Properties

Label 175.2.x.a.3.16
Level $175$
Weight $2$
Character 175.3
Analytic conductor $1.397$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(3,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([21, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.x (of order \(60\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 3.16
Character \(\chi\) \(=\) 175.3
Dual form 175.2.x.a.117.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.13877 - 1.75355i) q^{2} +(0.297680 - 0.775483i) q^{3} +(-0.964662 - 2.16667i) q^{4} +(-1.08500 - 1.95519i) q^{5} +(-1.02086 - 1.40509i) q^{6} +(-2.15744 + 1.53148i) q^{7} +(-0.767632 - 0.121581i) q^{8} +(1.71667 + 1.54570i) q^{9} +O(q^{10})\) \(q+(1.13877 - 1.75355i) q^{2} +(0.297680 - 0.775483i) q^{3} +(-0.964662 - 2.16667i) q^{4} +(-1.08500 - 1.95519i) q^{5} +(-1.02086 - 1.40509i) q^{6} +(-2.15744 + 1.53148i) q^{7} +(-0.767632 - 0.121581i) q^{8} +(1.71667 + 1.54570i) q^{9} +(-4.66408 - 0.323915i) q^{10} +(-0.702779 - 0.780515i) q^{11} +(-1.96737 + 0.103106i) q^{12} +(4.08239 + 2.08008i) q^{13} +(0.228707 + 5.52718i) q^{14} +(-1.83920 + 0.259375i) q^{15} +(2.08662 - 2.31743i) q^{16} +(1.41941 - 1.75283i) q^{17} +(4.66535 - 1.25008i) q^{18} +(-4.55223 - 2.02678i) q^{19} +(-3.18960 + 4.23693i) q^{20} +(0.545413 + 2.12895i) q^{21} +(-2.16897 + 0.343531i) q^{22} +(5.21979 + 3.38977i) q^{23} +(-0.322792 + 0.559093i) q^{24} +(-2.64556 + 4.24276i) q^{25} +(8.29642 - 4.78994i) q^{26} +(3.93004 - 2.00245i) q^{27} +(5.39942 + 3.19709i) q^{28} +(-0.743348 + 1.02313i) q^{29} +(-1.63959 + 3.52049i) q^{30} +(-10.1310 + 1.06481i) q^{31} +(-2.08985 - 7.79943i) q^{32} +(-0.814479 + 0.312649i) q^{33} +(-1.45729 - 4.48507i) q^{34} +(5.33517 + 2.55656i) q^{35} +(1.69301 - 5.21054i) q^{36} +(0.328991 + 6.27752i) q^{37} +(-8.73799 + 5.67452i) q^{38} +(2.82832 - 2.54663i) q^{39} +(0.595164 + 1.63278i) q^{40} +(-5.32280 + 1.72948i) q^{41} +(4.35431 + 1.46797i) q^{42} +(4.80861 + 4.80861i) q^{43} +(-1.01317 + 2.27562i) q^{44} +(1.15956 - 5.03351i) q^{45} +(11.8882 - 5.29299i) q^{46} +(0.243253 - 0.196982i) q^{47} +(-1.17598 - 2.30799i) q^{48} +(2.30911 - 6.60818i) q^{49} +(4.42720 + 9.47062i) q^{50} +(-0.936759 - 1.62251i) q^{51} +(0.568717 - 10.8518i) q^{52} +(0.261509 + 0.100384i) q^{53} +(0.963998 - 9.17183i) q^{54} +(-0.763545 + 2.22093i) q^{55} +(1.84232 - 0.913312i) q^{56} +(-2.92684 + 2.92684i) q^{57} +(0.947608 + 2.46860i) q^{58} +(6.72559 + 1.42957i) q^{59} +(2.33619 + 3.73473i) q^{60} +(1.10261 + 5.18739i) q^{61} +(-9.66967 + 18.9778i) q^{62} +(-6.07084 - 0.705699i) q^{63} +(-10.1249 - 3.28979i) q^{64} +(-0.362422 - 10.2388i) q^{65} +(-0.379257 + 1.78426i) q^{66} +(-9.54564 - 7.72991i) q^{67} +(-5.16706 - 1.38451i) q^{68} +(4.18254 - 3.03879i) q^{69} +(10.5586 - 6.44414i) q^{70} +(-1.66579 - 1.21027i) q^{71} +(-1.12985 - 1.39524i) q^{72} +(-1.29435 - 0.0678338i) q^{73} +(11.3826 + 6.57173i) q^{74} +(2.50266 + 3.31457i) q^{75} +11.8183i q^{76} +(2.71155 + 0.607621i) q^{77} +(-1.24484 - 7.85959i) q^{78} +(-10.7765 - 1.13266i) q^{79} +(-6.79499 - 1.56534i) q^{80} +(0.341411 + 3.24831i) q^{81} +(-3.02870 + 11.3033i) q^{82} +(-0.579789 + 3.66064i) q^{83} +(4.08659 - 3.23545i) q^{84} +(-4.96718 - 0.873412i) q^{85} +(13.9080 - 2.95623i) q^{86} +(0.572141 + 0.881019i) q^{87} +(0.444580 + 0.684593i) q^{88} +(-10.3731 + 2.20488i) q^{89} +(-7.50603 - 7.76533i) q^{90} +(-11.9931 + 1.76446i) q^{91} +(2.30917 - 14.5795i) q^{92} +(-2.19006 + 8.17341i) q^{93} +(-0.0684094 - 0.650872i) q^{94} +(0.976406 + 11.0995i) q^{95} +(-6.67043 - 0.701090i) q^{96} +(-0.775456 - 4.89604i) q^{97} +(-8.95821 - 11.5743i) q^{98} -2.42618i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9} - 36 q^{10} - 6 q^{11} - 36 q^{12} - 20 q^{14} - 28 q^{15} - 30 q^{16} - 42 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} + 32 q^{22} - 40 q^{23} + 2 q^{25} - 48 q^{26} + 22 q^{28} - 58 q^{30} - 18 q^{31} + 8 q^{32} - 30 q^{33} - 2 q^{35} + 40 q^{36} - 10 q^{37} + 72 q^{38} + 30 q^{39} - 48 q^{40} + 6 q^{42} - 108 q^{43} - 10 q^{44} + 186 q^{45} - 6 q^{46} - 54 q^{47} - 248 q^{50} - 16 q^{51} + 216 q^{52} + 50 q^{53} - 30 q^{54} + 4 q^{56} - 216 q^{57} - 4 q^{58} + 90 q^{59} + 96 q^{60} - 18 q^{61} - 66 q^{63} - 100 q^{64} + 14 q^{65} - 90 q^{66} + 4 q^{67} + 342 q^{68} - 60 q^{70} - 24 q^{71} + 58 q^{72} - 6 q^{73} + 216 q^{75} - 80 q^{77} - 132 q^{78} - 10 q^{79} - 6 q^{80} - 10 q^{81} + 216 q^{82} + 20 q^{84} - 48 q^{85} - 6 q^{86} - 48 q^{87} - 122 q^{88} + 120 q^{89} - 12 q^{91} - 4 q^{92} + 106 q^{93} - 30 q^{94} - 98 q^{95} - 90 q^{96} + 222 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.13877 1.75355i 0.805229 1.23994i −0.162189 0.986760i \(-0.551855\pi\)
0.967418 0.253185i \(-0.0814780\pi\)
\(3\) 0.297680 0.775483i 0.171866 0.447725i −0.820410 0.571775i \(-0.806255\pi\)
0.992276 + 0.124050i \(0.0395883\pi\)
\(4\) −0.964662 2.16667i −0.482331 1.08333i
\(5\) −1.08500 1.95519i −0.485226 0.874389i
\(6\) −1.02086 1.40509i −0.416763 0.573625i
\(7\) −2.15744 + 1.53148i −0.815436 + 0.578847i
\(8\) −0.767632 0.121581i −0.271399 0.0429853i
\(9\) 1.71667 + 1.54570i 0.572225 + 0.515234i
\(10\) −4.66408 0.323915i −1.47491 0.102431i
\(11\) −0.702779 0.780515i −0.211896 0.235334i 0.627822 0.778357i \(-0.283946\pi\)
−0.839718 + 0.543023i \(0.817280\pi\)
\(12\) −1.96737 + 0.103106i −0.567932 + 0.0297640i
\(13\) 4.08239 + 2.08008i 1.13225 + 0.576911i 0.916698 0.399580i \(-0.130844\pi\)
0.215554 + 0.976492i \(0.430844\pi\)
\(14\) 0.228707 + 5.52718i 0.0611245 + 1.47720i
\(15\) −1.83920 + 0.259375i −0.474879 + 0.0669703i
\(16\) 2.08662 2.31743i 0.521655 0.579357i
\(17\) 1.41941 1.75283i 0.344259 0.425124i −0.575382 0.817885i \(-0.695147\pi\)
0.919641 + 0.392761i \(0.128480\pi\)
\(18\) 4.66535 1.25008i 1.09963 0.294646i
\(19\) −4.55223 2.02678i −1.04435 0.464976i −0.188434 0.982086i \(-0.560341\pi\)
−0.855919 + 0.517110i \(0.827008\pi\)
\(20\) −3.18960 + 4.23693i −0.713215 + 0.947406i
\(21\) 0.545413 + 2.12895i 0.119019 + 0.464575i
\(22\) −2.16897 + 0.343531i −0.462426 + 0.0732411i
\(23\) 5.21979 + 3.38977i 1.08840 + 0.706816i 0.958609 0.284725i \(-0.0919022\pi\)
0.129793 + 0.991541i \(0.458569\pi\)
\(24\) −0.322792 + 0.559093i −0.0658897 + 0.114124i
\(25\) −2.64556 + 4.24276i −0.529112 + 0.848552i
\(26\) 8.29642 4.78994i 1.62706 0.939384i
\(27\) 3.93004 2.00245i 0.756336 0.385373i
