Properties

Label 175.2.x.a.33.4
Level $175$
Weight $2$
Character 175.33
Analytic conductor $1.397$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(3,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([21, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.x (of order \(60\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 33.4
Character \(\chi\) \(=\) 175.33
Dual form 175.2.x.a.122.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.49982 + 0.973996i) q^{2} +(0.335932 - 0.128952i) q^{3} +(0.487325 - 1.09455i) q^{4} +(-1.15569 + 1.91426i) q^{5} +(-0.378240 + 0.520602i) q^{6} +(2.62695 + 0.314872i) q^{7} +(-0.224327 - 1.41635i) q^{8} +(-2.13321 + 1.92075i) q^{9} +O(q^{10})\) \(q+(-1.49982 + 0.973996i) q^{2} +(0.335932 - 0.128952i) q^{3} +(0.487325 - 1.09455i) q^{4} +(-1.15569 + 1.91426i) q^{5} +(-0.378240 + 0.520602i) q^{6} +(2.62695 + 0.314872i) q^{7} +(-0.224327 - 1.41635i) q^{8} +(-2.13321 + 1.92075i) q^{9} +(-0.131145 - 3.99668i) q^{10} +(-2.82518 + 3.13767i) q^{11} +(0.0225635 - 0.430536i) q^{12} +(-0.268631 - 0.527217i) q^{13} +(-4.24664 + 2.08638i) q^{14} +(-0.141386 + 0.792089i) q^{15} +(3.31938 + 3.68655i) q^{16} +(-0.675395 + 0.546924i) q^{17} +(1.32863 - 4.95853i) q^{18} +(-5.83214 + 2.59663i) q^{19} +(1.53205 + 2.19783i) q^{20} +(0.923080 - 0.232975i) q^{21} +(1.18118 - 7.45766i) q^{22} +(0.882537 + 1.35899i) q^{23} +(-0.258000 - 0.446869i) q^{24} +(-2.32875 - 4.42458i) q^{25} +(0.916406 + 0.529087i) q^{26} +(-0.959010 + 1.88216i) q^{27} +(1.62482 - 2.72188i) q^{28} +(-0.996818 - 1.37200i) q^{29} +(-0.559437 - 1.32570i) q^{30} +(8.94867 + 0.940543i) q^{31} +(-5.79889 - 1.55381i) q^{32} +(-0.544457 + 1.41836i) q^{33} +(0.480271 - 1.47812i) q^{34} +(-3.63869 + 4.66476i) q^{35} +(1.06279 + 3.27094i) q^{36} +(4.35142 + 0.228048i) q^{37} +(6.21806 - 9.57497i) q^{38} +(-0.158228 - 0.142469i) q^{39} +(2.97051 + 1.20744i) q^{40} +(5.70437 + 1.85346i) q^{41} +(-1.15754 + 1.24850i) q^{42} +(3.73281 + 3.73281i) q^{43} +(2.05756 + 4.62136i) q^{44} +(-1.21148 - 6.30331i) q^{45} +(-2.64730 - 1.17865i) q^{46} +(6.06621 - 7.49114i) q^{47} +(1.59048 + 0.810389i) q^{48} +(6.80171 + 1.65430i) q^{49} +(7.80224 + 4.36789i) q^{50} +(-0.156360 + 0.270823i) q^{51} +(-0.707976 + 0.0371035i) q^{52} +(3.03918 + 7.91735i) q^{53} +(-0.394875 - 3.75698i) q^{54} +(-2.74128 - 9.03429i) q^{55} +(-0.143329 - 3.79131i) q^{56} +(-1.62436 + 1.62436i) q^{57} +(2.83137 + 1.08686i) q^{58} +(6.62786 - 1.40879i) q^{59} +(0.798080 + 0.540760i) q^{60} +(0.256792 - 1.20811i) q^{61} +(-14.3375 + 7.30532i) q^{62} +(-6.20863 + 4.37403i) q^{63} +(0.774814 - 0.251752i) q^{64} +(1.31968 + 0.0950730i) q^{65} +(-0.564887 - 2.65758i) q^{66} +(-7.21376 - 8.90825i) q^{67} +(0.269499 + 1.00578i) q^{68} +(0.471717 + 0.342723i) q^{69} +(0.913931 - 10.5404i) q^{70} +(-11.3299 + 8.23164i) q^{71} +(3.19899 + 2.59049i) q^{72} +(-0.182500 - 3.48231i) q^{73} +(-6.74848 + 3.89623i) q^{74} +(-1.35286 - 1.18606i) q^{75} +7.64897i q^{76} +(-8.40955 + 7.35294i) q^{77} +(0.376077 + 0.0595648i) q^{78} +(-14.0514 + 1.47686i) q^{79} +(-10.8932 + 2.09364i) q^{80} +(0.820700 - 7.80844i) q^{81} +(-10.3608 + 2.77617i) q^{82} +(-3.01586 + 0.477665i) q^{83} +(0.194837 - 1.12389i) q^{84} +(-0.266404 - 1.92496i) q^{85} +(-9.23428 - 1.96281i) q^{86} +(-0.511786 - 0.332358i) q^{87} +(5.07780 + 3.29756i) q^{88} +(16.6785 + 3.54513i) q^{89} +(7.95640 + 8.27388i) q^{90} +(-0.539673 - 1.46956i) q^{91} +(1.91756 - 0.303712i) q^{92} +(3.12743 - 0.837993i) q^{93} +(-1.80189 + 17.1438i) q^{94} +(1.76953 - 14.1651i) q^{95} +(-2.14840 + 0.225806i) q^{96} +(11.5748 + 1.83327i) q^{97} +(-11.8126 + 4.14368i) q^{98} -12.1198i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9} - 36 q^{10} - 6 q^{11} - 36 q^{12} - 20 q^{14} - 28 q^{15} - 30 q^{16} - 42 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} + 32 q^{22} - 40 q^{23} + 2 q^{25} - 48 q^{26} + 22 q^{28} - 58 q^{30} - 18 q^{31} + 8 q^{32} - 30 q^{33} - 2 q^{35} + 40 q^{36} - 10 q^{37} + 72 q^{38} + 30 q^{39} - 48 q^{40} + 6 q^{42} - 108 q^{43} - 10 q^{44} + 186 q^{45} - 6 q^{46} - 54 q^{47} - 248 q^{50} - 16 q^{51} + 216 q^{52} + 50 q^{53} - 30 q^{54} + 4 q^{56} - 216 q^{57} - 4 q^{58} + 90 q^{59} + 96 q^{60} - 18 q^{61} - 66 q^{63} - 100 q^{64} + 14 q^{65} - 90 q^{66} + 4 q^{67} + 342 q^{68} - 60 q^{70} - 24 q^{71} + 58 q^{72} - 6 q^{73} + 216 q^{75} - 80 q^{77} - 132 q^{78} - 10 q^{79} - 6 q^{80} - 10 q^{81} + 216 q^{82} + 20 q^{84} - 48 q^{85} - 6 q^{86} - 48 q^{87} - 122 q^{88} + 120 q^{89} - 12 q^{91} - 4 q^{92} + 106 q^{93} - 30 q^{94} - 98 q^{95} - 90 q^{96} + 222 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{3}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.49982 + 0.973996i −1.06053 + 0.688719i −0.952225 0.305398i \(-0.901210\pi\)
−0.108310 + 0.994117i \(0.534544\pi\)
\(3\) 0.335932 0.128952i 0.193951 0.0744506i −0.259454 0.965755i \(-0.583543\pi\)
0.453405 + 0.891305i \(0.350209\pi\)
\(4\) 0.487325 1.09455i 0.243663 0.547275i
\(5\) −1.15569 + 1.91426i −0.516841 + 0.856081i
\(6\) −0.378240 + 0.520602i −0.154416 + 0.212535i
\(7\) 2.62695 + 0.314872i 0.992893 + 0.119010i
\(8\) −0.224327 1.41635i −0.0793117 0.500755i
\(9\) −2.13321 + 1.92075i −0.711071 + 0.640251i
\(10\) −0.131145 3.99668i −0.0414717 1.26386i
\(11\) −2.82518 + 3.13767i −0.851822 + 0.946045i −0.999073 0.0430546i \(-0.986291\pi\)
0.147250 + 0.989099i \(0.452958\pi\)
\(12\) 0.0225635 0.430536i 0.00651351 0.124285i
\(13\) −0.268631 0.527217i −0.0745047 0.146224i 0.850749 0.525571i \(-0.176148\pi\)
−0.925254 + 0.379348i \(0.876148\pi\)
\(14\) −4.24664 + 2.08638i −1.13496 + 0.557610i
\(15\) −0.141386 + 0.792089i −0.0365058 + 0.204517i
\(16\) 3.31938 + 3.68655i 0.829846 + 0.921638i
\(17\) −0.675395 + 0.546924i −0.163807 + 0.132649i −0.707719 0.706494i \(-0.750276\pi\)
0.543912 + 0.839142i \(0.316943\pi\)
\(18\) 1.32863 4.95853i 0.313162 1.16874i
\(19\) −5.83214 + 2.59663i −1.33798 + 0.595709i −0.945971 0.324251i \(-0.894888\pi\)
−0.392013 + 0.919960i \(0.628221\pi\)
\(20\) 1.53205 + 2.19783i 0.342577 + 0.491449i
\(21\) 0.923080 0.232975i 0.201433 0.0508394i
\(22\) 1.18118 7.45766i 0.251828 1.58998i
\(23\) 0.882537 + 1.35899i 0.184022 + 0.283369i 0.918627 0.395126i \(-0.129299\pi\)
−0.734605 + 0.678495i \(0.762633\pi\)
\(24\) −0.258000 0.446869i −0.0526640 0.0912168i
\(25\) −2.32875 4.42458i −0.465750 0.884916i
\(26\) 0.916406 + 0.529087i 0.179722 + 0.103762i
