Properties

Label 175.2.x.a.33.1
Level $175$
Weight $2$
Character 175.33
Analytic conductor $1.397$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(3,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([21, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.x (of order \(60\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 33.1
Character \(\chi\) \(=\) 175.33
Dual form 175.2.x.a.122.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.22811 + 1.44695i) q^{2} +(0.206163 - 0.0791387i) q^{3} +(2.05732 - 4.62083i) q^{4} +(-0.963847 - 2.01767i) q^{5} +(-0.344844 + 0.474637i) q^{6} +(-0.932359 + 2.47603i) q^{7} +(1.27096 + 8.02453i) q^{8} +(-2.19319 + 1.97476i) q^{9} +O(q^{10})\) \(q+(-2.22811 + 1.44695i) q^{2} +(0.206163 - 0.0791387i) q^{3} +(2.05732 - 4.62083i) q^{4} +(-0.963847 - 2.01767i) q^{5} +(-0.344844 + 0.474637i) q^{6} +(-0.932359 + 2.47603i) q^{7} +(1.27096 + 8.02453i) q^{8} +(-2.19319 + 1.97476i) q^{9} +(5.06702 + 3.10095i) q^{10} +(-2.00112 + 2.22247i) q^{11} +(0.0584587 - 1.11546i) q^{12} +(2.23475 + 4.38594i) q^{13} +(-1.50529 - 6.86593i) q^{14} +(-0.358386 - 0.339692i) q^{15} +(-7.67383 - 8.52265i) q^{16} +(-3.73417 + 3.02387i) q^{17} +(2.02929 - 7.57342i) q^{18} +(3.29351 - 1.46636i) q^{19} +(-11.3063 + 0.302763i) q^{20} +(0.00373135 + 0.584251i) q^{21} +(1.24291 - 7.84742i) q^{22} +(-1.77983 - 2.74069i) q^{23} +(0.897076 + 1.55378i) q^{24} +(-3.14200 + 3.88945i) q^{25} +(-11.3255 - 6.53878i) q^{26} +(-0.596641 + 1.17097i) q^{27} +(9.52312 + 9.40225i) q^{28} +(2.87272 + 3.95395i) q^{29} +(1.29004 + 0.238305i) q^{30} +(-1.60762 - 0.168967i) q^{31} +(13.7345 + 3.68016i) q^{32} +(-0.236674 + 0.616558i) q^{33} +(3.94475 - 12.1407i) q^{34} +(5.89446 - 0.505317i) q^{35} +(4.61291 + 14.1971i) q^{36} +(1.34111 + 0.0702847i) q^{37} +(-5.21653 + 8.03276i) q^{38} +(0.807821 + 0.727365i) q^{39} +(14.9659 - 10.2988i) q^{40} +(4.99103 + 1.62168i) q^{41} +(-0.853696 - 1.29638i) q^{42} +(-8.43891 - 8.43891i) q^{43} +(6.15269 + 13.8192i) q^{44} +(6.09832 + 2.52178i) q^{45} +(7.93128 + 3.53123i) q^{46} +(-2.10386 + 2.59805i) q^{47} +(-2.25653 - 1.14976i) q^{48} +(-5.26142 - 4.61709i) q^{49} +(1.37287 - 13.2124i) q^{50} +(-0.530544 + 0.918929i) q^{51} +(24.8643 - 1.30308i) q^{52} +(-1.53215 - 3.99138i) q^{53} +(-0.364960 - 3.47237i) q^{54} +(6.41299 + 1.89548i) q^{55} +(-21.0539 - 4.33481i) q^{56} +(0.562954 - 0.562954i) q^{57} +(-12.1219 - 4.65316i) q^{58} +(0.547410 - 0.116356i) q^{59} +(-2.30697 + 0.957180i) q^{60} +(-2.08141 + 9.79226i) q^{61} +(3.82643 - 1.94966i) q^{62} +(-2.84472 - 7.27159i) q^{63} +(-14.1129 + 4.58555i) q^{64} +(6.69544 - 8.73637i) q^{65} +(-0.364792 - 1.71621i) q^{66} +(5.88015 + 7.26138i) q^{67} +(6.29039 + 23.4761i) q^{68} +(-0.583829 - 0.424177i) q^{69} +(-12.4023 + 9.65489i) q^{70} +(-0.293741 + 0.213415i) q^{71} +(-18.6340 - 15.0895i) q^{72} +(-0.153215 - 2.92351i) q^{73} +(-3.08984 + 1.78392i) q^{74} +(-0.339959 + 1.05052i) q^{75} -18.2355i q^{76} +(-3.63713 - 7.02697i) q^{77} +(-2.85237 - 0.451771i) q^{78} +(-5.20577 + 0.547148i) q^{79} +(-9.79952 + 23.6978i) q^{80} +(0.895128 - 8.51657i) q^{81} +(-13.4670 + 3.60848i) q^{82} +(-0.898387 + 0.142291i) q^{83} +(2.70740 + 1.18475i) q^{84} +(9.70036 + 4.61979i) q^{85} +(31.0135 + 6.59212i) q^{86} +(0.905159 + 0.587817i) q^{87} +(-20.3776 - 13.2334i) q^{88} +(8.84258 + 1.87955i) q^{89} +(-17.2366 + 3.20517i) q^{90} +(-12.9433 + 1.44403i) q^{91} +(-16.3259 + 2.58577i) q^{92} +(-0.344803 + 0.0923897i) q^{93} +(0.928377 - 8.83292i) q^{94} +(-6.13308 - 5.23187i) q^{95} +(3.12280 - 0.328219i) q^{96} +(7.15230 + 1.13281i) q^{97} +(18.4037 + 2.67437i) q^{98} -8.82604i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9} - 36 q^{10} - 6 q^{11} - 36 q^{12} - 20 q^{14} - 28 q^{15} - 30 q^{16} - 42 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} + 32 q^{22} - 40 q^{23} + 2 q^{25} - 48 q^{26} + 22 q^{28} - 58 q^{30} - 18 q^{31} + 8 q^{32} - 30 q^{33} - 2 q^{35} + 40 q^{36} - 10 q^{37} + 72 q^{38} + 30 q^{39} - 48 q^{40} + 6 q^{42} - 108 q^{43} - 10 q^{44} + 186 q^{45} - 6 q^{46} - 54 q^{47} - 248 q^{50} - 16 q^{51} + 216 q^{52} + 50 q^{53} - 30 q^{54} + 4 q^{56} - 216 q^{57} - 4 q^{58} + 90 q^{59} + 96 q^{60} - 18 q^{61} - 66 q^{63} - 100 q^{64} + 14 q^{65} - 90 q^{66} + 4 q^{67} + 342 q^{68} - 60 q^{70} - 24 q^{71} + 58 q^{72} - 6 q^{73} + 216 q^{75} - 80 q^{77} - 132 q^{78} - 10 q^{79} - 6 q^{80} - 10 q^{81} + 216 q^{82} + 20 q^{84} - 48 q^{85} - 6 q^{86} - 48 q^{87} - 122 q^{88} + 120 q^{89} - 12 q^{91} - 4 q^{92} + 106 q^{93} - 30 q^{94} - 98 q^{95} - 90 q^{96} + 222 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{3}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
<
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.22811 + 1.44695i −1.57551 + 1.02315i −0.600876 + 0.799343i \(0.705181\pi\)
−0.974634 + 0.223805i \(0.928152\pi\)
\(3\) 0.206163 0.0791387i 0.119028 0.0456907i −0.298125 0.954527i \(-0.596361\pi\)
0.417153 + 0.908836i \(0.363028\pi\)
\(4\) 2.05732 4.62083i 1.02866 2.31041i
\(5\) −0.963847 2.01767i −0.431045 0.902330i
\(6\) −0.344844 + 0.474637i −0.140782 + 0.193770i
\(7\) −0.932359 + 2.47603i −0.352398 + 0.935850i
\(8\) 1.27096 + 8.02453i 0.449352 + 2.83710i
\(9\) −2.19319 + 1.97476i −0.731065 + 0.658254i
\(10\) 5.06702 + 3.10095i 1.60233 + 0.980607i
\(11\) −2.00112 + 2.22247i −0.603361 + 0.670100i −0.965010 0.262214i \(-0.915547\pi\)
0.361649 + 0.932314i \(0.382214\pi\)
\(12\) 0.0584587 1.11546i 0.0168756 0.322005i
\(13\) 2.23475 + 4.38594i 0.619808 + 1.21644i 0.961026 + 0.276458i \(0.0891605\pi\)
−0.341218 + 0.939984i \(0.610839\pi\)
\(14\) −1.50529 6.86593i −0.402306 1.83500i
\(15\) −0.358386 0.339692i −0.0925348 0.0877082i
\(16\) −7.67383 8.52265i −1.91846 2.13066i
\(17\) −3.73417 + 3.02387i −0.905670 + 0.733397i −0.964280 0.264884i \(-0.914666\pi\)
0.0586101 + 0.998281i \(0.481333\pi\)
\(18\) 2.02929 7.57342i 0.478309 1.78507i
\(19\) 3.29351 1.46636i 0.755583 0.336407i 0.00746418 0.999972i \(-0.497624\pi\)
0.748119 + 0.663565i \(0.230957\pi\)
\(20\) −11.3063 + 0.302763i −2.52816 + 0.0676999i
\(21\) 0.00373135 + 0.584251i 0.000814247 + 0.127494i
\(22\) 1.24291 7.84742i 0.264989 1.67308i
\(23\) −1.77983 2.74069i −0.371119 0.571473i 0.602934 0.797791i \(-0.293998\pi\)
−0.974054 + 0.226317i \(0.927331\pi\)
\(24\) 0.897076 + 1.55378i 0.183115 + 0.317164i