\(28\) 5.39942 + 3.19709i 1.02039 + 0.604194i
\(29\) −0.743348 + 1.02313i −0.138036 + 0.189991i −0.872439 0.488724i \(-0.837463\pi\)
0.734402 + 0.678714i \(0.237463\pi\)
\(30\) −1.63959 + 3.52049i −0.299347 + 0.642751i
\(31\) −10.1310 + 1.06481i −1.81959 + 0.191246i −0.952012 0.306062i \(-0.900989\pi\)
−0.867574 + 0.497308i \(0.834322\pi\)
\(32\) −2.08985 7.79943i −0.369437 1.37876i
\(33\) −0.814479 + 0.312649i −0.141783 + 0.0544253i
\(34\) −1.45729 4.48507i −0.249923 0.769184i
\(35\) 5.33517 + 2.55656i 0.901808 + 0.432137i
\(36\) 1.69301 5.21054i 0.282168 0.868424i
\(37\) 0.328991 + 6.27752i 0.0540858 + 1.03202i 0.882026 + 0.471202i \(0.156180\pi\)
−0.827940 + 0.560817i \(0.810487\pi\)
\(38\) −8.73799 + 5.67452i −1.41749 + 0.920528i
\(39\) 2.82832 2.54663i 0.452893 0.407787i
\(40\) 0.595164 + 1.63278i 0.0941037 + 0.258166i
\(41\) −5.32280 + 1.72948i −0.831282 + 0.270100i −0.693585 0.720374i \(-0.743970\pi\)
−0.137697 + 0.990474i \(0.543970\pi\)
\(42\) 4.35431 + 1.46797i 0.671885 + 0.226513i
\(43\) 4.80861 + 4.80861i 0.733306 + 0.733306i 0.971273 0.237968i \(-0.0764812\pi\)
−0.237968 + 0.971273i \(0.576481\pi\)
\(44\) −1.01317 + 2.27562i −0.152741 + 0.343063i
\(45\) 1.15956 5.03351i 0.172856 0.750352i
\(46\) 11.8882 5.29299i 1.75283 0.780408i
\(47\) 0.243253 0.196982i 0.0354821 0.0287328i −0.611415 0.791310i \(-0.709400\pi\)
0.646897 + 0.762577i \(0.276066\pi\)
\(48\) −1.17598 2.30799i −0.169738 0.333130i
\(49\) 2.30911 6.60818i 0.329873 0.944025i
\(50\) 4.42720 + 9.47062i 0.626101 + 1.33935i
\(51\) −0.936759 1.62251i −0.131172 0.227197i
\(52\) 0.568717 10.8518i 0.0788669 1.50487i
\(53\) 0.261509 + 0.100384i 0.0359210 + 0.0137888i 0.376262 0.926513i \(-0.377209\pi\)
−0.340341 + 0.940302i \(0.610543\pi\)
\(54\) 0.963998 9.17183i 0.131184 1.24813i
\(55\) −0.763545 + 2.22093i −0.102956 + 0.299470i
\(56\) 1.84232 0.913312i 0.246190 0.122046i
\(57\) −2.92684 + 2.92684i −0.387670 + 0.387670i
\(58\) 0.947608 + 2.46860i 0.124427 + 0.324143i
\(59\) 6.72559 + 1.42957i 0.875597 + 0.186114i 0.623722 0.781646i \(-0.285620\pi\)
0.251875 + 0.967760i \(0.418953\pi\)
\(60\) 2.33619 + 3.73473i 0.301600 + 0.482151i
\(61\) 1.10261 + 5.18739i 0.141175 + 0.664178i 0.990636 + 0.136527i \(0.0435939\pi\)
−0.849461 + 0.527651i \(0.823073\pi\)
\(62\) −9.66967 + 18.9778i −1.22805 + 2.41018i
\(63\) −6.07084 0.705699i −0.764854 0.0889097i
\(64\) −10.1249 3.28979i −1.26562 0.411224i
\(65\) −0.362422 10.2388i −0.0449529 1.26996i
\(66\) −0.379257 + 1.78426i −0.0466833 + 0.219627i
\(67\) −9.54564 7.72991i −1.16619 0.944359i −0.167051 0.985948i \(-0.553425\pi\)
−0.999135 + 0.0415894i \(0.986758\pi\)
\(68\) −5.16706 1.38451i −0.626598 0.167896i
\(69\) 4.18254 3.03879i 0.503518 0.365827i
\(70\) 10.5586 6.44414i 1.26199 0.770222i
\(71\) −1.66579 1.21027i −0.197693 0.143632i 0.484535 0.874772i \(-0.338989\pi\)
−0.682228 + 0.731140i \(0.738989\pi\)
\(72\) −1.12985 1.39524i −0.133154 0.164431i
\(73\) −1.29435 0.0678338i −0.151492 0.00793934i −0.0235607 0.999722i \(-0.507500\pi\)
−0.127931 + 0.991783i \(0.540834\pi\)
\(74\) 11.3826 + 6.57173i 1.32320 + 0.763948i
\(75\) 2.50266 + 3.31457i 0.288982 + 0.382734i
\(76\) 11.8183i 1.35566i
\(77\) 2.71155 + 0.607621i 0.309010 + 0.0692448i
\(78\) −1.24484 7.85959i −0.140950 0.889924i
\(79\) −10.7765 1.13266i −1.21245 0.127434i −0.523363 0.852110i \(-0.675323\pi\)
−0.689090 + 0.724676i \(0.741989\pi\)
\(80\) −6.79499 1.56534i −0.759703 0.175011i
\(81\) 0.341411 + 3.24831i 0.0379346 + 0.360923i
\(82\) −3.02870 + 11.3033i −0.334464 + 1.24824i
\(83\) −0.579789 + 3.66064i −0.0636401 + 0.401808i 0.935220 + 0.354068i \(0.115202\pi\)
−0.998860 + 0.0477399i \(0.984798\pi\)
\(84\) 4.08659 3.23545i 0.445883 0.353016i
\(85\) −4.96718 0.873412i −0.538767 0.0947349i
\(86\) 13.9080 2.95623i 1.49974 0.318779i
\(87\) 0.572141 + 0.881019i 0.0613399 + 0.0944552i
\(88\) 0.444580 + 0.684593i 0.0473924 + 0.0729778i
\(89\) −10.3731 + 2.20488i −1.09955 + 0.233716i −0.721738 0.692166i \(-0.756656\pi\)
−0.377811 + 0.925883i \(0.623323\pi\)
\(90\) −7.50603 7.76533i −0.791205 0.818537i
\(91\) −11.9931 + 1.76446i −1.25722 + 0.184966i
\(92\) 2.30917 14.5795i 0.240748 1.52002i
\(93\) −2.19006 + 8.17341i −0.227098 + 0.847543i
\(94\) −0.0684094 0.650872i −0.00705589 0.0671323i
\(95\) 0.976406 + 11.0995i 0.100177 + 1.13879i
\(96\) −6.67043 0.701090i −0.680798 0.0715547i
\(97\) −0.775456 4.89604i −0.0787356 0.497117i −0.995269 0.0971587i \(-0.969025\pi\)
0.916533 0.399958i \(-0.130975\pi\)
\(98\) −8.95821 11.5743i −0.904916 1.16918i
\(99\) 2.42618i 0.243840i
\(100\) 11.7447 + 1.63922i 1.17447 + 0.163922i
\(101\) 13.1637 + 7.60006i 1.30984 + 0.756234i 0.982069 0.188524i \(-0.0603704\pi\)
0.327767 + 0.944758i \(0.393704\pi\)
\(102\) −3.91190 0.205014i −0.387336 0.0202994i
\(103\) −4.27261 5.27623i −0.420993 0.519883i 0.521888 0.853014i \(-0.325228\pi\)
−0.942880 + 0.333132i \(0.891895\pi\)
\(104\) −2.88088 2.09308i −0.282493 0.205243i
\(105\) 3.57074 3.37629i 0.348468 0.329492i
\(106\) 0.473825 0.344254i 0.0460220 0.0334369i
\(107\) −18.9985 5.09063i −1.83665 0.492130i −0.838081 0.545546i \(-0.816322\pi\)
−0.998572 + 0.0534166i \(0.982989\pi\)
\(108\) −8.12981 6.58339i −0.782292 0.633487i
\(109\) 3.97502 18.7010i 0.380738 1.79123i −0.202880 0.979204i \(-0.565030\pi\)
0.583618 0.812029i \(-0.301637\pi\)
\(110\) 3.02500 + 3.86803i 0.288422 + 0.368802i
\(111\) 4.96605 + 1.61357i 0.471356 + 0.153153i
\(112\) −0.952659 + 8.19534i −0.0900178 + 0.774387i
\(113\) 3.96233 7.77652i 0.372745 0.731553i −0.626093 0.779748i \(-0.715347\pi\)
0.998838 + 0.0481952i \(0.0153470\pi\)
\(114\) 1.79937 + 8.46535i 0.168526 + 0.792852i
\(115\) 0.964199 13.8836i 0.0899120 1.29465i
\(116\) 2.93386 + 0.623612i 0.272402 + 0.0579009i
\(117\) 3.79296 + 9.88099i 0.350659 + 0.913498i
\(118\) 10.1657 10.1657i 0.935827 0.935827i
\(119\) −0.377871 + 5.95544i −0.0346393 + 0.545934i
\(120\) 1.44336 + 0.0245072i 0.131760 + 0.00223719i
\(121\) 1.03451 9.84268i 0.0940461 0.894789i
\(122\) 10.3520 + 3.97374i 0.937222 + 0.359766i
\(123\) −0.243307 + 4.64257i −0.0219383 + 0.418607i
\(124\) 12.0801 + 20.9234i 1.08483 + 1.87897i
\(125\) 11.1658 + 0.569199i 0.998703 + 0.0509107i
\(126\) −8.15074 + 9.84188i −0.726126 + 0.876784i
\(127\) 5.89827 + 11.5760i 0.523386 + 1.02720i 0.989777 + 0.142625i \(0.0455542\pi\)
−0.466390 + 0.884579i \(0.654446\pi\)