\(27\) −0.959010 + 1.88216i −0.184562 + 0.362223i
\(28\) 1.62482 2.72188i 0.307062 0.514387i
\(29\) −0.996818 1.37200i −0.185104 0.254774i 0.706373 0.707840i \(-0.250330\pi\)
−0.891477 + 0.453066i \(0.850330\pi\)
\(30\) −0.559437 1.32570i −0.102139 0.242039i
\(31\) 8.94867 + 0.940543i 1.60723 + 0.168927i 0.865195 0.501436i \(-0.167195\pi\)
0.742034 + 0.670362i \(0.233861\pi\)
\(32\) −5.79889 1.55381i −1.02511 0.274677i
\(33\) −0.544457 + 1.41836i −0.0947778 + 0.246905i
\(34\) 0.480271 1.47812i 0.0823657 0.253496i
\(35\) −3.63869 + 4.66476i −0.615050 + 0.788488i
\(36\) 1.06279 + 3.27094i 0.177132 + 0.545157i
\(37\) 4.35142 + 0.228048i 0.715369 + 0.0374909i 0.406548 0.913629i \(-0.366732\pi\)
0.308821 + 0.951120i \(0.400066\pi\)
\(38\) 6.21806 9.57497i 1.00870 1.55326i
\(39\) −0.158228 0.142469i −0.0253367 0.0228133i
\(40\) 2.97051 + 1.20744i 0.469678 + 0.190913i
\(41\) 5.70437 + 1.85346i 0.890873 + 0.289462i 0.718465 0.695563i \(-0.244845\pi\)
0.172408 + 0.985026i \(0.444845\pi\)
\(42\) −1.15754 + 1.24850i −0.178612 + 0.192647i
\(43\) 3.73281 + 3.73281i 0.569248 + 0.569248i 0.931918 0.362670i \(-0.118135\pi\)
−0.362670 + 0.931918i \(0.618135\pi\)
\(44\) 2.05756 + 4.62136i 0.310189 + 0.696697i
\(45\) −1.21148 6.30331i −0.180596 0.939643i
\(46\) −2.64730 1.17865i −0.390323 0.173783i
\(47\) 6.06621 7.49114i 0.884847 1.09270i −0.110261 0.993903i \(-0.535169\pi\)
0.995108 0.0987925i \(-0.0314980\pi\)
\(48\) 1.59048 + 0.810389i 0.229566 + 0.116970i
\(49\) 6.80171 + 1.65430i 0.971673 + 0.236329i
\(50\) 7.80224 + 4.36789i 1.10340 + 0.617713i
\(51\) −0.156360 + 0.270823i −0.0218948 + 0.0379228i
\(52\) −0.707976 + 0.0371035i −0.0981786 + 0.00514532i
\(53\) 3.03918 + 7.91735i 0.417464 + 1.08753i 0.967607 + 0.252461i \(0.0812399\pi\)
−0.550143 + 0.835070i \(0.685427\pi\)
\(54\) −0.394875 3.75698i −0.0537357 0.511261i
\(55\) −2.74128 9.03429i −0.369634 1.21818i
\(56\) −0.143329 3.79131i −0.0191531 0.506635i
\(57\) −1.62436 + 1.62436i −0.215152 + 0.215152i
\(58\) 2.83137 + 1.08686i 0.371778 + 0.142712i
\(59\) 6.62786 1.40879i 0.862874 0.183409i 0.244842 0.969563i \(-0.421264\pi\)
0.618031 + 0.786153i \(0.287930\pi\)
\(60\) 0.798080 + 0.540760i 0.103032 + 0.0698118i
\(61\) 0.256792 1.20811i 0.0328789 0.154683i −0.958646 0.284602i \(-0.908138\pi\)
0.991525 + 0.129919i \(0.0414718\pi\)
\(62\) −14.3375 + 7.30532i −1.82086 + 0.927777i
\(63\) −6.20863 + 4.37403i −0.782214 + 0.551076i
\(64\) 0.774814 0.251752i 0.0968517 0.0314690i
\(65\) 1.31968 + 0.0950730i 0.163687 + 0.0117923i
\(66\) −0.564887 2.65758i −0.0695328 0.327126i
\(67\) −7.21376 8.90825i −0.881301 1.08832i −0.995491 0.0948576i \(-0.969760\pi\)
0.114189 0.993459i \(-0.463573\pi\)
\(68\) 0.269499 + 1.00578i 0.0326815 + 0.121969i
\(69\) 0.471717 + 0.342723i 0.0567881 + 0.0412590i
\(70\) 0.913931 10.5404i 0.109236 1.25982i
\(71\) −11.3299 + 8.23164i −1.34461 + 0.976915i −0.345348 + 0.938475i \(0.612239\pi\)
−0.999261 + 0.0384406i \(0.987761\pi\)
\(72\) 3.19899 + 2.59049i 0.377005 + 0.305293i
\(73\) −0.182500 3.48231i −0.0213601 0.407574i −0.988295 0.152552i \(-0.951251\pi\)
0.966935 0.255022i \(-0.0820826\pi\)
\(74\) −6.74848 + 3.89623i −0.784494 + 0.452928i
\(75\) −1.35286 1.18606i −0.156215 0.136955i
\(76\) 7.64897i 0.877397i
\(77\) −8.40955 + 7.35294i −0.958358 + 0.837945i
\(78\) 0.376077 + 0.0595648i 0.0425823 + 0.00674438i
\(79\) −14.0514 + 1.47686i −1.58090 + 0.166159i −0.853885 0.520462i \(-0.825760\pi\)
−0.727016 + 0.686621i \(0.759093\pi\)
\(80\) −10.8932 + 2.09364i −1.21790 + 0.234076i
\(81\) 0.820700 7.80844i 0.0911889 0.867605i
\(82\) −10.3608 + 2.77617i −1.14416 + 0.306577i
\(83\) −3.01586 + 0.477665i −0.331033 + 0.0524305i −0.319739 0.947506i \(-0.603595\pi\)
−0.0112944 + 0.999936i \(0.503595\pi\)
\(84\) 0.194837 1.12389i 0.0212584 0.122627i
\(85\) −0.266404 1.92496i −0.0288956 0.208791i
\(86\) −9.23428 1.96281i −0.995758 0.211655i
\(87\) −0.511786 0.332358i −0.0548692 0.0356325i
\(88\) 5.07780 + 3.29756i 0.541296 + 0.351522i
\(89\) 16.6785 + 3.54513i 1.76792 + 0.375783i 0.972977 0.230900i \(-0.0741671\pi\)
0.794944 + 0.606683i \(0.207500\pi\)
\(90\) 7.95640 + 8.27388i 0.838678 + 0.872143i
\(91\) −0.539673 1.46956i −0.0565731 0.154051i
\(92\) 1.91756 0.303712i 0.199920 0.0316642i
\(93\) 3.12743 0.837993i 0.324300 0.0868958i
\(94\) −1.80189 + 17.1438i −0.185851 + 1.76825i
\(95\) 1.76953 14.1651i 0.181550 1.45331i
\(96\) −2.14840 + 0.225806i −0.219270 + 0.0230462i
\(97\) 11.5748 + 1.83327i 1.17524 + 0.186140i 0.713358 0.700800i \(-0.247174\pi\)
0.461884 + 0.886940i \(0.347174\pi\)
\(98\) −11.8126 + 4.14368i −1.19326 + 0.418575i
\(99\) 12.1198i 1.21809i
\(100\) −5.97778 + 0.392727i −0.597778 + 0.0392727i
\(101\) 3.84878 2.22209i 0.382967 0.221106i −0.296141 0.955144i \(-0.595700\pi\)
0.679109 + 0.734038i \(0.262367\pi\)
\(102\) −0.0292687 0.558480i −0.00289803 0.0552978i
\(103\) −1.62888 1.31905i −0.160499 0.129969i 0.545707 0.837976i \(-0.316261\pi\)
−0.706206 + 0.708007i \(0.749595\pi\)
\(104\) −0.686462 + 0.498744i −0.0673131 + 0.0489058i
\(105\) −0.620821 + 2.03626i −0.0605860 + 0.198719i
\(106\) −12.2697 8.91446i −1.19174 0.865849i
\(107\) −1.06590 3.97800i −0.103045 0.384568i 0.895071 0.445923i \(-0.147124\pi\)
−0.998116 + 0.0613552i \(0.980458\pi\)
\(108\) 1.59277 + 1.96691i 0.153265 + 0.189266i
\(109\) 2.48271 + 11.6802i 0.237801 + 1.11876i 0.921312 + 0.388824i \(0.127119\pi\)
−0.683512 + 0.729940i \(0.739548\pi\)
\(110\) 12.9108 + 10.8798i 1.23100 + 1.03735i
\(111\) 1.49119 0.484517i 0.141537 0.0459883i
\(112\) 7.55906 + 10.7296i 0.714264 + 1.01385i
\(113\) −3.18186 + 1.62124i −0.299324 + 0.152513i −0.597202 0.802091i \(-0.703721\pi\)
0.297878 + 0.954604i \(0.403721\pi\)
\(114\) 0.854131 4.01837i 0.0799967 0.376355i
\(115\) −3.62139 + 0.118831i −0.337697 + 0.0110810i
\(116\) −1.98750 + 0.422456i −0.184535 + 0.0392241i
\(117\) 1.58570 + 0.608693i 0.146598 + 0.0562737i
\(118\) −8.56845 + 8.56845i −0.788789 + 0.788789i
\(119\) −1.94644 + 1.22408i −0.178430 + 0.112211i
\(120\) 1.15359 + 0.0225650i 0.105308 + 0.00205989i
\(121\) −0.713576 6.78922i −0.0648706 0.617202i
\(122\) 0.791555 + 2.06207i 0.0716640 + 0.186691i
\(123\) 2.15529 0.112954i 0.194336 0.0101847i
\(124\) 5.39038 9.33642i 0.484071 0.838435i
\(125\) 11.1611 + 0.655624i 0.998279 + 0.0586408i
\(126\) 5.05155 12.6074i 0.450028 1.12316i
\(127\) −2.93160 1.49373i −0.260138 0.132547i 0.319058 0.947735i \(-0.396633\pi\)