\(25\) −3.14200 + 3.88945i −0.628400 + 0.777891i
\(26\) −11.3255 6.53878i −2.22111 1.28236i
\(27\) −0.596641 + 1.17097i −0.114824 + 0.225354i
\(28\) 9.52312 + 9.40225i 1.79970 + 1.77686i
\(29\) 2.87272 + 3.95395i 0.533450 + 0.734231i 0.987651 0.156668i \(-0.0500753\pi\)
−0.454201 + 0.890899i \(0.650075\pi\)
\(30\) 1.29004 + 0.238305i 0.235528 + 0.0435083i
\(31\) −1.60762 0.168967i −0.288736 0.0303474i −0.0409469 0.999161i \(-0.513037\pi\)
−0.247789 + 0.968814i \(0.579704\pi\)
\(32\) 13.7345 + 3.68016i 2.42794 + 0.650566i
\(33\) −0.236674 + 0.616558i −0.0411997 + 0.107329i
\(34\) 3.94475 12.1407i 0.676518 2.08211i
\(35\) 5.89446 0.505317i 0.996346 0.0854141i
\(36\) 4.61291 + 14.1971i 0.768819 + 2.36618i
\(37\) 1.34111 + 0.0702847i 0.220477 + 0.0115547i 0.162255 0.986749i \(-0.448123\pi\)
0.0582226 + 0.998304i \(0.481457\pi\)
\(38\) −5.21653 + 8.03276i −0.846234 + 1.30309i
\(39\) 0.807821 + 0.727365i 0.129355 + 0.116472i
\(40\) 14.9659 10.2988i 2.36631 1.62838i
\(41\) 4.99103 + 1.62168i 0.779468 + 0.253264i 0.671613 0.740902i \(-0.265602\pi\)
0.107855 + 0.994167i \(0.465602\pi\)
\(42\) −0.853696 1.29638i −0.131728 0.200035i
\(43\) −8.43891 8.43891i −1.28692 1.28692i −0.936647 0.350276i \(-0.886088\pi\)
−0.350276 0.936647i \(-0.613912\pi\)
\(44\) 6.15269 + 13.8192i 0.927553 + 2.08332i
\(45\) 6.09832 + 2.52178i 0.909084 + 0.375925i
\(46\) 7.93128 + 3.53123i 1.16940 + 0.520652i
\(47\) −2.10386 + 2.59805i −0.306880 + 0.378965i −0.907132 0.420846i \(-0.861733\pi\)
0.600253 + 0.799810i \(0.295067\pi\)
\(48\) −2.25653 1.14976i −0.325703 0.165954i
\(49\) −5.26142 4.61709i −0.751631 0.659584i
\(50\) 1.37287 13.2124i 0.194153 1.86852i
\(51\) −0.530544 + 0.918929i −0.0742910 + 0.128676i
\(52\) 24.8643 1.30308i 3.44805 0.180705i
\(53\) −1.53215 3.99138i −0.210456 0.548258i 0.787199 0.616699i \(-0.211531\pi\)
−0.997655 + 0.0684418i \(0.978197\pi\)
\(54\) −0.364960 3.47237i −0.0496648 0.472529i
\(55\) 6.41299 + 1.89548i 0.864727 + 0.255587i
\(56\) −21.0539 4.33481i −2.81345 0.579263i
\(57\) 0.562954 0.562954i 0.0745651 0.0745651i
\(58\) −12.1219 4.65316i −1.59168 0.610990i
\(59\) 0.547410 0.116356i 0.0712667 0.0151482i −0.172140 0.985072i \(-0.555068\pi\)
0.243407 + 0.969924i \(0.421735\pi\)
\(60\) −2.30697 + 0.957180i −0.297829 + 0.123571i
\(61\) −2.08141 + 9.79226i −0.266497 + 1.25377i 0.617609 + 0.786485i \(0.288101\pi\)
−0.884106 + 0.467286i \(0.845232\pi\)
\(62\) 3.82643 1.94966i 0.485957 0.247607i
\(63\) −2.84472 7.27159i −0.358401 0.916134i
\(64\) −14.1129 + 4.58555i −1.76411 + 0.573194i
\(65\) 6.69544 8.73637i 0.830467 1.08361i
\(66\) −0.364792 1.71621i −0.0449028 0.211251i
\(67\) 5.88015 + 7.26138i 0.718375 + 0.887119i 0.997318 0.0731888i \(-0.0233176\pi\)
−0.278944 + 0.960308i \(0.589984\pi\)
\(68\) 6.29039 + 23.4761i 0.762822 + 2.84689i
\(69\) −0.583829 0.424177i −0.0702848 0.0510649i
\(70\) −12.4023 + 9.65489i −1.48236 + 1.15398i
\(71\) −0.293741 + 0.213415i −0.0348607 + 0.0253278i −0.605079 0.796165i \(-0.706859\pi\)
0.570218 + 0.821493i \(0.306859\pi\)
\(72\) −18.6340 15.0895i −2.19604 1.77832i
\(73\) −0.153215 2.92351i −0.0179324 0.342171i −0.992831 0.119523i \(-0.961863\pi\)
0.974899 0.222648i \(-0.0714700\pi\)
\(74\) −3.08984 + 1.78392i −0.359186 + 0.207376i
\(75\) −0.339959 + 1.05052i −0.0392550 + 0.121303i
\(76\) 18.2355i 2.09176i
\(77\) −3.63713 7.02697i −0.414490 0.800797i
\(78\) −2.85237 0.451771i −0.322968 0.0511530i
\(79\) −5.20577 + 0.547148i −0.585694 + 0.0615590i −0.392741 0.919649i \(-0.628473\pi\)
−0.192953 + 0.981208i \(0.561807\pi\)
\(80\) −9.79952 + 23.6978i −1.09562 + 2.64950i
\(81\) 0.895128 8.51657i 0.0994586 0.946286i
\(82\) −13.4670 + 3.60848i −1.48719 + 0.398490i
\(83\) −0.898387 + 0.142291i −0.0986108 + 0.0156184i −0.205545 0.978648i \(-0.565897\pi\)
0.106934 + 0.994266i \(0.465897\pi\)
\(84\) 2.70740 + 1.18475i 0.295402 + 0.129267i
\(85\) 9.70036 + 4.61979i 1.05215 + 0.501086i
\(86\) 31.0135 + 6.59212i 3.34427 + 0.710847i
\(87\) 0.905159 + 0.587817i 0.0970432 + 0.0630206i
\(88\) −20.3776 13.2334i −2.17226 1.41068i
\(89\) 8.84258 + 1.87955i 0.937312 + 0.199232i 0.651150 0.758949i \(-0.274287\pi\)
0.286162 + 0.958181i \(0.407620\pi\)
\(90\) −17.2366 + 3.20517i −1.81690 + 0.337855i
\(91\) −12.9433 + 1.44403i −1.35683 + 0.151375i
\(92\) −16.3259 + 2.58577i −1.70210 + 0.269585i
\(93\) −0.344803 + 0.0923897i −0.0357544 + 0.00958037i
\(94\) 0.928377 8.83292i 0.0957548 0.911046i
\(95\) −6.13308 5.23187i −0.629241 0.536778i
\(96\) 3.12280 0.328219i 0.318719 0.0334987i
\(97\) 7.15230 + 1.13281i 0.726206 + 0.115020i 0.508583 0.861013i \(-0.330170\pi\)
0.217624 + 0.976033i \(0.430170\pi\)
\(98\) 18.4037 + 2.67437i 1.85905 + 0.270152i
\(99\) 8.82604i 0.887051i
\(100\) 11.5084 + 22.5205i 1.15084 + 2.25205i
\(101\) 2.36935 1.36795i 0.235759 0.136116i −0.377467 0.926023i \(-0.623205\pi\)
0.613226 + 0.789907i \(0.289871\pi\)
\(102\) −0.147535 2.81514i −0.0146082 0.278741i
\(103\) 0.518795 + 0.420112i 0.0511184 + 0.0413949i 0.654539 0.756028i \(-0.272863\pi\)
−0.603421 + 0.797423i \(0.706196\pi\)
\(104\) −32.3548 + 23.5072i −3.17265 + 2.30507i
\(105\) 1.17523 0.570657i 0.114691 0.0556905i
\(106\) 9.18910 + 6.67627i 0.892524 + 0.648457i
\(107\) −0.699970 2.61232i −0.0676686 0.252543i 0.923802 0.382869i \(-0.125064\pi\)
−0.991471 + 0.130327i \(0.958397\pi\)
\(108\) 4.18338 + 5.16605i 0.402546 + 0.497103i
\(109\) −0.966861 4.54872i −0.0926085 0.435689i −0.999885 0.0151544i \(-0.995176\pi\)
0.907277 0.420534i \(-0.138157\pi\)
\(110\) −17.0315 + 5.05593i −1.62389 + 0.482064i
\(111\) 0.282050 0.0916436i 0.0267710 0.00869843i
\(112\) 28.2571 11.0544i 2.67004 1.04455i
\(113\) 15.5844 7.94063i 1.46605 0.746991i 0.474941 0.880018i \(-0.342470\pi\)
0.991112 + 0.133026i \(0.0424695\pi\)
\(114\) −0.439756 + 2.06889i −0.0411869 + 0.193769i
\(115\) −3.81433 + 6.23271i −0.355689 + 0.581203i
\(116\) 24.1806 5.13975i 2.24512 0.477214i
\(117\) −13.5624 5.20613i −1.25385 0.481307i
\(118\) −1.05133 + 1.05133i −0.0967825 + 0.0967825i
\(119\) −4.00560 12.0653i −0.367193 1.10602i
\(120\) 2.27038 3.30761i 0.207256 0.301942i
\(121\) 0.214925 + 2.04488i 0.0195387 + 0.185898i
\(122\) −9.53131 24.8299i −0.862924 2.24799i
\(123\) 1.15730 0.0606518i 0.104351 0.00546879i
\(124\) −4.08816 + 7.08089i −0.367127 + 0.635883i
\(125\) 10.8760 + 2.59069i 0.972783 + 0.231718i
\(126\) 16.8600 + 12.0857i 1.50200 + 1.07668i