\(128\) −4.74853 + 3.84528i −0.419715 + 0.339878i
\(129\) 5.16042 2.29757i 0.454349 0.202289i
\(130\) −18.3668 11.0240i −1.61088 0.966871i
\(131\) 1.44095 3.23643i 0.125896 0.282768i −0.839590 0.543220i \(-0.817205\pi\)
0.965487 + 0.260452i \(0.0838716\pi\)
\(132\) 1.46310 + 1.46310i 0.127347 + 0.127347i
\(133\) 12.9252 2.59900i 1.12075 0.225362i
\(134\) −24.4250 + 7.93617i −2.11000 + 0.685580i
\(135\) −8.17927 5.51133i −0.703959 0.474339i
\(136\) −1.30270 + 1.17295i −0.111705 + 0.100580i
\(137\) 6.35261 4.12544i 0.542740 0.352460i −0.243969 0.969783i \(-0.578450\pi\)
0.786710 + 0.617323i \(0.211783\pi\)
\(138\) −0.565729 10.7947i −0.0481580 0.918910i
\(139\) 2.73221 8.40888i 0.231743 0.713232i −0.765794 0.643086i \(-0.777654\pi\)
0.997537 0.0701455i \(-0.0223463\pi\)
\(140\) 0.392577 14.0257i 0.0331788 1.18539i
\(141\) −0.0803449 0.247276i −0.00676626 0.0208244i
\(142\) −4.01920 + 1.54283i −0.337284 + 0.129471i
\(143\) −1.24548 4.64821i −0.104153 0.388703i
\(144\) 7.16410 0.752977i 0.597008 0.0627481i
\(145\) 2.80695 + 0.343295i 0.233104 + 0.0285091i
\(146\) −1.59291 + 2.19245i −0.131830 + 0.181448i
\(147\) −4.43715 3.75780i −0.365970 0.309938i
\(148\) 13.2839 6.76851i 1.09193 0.556368i
\(149\) 1.52475 0.880317i 0.124913 0.0721183i −0.436242 0.899830i \(-0.643691\pi\)
0.561154 + 0.827711i \(0.310357\pi\)
\(150\) 8.66219 0.614002i 0.707265 0.0501330i
\(151\) −3.13479 + 5.42962i −0.255106 + 0.441856i −0.964924 0.262529i \(-0.915444\pi\)
0.709819 + 0.704385i \(0.248777\pi\)
\(152\) 3.24802 + 2.10929i 0.263449 + 0.171086i
\(153\) 5.14602 0.815050i 0.416031 0.0658929i
\(154\) 4.15332 4.06289i 0.334684 0.327397i
\(155\) 13.0741 + 18.6528i 1.05013 + 1.49823i
\(156\) −8.24606 3.67138i −0.660213 0.293946i
\(157\) 10.4389 2.79709i 0.833115 0.223232i 0.183043 0.983105i \(-0.441405\pi\)
0.650072 + 0.759872i \(0.274739\pi\)
\(158\) −14.2581 + 17.6073i −1.13431 + 1.40076i
\(159\) 0.155692 0.172913i 0.0123472 0.0137129i
\(160\) −12.9819 + 12.5484i −1.02631 + 0.992040i
\(161\) −16.4528 + 0.680794i −1.29666 + 0.0536541i
\(162\) 6.08485 + 3.10038i 0.478071 + 0.243589i
\(163\) 5.57143 0.291986i 0.436388 0.0228701i 0.167122 0.985936i \(-0.446552\pi\)
0.269265 + 0.963066i \(0.413219\pi\)
\(164\) 8.88192 + 9.86438i 0.693562 + 0.770278i
\(165\) 1.49500 + 1.25324i 0.116385 + 0.0975647i
\(166\) 5.75886 + 5.18530i 0.446975 + 0.402458i
\(167\) 10.3561 + 1.64024i 0.801379 + 0.126926i 0.543673 0.839297i \(-0.317033\pi\)
0.257706 + 0.966223i \(0.417033\pi\)
\(168\) −0.159836 1.70056i −0.0123316 0.131201i
\(169\) 4.69799 + 6.46623i 0.361384 + 0.497402i
\(170\) −7.18803 + 7.71557i −0.551297 + 0.591757i
\(171\) −4.68190 10.5157i −0.358034 0.804157i
\(172\) 5.77997 15.0573i 0.440718 1.14811i
\(173\) −7.47674 + 11.5132i −0.568446 + 0.875330i −0.999637 0.0269305i \(-0.991427\pi\)
0.431191 + 0.902260i \(0.358093\pi\)
\(174\) 2.19644 0.166512
\(175\) −0.790077 13.2051i −0.0597242 0.998215i
\(176\) −3.27522 −0.246879
\(177\) 3.11068 4.79002i 0.233813 0.360040i
\(178\) −7.94621 + 20.7006i −0.595594 + 1.55158i
\(179\) −0.654680 1.47044i −0.0489331 0.109906i 0.887425 0.460953i \(-0.152492\pi\)
−0.936358 + 0.351047i \(0.885826\pi\)
\(180\) −12.0245 + 2.34327i −0.896255 + 0.174657i
\(181\) 2.04450 + 2.81402i 0.151967 + 0.209164i 0.878212 0.478271i \(-0.158736\pi\)
−0.726245 + 0.687436i \(0.758736\pi\)
\(182\) −10.5633 + 23.0398i −0.783005 + 1.70783i
\(183\) 4.35096 + 0.689125i 0.321632 + 0.0509416i
\(184\) −3.59475 3.23672i −0.265008 0.238614i
\(185\) 11.9168 7.45434i 0.876142 0.548054i
\(186\) 11.8385 + 13.1480i 0.868040 + 0.964056i
\(187\) −2.36565 + 0.123978i −0.172993 + 0.00906619i
\(188\) −0.661452 0.337027i −0.0482414 0.0245802i
\(189\) −5.41210 + 10.3390i −0.393672 + 0.752050i
\(190\) 20.5755 + 10.9276i 1.49270 + 0.792773i
\(191\) −1.98374 + 2.20317i −0.143538 + 0.159415i −0.810627 0.585563i \(-0.800874\pi\)
0.667089 + 0.744978i \(0.267540\pi\)
\(192\) −5.56517 + 6.87242i −0.401632 + 0.495974i
\(193\) −16.4661 + 4.41207i −1.18525 + 0.317588i −0.797009 0.603968i \(-0.793586\pi\)
−0.388246 + 0.921556i \(0.626919\pi\)
\(194\) −9.46849 4.21564i −0.679798 0.302665i
\(195\) −8.04786 2.76682i −0.576319 0.198136i
\(196\) −16.5452 + 1.37159i −1.18180 + 0.0979705i
\(197\) 19.1171 3.02785i 1.36204 0.215725i 0.567716 0.823225i \(-0.307827\pi\)
0.794320 + 0.607499i \(0.207827\pi\)
\(198\) −4.25441 2.76285i −0.302348 0.196347i
\(199\) 0.0959424 0.166177i 0.00680118 0.0117800i −0.862605 0.505878i \(-0.831168\pi\)
0.869406 + 0.494098i \(0.164502\pi\)
\(200\) 2.54665 2.93523i 0.180076 0.207552i
\(201\) −8.83596 + 5.10144i −0.623240 + 0.359828i
\(202\) 28.3174 14.4284i 1.99241 1.01518i
\(203\) 0.0368211 3.34577i 0.00258434 0.234827i
\(204\) −2.61179 + 3.59482i −0.182862 + 0.251688i
\(205\) 9.15670 + 8.53062i 0.639532 + 0.595805i
\(206\) −14.1176 + 1.48382i −0.983621 + 0.103383i
\(207\) 3.72111 + 13.8874i 0.258635 + 0.965239i
\(208\) 13.3388 5.12030i 0.924883 0.355029i
\(209\) 1.61728 + 4.97747i 0.111869 + 0.344299i
\(210\) −1.85425 10.1063i −0.127955 0.697398i
\(211\) 1.96658 6.05250i 0.135385 0.416671i −0.860265 0.509847i \(-0.829702\pi\)
0.995650 + 0.0931759i \(0.0297019\pi\)
\(212\) −0.0347694 0.663440i −0.00238797 0.0455652i
\(213\) −1.43441 + 0.931518i −0.0982843 + 0.0638266i
\(214\) −30.5615 + 27.5177i −2.08914 + 1.88107i
\(215\) 4.18443 14.6191i 0.285376 0.997013i
\(216\) −3.26028 + 1.05933i −0.221834 + 0.0720783i
\(217\) 20.2263 17.8128i 1.37305 1.20921i
\(218\) −28.2665 28.2665i −1.91445 1.91445i
\(219\) −0.437905 + 0.983550i −0.0295908 + 0.0664621i
\(220\) 5.54857 0.488097i 0.374085 0.0329075i
\(221\) 9.44064 4.20325i 0.635046 0.282741i
\(222\) 8.48463 6.87072i 0.569451 0.461132i
\(223\) 6.05349 + 11.8807i 0.405372 + 0.795587i 0.999964 0.00843996i \(-0.00268655\pi\)
−0.594592 + 0.804027i \(0.702687\pi\)
\(224\) 16.4534 + 13.6262i 1.09934 + 0.910441i
\(225\) −11.0996 + 3.19419i −0.739974 + 0.212946i
\(226\) −9.12431 15.8038i −0.606940 1.05125i
\(227\) 0.253949 4.84563i 0.0168552 0.321616i −0.977170 0.212461i \(-0.931852\pi\)
0.994025 0.109155i \(-0.0348145\pi\)
\(228\) 9.16491 + 3.51808i 0.606961 + 0.232991i
\(229\) −0.698945 + 6.65002i −0.0461876 + 0.439446i 0.946852 + 0.321668i \(0.104244\pi\)
−0.993040 + 0.117777i \(0.962423\pi\)
\(230\) −23.2475 17.5009i −1.53290 1.15398i
\(231\) 1.27837 1.92189i 0.0841108 0.126451i