−0.579196 + 0.815188i \(0.696633\pi\)
\(128\) 6.63931 8.19887i 0.586838 0.724685i
\(129\) 1.73532 + 0.772616i 0.152787 + 0.0680250i
\(130\) −2.07189 + 1.14277i −0.181717 + 0.100228i
\(131\) −1.50001 3.36908i −0.131057 0.294358i 0.836083 0.548602i \(-0.184840\pi\)
−0.967140 + 0.254244i \(0.918173\pi\)
\(132\) 1.28714 + 1.28714i 0.112031 + 0.112031i
\(133\) −16.1383 + 4.98485i −1.39937 + 0.432241i
\(134\) 19.4960 + 6.33462i 1.68419 + 0.547228i
\(135\) −2.49462 4.01099i −0.214703 0.345211i
\(136\) 0.926145 + 0.833904i 0.0794162 + 0.0715067i
\(137\) 0.549457 0.846089i 0.0469433 0.0722863i −0.814420 0.580276i \(-0.802945\pi\)
0.861363 + 0.507990i \(0.169611\pi\)
\(138\) −1.04130 0.0545724i −0.0886416 0.00464551i
\(139\) −3.10037 9.54195i −0.262970 0.809337i −0.992154 0.125020i \(-0.960100\pi\)
0.729185 0.684317i \(-0.239900\pi\)
\(140\) 3.33259 + 6.25598i 0.281655 + 0.528727i
\(141\) 1.07183 3.29877i 0.0902647 0.277806i
\(142\) 8.97522 23.3812i 0.753183 1.96211i
\(143\) 2.41316 + 0.646606i 0.201799 + 0.0540719i
\(144\) −14.1619 1.48848i −1.18016 0.124040i
\(145\) 3.77838 0.322553i 0.313777 0.0267866i
\(146\) 3.66548 + 5.04510i 0.303357 + 0.417535i
\(147\) 2.49824 0.321362i 0.206051 0.0265055i
\(148\) 2.37017 4.65171i 0.194827 0.382369i
\(149\) −6.19698 3.57783i −0.507676 0.293107i 0.224202 0.974543i \(-0.428023\pi\)
−0.731878 + 0.681436i \(0.761356\pi\)
\(150\) 3.18427 + 0.461198i 0.259995 + 0.0376567i
\(151\) 12.2345 + 21.1907i 0.995627 + 1.72448i 0.578718 + 0.815527i \(0.303553\pi\)
0.416908 + 0.908949i \(0.363114\pi\)
\(152\) 4.98605 + 7.67784i 0.404422 + 0.622755i
\(153\) 0.390255 2.46397i 0.0315502 0.199200i
\(154\) 5.45110 19.2190i 0.439262 1.54871i
\(155\) −12.1423 + 16.0431i −0.975297 + 1.28861i
\(156\) −0.233047 + 0.103759i −0.0186587 + 0.00830740i
\(157\) −5.19791 + 19.3989i −0.414838 + 1.54820i 0.370321 + 0.928904i \(0.379248\pi\)
−0.785159 + 0.619294i \(0.787419\pi\)
\(158\) 19.6361 15.9010i 1.56216 1.26501i
\(159\) 2.04192 + 2.26778i 0.161935 + 0.179847i
\(160\) 9.67612 9.30484i 0.764964 0.735612i
\(161\) 1.89047 + 3.84788i 0.148990 + 0.303255i
\(162\) 6.37449 + 12.5106i 0.500827 + 0.982928i
\(163\) −0.844482 + 16.1137i −0.0661449 + 1.26212i 0.740894 + 0.671622i \(0.234402\pi\)
−0.807039 + 0.590498i \(0.798931\pi\)
\(164\) 4.80859 5.34048i 0.375488 0.417021i
\(165\) −2.08588 2.68142i −0.162385 0.208748i
\(166\) 4.05801 3.65384i 0.314962 0.283593i
\(167\) −1.58959 10.0363i −0.123006 0.776630i −0.969655 0.244478i \(-0.921383\pi\)
0.846649 0.532152i \(-0.178617\pi\)
\(168\) −0.537046 1.25514i −0.0414340 0.0968361i
\(169\) 7.43541 10.2340i 0.571955 0.787228i
\(170\) 2.27446 + 2.62761i 0.174443 + 0.201529i
\(171\) 7.45369 16.7413i 0.569998 1.28024i
\(172\) 5.90483 2.26665i 0.450239 0.172831i
\(173\) 2.81344 1.82707i 0.213902 0.138909i −0.433241 0.901278i \(-0.642630\pi\)
0.647143 + 0.762368i \(0.275964\pi\)
\(174\) 1.09130 0.0827315
\(175\) −4.72434 12.3564i −0.357126 0.934056i
\(176\) −20.9450 −1.57879
\(177\) 2.04484 1.32794i 0.153700 0.0998138i
\(178\) −28.4678 + 10.9278i −2.13375 + 0.819070i
\(179\) 1.18133 2.65332i 0.0882971 0.198319i −0.863999 0.503493i \(-0.832048\pi\)
0.952297 + 0.305174i \(0.0987147\pi\)
\(180\) −7.48968 1.74574i −0.558248 0.130120i
\(181\) −4.64922 + 6.39910i −0.345574 + 0.475641i −0.946059 0.323994i \(-0.894974\pi\)
0.600485 + 0.799636i \(0.294974\pi\)
\(182\) 2.24076 + 1.67843i 0.166096 + 0.124414i
\(183\) −0.0695242 0.438958i −0.00513937 0.0324487i
\(184\) 1.72682 1.55484i 0.127303 0.114624i
\(185\) −5.46544 + 8.06618i −0.401827 + 0.593037i
\(186\) −3.87439 + 4.30295i −0.284084 + 0.315507i
\(187\) 0.192039 3.66433i 0.0140433 0.267962i
\(188\) −5.24321 10.2904i −0.382401 0.750504i
\(189\) −3.11191 + 4.64238i −0.226358 + 0.337684i
\(190\) 11.1428 + 22.9687i 0.808382 + 1.66632i
\(191\) −9.73774 10.8149i −0.704598 0.782536i 0.279503 0.960145i \(-0.409830\pi\)
−0.984101 + 0.177609i \(0.943164\pi\)
\(192\) 0.227821 0.184486i 0.0164416 0.0133141i
\(193\) −0.160877 + 0.600403i −0.0115802 + 0.0432179i −0.971474 0.237145i \(-0.923788\pi\)
0.959894 + 0.280363i \(0.0904549\pi\)
\(194\) −19.1457 + 8.52422i −1.37458 + 0.612004i
\(195\) 0.455584 0.138238i 0.0326250 0.00989943i
\(196\) 5.12536 6.63863i 0.366097 0.474188i
\(197\) 3.81776 24.1044i 0.272004 1.71736i −0.352048 0.935982i \(-0.614515\pi\)
0.624052 0.781383i \(-0.285485\pi\)
\(198\) 11.8046 + 18.1775i 0.838918 + 1.29182i
\(199\) 4.29215 + 7.43422i 0.304262 + 0.526998i 0.977097 0.212795i \(-0.0682568\pi\)
−0.672835 + 0.739793i \(0.734923\pi\)
\(200\) −5.74434 + 4.29088i −0.406186 + 0.303411i
\(201\) −3.57207 2.06234i −0.251955 0.145466i
\(202\) −3.60817 + 7.08143i −0.253870 + 0.498248i
\(203\) −2.18658 3.91805i −0.153468 0.274993i
\(204\) 0.220231 + 0.303123i 0.0154193 + 0.0212228i
\(205\) −10.1405 + 8.77759i −0.708243 + 0.613054i
\(206\) 3.72778 + 0.391806i 0.259727 + 0.0272984i
\(207\) −4.49292 1.20387i −0.312280 0.0836751i
\(208\) 1.05192 2.74036i 0.0729378 0.190010i
\(209\) 8.32941 25.6353i 0.576158 1.77323i
\(210\) −1.05219 3.65870i −0.0726077 0.252475i
\(211\) 1.28435 + 3.95282i 0.0884183 + 0.272123i 0.985483 0.169777i \(-0.0543046\pi\)
−0.897064 + 0.441900i \(0.854305\pi\)
\(212\) 10.1470 + 0.531782i 0.696899 + 0.0365229i
\(213\) −2.74458 + 4.22628i −0.188056 + 0.289580i
\(214\) 5.47322 + 4.92811i 0.374141 + 0.336878i
\(215\) −11.4595 + 2.83157i −0.781533 + 0.193112i
\(216\) 2.88093 + 0.936071i 0.196023 + 0.0636916i
\(217\) 23.2115 + 5.28844i 1.57570 + 0.359003i
\(218\) −15.1001 15.1001i −1.02271 1.02271i
\(219\) −0.510360 1.14629i −0.0344869 0.0774589i
\(220\) −11.2244 1.40217i −0.756748 0.0945342i
\(221\) 0.469780 + 0.209159i 0.0316008 + 0.0140696i
\(222\) −1.76460 + 2.17910i −0.118432 + 0.146252i
\(223\) −11.3328 5.77436i −0.758902 0.386680i 0.0313132 0.999510i \(-0.490031\pi\)
−0.790215 + 0.612830i \(0.790031\pi\)
\(224\) −14.7441 5.90768i −0.985134 0.394723i
\(225\) 13.4663 + 4.96561i 0.897750 + 0.331041i
\(226\) 3.19314 5.53069i 0.212405 0.367896i
\(227\) 6.99268 0.366471i 0.464120 0.0243235i 0.181157 0.983454i \(-0.442016\pi\)
0.282963 + 0.959131i \(0.408682\pi\)
\(228\) 0.986352 + 2.56954i 0.0653228 + 0.170172i
\(229\) −1.54623 14.7114i −0.102178 0.972159i −0.918730 0.394887i \(-0.870784\pi\)
0.816552 0.577272i \(-0.195883\pi\)
\(230\) 5.31570 3.70545i 0.350507 0.244330i