\(127\) −4.64631 2.36741i −0.412293 0.210074i 0.235526 0.971868i \(-0.424319\pi\)
−0.647819 + 0.761794i \(0.724319\pi\)
\(128\) 6.91329 8.53721i 0.611055 0.754589i
\(129\) −2.40764 1.07195i −0.211981 0.0943799i
\(130\) −2.27707 + 29.1535i −0.199712 + 2.55693i
\(131\) 1.53042 + 3.43738i 0.133714 + 0.300325i 0.967976 0.251042i \(-0.0807731\pi\)
−0.834263 + 0.551367i \(0.814106\pi\)
\(132\) 2.36209 + 2.36209i 0.205594 + 0.205594i
\(133\) 0.560027 + 9.52199i 0.0485605 + 0.825662i
\(134\) −23.6085 7.67085i −2.03946 0.662661i
\(135\) 2.93771 + 0.0751863i 0.252838 + 0.00647100i
\(136\) −29.0112 26.1218i −2.48769 2.23992i
\(137\) −2.17586 + 3.35053i −0.185896 + 0.286255i −0.919315 0.393522i \(-0.871257\pi\)
0.733419 + 0.679777i \(0.237923\pi\)
\(138\) 1.91460 + 0.100340i 0.162981 + 0.00854148i
\(139\) 2.53686 + 7.80766i 0.215174 + 0.662237i 0.999141 + 0.0414349i \(0.0131929\pi\)
−0.783967 + 0.620802i \(0.786807\pi\)
\(140\) 9.79183 28.2769i 0.827561 2.38983i
\(141\) −0.228132 + 0.702119i −0.0192122 + 0.0591291i
\(142\) 0.345685 0.900541i 0.0290093 0.0755717i
\(143\) −14.2196 3.81014i −1.18911 0.318620i
\(144\) 33.6604 + 3.53785i 2.80503 + 0.294821i
\(145\) 5.20892 9.60720i 0.432578 0.797835i
\(146\) 4.57155 + 6.29220i 0.378344 + 0.520746i
\(147\) −1.45010 0.535493i −0.119602 0.0441667i
\(148\) 3.08387 6.05244i 0.253493 0.497508i
\(149\) 18.8977 + 10.9106i 1.54816 + 0.893830i 0.998282 + 0.0585846i \(0.0186588\pi\)
0.549877 + 0.835246i \(0.314675\pi\)
\(150\) −0.762579 2.83256i −0.0622643 0.231278i
\(151\) 1.20290 + 2.08349i 0.0978908 + 0.169552i 0.910811 0.412823i \(-0.135457\pi\)
−0.812921 + 0.582375i \(0.802124\pi\)
\(152\) 15.9528 + 24.5652i 1.29394 + 1.99250i
\(153\) 2.21834 14.0060i 0.179342 1.13232i
\(154\) 18.2716 + 10.3941i 1.47237 + 0.837580i
\(155\) 1.20858 + 3.40650i 0.0970751 + 0.273617i
\(156\) 5.02298 2.23637i 0.402160 0.179053i
\(157\) −5.67894 + 21.1941i −0.453229 + 1.69147i 0.240016 + 0.970769i \(0.422847\pi\)
−0.693244 + 0.720703i \(0.743819\pi\)
\(158\) 10.8073 8.75158i 0.859783 0.696239i
\(159\) −0.631744 0.701623i −0.0501006 0.0556423i
\(160\) −5.81264 31.2589i −0.459529 2.47123i
\(161\) 8.44546 1.85159i 0.665595 0.145926i
\(162\) 10.3286 + 20.2710i 0.811492 + 1.59264i
\(163\) 0.464753 8.86802i 0.0364023 0.694597i −0.918092 0.396368i \(-0.870271\pi\)
0.954494 0.298230i \(-0.0963961\pi\)
\(164\) 17.7617 19.7263i 1.38695 1.54037i
\(165\) 1.47213 0.116736i 0.114605 0.00908789i
\(166\) 1.79582 1.61696i 0.139382 0.125500i
\(167\) 1.64313 + 10.3743i 0.127149 + 0.802786i 0.966022 + 0.258460i \(0.0832149\pi\)
−0.838873 + 0.544327i \(0.816785\pi\)
\(168\) −4.68360 + 0.772502i −0.361347 + 0.0595999i
\(169\) −6.60118 + 9.08574i −0.507783 + 0.698903i
\(170\) −28.2980 + 3.74255i −2.17036 + 0.287041i
\(171\) −4.32759 + 9.71992i −0.330939 + 0.743301i
\(172\) −56.3563 + 21.6332i −4.29713 + 1.64951i
\(173\) −15.1058 + 9.80981i −1.14847 + 0.745826i −0.971183 0.238333i \(-0.923399\pi\)
−0.177288 + 0.984159i \(0.556732\pi\)
\(174\) −2.86733 −0.217372
\(175\) −6.70092 11.4060i −0.506542 0.862215i
\(176\) 34.2976 2.58528
\(177\) 0.103648 0.0673095i 0.00779063 0.00505929i
\(178\) −22.4218 + 8.60693i −1.68059 + 0.645117i
\(179\) −2.64040 + 5.93043i −0.197353 + 0.443261i −0.984930 0.172955i \(-0.944668\pi\)
0.787577 + 0.616216i \(0.211335\pi\)
\(180\) 24.1989 22.9912i 1.80368 1.71366i
\(181\) −10.3669 + 14.2688i −0.770563 + 1.06059i 0.225698 + 0.974197i \(0.427534\pi\)
−0.996261 + 0.0863916i \(0.972466\pi\)
\(182\) 26.7496 21.9457i 1.98281 1.62673i
\(183\) 0.345836 + 2.18352i 0.0255650 + 0.161411i
\(184\) 19.7307 17.7656i 1.45456 1.30969i
\(185\) −1.15081 2.77367i −0.0846096 0.203924i
\(186\) 0.634575 0.704767i 0.0465293 0.0516760i
\(187\) 0.752064 14.3502i 0.0549963 1.04939i
\(188\) 7.67682 + 15.0666i 0.559890 + 1.09885i
\(189\) −2.34308 2.56907i −0.170434 0.186872i
\(190\) 21.2354 + 2.78291i 1.54058 + 0.201893i
\(191\) −8.10613 9.00277i −0.586539 0.651418i 0.374696 0.927148i \(-0.377747\pi\)
−0.961235 + 0.275730i \(0.911080\pi\)
\(192\) −2.54666 + 2.06225i −0.183790 + 0.148830i
\(193\) 2.22173 8.29161i 0.159924 0.596843i −0.838710 0.544579i \(-0.816689\pi\)
0.998633 0.0522644i \(-0.0166439\pi\)
\(194\) −17.5752 + 7.82499i −1.26183 + 0.561802i
\(195\) 0.688969 2.33099i 0.0493381 0.166925i
\(196\) −32.1592 + 14.8132i −2.29709 + 1.05809i
\(197\) 0.621240 3.92235i 0.0442615 0.279456i −0.955624 0.294589i \(-0.904817\pi\)
0.999885 + 0.0151331i \(0.00481720\pi\)
\(198\) 12.7708 + 19.6654i 0.907584 + 1.39756i
\(199\) −6.13171 10.6204i −0.434666 0.752863i 0.562603 0.826727i \(-0.309800\pi\)
−0.997268 + 0.0738644i \(0.976467\pi\)
\(200\) −35.2044 20.2697i −2.48933 1.43329i
\(201\) 1.78693 + 1.03168i 0.126040 + 0.0727693i
\(202\) −3.29982 + 6.47626i −0.232174 + 0.455668i
\(203\) −12.4685 + 3.42642i −0.875117 + 0.240487i
\(204\) 3.15471 + 4.34209i 0.220874 + 0.304007i
\(205\) −1.53856 11.6333i −0.107458 0.812506i
\(206\) −1.76381 0.185384i −0.122891 0.0129163i
\(207\) 9.31571 + 2.49614i 0.647487 + 0.173494i
\(208\) 20.2308 52.7030i 1.40275 3.65429i
\(209\) −3.33176 + 10.2541i −0.230463 + 0.709291i
\(210\) −1.79283 + 2.97199i −0.123717 + 0.205086i
\(211\) −6.78037 20.8678i −0.466780 1.43660i −0.856730 0.515765i \(-0.827508\pi\)
0.389950 0.920836i \(-0.372492\pi\)
\(212\) −21.5956 1.13178i −1.48319 0.0777307i
\(213\) −0.0436692 + 0.0672447i −0.00299217 + 0.00460753i
\(214\) 5.33951 + 4.80771i 0.365001 + 0.328649i
\(215\) −8.89314 + 25.1608i −0.606507 + 1.71595i
\(216\) −10.1548 3.29950i −0.690948 0.224503i
\(217\) 1.91724 3.82296i 0.130151 0.259520i
\(218\) 8.73604 + 8.73604i 0.591679 + 0.591679i
\(219\) −0.262950 0.590595i −0.0177685 0.0399087i
\(220\) 21.9523 25.7337i 1.48002 1.73496i
\(221\) −21.6075 9.62027i −1.45348 0.647130i
\(222\) −0.495834 + 0.612304i −0.0332782 + 0.0410952i
\(223\) −1.26491 0.644506i −0.0847049 0.0431593i 0.411125 0.911579i \(-0.365136\pi\)
−0.495830 + 0.868420i \(0.665136\pi\)
\(224\) −21.9177 + 30.5758i −1.46444 + 2.04293i
\(225\) −0.789727 14.7350i −0.0526484 0.982335i
\(226\) −23.2339 + 40.2423i −1.54550 + 2.67688i
\(227\) 28.3058 1.48345i 1.87872 0.0984598i 0.921601 0.388139i \(-0.126882\pi\)
0.957124 + 0.289679i \(0.0935487\pi\)
\(228\) −1.44313 3.75949i −0.0955739 0.248979i
\(229\) 0.0633876 + 0.603092i 0.00418877 + 0.0398535i 0.996417 0.0845807i \(-0.0269551\pi\)
