Properties

Label 175.2.x.a.3.14
Level $175$
Weight $2$
Character 175.3
Analytic conductor $1.397$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(3,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([21, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.x (of order \(60\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 3.14
Character \(\chi\) \(=\) 175.3
Dual form 175.2.x.a.117.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.882496 - 1.35892i) q^{2} +(-0.978941 + 2.55023i) q^{3} +(-0.254403 - 0.571398i) q^{4} +(-1.48415 + 1.67252i) q^{5} +(2.60166 + 3.58087i) q^{6} +(-2.64114 + 0.156130i) q^{7} +(2.19977 + 0.348409i) q^{8} +(-3.31591 - 2.98566i) q^{9} +O(q^{10})\) \(q+(0.882496 - 1.35892i) q^{2} +(-0.978941 + 2.55023i) q^{3} +(-0.254403 - 0.571398i) q^{4} +(-1.48415 + 1.67252i) q^{5} +(2.60166 + 3.58087i) q^{6} +(-2.64114 + 0.156130i) q^{7} +(2.19977 + 0.348409i) q^{8} +(-3.31591 - 2.98566i) q^{9} +(0.963067 + 3.49283i) q^{10} +(2.62811 + 2.91881i) q^{11} +(1.70624 - 0.0894203i) q^{12} +(0.0865535 + 0.0441012i) q^{13} +(-2.11863 + 3.72689i) q^{14} +(-2.81240 - 5.42221i) q^{15} +(3.25179 - 3.61148i) q^{16} +(2.10918 - 2.60462i) q^{17} +(-6.98356 + 1.87124i) q^{18} +(5.56832 + 2.47917i) q^{19} +(1.33324 + 0.422546i) q^{20} +(2.18736 - 6.88836i) q^{21} +(6.28573 - 0.995562i) q^{22} +(-4.39848 - 2.85640i) q^{23} +(-3.04197 + 5.26884i) q^{24} +(-0.594613 - 4.96452i) q^{25} +(0.136313 - 0.0787005i) q^{26} +(3.55840 - 1.81310i) q^{27} +(0.761125 + 1.46942i) q^{28} +(2.51245 - 3.45809i) q^{29} +(-9.85031 - 0.963234i) q^{30} +(-0.701840 + 0.0737664i) q^{31} +(-0.885159 - 3.30346i) q^{32} +(-10.0164 + 3.84493i) q^{33} +(-1.67814 - 5.16477i) q^{34} +(3.65871 - 4.64907i) q^{35} +(-0.862422 + 2.65426i) q^{36} +(0.403914 + 7.70713i) q^{37} +(8.28302 - 5.37906i) q^{38} +(-0.197199 + 0.177559i) q^{39} +(-3.84750 + 3.16206i) q^{40} +(-0.124652 + 0.0405019i) q^{41} +(-7.43042 - 9.05139i) q^{42} +(8.25770 + 8.25770i) q^{43} +(0.999203 - 2.24425i) q^{44} +(9.91486 - 1.11475i) q^{45} +(-7.76327 + 3.45643i) q^{46} +(2.10528 - 1.70482i) q^{47} +(6.02679 + 11.8282i) q^{48} +(6.95125 - 0.824720i) q^{49} +(-7.27115 - 3.57313i) q^{50} +(4.57761 + 7.92865i) q^{51} +(0.00317989 - 0.0606759i) q^{52} +(-10.9795 - 4.21462i) q^{53} +(0.676413 - 6.43564i) q^{54} +(-8.78225 + 0.0636062i) q^{55} +(-5.86430 - 0.576749i) q^{56} +(-11.7735 + 11.7735i) q^{57} +(-2.48206 - 6.46598i) q^{58} +(-5.04772 - 1.07293i) q^{59} +(-2.38276 + 2.98643i) q^{60} +(-1.48307 - 6.97731i) q^{61} +(-0.519128 + 