\(231\) −1.87686 + 3.55452i −0.123488 + 0.233870i
\(232\) −1.71962 + 1.71962i −0.112899 + 0.112899i
\(233\) −2.38168 0.914241i −0.156029 0.0598939i 0.279100 0.960262i \(-0.409964\pi\)
−0.435129 + 0.900368i \(0.643297\pi\)
\(234\) −2.97113 + 0.631534i −0.194229 + 0.0412847i
\(235\) 7.32930 + 20.2697i 0.478111 + 1.32225i
\(236\) 1.68793 7.94106i 0.109875 0.516919i
\(237\) −4.52986 + 2.30808i −0.294246 + 0.149926i
\(238\) 1.72706 3.73172i 0.111949 0.241892i
\(239\) −0.945911 + 0.307345i −0.0611859 + 0.0198805i −0.339450 0.940624i \(-0.610241\pi\)
0.278264 + 0.960505i \(0.410241\pi\)
\(240\) −3.38939 + 2.10802i −0.218784 + 0.136072i
\(241\) 1.11500 + 5.24565i 0.0718234 + 0.337902i 0.999358 0.0358356i \(-0.0114093\pi\)
−0.927534 + 0.373738i \(0.878076\pi\)
\(242\) 7.68291 + 9.48761i 0.493876 + 0.609886i
\(243\) −2.37141 8.85021i −0.152126 0.567741i
\(244\) −1.19720 0.869816i −0.0766428 0.0556843i
\(245\) −11.0274 + 11.1084i −0.704518 + 0.709687i
\(246\) −3.12253 + 2.26865i −0.199086 + 0.144644i
\(247\) 2.93568 + 2.37727i 0.186793 + 0.151262i
\(248\) −0.675296 12.8854i −0.0428814 0.818225i
\(249\) −0.951527 + 0.549365i −0.0603006 + 0.0348146i
\(250\) −17.3782 + 9.88755i −1.09910 + 0.625343i
\(251\) 15.5071i 0.978800i 0.872059 + 0.489400i \(0.162784\pi\)
−0.872059 + 0.489400i \(0.837216\pi\)
\(252\) 1.76197 + 8.92723i 0.110994 + 0.562363i
\(253\) −6.75739 1.07026i −0.424833 0.0672870i
\(254\) 5.85177 0.615046i 0.367173 0.0385914i
\(255\) −0.337721 0.612301i −0.0211489 0.0383438i
\(256\) −2.14244 + 20.3840i −0.133903 + 1.27400i
\(257\) 15.0766 4.03975i 0.940449 0.251993i 0.244145 0.969739i \(-0.421493\pi\)
0.696305 + 0.717746i \(0.254826\pi\)
\(258\) −3.35520 + 0.531412i −0.208886 + 0.0330842i
\(259\) 11.3591 + 1.96921i 0.705823 + 0.122361i
\(260\) 0.747177 1.39813i 0.0463379 0.0867082i
\(261\) 4.76170 + 1.01213i 0.294742 + 0.0626494i
\(262\) 5.53122 + 3.59202i 0.341720 + 0.221916i
\(263\) 3.44715 + 2.23861i 0.212561 + 0.138038i 0.646528 0.762890i \(-0.276220\pi\)
−0.433968 + 0.900928i \(0.642887\pi\)
\(264\) 2.13103 + 0.452964i 0.131156 + 0.0278780i
\(265\) −18.6682 3.33224i −1.14678 0.204698i
\(266\) 19.3494 23.1951i 1.18639 1.42218i
\(267\) 6.06001 0.959811i 0.370866 0.0587395i
\(268\) −13.2660 + 3.55461i −0.810349 + 0.217132i
\(269\) −1.23301 + 11.7313i −0.0751780 + 0.715271i 0.890404 + 0.455171i \(0.150422\pi\)
−0.965582 + 0.260099i \(0.916245\pi\)
\(270\) 7.64818 + 3.58602i 0.465453 + 0.218238i
\(271\) −6.69826 + 0.704015i −0.406890 + 0.0427659i −0.305763 0.952108i \(-0.598912\pi\)
−0.101127 + 0.994874i \(0.532245\pi\)
\(272\) −4.25816 0.674426i −0.258189 0.0408931i
\(273\) −0.370796 0.424079i −0.0224416 0.0256664i
\(274\) 1.80415i 0.108993i
\(275\) 20.4620 + 5.19335i 1.23391 + 0.313171i
\(276\) 0.605007 0.349301i 0.0364171 0.0210254i
\(277\) −1.59392 30.4139i −0.0957696 1.82739i −0.450899 0.892575i \(-0.648897\pi\)
0.355130 0.934817i \(-0.384437\pi\)
\(278\) 13.9438 + 11.2915i 0.836294 + 0.677218i
\(279\) −20.8960 + 15.1818i −1.25101 + 0.908911i
\(280\) 7.42318 + 4.10721i 0.443620 + 0.245453i
\(281\) 3.78178 + 2.74762i 0.225602 + 0.163909i 0.694845 0.719160i \(-0.255473\pi\)
−0.469243 + 0.883069i \(0.655473\pi\)
\(282\) 1.60542 + 5.99152i 0.0956016 + 0.356790i
\(283\) 3.52471 + 4.35265i 0.209522 + 0.258738i 0.871064 0.491170i \(-0.163431\pi\)
−0.661541 + 0.749909i \(0.730097\pi\)
\(284\) 3.48861 + 16.4126i 0.207011 + 0.973908i
\(285\) −1.23218 4.98670i −0.0729881 0.295387i
\(286\) −4.24911 + 1.38062i −0.251255 + 0.0816377i
\(287\) 14.4015 + 6.66509i 0.850093 + 0.393428i
\(288\) 15.3547 7.82364i 0.904787 0.461012i
\(289\) −3.37747 + 15.8897i −0.198674 + 0.934690i
\(290\) −5.35273 + 4.16390i −0.314323 + 0.244512i
\(291\) 4.12475 0.876742i 0.241797 0.0513956i
\(292\) −3.90050 1.49726i −0.228260 0.0876207i
\(293\) 7.38400 7.38400i 0.431378 0.431378i −0.457719 0.889097i \(-0.651333\pi\)
0.889097 + 0.457719i \(0.151333\pi\)
\(294\) −3.43391 + 2.91526i −0.200270 + 0.170022i
\(295\) −4.96297 + 14.3155i −0.288955 + 0.833483i
\(296\) −0.653147 6.21428i −0.0379634 0.361198i
\(297\) −3.19625 8.32650i −0.185465 0.483153i
\(298\) 12.7792 0.669727i 0.740277 0.0387962i
\(299\) 0.479406 0.830355i 0.0277247 0.0480207i
\(300\) −1.95749 + 0.902779i −0.113016 + 0.0521219i
\(301\) 8.63053 + 10.9812i 0.497456 + 0.632948i
\(302\) −38.9892 19.8660i −2.24358 1.14316i
\(303\) 1.00638 1.24278i 0.0578152 0.0713959i
\(304\) −28.9317 12.8812i −1.65935 0.738790i
\(305\) 2.01587 + 1.88777i 0.115428 + 0.108094i
\(306\) 1.81459 + 4.07563i 0.103733 + 0.232988i
\(307\) −19.4310 19.4310i −1.10899 1.10899i −0.993284 0.115702i \(-0.963088\pi\)
−0.115702 0.993284i \(-0.536912\pi\)
\(308\) 3.94998 + 12.7880i 0.225071 + 0.728661i
\(309\) −0.717289 0.233061i −0.0408051 0.0132584i
\(310\) 2.58548 35.8884i 0.146845 2.03832i
\(311\) −11.1492 10.0388i −0.632212 0.569246i 0.289473 0.957186i \(-0.406520\pi\)
−0.921685 + 0.387940i \(0.873187\pi\)
\(312\) −0.166290 + 0.256065i −0.00941434 + 0.0144968i
\(313\) −30.4559 1.59613i −1.72147 0.0902185i −0.834199 0.551464i \(-0.814069\pi\)
−0.887272 + 0.461246i \(0.847403\pi\)
\(314\) −11.0985 34.1576i −0.626323 1.92762i
\(315\) −1.19775 16.9399i −0.0674856 0.954457i
\(316\) −5.23108 + 16.0996i −0.294271 + 0.905674i
\(317\) −9.06260 + 23.6089i −0.509006 + 1.32601i 0.402763 + 0.915304i \(0.368050\pi\)
−0.911769 + 0.410703i \(0.865283\pi\)
\(318\) −5.27133 1.41245i −0.295601 0.0792061i
\(319\) 7.12108 + 0.748456i 0.398704 + 0.0419055i
\(320\) −0.413528 + 1.77414i −0.0231169 + 0.0991774i
\(321\) −0.871043 1.19889i −0.0486169 0.0669154i
\(322\) −6.58319 3.92982i −0.366867 0.219000i
\(323\) 2.51883 4.94349i 0.140152 0.275063i
\(324\) −8.14678 4.70355i −0.452599 0.261308i
\(325\) −1.70714 + 2.41634i −0.0946951 + 0.134034i
\(326\) −14.4281 24.9902i −0.799097 1.38408i
\(327\) 2.34022 + 3.60362i 0.129414 + 0.199280i
\(328\) 1.34550 8.49516i 0.0742928 0.469066i
\(329\) 18.2944 17.7688i 1.00860 0.979623i
\(330\) 5.74013 + 1.99001i 0.315984 + 0.109546i
\(331\) −6.04742 + 2.69249i −0.332396 + 0.147992i −0.566147 0.824304i \(-0.691567\pi\)
0.233751 + 0.972297i \(0.424900\pi\)
\(332\) −0.946875 + 3.53378i −0.0519665 + 0.193942i
\(333\) −9.72053 + 7.87153i −0.532682 + 0.431357i
\(334\) 12.1594 + 13.5044i 0.665332 + 0.738926i
\(335\) 25.3896 3.51379i 1.38718 0.191979i
\(336\) 3.92293 + 2.62965i 0.214014 + 0.143459i