\(232\) 0.695011 0.695011i 0.0456297 0.0456297i
\(233\) −3.09426 8.06082i −0.202712 0.528082i 0.794108 0.607777i \(-0.207939\pi\)
−0.996819 + 0.0796953i \(0.974605\pi\)
\(234\) 21.6461 + 4.60101i 1.41505 + 0.300778i
\(235\) −0.649068 0.261881i −0.0423405 0.0170832i
\(236\) −3.39053 15.9512i −0.220704 1.03833i
\(237\) −4.08631 + 8.01983i −0.265434 + 0.520944i
\(238\) 10.0128 + 7.44447i 0.649036 + 0.482553i
\(239\) −18.2461 5.92852i −1.18024 0.383484i −0.347785 0.937574i \(-0.613066\pi\)
−0.832457 + 0.554090i \(0.813066\pi\)
\(240\) −3.23663 + 4.80343i −0.208924 + 0.310060i
\(241\) −5.39578 + 25.3851i −0.347572 + 1.63520i 0.363152 + 0.931730i \(0.381700\pi\)
−0.710725 + 0.703470i \(0.751633\pi\)
\(242\) −16.0815 13.0226i −1.03376 0.837122i
\(243\) 15.4021 + 4.12698i 0.988046 + 0.264746i
\(244\) 10.1757 7.39308i 0.651433 0.473294i
\(245\) −15.4256 + 2.65510i −0.985508 + 0.169628i
\(246\) 7.86390 + 5.71346i 0.501384 + 0.364277i
\(247\) −14.3681 17.7432i −0.914222 1.12897i
\(248\) 7.90636 + 0.414355i 0.502054 + 0.0263115i
\(249\) 2.66617 + 1.53932i 0.168962 + 0.0975502i
\(250\) 13.7134 18.9316i 0.867312 1.19734i
\(251\) 15.4133i 0.972880i −0.873714 0.486440i \(-0.838295\pi\)
0.873714 0.486440i \(-0.161705\pi\)
\(252\) 4.32730 + 13.8343i 0.272594 + 0.871476i
\(253\) −1.02259 6.45639i −0.0642898 0.405910i
\(254\) 27.0158 + 2.83947i 1.69512 + 0.178164i
\(255\) −2.15595 + 3.59197i −0.135011 + 0.224938i
\(256\) −0.890203 8.46971i −0.0556377 0.529357i
\(257\) 7.91188 29.5275i 0.493529 1.84188i −0.0445856 0.999006i \(-0.514197\pi\)
0.538115 0.842871i \(-0.319137\pi\)
\(258\) 1.84762 11.6654i 0.115028 0.726257i
\(259\) −10.3237 13.0395i −0.641484 0.810238i
\(260\) −21.8344 + 10.6622i −1.35411 + 0.661241i
\(261\) −2.85754 + 0.607389i −0.176877 + 0.0375964i
\(262\) −4.03432 6.21231i −0.249241 0.383798i
\(263\) 0.222055 + 0.341935i 0.0136925 + 0.0210846i 0.845451 0.534054i \(-0.179332\pi\)
−0.831758 + 0.555138i \(0.812665\pi\)
\(264\) 0.663232 0.140974i 0.0408191 0.00867637i
\(265\) −0.0874667 0.620217i −0.00537304 0.0380996i
\(266\) 10.1613 25.6245i 0.623027 1.57114i
\(267\) −1.37803 + 8.70053i −0.0843340 + 0.532464i
\(268\) −7.53982 + 28.1390i −0.460568 + 1.71886i
\(269\) 2.00211 + 19.0488i 0.122071 + 1.16142i 0.868406 + 0.495854i \(0.165145\pi\)
−0.746335 + 0.665570i \(0.768188\pi\)
\(270\) −18.9786 + 8.06661i −1.15500 + 0.490918i
\(271\) −19.2007 2.01808i −1.16636 0.122589i −0.498509 0.866884i \(-0.666119\pi\)
−0.667851 + 0.744295i \(0.732786\pi\)
\(272\) −1.10028 6.94688i −0.0667141 0.421216i
\(273\) −2.20181 + 9.82572i −0.133259 + 0.594680i
\(274\) 15.8375i 0.956779i
\(275\) 5.17078 0.916822i 0.311810 0.0552865i
\(276\) −10.6188 6.13076i −0.639176 0.369028i
\(277\) 7.63707 + 0.400242i 0.458867 + 0.0240482i 0.280369 0.959892i \(-0.409543\pi\)
0.178497 + 0.983940i \(0.442876\pi\)
\(278\) −11.6340 14.3668i −0.697761 0.861664i
\(279\) −19.0376 13.8316i −1.13975 0.828076i
\(280\) −3.78461 2.61115i −0.226174 0.156046i
\(281\) 15.1432 11.0022i 0.903367 0.656334i −0.0359618 0.999353i \(-0.511449\pi\)
0.939329 + 0.343019i \(0.111449\pi\)
\(282\) −0.525104 0.140701i −0.0312695 0.00837864i
\(283\) 2.21463 + 1.79337i 0.131646 + 0.106605i 0.692882 0.721051i \(-0.256341\pi\)
−0.561236 + 0.827656i \(0.689674\pi\)
\(284\) −1.01532 + 4.77671i −0.0602482 + 0.283446i
\(285\) 8.89816 + 2.54693i 0.527082 + 0.150867i
\(286\) −9.56917 3.10921i −0.565837 0.183852i
\(287\) 8.83496 11.8831i 0.521511 0.701434i
\(288\) 8.46799 16.6194i 0.498981 0.979305i
\(289\) 2.47682 + 11.6525i 0.145695 + 0.685443i
\(290\) 3.79844 4.53118i 0.223052 0.266080i
\(291\) −4.02763 0.856099i −0.236104 0.0501854i
\(292\) 1.10163 + 2.86985i 0.0644682 + 0.167945i
\(293\) −0.584948 + 0.584948i −0.0341730 + 0.0341730i −0.723987 0.689814i \(-0.757692\pi\)
0.689814 + 0.723987i \(0.257692\pi\)
\(294\) −11.6423 + 3.50150i −0.678995 + 0.204212i
\(295\) −4.50217 14.7009i −0.262126 0.855920i
\(296\) 0.510683 4.85883i 0.0296829 0.282414i
\(297\) −4.32490 1.66017i −0.250956 0.0963330i
\(298\) 0.192661 3.67620i 0.0111606 0.212957i
\(299\) 14.2582 + 24.6960i 0.824575 + 1.42821i
\(300\) 4.76735 8.61986i 0.275243 0.497668i
\(301\) −17.7386 3.00998i −1.02244 0.173492i
\(302\) 5.95129 + 11.6801i 0.342458 + 0.672112i
\(303\) 9.81228 7.94583i 0.563701 0.456476i
\(304\) −14.1957 + 6.32033i −0.814179 + 0.362496i
\(305\) 8.94602 7.78414i 0.512248 0.445718i
\(306\) 4.43089 9.95194i 0.253297 0.568915i
\(307\) 10.4006 + 10.4006i 0.593593 + 0.593593i 0.938600 0.345007i \(-0.112123\pi\)
−0.345007 + 0.938600i \(0.612123\pi\)
\(308\) −1.29922 6.46118i −0.0740299 0.368160i
\(309\) −5.36350 + 1.74271i −0.305119 + 0.0991391i
\(310\) 47.5968 1.68479i 2.70332 0.0956895i
\(311\) 8.83036 7.95089i 0.500724 0.450854i −0.379653 0.925129i \(-0.623957\pi\)
0.880377 + 0.474275i \(0.157290\pi\)
\(312\) −2.48073 + 1.61100i −0.140443 + 0.0912050i
\(313\) 0.527196 + 10.0595i 0.0297989 + 0.568597i 0.972206 + 0.234128i \(0.0752235\pi\)
−0.942407 + 0.334469i \(0.891443\pi\)
\(314\) 6.98263 21.4903i 0.394053 1.21277i
\(315\) 5.20707 + 12.6354i 0.293385 + 0.711921i
\(316\) 7.94161 + 24.4418i 0.446750 + 1.37496i
\(317\) −17.6502 + 6.77528i −0.991335 + 0.380538i −0.799354 0.600861i \(-0.794825\pi\)
−0.191981 + 0.981399i \(0.561491\pi\)
\(318\) −0.125915 0.469921i −0.00706096 0.0263519i
\(319\) 1.32098 0.138841i 0.0739606 0.00777358i
\(320\) 4.55336 + 23.3656i 0.254540 + 1.30618i
\(321\) −9.60316 + 13.2176i −0.535996 + 0.737736i
\(322\) −17.5421 + 29.6260i −0.977581 + 1.65099i
\(323\) −10.0141 + 5.10245i −0.557200 + 0.283908i
\(324\) 6.70866 3.87325i 0.372703 0.215180i
\(325\) −19.6255 + 11.8176i −1.08863 + 0.655524i
\(326\) 5.83254 10.1023i 0.323035 0.559512i
\(327\) −13.3190 8.64948i −0.736544 0.478317i
\(328\) 4.29622 0.680455i 0.237219 0.0375719i
\(329\) −0.223129 + 0.797516i −0.0123015 + 0.0439685i
\(330\) 3.90007 1.19440i 0.214692 0.0657495i
\(331\) 28.4245 + 12.6554i 1.56235 + 0.695605i 0.992052 0.125830i \(-0.0401594\pi\)
0.570302 + 0.821435i \(0.306826\pi\)
\(332\) 8.49070 2.27508i 0.465988 0.124861i
\(333\) −9.13840 + 11.2850i −0.500781 + 0.618414i
\(334\) 14.6694 16.2920i 0.802675 0.891461i
\(335\) −4.75647 + 27.0505i −0.259874 + 1.47793i
\(336\) 6.07176 + 3.17836i 0.331241 + 0.173394i
\(337\) −31.0198 15.8054i −1.68976 0.860974i −0.989060 0.147514i \(-0.952873\pi\)
