(690\) −2.60777 3.40268i −0.0992762 0.129538i
\(691\) 0.246952 1.16182i 0.00939451 0.0441977i −0.973201 0.229957i \(-0.926141\pi\)
0.982595 + 0.185760i \(0.0594746\pi\)
\(692\) −14.2519 + 89.9831i −0.541777 + 3.42064i
\(693\) 8.22904 21.8535i 0.312595 0.830147i
\(694\) 30.9863 + 42.6489i 1.17622 + 1.61893i
\(695\) 4.29590 17.8472i 0.162953 0.676981i
\(696\) −8.72062 0.916574i −0.330554 0.0347427i
\(697\) 19.5965 15.8689i 0.742270 0.601079i
\(698\) −0.976112 + 18.6253i −0.0369464 + 0.704979i
\(699\) 0.993738 0.0375866
\(700\) 63.7444 + 20.3458i 2.40931 + 0.768999i
\(701\) 8.69736 0.328495 0.164247 0.986419i \(-0.447480\pi\)
0.164247 + 0.986419i \(0.447480\pi\)
\(702\) 0.899484 17.1632i 0.0339488 0.647782i
\(703\) 3.76263 3.04692i 0.141910 0.114917i
\(704\) −44.1353 4.63881i −1.66341 0.174832i
\(705\) 0.630824 + 1.52550i 0.0237582 + 0.0574536i
\(706\) 42.1343 + 57.9929i 1.58574 + 2.18259i
\(707\) −7.14199 + 1.17798i −0.268602 + 0.0443027i
\(708\) −0.0977889 + 0.617415i −0.00367513 + 0.0232039i
\(709\) 3.56761 16.7843i 0.133985 0.630348i −0.858987 0.511997i \(-0.828906\pi\)
0.992972 0.118351i \(-0.0377608\pi\)
\(710\) −1.22275 + 1.77686i −0.0458891 + 0.0666844i
\(711\) −15.1105 + 3.21183i −0.566687 + 0.120453i
\(712\) 61.5979 40.0021i 2.30848 1.49914i
\(713\) −2.39819 + 4.70671i −0.0898129 + 0.176268i
\(714\) 4.42238 + 6.00584i 0.165503 + 0.224763i
\(715\) 6.01794 32.3629i 0.225058 1.21031i
\(716\) −32.1181 6.82691i −1.20031 0.255134i
\(717\) −2.70945 + 1.04006i −0.101186 + 0.0388417i
\(718\) −35.8366 9.60239i −1.33741 0.358358i
\(719\) 3.40612 + 32.4070i 0.127027 + 1.20858i 0.853392 + 0.521269i \(0.174541\pi\)
−0.726366 + 0.687309i \(0.758792\pi\)
\(720\) 25.3052 71.3256i 0.943071 2.65815i
\(721\) −1.32007 1.17342i −0.0491620 0.0437004i
\(722\) 2.49468 + 15.7508i 0.0928423 + 0.586183i
\(723\) −3.65419 0.191508i −0.135901 0.00712225i
\(724\) −44.6055 77.2589i −1.65775 2.87131i
\(725\) 11.1198 21.7602i 0.412981 0.808153i
\(726\) −1.04469 0.603152i −0.0387721 0.0223851i
\(727\) −10.8247 21.2447i −0.401466 0.787922i 0.598446 0.801163i \(-0.295785\pi\)
−0.999912 + 0.0132413i \(0.995785\pi\)
\(728\) −58.1943 88.3707i −2.15683 3.27524i
\(729\) 14.3432 19.7418i 0.531231 0.731177i
\(730\) 9.09566 14.8231i 0.336646 0.548626i
\(731\) 23.3242 52.3870i 0.862677 1.93760i
\(732\) −2.89417 + 10.8012i −0.106972 + 0.399223i
\(733\) 20.4613 25.2676i 0.755754 0.933278i −0.243576 0.969882i \(-0.578321\pi\)
0.999330 + 0.0366035i \(0.0116538\pi\)
\(734\) 23.3361 + 71.8210i 0.861350 + 2.65096i
\(735\) −3.45400 + 0.132563i −0.127403 + 0.00488968i
\(736\) −14.3589 + 44.1921i −0.529276 + 1.62894i
\(737\) 15.2191 + 23.4353i 0.560601 + 0.863250i
\(738\) 41.0900 2.15344i 1.51254 0.0792691i
\(739\) −11.0359 51.9197i −0.405961 1.90990i −0.414753 0.909934i \(-0.636132\pi\)
0.00879226 0.999961i \(-0.497201\pi\)
\(740\) −7.92867 12.9556i −0.291464 0.476258i
\(741\) −3.72715 + 1.21102i −0.136920 + 0.0444881i
\(742\) −28.9771 + 7.96309i −1.06378 + 0.292334i
\(743\) −35.7302 + 35.7302i −1.31082 + 1.31082i −0.390001 + 0.920814i \(0.627526\pi\)
−0.920814 + 0.390001i \(0.872474\pi\)
\(744\) 2.88431 0.303153i 0.105744 0.0111141i
\(745\) 44.0280 + 21.0323i 1.61306 + 0.770563i
\(746\) −6.14228 + 58.4399i −0.224885 + 2.13964i
\(747\) −0.962003 + 2.50610i −0.0351979 + 0.0916936i
\(748\) 64.7627 32.9982i 2.36796 1.20653i
\(749\) −7.12080 0.702478i −0.260189 0.0256680i
\(750\) −4.98018 4.26879i −0.181850 0.155874i
\(751\) 20.8809 36.1668i 0.761956 1.31975i −0.179886 0.983688i \(-0.557573\pi\)
0.941841 0.336058i \(-0.109094\pi\)
\(752\) 20.8812 32.1542i 0.761459 1.17254i
\(753\) −2.96570 3.66233i −0.108076 0.133463i
\(754\) −58.3890 + 25.9964i −2.12640 + 0.946735i
\(755\) −3.04438 4.43523i −0.110796 0.161414i
\(756\) 0.112321 + 17.5872i 0.00408509 + 0.639639i
\(757\) −22.3878 22.3878i −0.813699 0.813699i 0.171487 0.985186i \(-0.445143\pi\)
−0.985186 + 0.171487i \(0.945143\pi\)
\(758\) 69.7084 + 56.4488i 2.53192 + 2.05031i
\(759\) 1.44411 1.60385i 0.0524180 0.0582161i
\(760\) −65.4743 + 1.67572i −2.37500 + 0.0607846i
\(761\) −20.4298 + 18.3950i −0.740578 + 0.666820i −0.950439 0.310912i \(-0.899366\pi\)
0.209860 + 0.977731i \(0.432699\pi\)
\(762\) −2.72591 1.38892i −0.0987494 0.0503154i
\(763\) 5.65564 + 10.9267i 0.204748 + 0.395575i
\(764\) −58.2772 18.9354i −2.10839 0.685059i
\(765\) 7.38403 + 30.8371i 0.266970 + 1.11492i
\(766\) 74.8157 + 67.3644i 2.70320 + 2.43397i
\(767\)