\(337\) 2.24236 + 4.40088i 0.122149 + 0.239731i 0.943982 0.329998i \(-0.107048\pi\)
−0.821833 + 0.569729i \(0.807048\pi\)
\(338\) −1.18395 + 22.5912i −0.0643986 + 1.22880i
\(339\) −0.859827 + 0.954934i −0.0466994 + 0.0518649i
\(340\) −2.23679 0.646486i −0.121307 0.0350606i
\(341\) −28.2327 + 25.4208i −1.52889 + 1.37661i
\(342\) 5.12671 + 32.3688i 0.277221 + 1.75030i
\(343\) 17.3468 + 6.48744i 0.936642 + 0.350289i
\(344\) 4.44958 6.12432i 0.239905 0.330201i
\(345\) −1.20122 + 0.506906i −0.0646715 + 0.0272909i
\(346\) −2.44010 + 5.48056i −0.131181 + 0.294637i
\(347\) −24.0377 + 9.22720i −1.29041 + 0.495342i −0.904216 0.427075i \(-0.859544\pi\)
−0.386194 + 0.922417i \(0.626211\pi\)
\(348\) −0.613188 + 0.398209i −0.0328704 + 0.0213463i
\(349\) 23.8148 1.27478 0.637389 0.770543i \(-0.280015\pi\)
0.637389 + 0.770543i \(0.280015\pi\)
\(350\) 19.1207 + 13.9309i 1.02205 + 0.744639i
\(351\) 1.24993 0.0667163
\(352\) 21.2582 13.8053i 1.13307 0.735823i
\(353\) 29.5626 11.3480i 1.57346 0.603995i 0.593792 0.804619i \(-0.297630\pi\)
0.979668 + 0.200624i \(0.0642969\pi\)
\(354\) −1.77350 + 3.98334i −0.0942603 + 0.211712i
\(355\) −2.66361 31.2015i −0.141370 1.65600i
\(356\) 12.0082 16.5279i 0.636433 0.875975i
\(357\) −0.496024 + 0.662205i −0.0262524 + 0.0350476i
\(358\) 0.812532 + 5.13013i 0.0429437 + 0.271136i
\(359\) −9.42711 + 8.48821i −0.497544 + 0.447990i −0.879297 0.476274i \(-0.841987\pi\)
0.381753 + 0.924264i \(0.375320\pi\)
\(360\) −8.65592 + 3.12988i −0.456207 + 0.164959i
\(361\) 14.5578 16.1681i 0.766201 0.850953i
\(362\) 0.740304 14.1258i 0.0389095 0.742437i
\(363\) −1.11520 2.18870i −0.0585328 0.114877i
\(364\) −1.87150 0.125453i −0.0980932 0.00657552i
\(365\) 6.87696 + 3.67513i 0.359956 + 0.192365i
\(366\) 0.531817 + 0.590643i 0.0277985 + 0.0308734i
\(367\) −6.10039 + 4.94000i −0.318438 + 0.257866i −0.775190 0.631728i \(-0.782346\pi\)
0.456752 + 0.889594i \(0.349013\pi\)
\(368\) −2.08050 + 7.76452i −0.108453 + 0.404754i
\(369\) −15.7287 + 7.00286i −0.818802 + 0.364554i
\(370\) 0.340769 17.4212i 0.0177157 0.905683i
\(371\) 5.49083 + 21.7554i 0.285070 + 1.12948i
\(372\) 0.606851 3.83151i 0.0314638 0.198654i
\(373\) −1.98581 3.05789i −0.102822 0.158331i 0.783515 0.621373i \(-0.213425\pi\)
−0.886337 + 0.463042i \(0.846758\pi\)
\(374\) 3.28101 + 5.68288i 0.169657 + 0.293855i
\(375\) 3.83392 1.21900i 0.197983 0.0629491i
\(376\) −11.9709 6.91139i −0.617351 0.356428i
\(377\) −0.455567 + 0.894102i −0.0234629 + 0.0460486i
\(378\) 0.145652 9.99373i 0.00749155 0.514022i
\(379\) 12.1944 + 16.7841i 0.626384 + 0.862143i 0.997798 0.0663239i \(-0.0211271\pi\)
−0.371414 + 0.928467i \(0.621127\pi\)
\(380\) −14.6421 8.83985i −0.751123 0.453475i
\(381\) −1.17744 0.123754i −0.0603221 0.00634010i
\(382\) 25.1385 + 6.73584i 1.28620 + 0.344636i
\(383\) 6.96275 18.1386i 0.355780 0.926838i −0.632551 0.774518i \(-0.717992\pi\)
0.988331 0.152320i \(-0.0486744\pi\)
\(384\) 1.17310 3.61042i 0.0598643 0.184243i
\(385\) −4.35656 24.5958i −0.222031 1.25352i
\(386\) −0.343502 1.05719i −0.0174838 0.0538096i
\(387\) −15.1327 0.793070i −0.769237 0.0403140i
\(388\) 7.64729 11.7758i 0.388232 0.597825i
\(389\) 11.3701 + 10.2377i 0.576487 + 0.519072i 0.904991 0.425431i \(-0.139878\pi\)
−0.328503 + 0.944503i \(0.606544\pi\)
\(390\) −0.548651 + 0.651069i −0.0277820 + 0.0329682i
\(391\) −1.33933 0.435173i −0.0677326 0.0220077i
\(392\) 0.817259 10.0047i 0.0412778 0.505313i
\(393\) −0.938353 0.938353i −0.0473337 0.0473337i
\(394\) 17.7516 + 39.8707i 0.894312 + 2.00866i
\(395\) 13.4120 28.6047i 0.674829 1.43926i
\(396\) −13.2657 5.90628i −0.666628 0.296802i
\(397\) −18.3983 + 22.7200i −0.923382 + 1.14028i 0.0664145 + 0.997792i \(0.478844\pi\)
−0.989796 + 0.142489i \(0.954489\pi\)
\(398\) −13.6784 6.96947i −0.685634 0.349348i
\(399\) −4.77858 + 3.75565i −0.239228 + 0.188017i
\(400\) 8.58141 23.2719i 0.429071 1.16360i
\(401\) 10.9327 18.9359i 0.545952 0.945616i −0.452595 0.891716i \(-0.649502\pi\)
0.998546 0.0538996i \(-0.0171651\pi\)
\(402\) 7.36619 0.386045i 0.367392 0.0192542i
\(403\) −1.90802 4.97055i −0.0950451 0.247601i
\(404\) −0.556586 5.29556i −0.0276912 0.263464i
\(405\) 13.9989 + 10.5952i 0.695610 + 0.526479i
\(406\) 7.09565 + 3.74665i 0.352151 + 0.185943i
\(407\) −13.0091 + 13.0091i −0.644836 + 0.644836i
\(408\) 0.418656 + 0.160707i 0.0207265 + 0.00795617i
\(409\) 30.0548 6.38835i 1.48611 0.315883i 0.607848 0.794054i \(-0.292033\pi\)
0.878267 + 0.478170i \(0.158700\pi\)
\(410\) 6.65960 23.0416i 0.328894 1.13795i
\(411\) 0.0754751 0.355082i 0.00372291 0.0175149i
\(412\) −2.23756 + 1.14009i −0.110237 + 0.0561683i
\(413\) 17.8546 1.61390i 0.878569 0.0794151i
\(414\) 7.91115 2.57049i 0.388812 0.126333i
\(415\) 2.57103 6.32516i 0.126207 0.310490i
\(416\) 0.738565 + 3.47468i 0.0362111 + 0.170360i
\(417\) −2.27197 2.80565i −0.111259 0.137393i
\(418\) 12.4760 + 46.5612i 0.610223 + 2.27738i
\(419\) 8.60424 + 6.25134i 0.420345 + 0.305398i 0.777776 0.628541i \(-0.216348\pi\)
−0.357432 + 0.933939i \(0.616348\pi\)
\(420\) 1.92625 + 1.67184i 0.0939912 + 0.0815774i
\(421\) 17.2687 12.5464i 0.841623 0.611475i −0.0812007 0.996698i \(-0.525875\pi\)
0.922824 + 0.385223i \(0.125875\pi\)
\(422\) −5.77633 4.67758i −0.281187 0.227701i
\(423\) 1.44813 + 27.6319i 0.0704103 + 1.34351i
\(424\) 10.5319 6.08062i 0.511476 0.295301i
\(425\) 3.99274 + 1.71469i 0.193676 + 0.0831746i
\(426\) 9.01188i 0.436627i
\(427\) 1.05498 3.09280i 0.0510541 0.149671i
\(428\) −4.87356 0.771896i −0.235572 0.0373110i
\(429\) 0.894041 0.0939675i 0.0431647 0.00453679i
\(430\) 14.4293 15.4084i 0.695843 0.743058i
\(431\) 0.801158 7.62251i 0.0385904 0.367164i −0.958136 0.286314i \(-0.907570\pi\)
0.996726 0.0808496i \(-0.0257634\pi\)
\(432\) −10.1220 + 2.71219i −0.486996 + 0.130490i
\(433\) −20.2759 + 3.21139i −0.974399 + 0.154330i −0.623278 0.782000i \(-0.714199\pi\)
−0.351121 + 0.936330i \(0.614199\pi\)
\(434\) −39.9641 + 14.6762i −1.91834 + 0.704481i
\(435\) 1.22768 0.595586i 0.0588630 0.0285562i
\(436\) 13.9945 + 2.97462i 0.670215 + 0.142458i
\(437\) −8.67588 5.63418i −0.415023 0.269519i
\(438\) 1.88193 + 1.22214i 0.0899220 + 0.0583961i
\(439\) 12.2397 + 2.60162i 0.584168 + 0.124169i 0.490510 0.871436i \(-0.336811\pi\)
0.0936579 + 0.995604i \(0.470144\pi\)
\(440\) −12.1808 + 5.90925i −0.580695 + 0.281712i
\(441\) −17.6870 + 9.53543i −0.842238 + 0.454068i
\(442\) −0.908306 + 0.143862i −0.0432037 + 0.00684280i