−0.700696 0.713460i \(-0.747127\pi\)
\(338\) 16.6887 0.874620i 0.907748 0.0475730i
\(339\) −4.85105 5.38763i −0.263473 0.292616i
\(340\) 2.89926 + 11.6048i 0.157235 + 0.629358i
\(341\) 7.95098 + 7.15909i 0.430570 + 0.387687i
\(342\) −23.7714 3.76502i −1.28541 0.203589i
\(343\) 5.13855 + 17.7931i 0.277456 + 0.960738i
\(344\) −3.10660 4.27587i −0.167497 0.230540i
\(345\) −10.4795 4.88059i −0.564195 0.262762i
\(346\) 11.6746 + 26.2216i 0.627631 + 1.40968i
\(347\) −9.65416 + 25.1500i −0.518263 + 1.35012i 0.385746 + 0.922605i \(0.373944\pi\)
−0.904008 + 0.427515i \(0.859389\pi\)
\(348\) 1.35695 2.08952i 0.0727403 0.112010i
\(349\) −28.9278 −1.54847 −0.774236 0.632897i \(-0.781866\pi\)
−0.774236 + 0.632897i \(0.781866\pi\)
\(350\) −24.0555 13.6521i −1.28582 0.729737i
\(351\) 20.2092 1.07869
\(352\) −4.61887 + 7.11244i −0.246187 + 0.379094i
\(353\) 4.18132 10.8927i 0.222549 0.579760i −0.776161 0.630535i \(-0.782836\pi\)
0.998710 + 0.0507745i \(0.0161690\pi\)
\(354\) −4.85719 10.9094i −0.258157 0.579830i
\(355\) −0.558928 + 4.57008i −0.0296648 + 0.242554i
\(356\) 14.7838 + 20.3482i 0.783540 + 1.07845i
\(357\) 4.50586 + 2.06585i 0.238475 + 0.109336i
\(358\) −3.32401 0.526471i −0.175679 0.0278248i
\(359\) 3.30837 + 2.97887i 0.174609 + 0.157219i 0.751802 0.659389i \(-0.229185\pi\)
−0.577192 + 0.816608i \(0.695852\pi\)
\(360\) −1.50209 + 3.72290i −0.0791671 + 0.196214i
\(361\) 3.90148 + 4.33303i 0.205341 + 0.228054i
\(362\) 7.26272 0.380623i 0.381720 0.0200051i
\(363\) −7.32488 3.73221i −0.384456 0.195890i
\(364\) 15.3923 + 24.2830i 0.806778 + 1.27278i
\(365\) 1.27173 + 2.60430i 0.0665656 + 0.136315i
\(366\) 6.16314 6.84486i 0.322152 0.357787i
\(367\) −16.1627 + 19.9593i −0.843688 + 1.04187i 0.154857 + 0.987937i \(0.450508\pi\)
−0.998545 + 0.0539306i \(0.982825\pi\)
\(368\) 18.7473 5.02332i 0.977269 0.261858i
\(369\) −11.8108 5.25850i −0.614845 0.273747i
\(370\) 0.498942 29.3854i 0.0259387 1.52768i
\(371\) −0.717927 + 0.183925i −0.0372729 + 0.00954889i
\(372\) 19.8217 3.13945i 1.02771 0.162773i
\(373\) −30.0355 19.5053i −1.55518 1.00994i −0.981635 0.190770i \(-0.938902\pi\)
−0.573544 0.819175i \(-0.694432\pi\)
\(374\) −2.47652 + 4.28945i −0.128058 + 0.221802i
\(375\) 3.76525 8.48948i 0.194437 0.438395i
\(376\) −0.210678 + 0.121635i −0.0108649 + 0.00627285i
\(377\) −5.16284 + 2.63060i −0.265900 + 0.135483i
\(378\) 11.9667 + 21.2640i 0.615503 + 1.09370i
\(379\) −13.3436 + 18.3659i −0.685416 + 0.943394i −0.999983 0.00584095i \(-0.998141\pi\)
0.314567 + 0.949235i \(0.398141\pi\)
\(380\) 23.1071 12.8229i 1.18537 0.657799i
\(381\) 10.7328 1.12806i 0.549857 0.0577923i
\(382\) 1.60434 + 5.98747i 0.0820850 + 0.306346i
\(383\) 20.3079 7.79546i 1.03768 0.398330i 0.220914 0.975293i \(-0.429096\pi\)
0.816770 + 0.576964i \(0.195763\pi\)
\(384\) 1.56841 + 4.82707i 0.0800375 + 0.246330i
\(385\) −1.75401 5.96088i −0.0893927 0.303794i
\(386\) −11.0142 + 33.8984i −0.560610 + 1.72538i
\(387\) 0.822146 + 15.6875i 0.0417920 + 0.797439i
\(388\) −9.86003 + 6.40318i −0.500567 + 0.325072i
\(389\) 9.65968 8.69762i 0.489765 0.440987i −0.386876 0.922132i \(-0.626446\pi\)
0.876641 + 0.481145i \(0.159779\pi\)
\(390\) −14.0164 + 10.9615i −0.709747 + 0.555059i
\(391\) 13.3507 4.33792i 0.675176 0.219378i
\(392\) −2.57597 + 4.79190i −0.130106 + 0.242028i
\(393\) −2.08085 2.08085i −0.104965 0.104965i
\(394\) 16.4604 36.9707i 0.829264 1.86256i
\(395\) 9.47793 + 22.2991i 0.476886 + 1.12199i
\(396\) −5.25672 + 2.34044i −0.264160 + 0.117612i
\(397\) −3.71351 + 3.00714i −0.186376 + 0.150924i −0.717968 0.696077i \(-0.754927\pi\)
0.531592 + 0.847001i \(0.321594\pi\)
\(398\) −0.182143 0.357476i −0.00913002 0.0179187i
\(399\) 1.83208 10.7969i 0.0917187 0.540522i
\(400\) 4.31200 + 14.9839i 0.215600 + 0.749196i
\(401\) 7.58351 + 13.1350i 0.378702 + 0.655932i 0.990874 0.134793i \(-0.0430370\pi\)
−0.612171 + 0.790725i \(0.709704\pi\)
\(402\) −1.11647 + 21.3036i −0.0556847 + 1.06253i
\(403\) −43.5737 16.7264i −2.17056 0.833201i
\(404\) 3.76828 35.8528i 0.187479 1.78374i
\(405\) 5.98064 4.19193i 0.297180 0.208299i
\(406\) −5.82504 3.87462i −0.289092 0.192294i
\(407\) 4.66850 4.66850i 0.231409 0.231409i
\(408\) 0.521819 + 1.35938i 0.0258339 + 0.0672996i
\(409\) 10.0531 + 2.13685i 0.497094 + 0.105661i 0.449634 0.893213i \(-0.351554\pi\)
0.0474592 + 0.998873i \(0.484888\pi\)
\(410\) 25.3862 6.34232i 1.25373 0.313225i
\(411\) −1.30816 6.15440i −0.0645267 0.303574i
\(412\) −7.31021 + 14.3471i −0.360148 + 0.706831i
\(413\) −16.6994 + 7.21593i −0.821725 + 0.355073i
\(414\) 28.5896 + 9.28933i 1.40510 + 0.456546i
\(415\) 7.78634 2.83819i 0.382216 0.139321i
\(416\) 7.69187 36.1874i 0.377125 1.77423i
\(417\) −5.70761 4.62194i −0.279503 0.226337i
\(418\) 10.5699 + 2.83220i 0.516992 + 0.138528i
\(419\) 14.4852 10.5241i 0.707648 0.514137i −0.174766 0.984610i \(-0.555917\pi\)
0.882414 + 0.470473i \(0.155917\pi\)
\(420\) −10.7599 4.47962i −0.525027 0.218583i
\(421\) 13.5865 + 9.87120i 0.662168 + 0.481093i 0.867394 0.497621i \(-0.165793\pi\)
−0.205227 + 0.978714i \(0.565793\pi\)
\(422\) −8.37387 10.3409i −0.407634 0.503386i
\(423\) 0.722062 + 0.0378417i 0.0351079 + 0.00183992i
\(424\) −0.188538 0.108852i −0.00915621 0.00528634i
\(425\) 3.68169 + 10.6595i 0.178588 + 0.517059i
\(426\) 3.57609i 0.173262i
\(427\) −10.3232 9.50286i −0.499577 0.459876i
\(428\) 7.29743 + 46.0741i 0.352734 + 2.22708i
\(429\) −3.97536 0.417827i −0.191932 0.0201729i
\(430\) −20.8701 23.9853i −1.00645 1.15667i
\(431\) 0.935006 + 8.89599i 0.0450377 + 0.428505i 0.993688 + 0.112178i \(0.0357828\pi\)
−0.948650 + 0.316326i \(0.897551\pi\)
\(432\) 3.55996 13.2859i 0.171278 0.639220i
\(433\) 2.75652 17.4040i 0.132470 0.836382i −0.828552 0.559912i \(-0.810835\pi\)
0.961022 0.276471i \(-0.0891649\pi\)
\(434\) −8.20245 55.7524i −0.393730 2.67620i
\(435\) 1.10179 2.07455i 0.0528269 0.0994670i
\(436\) −44.3534 + 9.42761i −2.12414 + 0.451501i
\(437\) −16.8914 26.0104i −0.808024 1.24425i
\(438\) 1.22603 + 1.88792i 0.0585819 + 0.0902083i
\(439\) −26.8046 + 5.69749i −1.27931 + 0.271926i −0.796950 0.604045i \(-0.793555\pi\)
−0.482363 + 0.875972i \(0.660221\pi\)
\(440\) 0.856143 1.61202i 0.0408150 0.0768501i
\(441\) 14.1783 7.77490i 0.675155 0.370233i
\(442\) 3.38010 21.3411i 0.160775 1.01509i
\(443\) 2.86872 10.7062i 0.136297 0.508667i −0.863692 0.504019i \(-0.831854\pi\)