−0.992228 + 0.124434i \(0.960288\pi\)
\(230\) −0.519669 19.4063i −0.0342660 1.27961i
\(231\) −1.30595 1.16086i −0.0859251 0.0763793i
\(232\) −28.0775 + 28.0775i −1.84338 + 1.84338i
\(233\) −4.20111 1.61266i −0.275224 0.105649i 0.216841 0.976207i \(-0.430425\pi\)
−0.492065 + 0.870558i \(0.663758\pi\)
\(234\) 37.7515 8.02434i 2.46790 0.524567i
\(235\) 7.26981 + 1.74078i 0.474230 + 0.113556i
\(236\) 0.588541 2.76887i 0.0383107 0.180238i
\(237\) −1.02994 + 0.524779i −0.0669016 + 0.0340881i
\(238\) 26.3827 + 21.0868i 1.71014 + 1.36685i
\(239\) −12.4990 + 4.06118i −0.808494 + 0.262696i −0.683960 0.729520i \(-0.739744\pi\)
−0.124534 + 0.992215i \(0.539744\pi\)
\(240\) −0.144888 + 5.66114i −0.00935249 + 0.365425i
\(241\) 3.44513 + 16.2081i 0.221920 + 1.04405i 0.938161 + 0.346200i \(0.112528\pi\)
−0.716241 + 0.697853i \(0.754139\pi\)
\(242\) −3.43771 4.24522i −0.220984 0.272893i
\(243\) −1.50988 5.63495i −0.0968588 0.361482i
\(244\) 40.9662 + 29.7637i 2.62259 + 1.90542i
\(245\) −4.24457 + 15.0660i −0.271176 + 0.962530i
\(246\) −2.49084 + 1.80970i −0.158810 + 0.115382i
\(247\) 13.7916 + 11.1682i 0.877536 + 0.710615i
\(248\) −0.687334 13.1151i −0.0436457 0.832810i
\(249\) −0.173954 + 0.100432i −0.0110239 + 0.00636464i
\(250\) −27.9816 + 9.96476i −1.76971 + 0.630227i
\(251\) 21.3400i 1.34697i −0.739200 0.673486i \(-0.764796\pi\)
0.739200 0.673486i \(-0.235204\pi\)
\(252\) −39.4533 1.81508i −2.48532 0.114339i
\(253\) 9.65275 + 1.52885i 0.606863 + 0.0961177i
\(254\) 13.7780 1.44813i 0.864508 0.0908635i
\(255\) 2.36546 + 0.184757i 0.148131 + 0.0115699i
\(256\) 0.0515804 0.490755i 0.00322378 0.0306722i
\(257\) 21.6223 5.79368i 1.34876 0.361400i 0.489085 0.872236i \(-0.337331\pi\)
0.859678 + 0.510836i \(0.170664\pi\)
\(258\) 6.91553 1.09531i 0.430542 0.0681912i
\(259\) −1.42442 + 3.25510i −0.0885094 + 0.202262i
\(260\) −26.5945 48.9120i −1.64932 3.03339i
\(261\) −14.1085 2.99886i −0.873297 0.185625i
\(262\) −8.38366 5.44441i −0.517944 0.336357i
\(263\) 20.5982 + 13.3766i 1.27014 + 0.824837i 0.990797 0.135355i \(-0.0432174\pi\)
0.279341 + 0.960192i \(0.409884\pi\)
\(264\) −5.24839 1.11558i −0.323016 0.0686592i
\(265\) −6.57653 + 6.93844i −0.403993 + 0.426225i
\(266\) −15.0256 20.4057i −0.921281 1.25115i
\(267\) 1.97176 0.312296i 0.120670 0.0191122i
\(268\) 45.6509 12.2321i 2.78857 0.747196i
\(269\) −2.48896 + 23.6809i −0.151755 + 1.44385i 0.608154 + 0.793819i \(0.291910\pi\)
−0.759909 + 0.650029i \(0.774757\pi\)
\(270\) −6.65433 + 4.08320i −0.404970 + 0.248496i
\(271\) 28.2620 2.97045i 1.71679 0.180442i 0.805610 0.592446i \(-0.201838\pi\)
0.911182 + 0.412004i \(0.135171\pi\)
\(272\) 54.4269 + 8.62037i 3.30011 + 0.522687i
\(273\) −2.55415 + 1.32202i −0.154584 + 0.0800123i
\(274\) 10.6137i 0.641196i
\(275\) −2.35667 14.7663i −0.142113 0.890439i
\(276\) −3.16117 + 1.82510i −0.190280 + 0.109858i
\(277\) 0.631417 + 12.0482i 0.0379382 + 0.723904i 0.949696 + 0.313175i \(0.101393\pi\)
−0.911757 + 0.410729i \(0.865274\pi\)
\(278\) −16.9497 13.7256i −1.01657 0.823206i
\(279\) 3.85948 2.80408i 0.231061 0.167876i
\(280\) 11.5466 + 46.6580i 0.690038 + 2.78835i
\(281\) 5.98822 + 4.35069i 0.357227 + 0.259541i 0.751895 0.659283i \(-0.229140\pi\)
−0.394668 + 0.918824i \(0.629140\pi\)
\(282\) −0.507628 1.89449i −0.0302288 0.112815i
\(283\) 16.0965 + 19.8775i 0.956835 + 1.18159i 0.983309 + 0.181944i \(0.0582389\pi\)
−0.0264736 + 0.999650i \(0.508428\pi\)
\(284\) 0.381835 + 1.79639i 0.0226577 + 0.106596i
\(285\) −1.67846 0.593255i −0.0994233 0.0351414i
\(286\) 37.1959 12.0857i 2.19944 0.714642i
\(287\) −8.66876 + 10.8459i −0.511701 + 0.640215i
\(288\) −37.3899 + 19.0511i −2.20322 + 1.12260i
\(289\) 1.26574 5.95484i 0.0744553 0.350285i
\(290\) 2.29510 + 28.9429i 0.134773 + 1.69959i
\(291\) 1.56419 0.332479i 0.0916945 0.0194903i
\(292\) −13.8242 5.30663i −0.809003 0.310547i
\(293\) 1.98458 1.98458i 0.115941 0.115941i −0.646756 0.762697i \(-0.723875\pi\)
0.762697 + 0.646756i \(0.223875\pi\)
\(294\) 4.00581 0.905087i 0.233624 0.0527858i
\(295\) −0.762387 0.992345i −0.0443879 0.0577765i
\(296\) 1.14050 + 10.8511i 0.0662901 + 0.630708i
\(297\) −1.40850 3.66928i −0.0817297 0.212913i
\(298\) −57.8932 + 3.03405i −3.35366 + 0.175758i
\(299\) 8.04305 13.9310i 0.465141 0.805649i
\(300\) 4.15485 + 3.73214i 0.239880 + 0.215475i
\(301\) 28.7631 13.0269i 1.65788 0.750857i
\(302\) −5.69490 2.90170i −0.327705 0.166974i
\(303\) 0.380216 0.469527i 0.0218428 0.0269736i
\(304\) −37.7712 16.8168i −2.16632 0.964510i
\(305\) 21.7637 5.23864i 1.24619 0.299964i
\(306\) 15.3233 + 34.4168i 0.875977 + 1.96748i
\(307\) −17.0423 17.0423i −0.972656 0.972656i 0.0269795 0.999636i \(-0.491411\pi\)
−0.999636 + 0.0269795i \(0.991411\pi\)
\(308\) −39.9532 + 2.34981i −2.27654 + 0.133893i
\(309\) 0.140204 + 0.0455549i 0.00797590 + 0.00259153i
\(310\) −7.62187 5.84130i −0.432893 0.331763i
\(311\) −21.0651 18.9671i −1.19449 1.07552i −0.995426 0.0955378i \(-0.969543\pi\)
−0.199065 0.979986i \(-0.563790\pi\)
\(312\) −4.81005 + 7.40683i −0.272316 + 0.419329i
\(313\) 21.5100 + 1.12729i 1.21582 + 0.0637183i 0.649431 0.760421i \(-0.275007\pi\)
0.566387 + 0.824139i \(0.308341\pi\)
\(314\) −18.0135 55.4398i −1.01656 3.12865i
\(315\) −11.9298 + 12.7484i −0.672169 + 0.718291i
\(316\) −8.18167 + 25.1806i −0.460255 + 1.41652i
\(317\) 0.0809595 0.210907i 0.00454714 0.0118457i −0.931288 0.364284i \(-0.881314\pi\)
0.935835 + 0.352438i \(0.114647\pi\)
\(318\) 2.42281 + 0.649189i 0.135864 + 0.0364047i
\(319\) −14.5362 1.52782i −0.813871 0.0855413i
\(320\) 22.8548 + 24.0554i 1.27762 + 1.34474i
\(321\) −0.351044 0.483170i −0.0195934 0.0269679i
\(322\) −16.1382 + 16.3457i −0.899348 + 0.910909i
\(323\) −7.86443 + 15.4348i −0.437589 + 0.858816i
\(324\) −37.5120 21.6576i −2.08400 1.20320i
\(325\) −24.0805 5.08867i −1.33575 0.282269i
\(326\) 11.7961 + 20.4314i 0.653323 + 1.13159i
\(327\) −0.559311 0.861263i −0.0309300 0.0476280i
\(328\) −6.66985 + 42.1118i −0.368281 + 2.32523i
\(329\) −4.47129 7.63153i −0.246510 0.420740i
\(330\) −3.11115 + 2.39020i −0.171263 + 0.131576i
\(331\) −17.4658 + 7.77627i −0.960007 + 0.427423i −0.826070 0.563567i \(-0.809429\pi\)
−0.133937 + 0.990990i \(0.542762\pi\)
\(332\) −1.19077 + 4.44403i −0.0653522 + 0.243898i
\(333\) −3.08011 + 2.49423i −0.168789 + 0.136683i
\(334\) −18.6721 20.7375i −1.02169 1.13471i
\(335\) 8.98352 18.8631i 0.490822 1.03060i
\(336\) 4.95074 4.51525i 0.270085 0.246327i