\(443\) 33.8090 9.05910i 1.60632 0.430411i 0.659373 0.751816i \(-0.270822\pi\)
0.946942 + 0.321405i \(0.104155\pi\)
\(444\) 0.196366 1.86830i 0.00931912 0.0886655i
\(445\) −26.0615 + 27.8299i −1.23544 + 1.31926i
\(446\) 22.6214 2.37761i 1.07115 0.112583i
\(447\) −2.54313 0.402793i −0.120286 0.0190514i
\(448\) 2.11466 0.417373i 0.0999085 0.0197190i
\(449\) 4.28525i 0.202233i 0.994875 + 0.101117i \(0.0322416\pi\)
−0.994875 + 0.101117i \(0.967758\pi\)
\(450\) −25.0335 + 5.66854i −1.18009 + 0.267217i
\(451\) −21.9314 + 12.6621i −1.03271 + 0.596235i
\(452\) 0.223927 + 4.27278i 0.0105326 + 0.200974i
\(453\) 6.84254 + 5.54098i 0.321491 + 0.260338i
\(454\) −10.1308 + 7.36048i −0.475464 + 0.345445i
\(455\) 3.43680 + 0.665283i 0.161120 + 0.0311889i
\(456\) 2.66505 + 1.93627i 0.124802 + 0.0906742i
\(457\) −4.57736 17.0829i −0.214120 0.799107i −0.986474 0.163915i \(-0.947588\pi\)
0.772355 0.635192i \(-0.219079\pi\)
\(458\) 16.6479 + 20.5585i 0.777908 + 0.960636i
\(459\) −0.381690 1.79571i −0.0178158 0.0838166i
\(460\) −1.63473 + 4.02171i −0.0762197 + 0.187513i
\(461\) 23.7965 7.73195i 1.10831 0.360113i 0.303017 0.952985i \(-0.402006\pi\)
0.805297 + 0.592872i \(0.202006\pi\)
\(462\) −0.647130 7.15920i −0.0301072 0.333076i
\(463\) 24.3244 12.3939i 1.13045 0.575994i 0.214277 0.976773i \(-0.431260\pi\)
0.916175 + 0.400779i \(0.131260\pi\)
\(464\) 1.74913 8.22902i 0.0812015 0.382023i
\(465\) −2.01022 + 6.95517i −0.0932215 + 0.322538i
\(466\) 4.46256 0.948547i 0.206724 0.0439406i
\(467\) −6.60852 2.53677i −0.305806 0.117388i 0.200626 0.979668i \(-0.435702\pi\)
−0.506432 + 0.862280i \(0.669036\pi\)
\(468\) 1.43900 1.43900i 0.0665177 0.0665177i
\(469\) −16.1452 25.6729i −0.745517 1.18547i
\(470\) −30.7353 23.2623i −1.41771 1.07301i
\(471\) 0.755382 + 7.18698i 0.0348062 + 0.331159i
\(472\) −3.48215 9.07132i −0.160279 0.417541i
\(473\) −22.2582 + 1.16650i −1.02343 + 0.0536358i
\(474\) 4.54592 7.87377i 0.208801 0.361654i
\(475\) 25.0706 + 19.7578i 1.15032 + 0.906552i
\(476\) 0.391267 + 2.72700i 0.0179337 + 0.124992i
\(477\) −21.6905 11.0519i −0.993140 0.506030i
\(478\) 1.11935 1.38228i 0.0511977 0.0632239i
\(479\) −34.5054 15.3628i −1.57659 0.701943i −0.582738 0.812660i \(-0.698019\pi\)
−0.993852 + 0.110717i \(0.964685\pi\)
\(480\) 2.05064 4.37355i 0.0935984 0.199624i
\(481\) −1.04869 2.35540i −0.0478163 0.107397i
\(482\) −6.78154 6.78154i −0.308891 0.308891i
\(483\) 1.13126 + 1.04885i 0.0514743 + 0.0477241i
\(484\) −7.77889 2.52751i −0.353586 0.114887i
\(485\) −16.8862 + 20.0384i −0.766764 + 0.909898i
\(486\) 12.1768 + 10.9640i 0.552349 + 0.497337i
\(487\) 7.15837 11.0229i 0.324377 0.499496i −0.638433 0.769678i \(-0.720417\pi\)
0.962809 + 0.270181i \(0.0870836\pi\)
\(488\) −1.76871 0.0926944i −0.0800660 0.00419608i
\(489\) 1.79421 + 5.52200i 0.0811368 + 0.249713i
\(490\) 5.71971 27.4012i 0.258390 1.23786i
\(491\) −7.21929 + 22.2187i −0.325802 + 1.00272i 0.645275 + 0.763950i \(0.276743\pi\)
−0.971077 + 0.238765i \(0.923257\pi\)
\(492\) 0.926693 2.41412i 0.0417785 0.108837i
\(493\) 1.42363 + 0.381460i 0.0641170 + 0.0171801i
\(494\) −6.71845 0.706137i −0.302277 0.0317706i
\(495\) 23.2004 + 14.0067i 1.04278 + 0.629556i
\(496\) 26.2367 + 36.1118i 1.17806 + 1.62147i
\(497\) −32.3549 + 18.0566i −1.45132 + 0.809950i
\(498\) 0.892043 1.75073i 0.0399734 0.0784522i
\(499\) 7.78986 + 4.49748i 0.348722 + 0.201335i 0.664122 0.747624i \(-0.268805\pi\)
−0.315400 + 0.948959i \(0.602139\pi\)
\(500\) 6.15670 11.8969i 0.275336 0.532045i
\(501\) −1.82819 3.16652i −0.0816777 0.141470i
\(502\) −15.1039 23.2579i −0.674119 1.03805i
\(503\) −5.63363 + 35.5693i −0.251191 + 1.58596i 0.463228 + 0.886239i \(0.346691\pi\)
−0.714419 + 0.699718i \(0.753309\pi\)
\(504\) 7.58792 + 7.81236i 0.337993 + 0.347990i
\(505\) −0.194347 + 9.93559i −0.00864831 + 0.442128i
\(506\) 11.1773 4.97646i 0.496892 0.221231i
\(507\) 1.17810 4.39673i 0.0523213 0.195266i
\(508\) −3.06360 + 2.48086i −0.135925 + 0.110070i
\(509\) −6.14407 6.82368i −0.272331 0.302454i 0.591429 0.806357i \(-0.298564\pi\)
−0.863761 + 0.503902i \(0.831897\pi\)
\(510\) 1.10290 + 0.589403i 0.0488372 + 0.0260992i
\(511\) 0.617064 9.20532i 0.0272973 0.407220i
\(512\) −7.06144 13.8588i −0.312074 0.612480i
\(513\) 0.705788 13.4672i 0.0311613 0.594593i
\(514\) −18.6774 + 20.7434i −0.823827 + 0.914952i
\(515\) 4.40748 1.59369i 0.194217 0.0702265i
\(516\) 1.69133 1.52288i 0.0744568 0.0670412i
\(517\) 6.36667 + 40.1976i 0.280006 + 1.76789i
\(518\) −18.9547 + 8.11030i −0.832822 + 0.356346i
\(519\) 0.709520 0.976571i 0.0311445 0.0428667i
\(520\) −0.161385 1.89046i −0.00707719 0.0829021i
\(521\) −4.96375 + 11.1488i −0.217466 + 0.488437i −0.989030 0.147715i \(-0.952808\pi\)
0.771564 + 0.636152i \(0.219475\pi\)
\(522\) −8.12752 + 3.11986i −0.355732 + 0.136553i
\(523\) 17.1195 11.1175i 0.748582 0.486135i −0.113100 0.993584i \(-0.536078\pi\)
0.861682 + 0.507449i \(0.169411\pi\)
\(524\) −4.41862 −0.193028
\(525\) −3.18044 3.54170i −0.138806 0.154572i
\(526\) −7.35051 −0.320498
\(527\) −6.55830 + 4.25901i −0.285684 + 0.185525i
\(528\) −7.03611 + 2.70091i −0.306208 + 0.117542i
\(529\) 8.28697 18.6128i 0.360303 0.809253i
\(530\) 31.2445 13.1850i 1.35718 0.572719i
\(531\) −11.4327 + 15.7357i −0.496136 + 0.682873i
\(532\) −2.40845 + 20.0934i −0.104419 + 0.871162i
\(533\) −0.555191 3.50534i −0.0240480 0.151833i
\(534\) −8.15408 + 7.34197i −0.352862 + 0.317718i
\(535\) 8.84676 + 2.55693i 0.382479 + 0.110546i
\(536\) −10.9989 + 12.2156i −0.475082 + 0.527632i
\(537\) 0.0546965 1.04367i 0.00236033 0.0450378i
\(538\) −9.57695 18.7958i −0.412892 0.810346i
\(539\) −24.4067 + 16.6679i −1.05127 + 0.717936i
\(540\) −5.60592 + 0.775832i −0.241241 + 0.0333865i
\(541\) −11.8063 13.1122i −0.507591 0.563737i 0.433820 0.901000i \(-0.357165\pi\)
−0.941410 + 0.337263i \(0.890499\pi\)
\(542\) 9.36049 7.57997i 0.402067 0.325588i
\(543\) −0.736644 + 2.74919i −0.0316124 + 0.117979i
\(544\) 4.76636 2.12212i 0.204356 0.0909851i
\(545\) −25.2282 8.74621i −1.08066 0.374646i
\(546\) 0.969180 + 0.274890i 0.0414771 + 0.0117642i
\(547\) 0.468776 2.95974i 0.0200434 0.126549i −0.975638 0.219388i \(-0.929594\pi\)
0.995681 + 0.0928385i \(0.0295940\pi\)
\(548\) −0.658323 1.01373i −0.0281222 0.0433043i
\(549\) 1.77270 + 3.07040i 0.0756568 + 0.131041i
\(550\) −35.7477 + 12.1408i −1.52429 + 0.517687i
\(551\) 9.37617 + 5.41333i 0.399438 + 0.230616i
\(552\) 0.379595 0.744998i 0.0161567 0.0317092i