0.999989 0.00464732i \(-0.00147929\pi\)
\(444\) −1.29450 12.3163i −0.0614341 0.584506i
\(445\) 15.5658 + 17.8892i 0.737889 + 0.848029i
\(446\) 27.7268 + 2.91420i 1.31290 + 0.137992i
\(447\) −0.228782 1.44447i −0.0108210 0.0683212i
\(448\) 26.8823 8.40866i 1.27007 0.397272i
\(449\) 40.1154i 1.89316i −0.322465 0.946581i \(-0.604511\pi\)
0.322465 0.946581i \(-0.395489\pi\)
\(450\) −7.03869 + 23.1011i −0.331807 + 1.08900i
\(451\) 5.09064 + 2.93909i 0.239709 + 0.138396i
\(452\) −20.6714 1.08334i −0.972303 0.0509562i
\(453\) 3.27741 + 4.04726i 0.153986 + 0.190157i
\(454\) −8.20786 5.96336i −0.385214 0.279874i
\(455\) 16.4624 + 21.5345i 0.771769 + 1.00955i
\(456\) 2.60259 1.89089i 0.121877 0.0885490i
\(457\) 32.8230 + 8.79489i 1.53539 + 0.411408i 0.924774 0.380516i \(-0.124254\pi\)
0.610620 + 0.791924i \(0.290920\pi\)
\(458\) 10.8652 + 8.79845i 0.507697 + 0.411125i
\(459\) 2.06839 9.73101i 0.0965441 0.454204i
\(460\) −31.0113 + 11.3039i −1.44591 + 0.527046i
\(461\) −30.0506 9.76402i −1.39959 0.454756i −0.490535 0.871422i \(-0.663198\pi\)
−0.909060 + 0.416666i \(0.863198\pi\)
\(462\) −1.91435 4.43027i −0.0890634 0.206115i
\(463\) −8.64582 + 16.9684i −0.401805 + 0.788587i −0.999918 0.0128250i \(-0.995918\pi\)
0.598113 + 0.801412i \(0.295918\pi\)
\(464\) 0.819946 + 3.85754i 0.0380650 + 0.179082i
\(465\) 18.3568 4.58614i 0.851276 0.212677i
\(466\) −17.6587 3.75346i −0.818021 0.173876i
\(467\) −2.13538 5.56287i −0.0988138 0.257419i 0.875259 0.483655i \(-0.160691\pi\)
−0.974072 + 0.226236i \(0.927358\pi\)
\(468\) 17.7499 17.7499i 0.820489 0.820489i
\(469\) 32.4324 + 2.05782i 1.49759 + 0.0950215i
\(470\) −1.19836 + 0.839948i −0.0552761 + 0.0387439i
\(471\) 0.938352 8.92782i 0.0432370 0.411372i
\(472\) −4.98897 1.91509i −0.229636 0.0881489i
\(473\) 0.373803 7.13258i 0.0171875 0.327956i
\(474\) 9.40980 + 16.2982i 0.432206 + 0.748603i
\(475\) 20.6424 13.9520i 0.947137 0.640164i
\(476\) 13.2680 4.92627i 0.608137 0.225795i
\(477\) 0.293762 + 0.576541i 0.0134505 + 0.0263980i
\(478\) −31.1740 + 25.2442i −1.42586 + 1.15464i
\(479\) 19.0483 8.48083i 0.870338 0.387499i 0.0775436 0.996989i \(-0.475292\pi\)
0.792794 + 0.609490i \(0.208626\pi\)
\(480\) 5.86663 + 13.8027i 0.267774 + 0.630002i
\(481\) −11.7147 + 26.3117i −0.534145 + 1.19971i
\(482\) 38.3695 + 38.3695i 1.74768 + 1.74768i
\(483\) −4.36972 + 12.9615i −0.198829 + 0.589769i
\(484\) −22.3238 + 7.25343i −1.01472 + 0.329701i
\(485\) −8.73133 + 6.82835i −0.396469 + 0.310060i
\(486\) 24.7763 22.3086i 1.12387 1.01194i
\(487\) 24.6153 15.9853i 1.11542 0.724365i 0.150950 0.988541i \(-0.451767\pi\)
0.964474 + 0.264176i \(0.0851001\pi\)
\(488\) −0.215714 4.11607i −0.00976491 0.186326i
\(489\) 1.43207 4.40746i 0.0647605 0.199312i
\(490\) −12.9104 + 30.0731i −0.583231 + 1.35856i
\(491\) −5.56395 17.1241i −0.251097 0.772798i −0.994574 0.104036i \(-0.966824\pi\)
0.743476 0.668762i \(-0.233176\pi\)
\(492\) 10.2936 3.95135i 0.464072 0.178141i
\(493\) 0.738256 + 2.75521i 0.0332494 + 0.124088i
\(494\) −47.4754 + 4.98986i −2.13602 + 0.224505i
\(495\) −4.74364 + 2.63240i −0.213211 + 0.118317i
\(496\) −18.6720 + 25.6998i −0.838396 + 1.15395i
\(497\) 5.44735 + 0.0599495i 0.244347 + 0.00268910i
\(498\) 5.73541 2.92234i 0.257010 0.130953i
\(499\) −4.60639 + 2.65950i −0.206210 + 0.119056i −0.599549 0.800338i \(-0.704653\pi\)
0.393339 + 0.919394i \(0.371320\pi\)
\(500\) −9.53800 24.7417i −0.426552 1.10648i
\(501\) 4.35478 7.54270i 0.194557 0.336983i
\(502\) −27.0280 17.5522i −1.20632 0.783391i
\(503\) 26.0759 4.13001i 1.16267 0.184148i 0.454865 0.890560i \(-0.349687\pi\)
0.707801 + 0.706412i \(0.249687\pi\)
\(504\) 4.57437 + 1.27982i 0.203759 + 0.0570075i
\(505\) 0.577015 33.9836i 0.0256768 1.51225i
\(506\) −12.4861 5.55916i −0.555073 0.247135i
\(507\) 6.41294 1.71834i 0.284809 0.0763143i
\(508\) 19.3915 23.9465i 0.860359 1.06245i
\(509\) 2.99499 3.32627i 0.132750 0.147434i −0.673104 0.739548i \(-0.735040\pi\)
0.805855 + 0.592113i \(0.201706\pi\)
\(510\) 3.84356 + 7.87096i 0.170196 + 0.348532i
\(511\) 2.89636 1.83592i 0.128127 0.0812164i
\(512\) −26.7543 13.6320i −1.18238 0.602454i
\(513\) −21.9490 + 1.15030i −0.969072 + 0.0507869i
\(514\) −42.7681 47.4988i −1.88642 2.09508i
\(515\) −5.68028 + 14.0785i −0.250303 + 0.620372i
\(516\) −9.95612 8.96453i −0.438294 0.394641i
\(517\) −0.324701 0.0514276i −0.0142803 0.00226178i
\(518\) −34.6217 + 3.25411i −1.52119 + 0.142977i
\(519\) 6.70259 + 9.22532i 0.294211 + 0.404947i
\(520\) −0.966631 + 7.90366i −0.0423896 + 0.346598i
\(521\) −10.4542 23.4805i −0.458006 1.02870i −0.983993 0.178206i \(-0.942971\pi\)
0.525987 0.850492i \(-0.323696\pi\)
\(522\) −2.18899 + 5.70250i −0.0958093 + 0.249592i
\(523\) −11.9816 + 18.4501i −0.523920 + 0.806766i −0.997249 0.0741198i \(-0.976385\pi\)
0.473330 + 0.880885i \(0.343052\pi\)
\(524\) −8.40229 −0.367056
\(525\) −10.4755 3.31821i −0.457190 0.144819i
\(526\) 0.852467 0.0371693
\(527\) −12.5137 + 19.2694i −0.545105 + 0.839388i
\(528\) −0.974967 + 2.53988i −0.0424300 + 0.110534i
\(529\) 6.40073 + 14.3763i 0.278292 + 0.625055i
\(530\) −1.18718 0.552905i −0.0515679 0.0240167i
\(531\) 9.33596 + 12.8499i 0.405146 + 0.557636i
\(532\) −18.0996 25.4974i −0.784717 1.10545i
\(533\) −25.3273 4.01144i −1.09705 0.173755i
\(534\) 13.6875 + 12.3243i 0.592317 + 0.533325i
\(535\) 10.6601 + 42.6690i 0.460878 + 1.84474i
\(536\) 6.38773 + 7.09429i 0.275908 + 0.306427i
\(537\) −1.33518 + 0.0699740i −0.0576174 + 0.00301960i
\(538\) 35.6828 + 18.1813i 1.53840 + 0.783852i
\(539\) −6.78058 + 2.84179i −0.292060 + 0.122405i
\(540\) −4.05098 + 23.0383i −0.174326 + 0.991412i
\(541\) 5.42224 6.02201i 0.233120 0.258906i −0.615223 0.788353i \(-0.710934\pi\)
0.848343 + 0.529447i \(0.177601\pi\)
\(542\) −25.4039 + 31.3712i −1.09119 + 1.34751i
\(543\) 2.79083 0.747801i 0.119766 0.0320912i
\(544\) −16.6374 7.40747i −0.713324 0.317592i
\(545\) −40.8770 + 12.5186i −1.75098 + 0.536239i
\(546\) 14.7225 + 15.0502i 0.630065 + 0.644088i
\(547\) 19.0836 3.02255i 0.815958 0.129235i 0.265514 0.964107i \(-0.414458\pi\)
0.550444 + 0.834872i \(0.314458\pi\)
\(548\) −15.0666 9.78435i −0.643612 0.417967i
\(549\) −6.12533 + 10.6094i −0.261423 + 0.452797i
\(550\) 4.28062 10.1113i 0.182526 0.431145i
\(551\) 5.45756 3.15092i 0.232500 0.134234i
\(552\) −3.58011 + 1.82416i −0.152379 + 0.0776412i
\(553\) 24.9844 14.0604i 1.06244 0.597910i