\(337\) −0.693845 1.36175i −0.0377961 0.0741791i 0.871336 0.490687i \(-0.163254\pi\)
−0.909132 + 0.416507i \(0.863254\pi\)
\(338\) 1.56152 29.7956i 0.0849355 1.62067i
\(339\) 2.58451 2.87039i 0.140371 0.155898i
\(340\) 41.3040 35.3193i 2.24002 1.91546i
\(341\) 3.59256 3.23475i 0.194548 0.175172i
\(342\) −4.42190 27.9188i −0.239109 1.50968i
\(343\) 16.3376 8.72262i 0.882145 0.470977i
\(344\) 56.9928 78.4438i 3.07284 4.22941i
\(345\) −0.293127 + 1.58682i −0.0157815 + 0.0854313i
\(346\) 19.4630 43.7146i 1.04634 2.35011i
\(347\) −18.5250 + 7.11107i −0.994473 + 0.381742i −0.800545 0.599273i \(-0.795456\pi\)
−0.193928 + 0.981016i \(0.562123\pi\)
\(348\) 4.57841 2.97325i 0.245428 0.159383i
\(349\) −7.02028 −0.375787 −0.187894 0.982189i \(-0.560166\pi\)
−0.187894 + 0.982189i \(0.560166\pi\)
\(350\) 31.4343 + 15.7180i 1.68024 + 0.840161i
\(351\) −6.46917 −0.345299
\(352\) −35.6635 + 23.1601i −1.90087 + 1.23444i
\(353\) 25.1898 9.66944i 1.34072 0.514653i 0.420937 0.907090i \(-0.361701\pi\)
0.919779 + 0.392437i \(0.128368\pi\)
\(354\) −0.133544 + 0.299946i −0.00709781 + 0.0159419i
\(355\) 0.713724 + 0.386973i 0.0378805 + 0.0205384i
\(356\) 26.8771 36.9932i 1.42448 1.96063i
\(357\) −1.78064 2.17041i −0.0942413 0.114870i
\(358\) −2.69794 17.0341i −0.142591 0.900283i
\(359\) −10.3780 + 9.34436i −0.547728 + 0.493176i −0.895901 0.444254i \(-0.853469\pi\)
0.348173 + 0.937430i \(0.386802\pi\)
\(360\) −12.4854 + 52.1412i −0.658036 + 2.74808i
\(361\) −4.01650 + 4.46078i −0.211395 + 0.234778i
\(362\) 2.45230 46.7927i 0.128890 2.45937i
\(363\) 0.206138 + 0.404570i 0.0108195 + 0.0212344i
\(364\) −19.9560 + 62.7796i −1.04598 + 3.29054i
\(365\) −5.75101 + 3.12695i −0.301022 + 0.163672i
\(366\) −3.93001 4.36472i −0.205425 0.228147i
\(367\) 22.0904 17.8884i 1.15311 0.933769i 0.154580 0.987980i \(-0.450598\pi\)
0.998529 + 0.0542111i \(0.0172644\pi\)
\(368\) −9.69987 + 36.2004i −0.505641 + 1.88708i
\(369\) −14.1487 + 6.29942i −0.736554 + 0.327935i
\(370\) 6.57749 + 4.51485i 0.341948 + 0.234716i
\(371\) 11.3113 0.0722399i 0.587251 0.00375051i
\(372\) −0.282455 + 1.78335i −0.0146446 + 0.0924624i
\(373\) −12.0465 18.5499i −0.623742 0.960478i −0.999431 0.0337325i \(-0.989261\pi\)
0.375689 0.926746i \(-0.377406\pi\)
\(374\) 19.0884 + 33.0620i 0.987037 + 1.70960i
\(375\) 2.44726 0.326612i 0.126376 0.0168661i
\(376\) −23.5221 13.5805i −1.21306 0.700359i
\(377\) −10.9220 + 21.4357i −0.562512 + 1.10399i
\(378\) 8.93794 + 2.33384i 0.459718 + 0.120040i
\(379\) 19.8453 + 27.3147i 1.01938 + 1.40306i 0.912636 + 0.408774i \(0.134044\pi\)
0.106747 + 0.994286i \(0.465956\pi\)
\(380\) −36.7933 + 17.5762i −1.88746 + 0.901642i
\(381\) −1.14525 0.120371i −0.0586730 0.00616678i
\(382\) 31.0879 + 8.32997i 1.59059 + 0.426199i
\(383\) −13.5801 + 35.3775i −0.693913 + 1.80770i −0.113238 + 0.993568i \(0.536122\pi\)
−0.580674 + 0.814136i \(0.697211\pi\)
\(384\) 0.749644 2.30717i 0.0382551 0.117737i
\(385\) −10.6725 + 14.1115i −0.543920 + 0.719187i
\(386\) 7.04729 + 21.6893i 0.358698 + 1.10396i
\(387\) 35.1730 + 1.84334i 1.78794 + 0.0937022i
\(388\) 19.9491 30.7190i 1.01276 1.55952i
\(389\) 9.43110 + 8.49180i 0.478176 + 0.430552i 0.872643 0.488359i \(-0.162404\pi\)
−0.394467 + 0.918910i \(0.629071\pi\)
\(390\) 1.83772 + 6.19059i 0.0930567 + 0.313473i
\(391\) 14.9337 + 4.85225i 0.755229 + 0.245389i
\(392\) 30.3629 48.0885i 1.53356 2.42884i
\(393\) 0.587546 + 0.587546i 0.0296378 + 0.0296378i
\(394\) 4.29126 + 9.63832i 0.216190 + 0.485572i
\(395\) 6.12153 + 9.97616i 0.308007 + 0.501955i
\(396\) −40.7836 18.1580i −2.04945 0.912475i
\(397\) 16.8978 20.8670i 0.848075 1.04729i −0.150205 0.988655i \(-0.547993\pi\)
0.998280 0.0586306i \(-0.0186734\pi\)
\(398\) 29.0294 + 14.7912i 1.45511 + 0.741416i
\(399\) 0.869015 + 1.91877i 0.0435052 + 0.0960584i
\(400\) 57.2596 3.06884i 2.86298 0.153442i
\(401\) 1.13896 1.97273i 0.0568769 0.0985137i −0.836185 0.548447i \(-0.815219\pi\)
0.893062 + 0.449934i \(0.148552\pi\)
\(402\) −5.47426 + 0.286894i −0.273031 + 0.0143090i
\(403\) −2.85154 7.42851i −0.142045 0.370041i
\(404\) −1.44651 13.7627i −0.0719668 0.684718i
\(405\) −18.0464 + 6.40260i −0.896733 + 0.318148i
\(406\) 22.8233 25.6757i 1.13270 1.27426i
\(407\) −2.83993 + 2.83993i −0.140770 + 0.140770i
\(408\) −8.04827 3.08944i −0.398449 0.152950i
\(409\) −28.3811 + 6.03258i −1.40335 + 0.298292i −0.846531 0.532339i \(-0.821313\pi\)
−0.556823 + 0.830631i \(0.687980\pi\)
\(410\) 20.2609 + 23.6940i 1.00061 + 1.17017i
\(411\) −0.183426 + 0.862950i −0.00904772 + 0.0425662i
\(412\) 3.00859 1.53295i 0.148223 0.0755233i
\(413\) −0.222283 + 1.46389i −0.0109378 + 0.0720332i
\(414\) −24.3682 + 7.91770i −1.19763 + 0.389134i
\(415\) 1.15300 + 1.67550i 0.0565987 + 0.0822473i
\(416\) 14.5523 + 68.4631i 0.713484 + 3.35668i
\(417\) 1.14090 + 1.40889i 0.0558699 + 0.0689935i
\(418\) −7.41365 27.6681i −0.362613 1.35329i
\(419\) 4.33888 + 3.15238i 0.211968 + 0.154004i 0.688704 0.725043i \(-0.258180\pi\)
−0.476736 + 0.879047i \(0.658180\pi\)
\(420\) −0.219077 6.60456i −0.0106899 0.322270i
\(421\) −15.3126 + 11.1253i −0.746290 + 0.542212i −0.894675 0.446718i \(-0.852593\pi\)
0.148385 + 0.988930i \(0.452593\pi\)
\(422\) 45.3021 + 36.6849i 2.20527 + 1.78579i
\(423\) −0.516356 9.85265i −0.0251061 0.479052i
\(424\) 30.0816 17.3676i 1.46089 0.843446i
\(425\) −0.0284479 24.0249i −0.00137993 1.16538i
\(426\) 0.213016i 0.0103206i
\(427\) −22.3053 14.2835i −1.07943 0.691228i
\(428\) −13.5112 2.13996i −0.653086 0.103439i
\(429\) −3.23309 + 0.339812i −0.156095 + 0.0164063i
\(430\) −16.5915 68.9288i −0.800114 3.32404i
\(431\) 2.43244 23.1431i 0.117166 1.11476i −0.765067 0.643951i \(-0.777294\pi\)
0.882233 0.470813i \(-0.156039\pi\)
\(432\) 14.5583 3.90089i 0.700438 0.187682i
\(433\) 5.95872 0.943769i 0.286358 0.0453546i −0.0116031 0.999933i \(-0.503693\pi\)
0.297961 + 0.954578i \(0.403693\pi\)
\(434\) 1.25981 + 11.2921i 0.0604730 + 0.542039i
\(435\) 0.313587 2.39288i 0.0150354 0.114730i
\(436\) −23.0080 4.89050i −1.10188 0.234213i
\(437\) −9.88072 6.41662i −0.472659 0.306948i
\(438\) 1.44044 + 0.935434i 0.0688270 + 0.0446968i
\(439\) 34.9553 + 7.42998i 1.66833 + 0.354614i 0.942743 0.333520i \(-0.108236\pi\)
0.725584 + 0.688134i \(0.241570\pi\)
\(440\) −7.05971 + 53.8703i −0.336559 + 2.56817i
\(441\) 20.6570 0.263864i 0.983664 0.0125650i
\(442\) 62.0638 9.82995i 2.95208 0.467563i