\(553\) −37.3772 0.544749i −1.58944 0.0231651i
\(554\) 32.0136 + 44.0629i 1.36013 + 1.87205i
\(555\) −0.795866 + 3.41447i −0.0337826 + 0.144936i
\(556\) −11.9550 1.25652i −0.507006 0.0532885i
\(557\) 30.2559 + 8.10705i 1.28198 + 0.343507i 0.834610 0.550841i \(-0.185693\pi\)
0.447373 + 0.894347i \(0.352359\pi\)
\(558\) 16.5532 43.1226i 0.700754 1.82553i
\(559\) 0.965254 2.97075i 0.0408259 0.125649i
\(560\) −29.2751 + 2.06992i −1.23710 + 0.0874699i
\(561\) −0.408011 1.25573i −0.0172262 0.0530169i
\(562\) −8.34817 0.437509i −0.352146 0.0184552i
\(563\) −10.1341 + 15.6052i −0.427103 + 0.657680i −0.985064 0.172186i \(-0.944917\pi\)
0.557962 + 0.829867i \(0.311584\pi\)
\(564\) −3.08833 2.78075i −0.130042 0.117091i
\(565\) 0.573784 7.96455i 0.0241393 0.335071i
\(566\) −9.52590 3.09515i −0.400404 0.130099i
\(567\) 4.61460 20.2540i 0.193795 0.850586i
\(568\) 14.2005 + 14.2005i 0.595838 + 0.595838i
\(569\) 0.637171 + 1.43111i 0.0267116 + 0.0599952i 0.926409 0.376520i \(-0.122879\pi\)
−0.899697 + 0.436515i \(0.856213\pi\)
\(570\) 6.70508 + 6.27903i 0.280845 + 0.262999i
\(571\) −12.0801 5.37840i −0.505536 0.225079i 0.138090 0.990420i \(-0.455904\pi\)
−0.643625 + 0.765341i \(0.722570\pi\)
\(572\) 1.88374 2.32622i 0.0787630 0.0972643i
\(573\) −4.66582 2.37736i −0.194918 0.0993154i
\(574\) −28.0914 + 4.03053i −1.17251 + 0.168231i
\(575\) 3.95774 7.06961i 0.165049 0.294823i
\(576\) −1.16929 + 2.02527i −0.0487204 + 0.0843861i
\(577\) 9.27556 0.486112i 0.386147 0.0202371i 0.141725 0.989906i \(-0.454735\pi\)
0.244422 + 0.969669i \(0.421402\pi\)
\(578\) −10.4109 27.1214i −0.433038 1.12810i
\(579\) 0.0233794 + 0.222440i 0.000971615 + 0.00924430i
\(580\) 1.48825 4.29281i 0.0617961 0.178249i
\(581\) −8.07290 + 0.305192i −0.334920 + 0.0126615i
\(582\) −5.33245 + 5.33245i −0.221037 + 0.221037i
\(583\) −33.4283 12.8319i −1.38446 0.531444i
\(584\) −4.89123 + 1.03966i −0.202400 + 0.0430216i
\(585\) −2.99778 + 2.33197i −0.123943 + 0.0964153i
\(586\) −3.88270 + 18.2667i −0.160393 + 0.754589i
\(587\) −11.8830 + 6.05467i −0.490462 + 0.249903i −0.681688 0.731643i \(-0.738754\pi\)
0.191226 + 0.981546i \(0.438754\pi\)
\(588\) 0.865708 2.89106i 0.0357012 0.119225i
\(589\) −54.6321 + 17.7511i −2.25108 + 0.731419i
\(590\) −6.49972 26.3047i −0.267589 1.08295i
\(591\) −1.82581 8.58974i −0.0751036 0.353335i
\(592\) 13.6033 + 16.7987i 0.559093 + 0.690423i
\(593\) −9.45404 35.2829i −0.388231 1.44890i −0.833011 0.553257i \(-0.813385\pi\)
0.444780 0.895640i \(-0.353282\pi\)
\(594\) 12.9038 + 9.37515i 0.529449 + 0.384667i
\(595\) −0.0937160 5.14064i −0.00384198 0.210746i
\(596\) −6.93605 + 5.03934i −0.284112 + 0.206419i
\(597\) 2.40053 + 1.94391i 0.0982471 + 0.0795589i
\(598\) 0.0897391 + 1.71232i 0.00366970 + 0.0700221i
\(599\) −0.214739 + 0.123980i −0.00877399 + 0.00506567i −0.504381 0.863481i \(-0.668279\pi\)
0.495607 + 0.868547i \(0.334946\pi\)
\(600\) −1.37639 + 2.18219i −0.0561909 + 0.0890875i
\(601\) 19.3484i 0.789237i −0.918845 0.394618i \(-0.870877\pi\)
0.918845 0.394618i \(-0.129123\pi\)
\(602\) −23.6400 8.06381i −0.963492 0.328656i
\(603\) 32.4991 + 5.14734i 1.32346 + 0.209616i
\(604\) 29.1565 3.06447i 1.18636 0.124691i
\(605\) 13.8210 + 6.48028i 0.561903 + 0.263461i
\(606\) −0.298934 + 2.84416i −0.0121433 + 0.115536i
\(607\) 34.8976 9.35079i 1.41645 0.379537i 0.532227 0.846601i \(-0.321355\pi\)
0.884223 + 0.467065i \(0.154688\pi\)
\(608\) 37.8546 5.99558i 1.53521 0.243153i
\(609\) −1.23979 1.03423i −0.0502386 0.0419093i
\(610\) −4.86212 0.867880i −0.196862 0.0351394i
\(611\) −5.57903 1.18586i −0.225703 0.0479747i
\(612\) −2.50676 1.62791i −0.101330 0.0658043i
\(613\) −13.0930 8.50267i −0.528820 0.343420i 0.252453 0.967609i \(-0.418763\pi\)
−0.781273 + 0.624189i \(0.785429\pi\)
\(614\) 48.0688 + 10.2173i 1.93990 + 0.412338i
\(615\) −2.27463 + 4.25632i −0.0917219 + 0.171631i
\(616\) 12.3008 + 10.2614i 0.495614 + 0.413443i
\(617\) 27.4606 4.34934i 1.10552 0.175098i 0.423120 0.906074i \(-0.360935\pi\)
0.682403 + 0.730976i \(0.260935\pi\)
\(618\) 1.30281 0.349086i 0.0524065 0.0140423i
\(619\) 3.75824 35.7573i 0.151056 1.43721i −0.611992 0.790864i \(-0.709631\pi\)
0.763048 0.646342i \(-0.223702\pi\)
\(620\) 11.6427 + 21.1086i 0.467581 + 0.847742i
\(621\) −3.40420 + 0.357796i −0.136606 + 0.0143579i
\(622\) 26.4995 + 4.19711i 1.06253 + 0.168289i
\(623\) 42.6974 + 14.5645i 1.71063 + 0.583513i
\(624\) 1.05622i 0.0422827i
\(625\) −14.1538 + 20.6075i −0.566153 + 0.824300i
\(626\) 47.2331 27.2700i 1.88781 1.08993i
\(627\) −0.507612 9.68582i −0.0202721 0.386814i
\(628\) 18.7000 + 15.1429i 0.746209 + 0.604268i
\(629\) −3.06365 + 2.22587i −0.122156 + 0.0887514i
\(630\) 18.2958 + 24.2403i 0.728924 + 0.965756i
\(631\) 23.2118 + 16.8644i 0.924048 + 0.671360i 0.944528 0.328430i \(-0.106520\pi\)
−0.0204802 + 0.999790i \(0.506520\pi\)
\(632\) 5.24385 + 19.5703i 0.208589 + 0.778465i
\(633\) 0.941179 + 1.16226i 0.0374085 + 0.0461957i
\(634\) −9.40266 44.2361i −0.373427 1.75684i
\(635\) 6.24741 3.88555i 0.247921 0.154193i
\(636\) 3.47728 1.12984i 0.137883 0.0448009i
\(637\) −0.954970 4.03038i −0.0378373 0.159689i
\(638\) −11.4094 + 5.81335i −0.451701 + 0.230153i
\(639\) 8.35809 39.3217i 0.330641 1.55554i
\(640\) 8.02174 + 22.1847i 0.317087 + 0.876928i
\(641\) −17.6000 + 3.74101i −0.695160 + 0.147761i −0.541922 0.840429i \(-0.682303\pi\)
−0.153238 + 0.988189i \(0.548970\pi\)
\(642\) 2.47412 + 0.949726i 0.0976457 + 0.0374827i
\(643\) 9.47610 9.47610i 0.373701 0.373701i −0.495122 0.868823i \(-0.664877\pi\)
0.868823 + 0.495122i \(0.164877\pi\)
\(644\) 5.13297 0.194050i 0.202267 0.00764662i
\(645\) −3.48448 + 2.42895i −0.137201 + 0.0956397i
\(646\) 1.03714 + 9.86769i 0.0408056 + 0.388239i
\(647\) 4.96466 + 12.9334i 0.195181 + 0.508464i 0.995888 0.0905921i \(-0.0288760\pi\)
−0.800707 + 0.599056i \(0.795543\pi\)
\(648\) −11.2436 + 0.589251i −0.441689 + 0.0231480i
\(649\) −14.3045 + 24.7762i −0.561502 + 0.972549i
\(650\) 0.206906 5.28682i 0.00811554 0.207366i
\(651\) 8.47946 1.21662i 0.332336 0.0476832i
\(652\) 17.2257 + 8.77692i 0.674610 + 0.343731i
\(653\) 23.0993 28.5253i 0.903947 1.11628i −0.0887994 0.996050i \(-0.528303\pi\)
0.992746 0.120231i \(-0.0383637\pi\)
\(654\) −7.01981 3.12542i −0.274496 0.122214i
\(655\) 8.18284 + 1.02221i 0.319730 + 0.0399412i
\(656\) 12.1021 + 27.1818i 0.472508 + 1.06127i
\(657\) 7.07798 + 7.07798i 0.276138 + 0.276138i