\(554\) 9.39867 12.9362i 0.399311 0.549605i
\(555\) −2.23331 11.4603i −0.0947989 0.486462i
\(556\) −20.8549 + 2.19194i −0.884445 + 0.0929589i
\(557\) 4.82211 + 17.9964i 0.204320 + 0.762531i 0.989656 + 0.143462i \(0.0458234\pi\)
−0.785336 + 0.619069i \(0.787510\pi\)
\(558\) −45.9337 + 17.6323i −1.94453 + 0.746434i
\(559\) 9.62832 + 29.6329i 0.407235 + 1.25334i
\(560\) 17.0571 7.02929i 0.720794 0.297042i
\(561\) −0.608062 + 1.87142i −0.0256724 + 0.0790116i
\(562\) −2.04826 39.0832i −0.0864007 1.64862i
\(563\) 18.1325 11.7754i 0.764193 0.496273i −0.102734 0.994709i \(-0.532759\pi\)
0.866926 + 0.498436i \(0.166092\pi\)
\(564\) −0.458259 + 0.412619i −0.0192962 + 0.0173744i
\(565\) −19.5037 + 0.690374i −0.820527 + 0.0290443i
\(566\) 5.66670 1.84122i 0.238189 0.0773923i
\(567\) −5.71131 6.48517i −0.239852 0.272352i
\(568\) 1.13157 + 1.13157i 0.0474795 + 0.0474795i
\(569\) −16.3273 + 36.6716i −0.684474 + 1.53735i 0.151424 + 0.988469i \(0.451614\pi\)
−0.835898 + 0.548885i \(0.815053\pi\)
\(570\) 14.5991 12.7030i 0.611488 0.532070i
\(571\) 30.4188 13.5433i 1.27299 0.566770i 0.344727 0.938703i \(-0.387971\pi\)
0.928260 + 0.371932i \(0.121305\pi\)
\(572\) −8.86966 + 7.18251i −0.370859 + 0.300316i
\(573\) 1.11800 + 2.19419i 0.0467050 + 0.0916638i
\(574\) −10.7765 29.0245i −0.449803 1.21146i
\(575\) −28.1913 + 13.1785i −1.17566 + 0.549580i
\(576\) −12.2962 21.2976i −0.512342 0.887402i
\(577\) −0.300036 + 5.72503i −0.0124907 + 0.238336i 0.985248 + 0.171130i \(0.0547418\pi\)
−0.997739 + 0.0672061i \(0.978592\pi\)
\(578\) 23.2538 + 8.92628i 0.967229 + 0.371284i
\(579\) −1.48014 + 14.0825i −0.0615123 + 0.585251i
\(580\) −1.96395 6.41289i −0.0815487 0.266281i
\(581\) −4.35536 8.78556i −0.180691 0.364487i
\(582\) −6.08774 + 6.08774i −0.252345 + 0.252345i
\(583\) −0.105432 0.274660i −0.00436654 0.0113752i
\(584\) 0.985333 + 0.209439i 0.0407734 + 0.00866665i
\(585\) 15.2039 18.1368i 0.628604 0.749865i
\(586\) 0.359614 + 1.69185i 0.0148555 + 0.0698898i
\(587\) −5.48135 + 10.7577i −0.226239 + 0.444020i −0.976024 0.217662i \(-0.930157\pi\)
0.749785 + 0.661682i \(0.230157\pi\)
\(588\) −3.86154 + 13.2388i −0.159247 + 0.545960i
\(589\) 48.2769 + 15.6861i 1.98922 + 0.646335i
\(590\) −30.9056 8.84614i −1.27236 0.364190i
\(591\) 3.34273 15.7263i 0.137501 0.646893i
\(592\) 15.2342 + 12.3364i 0.626121 + 0.507023i
\(593\) 41.9372 + 11.2370i 1.72215 + 0.461449i 0.978351 0.206951i \(-0.0663541\pi\)
0.743802 + 0.668401i \(0.233021\pi\)
\(594\) −7.83623 + 5.69336i −0.321525 + 0.233601i
\(595\) 12.0540 5.72283i 0.494167 0.234613i
\(596\) −3.37823 2.45442i −0.138377 0.100537i
\(597\) −0.100307 0.123869i −0.00410531 0.00506963i
\(598\) 59.5424 + 3.12048i 2.43487 + 0.127606i
\(599\) 0.677665 + 0.391250i 0.0276887 + 0.0159860i 0.513780 0.857922i \(-0.328245\pi\)
−0.486092 + 0.873908i \(0.661578\pi\)
\(600\) −1.51813 2.84864i −0.0619774 0.116295i
\(601\) 7.23002i 0.294919i −0.989068 0.147459i \(-0.952890\pi\)
0.989068 0.147459i \(-0.0471095\pi\)
\(602\) −25.4783 + 27.6778i −1.03842 + 1.12806i
\(603\) −4.43864 28.0244i −0.180755 1.14124i
\(604\) 14.7882 + 1.55430i 0.601723 + 0.0632436i
\(605\) −20.3668 + 8.65662i −0.828027 + 0.351942i
\(606\) −2.75948 26.2547i −0.112096 1.06653i
\(607\) −0.459640 + 1.71540i −0.0186562 + 0.0696260i −0.974626 0.223838i \(-0.928141\pi\)
0.955970 + 0.293464i \(0.0948080\pi\)
\(608\) −6.29427 + 39.7405i −0.255267 + 1.61169i
\(609\) −2.58363 1.02452i −0.104694 0.0415158i
\(610\) −3.46241 24.5516i −0.140189 0.994064i
\(611\) 1.40279 0.298173i 0.0567510 0.0120628i
\(612\) −6.73012 10.3635i −0.272049 0.418919i
\(613\) 0.596749 + 0.918913i 0.0241025 + 0.0371145i 0.850516 0.525948i \(-0.176290\pi\)
−0.826414 + 0.563063i \(0.809623\pi\)
\(614\) 30.0818 6.39408i 1.21400 0.258044i
\(615\) 9.34112 4.56147i 0.376670 0.183936i
\(616\) −2.00760 0.796102i −0.0808884 0.0320759i
\(617\) 5.03752 31.8056i 0.202803 1.28045i −0.650691 0.759343i \(-0.725521\pi\)
0.853494 0.521103i \(-0.174479\pi\)
\(618\) −3.05185 + 11.3897i −0.122764 + 0.458160i
\(619\) −1.93430 18.4036i −0.0777461 0.739705i −0.962065 0.272821i \(-0.912043\pi\)
0.884319 0.466884i \(-0.154623\pi\)
\(620\) 27.8023 46.3208i 1.11657 1.86029i
\(621\) 27.3018 + 2.86954i 1.09559 + 0.115151i
\(622\) −3.88654 24.5386i −0.155836 0.983910i
\(623\) 19.0027 20.6432i 0.761326 0.827051i
\(624\) 11.8683i 0.475111i
\(625\) −11.0020 22.4490i −0.440081 0.897958i
\(626\) 18.2402 + 10.5310i 0.729023 + 0.420902i
\(627\) 4.34137 + 0.227522i 0.173378 + 0.00908634i
\(628\) −16.1304 19.9194i −0.643673 0.794869i
\(629\) 11.4704 + 8.33374i 0.457355 + 0.332288i
\(630\) 28.0863 + 5.25787i 1.11899 + 0.209479i
\(631\) 20.5730 14.9472i 0.818998 0.595037i −0.0974273 0.995243i \(-0.531061\pi\)
0.916425 + 0.400206i \(0.131061\pi\)
\(632\) 8.13469 + 2.17968i 0.323580 + 0.0867031i
\(633\) −4.10820 3.32675i −0.163286 0.132227i
\(634\) −8.21870 + 38.6659i −0.326406 + 1.53562i
\(635\) 16.2337 24.0922i 0.644215 0.956069i
\(636\) −0.524836 0.170530i −0.0208111 0.00676194i
\(637\) 23.1723 22.1740i 0.918118 0.878568i
\(638\) 1.26082 2.47450i 0.0499165 0.0979666i
\(639\) −0.988908 4.65245i −0.0391206 0.184048i
\(640\) 12.6704 + 5.11217i 0.500842 + 0.202076i
\(641\) −36.5968 7.77889i −1.44549 0.307248i −0.582647 0.812725i \(-0.697983\pi\)
−0.862840 + 0.505478i \(0.831316\pi\)
\(642\) 12.2419 + 31.8914i 0.483151 + 1.25865i
\(643\) −14.7951 + 14.7951i −0.583460 + 0.583460i −0.935852 0.352392i \(-0.885368\pi\)
0.352392 + 0.935852i \(0.385368\pi\)
\(644\) 17.3464 + 34.9910i 0.683545 + 1.37884i
\(645\) −10.0912 7.59676i −0.397341 0.299122i
\(646\) −2.45636 + 23.3707i −0.0966442 + 0.919508i
\(647\) −24.1309 9.26299i −0.948684 0.364166i −0.165678 0.986180i \(-0.552981\pi\)
−0.783006 + 0.622014i \(0.786315\pi\)
\(648\) 0.132854 2.53501i 0.00521902 0.0995848i
\(649\) −3.61080 6.25410i −0.141736 0.245495i
\(650\) −1.62612 + 47.8718i −0.0637816 + 1.87769i
\(651\) −7.79252 20.9877i −0.305413 0.822572i
\(652\) −6.00718 11.7898i −0.235259 0.461723i
\(653\) 20.4375 16.5499i 0.799780 0.647649i −0.139723 0.990191i \(-0.544621\pi\)
0.939503 + 0.342542i \(0.111288\pi\)
\(654\) −30.3345 + 13.5058i −1.18617 + 0.528118i
\(655\) −7.89127 + 0.694179i −0.308337 + 0.0271238i
\(656\) −7.09872 + 15.9440i −0.277158 + 0.622508i
\(657\) −2.11712 2.11712i −0.0825967 0.0825967i
\(658\) 1.14439 + 1.29945i 0.0446130 + 0.0506579i