\(443\) −20.3219 + 5.44524i −0.965523 + 0.258711i −0.706936 0.707277i \(-0.749923\pi\)
−0.258586 + 0.965988i \(0.583257\pi\)
\(444\) 0.156799 1.49185i 0.00744136 0.0707998i
\(445\) −4.73058 19.6530i −0.224251 0.931643i
\(446\) 3.75093 0.394239i 0.177612 0.0186677i
\(447\) 4.75946 + 0.753824i 0.225115 + 0.0356547i
\(448\) 1.80431 39.2193i 0.0852458 1.85294i
\(449\) 17.1662i 0.810122i 0.914290 + 0.405061i \(0.132750\pi\)
−0.914290 + 0.405061i \(0.867250\pi\)
\(450\) 23.0804 + 31.6885i 1.08802 + 1.49381i
\(451\) −13.5918 + 7.84723i −0.640013 + 0.369512i
\(452\) −4.63018 88.3490i −0.217785 4.15559i
\(453\) 0.412879 + 0.334343i 0.0193987 + 0.0157088i
\(454\) −60.9220 + 44.2624i −2.85921 + 2.07734i
\(455\) 15.3889 + 24.7235i 0.721444 + 1.15906i
\(456\) 5.23294 + 3.80195i 0.245055 + 0.178043i
\(457\) −6.00543 22.4126i −0.280922 1.04842i −0.951768 0.306819i \(-0.900735\pi\)
0.670845 0.741597i \(-0.265931\pi\)
\(458\) −1.01388 1.25204i −0.0473754 0.0585038i
\(459\) −1.31292 6.17679i −0.0612817 0.288308i
\(460\) 20.9529 + 30.4481i 0.976936 + 1.41965i
\(461\) −15.9507 + 5.18270i −0.742899 + 0.241383i −0.655923 0.754828i \(-0.727720\pi\)
−0.0869763 + 0.996210i \(0.527720\pi\)
\(462\) 4.58950 + 0.696890i 0.213523 + 0.0324223i
\(463\) −25.0376 + 12.7573i −1.16360 + 0.592882i −0.925644 0.378395i \(-0.876476\pi\)
−0.237952 + 0.971277i \(0.576476\pi\)
\(464\) 11.6534 54.8251i 0.540998 2.54519i
\(465\) 0.518750 + 0.606650i 0.0240564 + 0.0281327i
\(466\) 11.6940 2.48563i 0.541712 0.115144i
\(467\) 5.32801 + 2.04523i 0.246551 + 0.0946420i 0.478505 0.878085i \(-0.341179\pi\)
−0.231955 + 0.972727i \(0.574512\pi\)
\(468\) −51.9589 + 51.9589i −2.40180 + 2.40180i
\(469\) −23.4618 + 7.78920i −1.08336 + 0.359672i
\(470\) −18.7167 + 6.64042i −0.863339 + 0.306300i
\(471\) 0.506483 + 4.81886i 0.0233375 + 0.222042i
\(472\) 1.62943 + 4.24482i 0.0750008 + 0.195384i
\(473\) 35.6425 1.86795i 1.63885 0.0858882i
\(474\) 1.53548 2.65953i 0.0705270 0.122156i
\(475\) −4.64484 + 17.4173i −0.213120 + 0.799159i
\(476\) −63.9922 6.31293i −2.93308 0.289353i
\(477\) 11.2423 + 5.72824i 0.514750 + 0.262278i
\(478\) 21.9728 27.1342i 1.00501 1.24109i
\(479\) 17.1076 + 7.61681i 0.781668 + 0.348021i 0.758468 0.651710i \(-0.225948\pi\)
0.0231993 + 0.999731i \(0.492615\pi\)
\(480\) −3.67214 5.98443i −0.167609 0.273151i
\(481\) 2.68878 + 6.03911i 0.122598 + 0.275360i
\(482\) −31.1284 31.1284i −1.41786 1.41786i
\(483\) 1.59461 1.05009i 0.0725573 0.0477808i
\(484\) 9.89119 + 3.21384i 0.449599 + 0.146084i
\(485\) −4.60808 15.5229i −0.209242 0.704857i
\(486\) 11.5177 + 10.3705i 0.522451 + 0.470417i
\(487\) −12.4178 + 19.1217i −0.562705 + 0.866489i −0.999452 0.0330949i \(-0.989464\pi\)
0.436748 + 0.899584i \(0.356130\pi\)
\(488\) −81.2237 4.25675i −3.67682 0.192694i
\(489\) −0.605988 1.86504i −0.0274037 0.0843400i
\(490\) −12.3423 39.7103i −0.557570 1.79393i
\(491\) 3.66657 11.2845i 0.165470 0.509264i −0.833601 0.552368i \(-0.813724\pi\)
0.999071 + 0.0431034i \(0.0137245\pi\)
\(492\) 2.10069 5.47248i 0.0947064 0.246719i
\(493\) −22.6835 6.07802i −1.02161 0.273740i
\(494\) −46.8889 4.92822i −2.10963 0.221731i
\(495\) −17.8081 + 8.50695i −0.800413 + 0.382359i
\(496\) 10.8965 + 14.9978i 0.489268 + 0.673420i
\(497\) −0.254550 0.926291i −0.0114181 0.0415498i
\(498\) 0.242267 0.475476i 0.0108563 0.0213066i
\(499\) 8.20677 + 4.73818i 0.367385 + 0.212110i 0.672316 0.740265i \(-0.265300\pi\)
−0.304930 + 0.952375i \(0.598633\pi\)
\(500\) 34.3466 44.9264i 1.53603 2.00917i
\(501\) 1.15976 + 2.00876i 0.0518142 + 0.0897449i
\(502\) 30.8780 + 47.5479i 1.37815 + 2.12217i
\(503\) −3.15307 + 19.9077i −0.140588 + 0.887640i 0.812062 + 0.583572i \(0.198345\pi\)
−0.952650 + 0.304069i \(0.901655\pi\)
\(504\) 54.7356 32.0694i 2.43812 1.42849i
\(505\) −5.04376 3.46208i −0.224444 0.154061i
\(506\) −23.7195 + 10.5606i −1.05446 + 0.469476i
\(507\) −0.641887 + 2.39556i −0.0285072 + 0.106390i
\(508\) −20.4984 + 16.5992i −0.909468 + 0.736472i
\(509\) −11.8798 13.1938i −0.526561 0.584805i 0.419922 0.907560i \(-0.362058\pi\)
−0.946482 + 0.322755i \(0.895391\pi\)
\(510\) −5.53783 + 3.01105i −0.245219 + 0.133331i
\(511\) 7.38154 + 2.34640i 0.326540 + 0.103798i
\(512\) 10.5696 + 20.7441i 0.467117 + 0.916768i
\(513\) −0.247968 + 4.73151i −0.0109480 + 0.208901i
\(514\) −39.7937 + 44.1954i −1.75522 + 1.94937i
\(515\) 0.347609 1.45168i 0.0153175 0.0639687i
\(516\) −9.90658 + 8.91993i −0.436113 + 0.392678i
\(517\) −1.56401 9.87478i −0.0687852 0.434292i
\(518\) −1.53619 9.31377i −0.0674965 0.409224i
\(519\) −2.33792 + 3.21787i −0.102623 + 0.141249i
\(520\) 78.6149 + 42.6241i 3.44749 + 1.86919i
\(521\) 5.99662 13.4686i 0.262717 0.590072i −0.733233 0.679977i \(-0.761990\pi\)
0.995950 + 0.0899053i \(0.0286564\pi\)
\(522\) 35.7745 13.7326i 1.56581 0.601058i
\(523\) 3.48231 2.26144i 0.152271 0.0988859i −0.466255 0.884651i \(-0.654397\pi\)
0.618526 + 0.785765i \(0.287730\pi\)
\(524\) 19.0321 0.831422
\(525\) −2.28414 1.82120i −0.0996881 0.0794839i
\(526\) −65.2502 −2.84504
\(527\) 6.51405 4.23028i 0.283757 0.184274i
\(528\) 7.07091 2.71427i 0.307722 0.118123i
\(529\) 5.01134 11.2556i 0.217884 0.489376i
\(530\) 4.61364 24.9755i 0.200404 1.08487i
\(531\) −0.970802 + 1.33619i −0.0421292 + 0.0579859i
\(532\) 45.1516 + 17.0020i 1.95757 + 0.737132i
\(533\) 4.04109 + 25.5144i 0.175039 + 1.10515i
\(534\) −3.94142 + 3.54887i −0.170562 + 0.153574i
\(535\) −4.59615 + 3.93019i −0.198709 + 0.169917i
\(536\) −50.7957 + 56.4143i −2.19404 + 2.43673i
\(537\) −0.0750267 + 1.43159i −0.00323764 + 0.0617778i
\(538\) −28.7194 56.3649i −1.23818 2.43006i
\(539\) 20.7901 2.45398i 0.895492 0.105701i
\(540\) 6.39125 13.4200i 0.275036 0.577504i
\(541\) 20.2170 + 22.4533i 0.869197 + 0.965342i 0.999659 0.0261118i \(-0.00831259\pi\)
−0.130462 + 0.991453i \(0.541646\pi\)
\(542\) −58.6726 + 47.5121i −2.52020 + 2.04082i
\(543\) −1.00806 + 3.76211i −0.0432598 + 0.161448i
\(544\) −62.4155 + 27.7892i −2.67604 + 1.19145i
\(545\) −8.24592 + 6.33508i −0.353217 + 0.271365i
\(546\) 3.77803 6.64134i 0.161685 0.284223i
\(547\) −1.01423 + 6.40362i −0.0433655 + 0.273799i −0.999838 0.0180249i \(-0.994262\pi\)
0.956472 + 0.291824i \(0.0942622\pi\)
\(548\) 11.0057 + 16.9474i 0.470142 + 0.723956i
\(549\) −14.7724 25.5866i −0.630472 1.09201i
\(550\) 26.6170 + 29.4908i 1.13495 + 1.25749i
\(551\) 15.2593 + 8.80994i 0.650066 + 0.375316i