1.01885i) q^{62} +(9.22393 + 7.36783i) q^{63} +(3.97346 + 1.29105i) q^{64} +(-0.202218 + 0.0793093i) q^{65} +(-3.61445 + 17.0046i) q^{66} +(0.433773 + 0.351262i) q^{67} +(-2.02485 - 0.542557i) q^{68} +(11.5903 - 8.42087i) q^{69} +(-3.08893 - 9.07469i) q^{70} +(0.818370 + 0.594581i) q^{71} +(-6.25400 - 7.72305i) q^{72} +(-2.13084 - 0.111673i) q^{73} +(10.8299 + 6.25262i) q^{74} +(13.2428 + 3.34357i) q^{75} -3.81243i q^{76} +(-7.39691 - 7.29866i) q^{77} +(0.0672616 + 0.424673i) q^{78} +(15.3675 + 1.61519i) q^{79} +(1.21412 + 10.7986i) q^{80} +(-0.258873 - 2.46301i) q^{81} +(-0.0549659 + 0.205136i) q^{82} +(1.69214 - 10.6837i) q^{83} +(-4.49246 + 0.502566i) q^{84} +(1.22593 + 7.39326i) q^{85} +(18.5090 - 3.93420i) q^{86} +(6.35939 + 9.79260i) q^{87} +(4.76429 + 7.33636i) q^{88} +(-0.981714 + 0.208670i) q^{89} +(7.23495 - 14.4573i) q^{90} +(-0.235485 - 0.102964i) q^{91} +(-0.513159 + 3.23996i) q^{92} +(0.498939 - 1.86207i) q^{93} +(-0.458824 - 4.36542i) q^{94} +(-12.4107 + 5.63363i) q^{95} +(9.29110 + 0.976534i) q^{96} +(-1.77133 - 11.1837i) q^{97} +(5.01371 - 10.1740i) q^{98} -17.5251i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9} - 36 q^{10} - 6 q^{11} - 36 q^{12} - 20 q^{14} - 28 q^{15} - 30 q^{16} - 42 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} + 32 q^{22} - 40 q^{23} + 2 q^{25} - 48 q^{26} + 22 q^{28} - 58 q^{30} - 18 q^{31} + 8 q^{32} - 30 q^{33} - 2 q^{35} + 40 q^{36} - 10 q^{37} + 72 q^{38} + 30 q^{39} - 48 q^{40} + 6 q^{42} - 108 q^{43} - 10 q^{44} + 186 q^{45} - 6 q^{46} - 54 q^{47} - 248 q^{50} - 16 q^{51} + 216 q^{52} + 50 q^{53} - 30 q^{54} + 4 q^{56} - 216 q^{57} - 4 q^{58} + 90 q^{59} + 96 q^{60} - 18 q^{61} - 66 q^{63} - 100 q^{64} + 14 q^{65} - 90 q^{66} + 4 q^{67} + 342 q^{68} - 60 q^{70} - 24 q^{71} + 58 q^{72} - 6 q^{73} + 216 q^{75} - 80 q^{77} - 132 q^{78} - 10 q^{79} - 6 q^{80} - 10 q^{81} + 216 q^{82} + 20 q^{84} - 48 q^{85} - 6 q^{86} - 48 q^{87} - 122 q^{88} + 120 q^{89} - 12 q^{91} - 4 q^{92} + 106 q^{93} - 30 q^{94} - 98 q^{95} - 90 q^{96} + 222 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.882496 1.35892i 0.624019 0.960904i −0.375402 0.926862i \(-0.622495\pi\)
0.999420 0.0340422i \(-0.0108381\pi\)
\(3\) −0.978941 + 2.55023i −0.565192 + 1.47238i 0.291512 + 0.956567i \(0.405842\pi\)
−0.856704 + 0.515808i \(0.827492\pi\)
\(4\) −0.254403 0.571398i −0.127201 0.285699i
\(5\) −1.48415 + 1.67252i −0.663731 + 0.747971i
\(6\) 2.60166 + 3.58087i 1.06212 + 1.46189i
\(7\) −2.64114 + 0.156130i −0.998257 + 0.0590114i
\(8\) 2.19977 + 0.348409i 0.777736 + 0.123181i