\(659\) −5.69893 + 1.85169i −0.221999 + 0.0721317i −0.417904 0.908491i \(-0.637235\pi\)
0.195906 + 0.980623i \(0.437235\pi\)
\(660\) 1.27319 4.44812i 0.0495588 0.173143i
\(661\) −34.1915 + 30.7862i −1.32990 + 1.19744i −0.366171 + 0.930547i \(0.619332\pi\)
−0.963725 + 0.266897i \(0.914002\pi\)
\(662\) 54.5608 35.4322i 2.12056 1.37711i
\(663\) −0.449254 8.57228i −0.0174476 0.332920i
\(664\) 0.890129 2.73954i 0.0345437 0.106315i
\(665\) −19.1053 22.4513i −0.740873 0.870623i
\(666\) 9.38224 + 28.8756i 0.363555 + 1.11891i
\(667\) −7.34830 + 2.82075i −0.284527 + 0.109220i
\(668\) −6.43627 24.0205i −0.249027 0.929381i
\(669\) 11.0152 1.15775i 0.425874 0.0447612i
\(670\) 42.0178 + 39.1449i 1.62329 + 1.51230i
\(671\) 3.27395 4.50620i 0.126389 0.173960i
\(672\) 15.4648 8.70309i 0.596566 0.335729i
\(673\) −15.5853 + 7.94108i −0.600767 + 0.306106i −0.727797 0.685793i \(-0.759456\pi\)
0.127030 + 0.991899i \(0.459456\pi\)
\(674\) −63.0398 + 36.3960i −2.42820 + 1.40192i
\(675\) −1.90122 + 21.9718i −0.0731781 + 0.845696i
\(676\) 9.47819 16.4167i 0.364546 0.631412i
\(677\) 29.2874 + 19.0194i 1.12560 + 0.730976i 0.966597 0.256301i \(-0.0825038\pi\)
0.159008 + 0.987277i \(0.449170\pi\)
\(678\) −14.9717 + 2.37128i −0.574984 + 0.0910685i
\(679\) 9.17120 + 9.37531i 0.351959 + 0.359792i
\(680\) 3.70678 + 1.27437i 0.142148 + 0.0488700i
\(681\) −3.68211 1.63938i −0.141099 0.0628212i
\(682\) 21.6081 5.78987i 0.827417 0.221706i
\(683\) 25.6066 31.6215i 0.979808 1.20996i 0.00209925 0.999998i \(-0.499332\pi\)
0.977709 0.209965i \(-0.0673349\pi\)
\(684\) −18.2676 + 20.2882i −0.698479 + 0.775740i
\(685\) −14.9586 7.94450i −0.571538 0.303544i
\(686\) 37.0527 + 11.2515i 1.41468 + 0.429585i
\(687\) 4.94891 + 2.52160i 0.188813 + 0.0962049i
\(688\) 21.1773 1.10986i 0.807378 0.0423129i
\(689\) 0.858776 + 0.953767i 0.0327168 + 0.0363356i
\(690\) −20.4920 + 12.8184i −0.780117 + 0.487987i
\(691\) 13.2239 + 11.9069i 0.503062 + 0.452959i 0.881168 0.472803i \(-0.156758\pi\)
−0.378106 + 0.925762i \(0.623425\pi\)
\(692\) 32.1577 + 5.09328i 1.22245 + 0.193618i
\(693\) 3.71565 + 5.23434i 0.141146 + 0.198836i
\(694\) 33.1078 + 45.5689i 1.25675 + 1.72977i
\(695\) −19.4054 + 3.78161i −0.736090 + 0.143445i
\(696\) −0.332078 0.745860i −0.0125874 0.0282717i
\(697\) −4.52377 + 11.7848i −0.171350 + 0.446382i
\(698\) −32.9421 + 50.7263i −1.24688 + 1.92002i
\(699\) −7.17212 −0.271275
\(700\) −27.8490 + 14.4503i −1.05259 + 0.546171i
\(701\) −20.8675 −0.788156 −0.394078 0.919077i \(-0.628936\pi\)
−0.394078 + 0.919077i \(0.628936\pi\)
\(702\) 23.0136 35.4378i 0.868592 1.33752i
\(703\) 11.2255 29.2435i 0.423379 1.10294i
\(704\) 4.54787 + 10.2147i 0.171404 + 0.384980i
\(705\) −0.396299 + 0.425384i −0.0149255 + 0.0160209i
\(706\) −14.3393 19.7364i −0.539667 0.742788i
\(707\) −40.0393 + 3.76330i −1.50583 + 0.141533i
\(708\) −13.3791 2.11905i −0.502819 0.0796387i
\(709\) 0.576558 + 0.519135i 0.0216531 + 0.0194965i 0.679886 0.733318i \(-0.262029\pi\)
−0.658233 + 0.752814i \(0.728696\pi\)
\(710\) 7.37735 + 6.18435i 0.276867 + 0.232095i
\(711\) −16.7490 18.6017i −0.628137 0.697617i
\(712\) 8.23081 0.431359i 0.308463 0.0161658i
\(713\) −56.4913 28.7838i −2.11562 1.07796i
\(714\) 8.75368 5.54871i 0.327598 0.207655i
\(715\) −7.73680 + 7.47846i −0.289340 + 0.279679i
\(716\) −2.55440 + 2.83695i −0.0954624 + 0.106022i
\(717\) −10.0290 + 12.3847i −0.374538 + 0.462516i
\(718\) 8.99106 2.40915i 0.335543 0.0899086i
\(719\) −33.6892 14.9994i −1.25639 0.559383i −0.332888 0.942966i \(-0.608023\pi\)
−0.923506 + 0.383583i \(0.874690\pi\)
\(720\) −9.24524 13.1902i −0.344550 0.491570i
\(721\) 17.2984 + 4.83973i 0.644225 + 0.180241i
\(722\) 12.0411 1.90712i 0.448122 0.0709755i
\(723\) 18.0795 + 11.7410i 0.672384 + 0.436651i
\(724\) 4.12478 7.14434i 0.153296 0.265517i
\(725\) −2.37433 5.86060i −0.0881803 0.217657i
\(726\) −14.8859 + 8.59439i −0.552468 + 0.318968i
\(727\) −17.7421 + 9.04006i −0.658019 + 0.335277i −0.750915 0.660398i \(-0.770387\pi\)
0.0928967 + 0.995676i \(0.470387\pi\)
\(728\) 9.42084 + 0.103679i 0.349160 + 0.00384259i
\(729\) 2.02583 2.78831i 0.0750307 0.103271i
\(730\) 6.01496 + 0.735640i 0.222624 + 0.0272272i
\(731\) 15.2541 1.60327i 0.564192 0.0592990i
\(732\) −2.70410 10.0919i −0.0999466 0.373006i
\(733\) −0.0374092 + 0.0143601i −0.00138174 + 0.000530401i −0.359059 0.933315i \(-0.616902\pi\)
0.357677 + 0.933845i \(0.383569\pi\)
\(734\) 16.5940 + 51.0711i 0.612496 + 1.88507i
\(735\) −2.53292 + 12.7527i −0.0934282 + 0.470390i
\(736\) 15.5297 47.7955i 0.572432 1.76177i
\(737\) 0.675166 + 12.8829i 0.0248701 + 0.474549i
\(738\) −22.6707 + 14.7226i −0.834522 + 0.541945i
\(739\) −14.3575 + 12.9276i −0.528151 + 0.475549i −0.889534 0.456868i \(-0.848971\pi\)
0.361384 + 0.932417i \(0.382304\pi\)
\(740\) −27.6468 18.6289i −1.01632 0.684811i
\(741\) −18.0366 + 5.86045i −0.662592 + 0.215289i
\(742\) −0.495031 + 1.46836i −0.0181731 + 0.0539054i
\(743\) 16.7789 + 16.7789i 0.615557 + 0.615557i 0.944389 0.328831i \(-0.106655\pi\)
−0.328831 + 0.944389i \(0.606655\pi\)
\(744\) 2.67489 6.00790i 0.0980661 0.220260i
\(745\) −3.37554 2.02605i −0.123670 0.0742286i
\(746\) −68.4068 + 30.4567i −2.50455 + 1.11510i
\(747\) −6.65357 + 5.38795i −0.243441 + 0.197135i
\(748\) 2.55067 + 5.00597i 0.0932617 + 0.183036i
\(749\) 48.7843 18.1132i 1.78254 0.661840i
\(750\) −10.5989 16.2701i −0.387019 0.594099i
\(751\) −6.63402 11.4905i −0.242079 0.419293i 0.719227 0.694775i \(-0.244496\pi\)
−0.961306 + 0.275482i \(0.911163\pi\)
\(752\) 0.0510844 0.974748i 0.00186286 0.0355454i
\(753\) −11.9528 4.58823i −0.435583 0.167205i
\(754\) −1.26639 + 12.0489i −0.0461193 + 0.438796i
\(755\) 14.0172 + 0.238001i 0.510138 + 0.00866174i
\(756\) 27.6220 + 1.75260i 1.00460 + 0.0637416i
\(757\) 1.13591 1.13591i 0.0412853 0.0412853i −0.686163 0.727448i \(-0.740706\pi\)
0.727448 + 0.686163i \(0.240706\pi\)
\(758\) 17.0102 + 44.3132i 0.617839 + 1.60953i
\(759\) −5.31122 1.12894i −0.192785 0.0409778i
\(760\) 0.599974 8.63908i 0.0217633 0.313372i
\(761\) 6.60486 + 31.0734i 0.239426 + 1.12641i 0.919446 + 0.393217i \(0.128638\pi\)
−0.680020 + 0.733194i \(0.738029\pi\)
\(762\) 10.2440 20.1050i 0.371102 0.728328i
\(763\) 20.0644 + 46.4340i 0.726381 + 1.68102i
\(764\) 6.68717 + 2.17279i 0.241933 + 0.0786089i
\(765\) −7.17700 9.17714i −0.259485 0.331800i
\(766\) 9.45622 44.4880i 0.341667 1.60742i