\(552\) 2.66179 5.22406i 0.113293 0.222351i
\(553\) 3.49889 13.3998i 0.148788 0.569815i
\(554\) −18.8399 25.9310i −0.800433 1.10170i
\(555\) −0.456760 0.480754i −0.0193884 0.0204069i
\(556\) 41.2970 + 4.34049i 1.75138 + 0.184078i
\(557\) −11.8915 3.18632i −0.503860 0.135009i −0.00206894 0.999998i \(-0.500659\pi\)
−0.501791 + 0.864989i \(0.667325\pi\)
\(558\) −4.54198 + 11.8323i −0.192277 + 0.500900i
\(559\) 18.1537 55.8715i 0.767821 2.36311i
\(560\) −49.5397 46.3587i −2.09344 1.95901i
\(561\) −0.980610 3.01801i −0.0414014 0.127420i
\(562\) −19.6376 1.02916i −0.828363 0.0434127i
\(563\) 4.64447 7.15185i 0.195741 0.301415i −0.727148 0.686481i \(-0.759155\pi\)
0.922889 + 0.385066i \(0.125821\pi\)
\(564\) 2.77503 + 2.49865i 0.116850 + 0.105212i
\(565\) −31.0425 23.7906i −1.30597 1.00088i
\(566\) −64.6263 20.9984i −2.71645 0.882627i
\(567\) 20.2527 + 10.1569i 0.850532 + 0.426548i
\(568\) −2.08589 2.08589i −0.0875221 0.0875221i
\(569\) 12.7114 + 28.5502i 0.532889 + 1.19689i 0.956684 + 0.291130i \(0.0940311\pi\)
−0.423795 + 0.905758i \(0.639302\pi\)
\(570\) 4.59820 1.10681i 0.192597 0.0463591i
\(571\) 7.71715 + 3.43590i 0.322953 + 0.143788i 0.561809 0.827267i \(-0.310106\pi\)
−0.238856 + 0.971055i \(0.576772\pi\)
\(572\) −46.8604 + 57.8677i −1.95933 + 2.41957i
\(573\) −2.38365 1.21453i −0.0995786 0.0507378i
\(574\) 3.62141 36.7092i 0.151155 1.53221i
\(575\) 16.2520 + 1.68870i 0.677755 + 0.0704236i
\(576\) 21.8969 37.9266i 0.912372 1.58027i
\(577\) −14.0205 + 0.734783i −0.583681 + 0.0305894i −0.341892 0.939739i \(-0.611068\pi\)
−0.241789 + 0.970329i \(0.577734\pi\)
\(578\) 5.79615 + 15.0995i 0.241088 + 0.628056i
\(579\) −0.198148 1.88525i −0.00823474 0.0783484i
\(580\) −33.6768 43.8347i −1.39835 1.82014i
\(581\) 0.485304 2.35710i 0.0201338 0.0977889i
\(582\) −3.00411 + 3.00411i −0.124524 + 0.124524i
\(583\) 11.9367 + 4.58208i 0.494368 + 0.189770i
\(584\) 23.2651 4.94514i 0.962715 0.204631i
\(585\) 2.56784 + 32.3824i 0.106167 + 1.33885i
\(586\) −1.55027 + 7.29346i −0.0640412 + 0.301290i
\(587\) −17.5353 + 8.93468i −0.723759 + 0.368774i −0.776740 0.629822i \(-0.783128\pi\)
0.0529805 + 0.998596i \(0.483128\pi\)
\(588\) −5.45775 + 5.59898i −0.225074 + 0.230898i
\(589\) −5.54247 + 1.80086i −0.228373 + 0.0742030i
\(590\) 3.13455 + 1.10791i 0.129047 + 0.0456121i
\(591\) −0.182333 0.857809i −0.00750018 0.0352856i
\(592\) −9.69245 11.9692i −0.398357 0.491930i
\(593\) −1.08028 4.03167i −0.0443619 0.165561i 0.940191 0.340647i \(-0.110646\pi\)
−0.984553 + 0.175086i \(0.943980\pi\)
\(594\) 8.44756 + 6.13751i 0.346608 + 0.251825i
\(595\) −20.4829 + 19.7110i −0.839718 + 0.808074i
\(596\) 89.2946 64.8763i 3.65765 2.65744i
\(597\) −2.10462 1.70429i −0.0861364 0.0697519i
\(598\) 2.23664 + 42.6776i 0.0914629 + 1.74522i
\(599\) 0.232901 0.134465i 0.00951606 0.00549410i −0.495234 0.868759i \(-0.664918\pi\)
0.504750 + 0.863265i \(0.331584\pi\)
\(600\) −8.86197 1.39284i −0.361788 0.0568626i
\(601\) 10.5831i 0.431694i −0.976427 0.215847i \(-0.930749\pi\)
0.976427 0.215847i \(-0.0692513\pi\)
\(602\) −45.2380 + 70.6440i −1.84376 + 2.87923i
\(603\) −27.2358 4.31373i −1.10913 0.175669i
\(604\) 12.1022 1.27199i 0.492431 0.0517566i
\(605\) 3.91873 2.40460i 0.159319 0.0977607i
\(606\) −0.167779 + 1.59631i −0.00681555 + 0.0648457i
\(607\) −1.20593 + 0.323127i −0.0489470 + 0.0131153i −0.283209 0.959058i \(-0.591399\pi\)
0.234262 + 0.972173i \(0.424732\pi\)
\(608\) 50.6313 8.01920i 2.05337 0.325222i
\(609\) −2.29938 + 1.69314i −0.0931757 + 0.0686096i
\(610\) −40.9119 + 43.1633i −1.65647 + 1.74763i
\(611\) −16.0965 3.42142i −0.651195 0.138416i
\(612\) −60.1556 39.0655i −2.43165 1.57913i
\(613\) 22.5163 + 14.6222i 0.909424 + 0.590587i 0.912351 0.409409i \(-0.134265\pi\)
−0.00292696 + 0.999996i \(0.500932\pi\)
\(614\) 62.6315 + 13.3127i 2.52760 + 0.537258i
\(615\) −1.23784 2.27660i −0.0499145 0.0918015i
\(616\) 51.7654 38.1173i 2.08569 1.53579i
\(617\) −9.11291 + 1.44334i −0.366872 + 0.0581068i −0.337149 0.941451i \(-0.609463\pi\)
−0.0297232 + 0.999558i \(0.509463\pi\)
\(618\) −0.378304 + 0.101366i −0.0152176 + 0.00407755i
\(619\) 0.850251 8.08960i 0.0341745 0.325149i −0.964057 0.265697i \(-0.914398\pi\)
0.998231 0.0594519i \(-0.0189353\pi\)
\(620\) 18.2273 + 1.42366i 0.732025 + 0.0571755i
\(621\) 4.27120 0.448921i 0.171397 0.0180146i
\(622\) 74.3796 + 11.7806i 2.98235 + 0.472358i
\(623\) −12.8983 + 20.1421i −0.516758 + 0.806974i
\(624\) 12.4665i 0.499058i
\(625\) −5.25569 24.4413i −0.210228 0.977652i
\(626\) −49.5578 + 28.6122i −1.98073 + 1.14357i
\(627\) 0.124609 + 2.37769i 0.00497642 + 0.0949558i
\(628\) 86.2507 + 69.8445i 3.44178 + 2.78710i
\(629\) −5.22048 + 3.79290i −0.208154 + 0.151233i
\(630\) 8.13460 45.6666i 0.324090 1.81940i
\(631\) −26.1031 18.9650i −1.03915 0.754985i −0.0690289 0.997615i \(-0.521990\pi\)
−0.970119 + 0.242629i \(0.921990\pi\)
\(632\) −11.0069 41.0784i −0.437832 1.63401i
\(633\) −3.04932 3.76559i −0.121199 0.149669i
\(634\) 0.124785 + 0.587067i 0.00495585 + 0.0233154i
\(635\) −0.298332 + 11.6565i −0.0118389 + 0.462576i
\(636\) −4.54178 + 1.47571i −0.180093 + 0.0585158i
\(637\) 8.49234 33.3943i 0.336479 1.32313i
\(638\) 34.5989 17.6290i 1.36978 0.697939i
\(639\) 0.222787 1.04813i 0.00881331 0.0414634i
\(640\) −23.8886 5.72020i −0.944281 0.226111i
\(641\) −28.7012 + 6.10064i −1.13363 + 0.240961i −0.736261 0.676698i \(-0.763410\pi\)
−0.397370 + 0.917658i \(0.630077\pi\)
\(642\) 1.48129 + 0.568613i 0.0584617 + 0.0224413i
\(643\) 23.5100 23.5100i 0.927145 0.927145i −0.0703751 0.997521i \(-0.522420\pi\)
0.997521 + 0.0703751i \(0.0224196\pi\)
\(644\) 8.81918 42.8343i 0.347524 1.68791i
\(645\) 0.157752 + 5.89102i 0.00621148 + 0.231959i
\(646\) −4.81061 45.7699i −0.189271 1.80079i
\(647\) −0.606120 1.57900i −0.0238290 0.0620768i 0.921150 0.389208i \(-0.127251\pi\)
−0.944979 + 0.327131i \(0.893918\pi\)
\(648\) 69.4791 3.64125i 2.72940 0.143042i
\(649\) −0.836837 + 1.44944i −0.0328487 + 0.0568956i
\(650\) 61.0170 23.5052i 2.39328 0.921948i
\(651\) 0.0927208 0.939882i 0.00363401 0.0368369i
\(652\) −40.0214 20.3919i −1.56736 0.798610i
\(653\) −11.0503 + 13.6459i −0.432430 + 0.534007i −0.946054 0.324008i \(-0.894969\pi\)
0.513624 + 0.858016i \(0.328303\pi\)
\(654\) 2.49241 + 1.10969i 0.0974609 + 0.0433924i
\(655\) 5.46042 6.40100i 0.213356 0.250108i
\(656\) −24.4793 54.9813i −0.955755 2.14666i