\(9\) −3.31591 2.98566i −1.10530 0.995219i
\(10\) 0.963067 + 3.49283i 0.304549 + 1.10453i
\(11\) 2.62811 + 2.91881i 0.792404 + 0.880054i 0.995068 0.0991947i \(-0.0316267\pi\)
−0.202664 + 0.979248i \(0.564960\pi\)
\(12\) 1.70624 0.0894203i 0.492549 0.0258134i
\(13\) 0.0865535 + 0.0441012i 0.0240056 + 0.0122315i 0.465952 0.884810i \(-0.345712\pi\)
−0.441946 + 0.897041i \(0.645712\pi\)
\(14\) −2.11863 + 3.72689i −0.566227 + 0.996054i
\(15\) −2.81240 5.42221i −0.726160 1.40001i
\(16\) 3.25179 3.61148i 0.812948 0.902871i
\(17\) 2.10918 2.60462i 0.511550 0.631712i −0.454289 0.890854i \(-0.650107\pi\)
0.965839 + 0.259142i \(0.0834399\pi\)
\(18\) −6.98356 + 1.87124i −1.64604 + 0.441055i
\(19\) 5.56832 + 2.47917i 1.27746 + 0.568762i 0.929526 0.368757i \(-0.120217\pi\)
0.347934 + 0.937519i \(0.386883\pi\)
\(20\) 1.33324 + 0.422546i 0.298122 + 0.0944842i
\(21\) 2.18736 6.88836i 0.477320 1.50316i
\(22\) 6.28573 0.995562i 1.34012 0.212254i
\(23\) −4.39848 2.85640i −0.917146 0.595601i −0.00256149 0.999997i \(-0.500815\pi\)
−0.914584 + 0.404395i \(0.867482\pi\)
\(24\) −3.04197 + 5.26884i −0.620939 + 1.07550i
\(25\) −0.594613 4.96452i −0.118923 0.992904i
\(26\) 0.136313 0.0787005i 0.0267332 0.0154344i
\(27\) 3.55840 1.81310i 0.684814 0.348930i
\(28\) 0.761125 + 1.46942i 0.143839 + 0.277695i
\(29\) 2.51245 3.45809i 0.466550 0.642152i −0.509301 0.860589i \(-0.670096\pi\)
0.975851 + 0.218437i \(0.0700959\pi\)
\(30\) −9.85031 0.963234i −1.79841 0.175862i
\(31\) −0.701840 + 0.0737664i −0.126054 + 0.0132488i −0.167345 0.985898i \(-0.553520\pi\)
0.0412913 + 0.999147i \(0.486853\pi\)
\(32\) −0.885159 3.30346i −0.156475 0.583975i
\(33\) −10.0164 + 3.84493i −1.74363 + 0.669317i
\(34\) −1.67814 5.16477i −0.287798 0.885751i
\(35\) 3.65871 4.64907i 0.618435 0.785836i
\(36\) −0.862422 + 2.65426i −0.143737 + 0.442377i
\(37\) 0.403914 + 7.70713i 0.0664030 + 1.26704i 0.805154 + 0.593066i \(0.202083\pi\)
−0.738751 + 0.673978i \(0.764584\pi\)
\(38\) 8.28302 5.37906i 1.34368 0.872599i
\(39\) −0.197199 + 0.177559i −0.0315771 + 0.0284322i
\(40\) −3.84750 + 3.16206i −0.608343 + 0.499965i
\(41\) −0.124652 + 0.0405019i −0.0194674 + 0.00632534i −0.318735 0.947844i \(-0.603258\pi\)
0.299267 + 0.954169i \(0.403258\pi\)
\(42\) −7.43042 9.05139i −1.14654 1.39666i
\(43\) 8.25770 + 8.25770i 1.25929 + 1.25929i 0.951434 + 0.307854i \(0.0996108\pi\)
0.307854 + 0.951434i \(0.400389\pi\)
\(44\) 0.999203 2.24425i 0.150636 0.338333i
\(45\) 9.91486 1.11475i 1.47802 0.166177i
\(46\) −7.76327 + 3.45643i −1.14463 + 0.509623i