\(658\) −10.1316 + 44.4686i −0.394970 + 1.73357i
\(659\) −17.1826 5.58297i −0.669340 0.217482i −0.0454175 0.998968i \(-0.514462\pi\)
−0.623922 + 0.781486i \(0.714462\pi\)
\(660\) −3.95144 + 0.976376i −0.153810 + 0.0380054i
\(661\) −19.5718 17.6225i −0.761253 0.685435i 0.194074 0.980987i \(-0.437830\pi\)
−0.955327 + 0.295552i \(0.904497\pi\)
\(662\) 6.44759 9.92841i 0.250593 0.385879i
\(663\) 0.184786 + 0.00968421i 0.00717648 + 0.000376103i
\(664\) 1.35308 + 4.16435i 0.0525097 + 0.161608i
\(665\) 9.10866 36.6538i 0.353219 1.42137i
\(666\) 6.91223 21.2737i 0.267843 0.824337i
\(667\) 0.984806 2.56551i 0.0381318 0.0993369i
\(668\) −11.7598 3.15104i −0.455002 0.121917i
\(669\) −4.55167 0.478400i −0.175978 0.0184960i
\(670\) −34.6574 + 29.9994i −1.33893 + 1.15898i
\(671\) 3.06518 + 4.21886i 0.118330 + 0.162867i
\(672\) −5.71484 0.0832901i −0.220455 0.00321299i
\(673\) 23.2205 45.5727i 0.895083 1.75670i 0.297896 0.954598i \(-0.403715\pi\)
0.597187 0.802102i \(-0.296285\pi\)
\(674\) −7.64957 4.41648i −0.294651 0.170117i
\(675\) 10.5611 0.139875i 0.406496 0.00538379i
\(676\) −7.57813 13.1257i −0.291466 0.504835i
\(677\) 21.5376 + 33.1651i 0.827759 + 1.27464i 0.959034 + 0.283291i \(0.0914261\pi\)
−0.131275 + 0.991346i \(0.541907\pi\)
\(678\) 0.359485 2.26970i 0.0138059 0.0871673i
\(679\) 29.8291 + 8.46047i 1.14474 + 0.324683i
\(680\) −2.66664 + 0.809141i −0.102261 + 0.0310292i
\(681\) 2.30181 1.02483i 0.0882055 0.0392716i
\(682\) 17.5842 65.6252i 0.673335 2.51292i
\(683\) −8.47008 + 6.85894i −0.324099 + 0.262450i −0.777536 0.628838i \(-0.783531\pi\)
0.453438 + 0.891288i \(0.350198\pi\)
\(684\) −14.6918 16.3169i −0.561755 0.623892i
\(685\) 0.984629 + 2.02962i 0.0376207 + 0.0775478i
\(686\) −32.3359 + 7.16576i −1.23459 + 0.273590i
\(687\) −2.41650 4.74265i −0.0921953 0.180943i
\(688\) −1.37056 + 26.1518i −0.0522520 + 0.997028i
\(689\) 3.35774 3.72915i 0.127920 0.142069i
\(690\) 1.30789 1.93025i 0.0497905 0.0734834i
\(691\) 25.6649 23.1088i 0.976340 0.879101i −0.0163408 0.999866i \(-0.505202\pi\)
0.992681 + 0.120766i \(0.0385350\pi\)
\(692\) −0.628759 3.96983i −0.0239018 0.150910i
\(693\) 3.81618 31.8381i 0.144965 1.20943i
\(694\) 27.0650 37.2518i 1.02737 1.41406i
\(695\) 21.8488 + 5.09266i 0.828772 + 0.193175i
\(696\) −0.355927 + 0.799424i −0.0134914 + 0.0303021i
\(697\) −4.86641 + 1.86804i −0.184328 + 0.0707570i
\(698\) −35.7180 + 23.1955i −1.35195 + 0.877963i
\(699\) −0.917976 −0.0347211
\(700\) −15.8270 0.850562i −0.598204 0.0321482i
\(701\) 16.6461 0.628716 0.314358 0.949305i \(-0.398211\pi\)
0.314358 + 0.949305i \(0.398211\pi\)
\(702\) −1.87467 + 1.21743i −0.0707549 + 0.0459488i
\(703\) −25.9702 + 9.96904i −0.979486 + 0.375989i
\(704\) −1.39907 + 3.14236i −0.0527293 + 0.118432i
\(705\) 5.07597 + 5.86412i 0.191172 + 0.220856i
\(706\) −33.2858 + 45.8139i −1.25273 + 1.72423i
\(707\) 10.8102 4.62545i 0.406560 0.173958i
\(708\) −0.456990 2.88532i −0.0171747 0.108437i
\(709\) −13.9859 + 12.5930i −0.525253 + 0.472940i −0.888580 0.458722i \(-0.848308\pi\)
0.363327 + 0.931662i \(0.381641\pi\)
\(710\) 34.3851 + 44.2024i 1.29045 + 1.65889i
\(711\) 27.1378 30.1396i 1.01775 1.13032i
\(712\) 1.27969 24.4179i 0.0479583 0.915099i
\(713\) 6.61935 + 12.9912i 0.247897 + 0.486525i
\(714\) 0.0989623 1.47631i 0.00370357 0.0552497i
\(715\) −4.02664 + 3.87214i −0.150588 + 0.144810i
\(716\) −2.32850 2.58606i −0.0870201 0.0966456i
\(717\) −0.278129 + 0.225225i −0.0103869 + 0.00841116i
\(718\) 5.87151 21.9128i 0.219123 0.817777i
\(719\) −37.9155 + 16.8811i −1.41401 + 0.629558i −0.964588 0.263761i \(-0.915037\pi\)
−0.449423 + 0.893319i \(0.648370\pi\)
\(720\) 19.2161 25.3893i 0.716143 0.946203i
\(721\) −3.86367 3.97795i −0.143890 0.148147i
\(722\) −6.08648 + 38.4285i −0.226515 + 1.43016i
\(723\) 1.05100 + 1.61840i 0.0390872 + 0.0601890i
\(724\) 4.73846 + 8.20725i 0.176103 + 0.305020i
\(725\) −3.74919 + 7.60556i −0.139242 + 0.282463i
\(726\) 3.80439 + 2.19646i 0.141194 + 0.0815184i
\(727\) 9.01500 17.6929i 0.334348 0.656195i −0.661225 0.750188i \(-0.729963\pi\)
0.995573 + 0.0939929i \(0.0299631\pi\)
\(728\) −1.96034 + 1.09403i −0.0726550 + 0.0405473i
\(729\) 11.9070 + 16.3886i 0.441001 + 0.606985i
\(730\) −13.8938 + 1.18608i −0.514232 + 0.0438990i
\(731\) −4.56268 0.479557i −0.168757 0.0177371i
\(732\) −0.514343 0.137818i −0.0190107 0.00509389i
\(733\) 3.55260 9.25483i 0.131218 0.341835i −0.852192 0.523228i \(-0.824727\pi\)
0.983411 + 0.181394i \(0.0580608\pi\)
\(734\) 4.33796 13.3509i 0.160117 0.492790i
\(735\) −2.27203 + 5.15367i −0.0838049 + 0.190096i
\(736\) −3.00613 9.25192i −0.110807 0.341030i
\(737\) 48.3314 + 2.53294i 1.78031 + 0.0933020i
\(738\) 16.7695 25.8227i 0.617293 0.950547i
\(739\) 6.85463 + 6.17193i 0.252152 + 0.227038i 0.785507 0.618853i \(-0.212402\pi\)
−0.533355 + 0.845891i \(0.679069\pi\)
\(740\) 6.16539 + 9.91305i 0.226644 + 0.364411i
\(741\) 1.29274 + 0.420038i 0.0474901 + 0.0154305i
\(742\) −29.4250 27.2812i −1.08022 1.00152i
\(743\) −31.8855 31.8855i −1.16976 1.16976i −0.982265 0.187500i \(-0.939962\pi\)
−0.187500 0.982265i \(-0.560038\pi\)
\(744\) −1.88846 4.24155i −0.0692342 0.155503i
\(745\) 14.0107 7.72774i 0.513311 0.283122i
\(746\) 5.95674 + 2.65211i 0.218092 + 0.0971006i
\(747\) 5.51599 6.81168i 0.201819 0.249226i
\(748\) −3.91720 1.99592i −0.143227 0.0729779i
\(749\) −1.54751 10.7856i −0.0565447 0.394098i
\(750\) −4.56289 + 5.56251i −0.166613 + 0.203114i
\(751\) −4.83420 + 8.37308i −0.176403 + 0.305538i −0.940646 0.339390i \(-0.889779\pi\)
0.764243 + 0.644928i \(0.223113\pi\)
\(752\) 47.7525 2.50260i 1.74136 0.0912606i
\(753\) 1.99968 + 5.20934i 0.0728723 + 0.189839i
\(754\) −0.187581 1.78471i −0.00683130 0.0649955i
\(755\) −54.7037 1.07004i −1.99087 0.0389427i
\(756\) 3.56481 + 5.66849i 0.129651 + 0.206161i
\(757\) −29.1640 + 29.1640i −1.05998 + 1.05998i −0.0619022 + 0.998082i \(0.519717\pi\)
−0.998082 + 0.0619022i \(0.980283\pi\)
\(758\) −34.6371 13.2959i −1.25808 0.482930i
\(759\) −2.40804 + 0.511844i −0.0874062 + 0.0185788i
\(760\) −20.4597 + 0.671354i −0.742151 + 0.0243526i
\(761\) 0.778111 3.66072i 0.0282065 0.132701i −0.961791 0.273783i \(-0.911725\pi\)
0.989998 + 0.141082i \(0.0450582\pi\)
\(762\) 1.88649 0.961213i 0.0683402 0.0348211i
\(763\) 2.84418 + 31.4651i 0.102966 + 1.13911i
\(764\) −16.5829 + 5.38810i −0.599947 + 0.194934i
\(765\) 4.26566 + 3.59464i 0.154225 + 0.129965i
\(766\) 7.22402 + 33.9863i 0.261014 + 1.22798i