\(657\) 6.10926 + 6.10926i 0.238345 + 0.238345i
\(658\) 21.0050 + 10.5341i 0.818858 + 0.410663i
\(659\) −12.1353 3.94299i −0.472724 0.153597i 0.0629598 0.998016i \(-0.479946\pi\)
−0.535684 + 0.844419i \(0.679946\pi\)
\(660\) 2.48923 7.04261i 0.0968931 0.274133i
\(661\) 34.1996 + 30.7934i 1.33021 + 1.19773i 0.963600 + 0.267350i \(0.0861479\pi\)
0.366609 + 0.930375i \(0.380519\pi\)
\(662\) 27.6638 42.5985i 1.07518 1.65564i
\(663\) −5.21600 0.273359i −0.202573 0.0106164i
\(664\) −2.28363 7.02829i −0.0886220 0.272751i
\(665\) 18.6725 10.3077i 0.724088 0.399715i
\(666\) 3.25380 10.0142i 0.126082 0.388041i
\(667\) 5.72363 14.9106i 0.221620 0.577340i
\(668\) 51.3182 + 13.7507i 1.98556 + 0.532029i
\(669\) −0.311784 0.0327698i −0.0120543 0.00126695i
\(670\) 7.27767 + 55.0276i 0.281161 + 2.12590i
\(671\) −17.5979 24.2214i −0.679358 0.935056i
\(672\) −2.09889 + 8.03815i −0.0809664 + 0.310078i
\(673\) 13.5468 26.5870i 0.522189 1.02485i −0.467816 0.883826i \(-0.654959\pi\)
0.990006 0.141028i \(-0.0450409\pi\)
\(674\) 3.51634 + 2.03016i 0.135444 + 0.0781988i
\(675\) −2.67980 5.99981i −0.103146 0.230933i
\(676\) 28.4029 + 49.1952i 1.09242 + 1.89212i
\(677\) −15.7205 24.2075i −0.604189 0.930369i −0.999928 0.0120061i \(-0.996178\pi\)
0.395739 0.918363i \(-0.370488\pi\)
\(678\) −1.60526 + 10.1352i −0.0616495 + 0.389240i
\(679\) −9.47339 + 16.6531i −0.363555 + 0.639088i
\(680\) −24.7428 + 83.7124i −0.948844 + 3.21022i
\(681\) 5.71823 2.54592i 0.219123 0.0975598i
\(682\) −3.32408 + 12.4056i −0.127286 + 0.475036i
\(683\) 12.3270 9.98225i 0.471681 0.381960i −0.363802 0.931476i \(-0.618521\pi\)
0.835483 + 0.549516i \(0.185188\pi\)
\(684\) 36.0108 + 39.9940i 1.37691 + 1.52921i
\(685\) 8.85745 + 1.16077i 0.338426 + 0.0443508i
\(686\) −23.7806 + 43.0746i −0.907949 + 1.64459i
\(687\) 0.0607961 + 0.119319i 0.00231952 + 0.00455231i
\(688\) −7.16313 + 136.681i −0.273092 + 5.21090i
\(689\) 14.0820 15.6396i 0.536481 0.595822i
\(690\) −1.64292 3.95974i −0.0625451 0.150745i
\(691\) −0.882689 + 0.794776i −0.0335791 + 0.0302347i −0.685749 0.727838i \(-0.740525\pi\)
0.652170 + 0.758073i \(0.273859\pi\)
\(692\) 14.2519 + 89.9831i 0.541777 + 3.42064i
\(693\) 21.8535 + 8.22904i 0.830147 + 0.312595i
\(694\) 30.9863 42.6489i 1.17622 1.61893i
\(695\) 13.3081 12.6439i 0.504807 0.479612i
\(696\) −3.56653 + 8.01057i −0.135189 + 0.303640i
\(697\) −23.5411 + 9.03660i −0.891684 + 0.342286i
\(698\) 15.6419 10.1580i 0.592056 0.384486i
\(699\) −0.993738 −0.0375866
\(700\) −66.4913 + 7.49787i −2.51313 + 0.283393i
\(701\) 8.69736 0.328495 0.164247 0.986419i \(-0.447480\pi\)
0.164247 + 0.986419i \(0.447480\pi\)
\(702\) 14.4140 9.36056i 0.544021 0.353292i
\(703\) 4.52003 1.73508i 0.170476 0.0654396i
\(704\) 18.0503 40.5417i 0.680298 1.52797i
\(705\) 1.63653 0.216439i 0.0616353 0.00815157i
\(706\) −42.1343 + 57.9929i −1.58574 + 2.18259i
\(707\) 1.17798 + 7.14199i 0.0443027 + 0.268602i
\(708\) −0.0977889 0.617415i −0.00367513 0.0232039i
\(709\) 12.7518 11.4818i 0.478905 0.431208i −0.393991 0.919114i \(-0.628906\pi\)
0.872896 + 0.487906i \(0.162239\pi\)
\(710\) −2.15018 + 0.170504i −0.0806950 + 0.00639891i
\(711\) 10.3368 11.4801i 0.387659 0.430539i
\(712\) −3.84392 + 73.3464i −0.144057 + 2.74877i
\(713\) 2.39819 + 4.70671i 0.0898129 + 0.176268i
\(714\) 7.10793 + 2.25942i 0.266007 + 0.0845567i
\(715\) 6.01794 + 32.3629i 0.225058 + 1.21031i
\(716\) 21.9713 + 24.4016i 0.821107 + 0.911931i
\(717\) −2.25544 + 1.82642i −0.0842310 + 0.0682090i
\(718\) 9.60239 35.8366i 0.358358 1.33741i
\(719\) 29.7684 13.2537i 1.11017 0.494281i 0.232044 0.972705i \(-0.425459\pi\)
0.878129 + 0.478425i \(0.158792\pi\)
\(720\) −25.3052 71.3256i −0.943071 2.65815i
\(721\) −1.52391 + 0.892855i −0.0567534 + 0.0332517i
\(722\) 2.49468 15.7508i 0.0928423 0.586183i
\(723\) 1.99294 + 3.06886i 0.0741184 + 0.114132i
\(724\) 44.6055 + 77.2589i 1.65775 + 2.87131i
\(725\) −24.4048 1.25003i −0.906371 0.0464248i
\(726\) −1.04469 0.603152i −0.0387721 0.0223851i
\(727\) 10.8247 21.2447i 0.401466 0.787922i −0.598446 0.801163i \(-0.704215\pi\)
0.999912 + 0.0132413i \(0.00421495\pi\)
\(728\) −28.0381 102.029i −1.03916 3.78143i
\(729\) 14.3432 + 19.7418i 0.531231 + 0.731177i
\(730\) 8.28932 15.2886i 0.306801 0.565857i
\(731\) 57.0306 + 5.99416i 2.10935 + 0.221702i
\(732\) 10.8012 + 2.89417i 0.399223 + 0.106972i
\(733\) −11.6517 + 30.3537i −0.430366 + 1.12114i 0.531364 + 0.847143i \(0.321679\pi\)
−0.961730 + 0.273998i \(0.911654\pi\)
\(734\) −23.3361 + 71.8210i −0.861350 + 2.65096i
\(735\) 0.317226 + 3.44196i 0.0117011 + 0.126959i
\(736\) −14.3589 44.1921i −0.529276 1.62894i
\(737\) −27.9051 1.46244i −1.02790 0.0538698i
\(738\) 22.4099 34.5083i 0.824922 1.27027i
\(739\) −39.4458 35.5172i −1.45104 1.30652i −0.870388 0.492366i \(-0.836132\pi\)
−0.580649 0.814154i \(-0.697201\pi\)
\(740\) −15.1842 0.388617i −0.558183 0.0142858i
\(741\) 3.72715 + 1.21102i 0.136920 + 0.0444881i
\(742\) −25.0982 + 16.5278i −0.921383 + 0.606754i
\(743\) −35.7302 35.7302i −1.31082 1.31082i −0.920814 0.390001i \(-0.872474\pi\)
−0.390001 0.920814i \(-0.627526\pi\)
\(744\) −1.17962 2.64946i −0.0432468 0.0971339i
\(745\) 3.79950 48.6455i 0.139203 1.78223i
\(746\) 53.6816 + 23.9006i 1.96542 + 0.875062i
\(747\) 1.68935 2.08617i 0.0618100 0.0763290i
\(748\) −64.7627 32.9982i −2.36796 1.20653i
\(749\) 7.12080 + 0.702478i 0.260189 + 0.0256680i
\(750\) −4.98018 + 4.26879i −0.181850 + 0.155874i
\(751\) 20.8809 36.1668i 0.761956 1.31975i −0.179886 0.983688i \(-0.557573\pi\)
0.941841 0.336058i \(-0.109094\pi\)
\(752\) 38.2870 2.00653i 1.39618 0.0731708i
\(753\) −1.68882 4.39953i −0.0615441 0.160328i
\(754\) −6.68090 63.5646i −0.243304 2.31488i
\(755\) 3.04438 4.43523i 0.110796 0.161414i
\(756\) −16.6917 + 5.54156i −0.607071 + 0.201545i
\(757\) −22.3878 + 22.3878i −0.813699 + 0.813699i −0.985186 0.171487i \(-0.945143\pi\)
0.171487 + 0.985186i \(0.445143\pi\)
\(758\) −83.7403 32.1449i −3.04158 1.16756i
\(759\) 2.11103 0.448714i 0.0766256 0.0162873i
\(760\) 34.1884 55.8646i 1.24014 2.02642i
\(761\) 5.71569 26.8902i 0.207194 0.974770i −0.744477 0.667648i \(-0.767301\pi\)
0.951670 0.307121i \(-0.0993657\pi\)
\(762\) 2.72591 1.38892i 0.0987494 0.0503154i
\(763\) 12.1642 + 1.84707i 0.440374 + 0.0668683i
\(764\) −58.2772 + 18.9354i −2.10839 + 0.685059i
\(765\) −30.3977 + 9.02380i −1.09903 + 0.326256i
\(766\) −20.9314 98.4745i −0.756283 3.55803i