\(47\) 2.10528 1.70482i 0.307087 0.248674i −0.463372 0.886164i \(-0.653361\pi\)
0.770459 + 0.637490i \(0.220027\pi\)
\(48\) 6.02679 + 11.8282i 0.869893 + 1.70726i
\(49\) 6.95125 0.824720i 0.993035 0.117817i
\(50\) −7.27115 3.57313i −1.02830 0.505317i
\(51\) 4.57761 + 7.92865i 0.640993 + 1.11023i
\(52\) 0.00317989 0.0606759i 0.000440972 0.00841424i
\(53\) −10.9795 4.21462i −1.50814 0.578922i −0.542791 0.839868i \(-0.682632\pi\)
−0.965354 + 0.260945i \(0.915966\pi\)
\(54\) 0.676413 6.43564i 0.0920482 0.875780i
\(55\) −8.78225 + 0.0636062i −1.18420 + 0.00857666i
\(56\) −5.86430 0.576749i −0.783649 0.0770713i
\(57\) −11.7735 + 11.7735i −1.55944 + 1.55944i
\(58\) −2.48206 6.46598i −0.325910 0.849025i
\(59\) −5.04772 1.07293i −0.657157 0.139683i −0.132748 0.991150i \(-0.542380\pi\)
−0.524409 + 0.851467i \(0.675714\pi\)
\(60\) −2.38276 + 2.98643i −0.307612 + 0.385546i
\(61\) −1.48307 6.97731i −0.189888 0.893354i −0.965147 0.261709i \(-0.915714\pi\)
0.775259 0.631644i \(-0.217620\pi\)
\(62\) −0.519128 + 1.01885i −0.0659293 + 0.129394i
\(63\) 9.22393 + 7.36783i 1.16211 + 0.928260i
\(64\) 3.97346 + 1.29105i 0.496682 + 0.161382i
\(65\) −0.202218 + 0.0793093i −0.0250821 + 0.00983711i
\(66\) −3.61445 + 17.0046i −0.444908 + 2.09313i
\(67\) 0.433773 + 0.351262i 0.0529938 + 0.0429135i 0.655451 0.755237i \(-0.272478\pi\)
−0.602458 + 0.798151i \(0.705812\pi\)
\(68\) −2.02485 0.542557i −0.245549 0.0657947i
\(69\) 11.5903 8.42087i 1.39531 1.01375i
\(70\) −3.08893 9.07469i −0.369198 1.08463i
\(71\) 0.818370 + 0.594581i 0.0971227 + 0.0705637i 0.635287 0.772276i \(-0.280882\pi\)
−0.538164 + 0.842840i \(0.680882\pi\)
\(72\) −6.25400 7.72305i −0.737041 0.910170i
\(73\) −2.13084 0.111673i −0.249396 0.0130703i −0.0727716 0.997349i \(-0.523184\pi\)
−0.176624 + 0.984278i \(0.556518\pi\)
\(74\) 10.8299 + 6.25262i 1.25894 + 0.726852i
\(75\) 13.2428 + 3.34357i 1.52914 + 0.386082i
\(76\) 3.81243i 0.437316i
\(77\) −7.39691 7.29866i −0.842956 0.831759i
\(78\) 0.0672616 + 0.424673i 0.00761588 + 0.0480848i
\(79\) 15.3675 + 1.61519i 1.72898 + 0.181723i 0.916167 0.400797i \(-0.131267\pi\)
0.812816 + 0.582521i \(0.197933\pi\)
\(80\) 1.21412 + 10.7986i 0.135743 + 1.20733i
\(81\) −0.258873 2.46301i −0.0287636 0.273668i
\(82\) −0.0549659 + 0.205136i −0.00606997 + 0.0226534i
\(83\) 1.69214 10.6837i 0.185736 1.17269i −0.701944 0.712232i \(-0.747684\pi\)
0.887680 0.460461i \(-0.152316\pi\)
\(84\) −4.49246 + 0.502566i −0.490168 + 0.0548345i
\(85\) 1.22593 + 7.39326i 0.132971 + 0.801912i
\(86\) 18.5090 3.93420i 1.99587 0.424236i
\(87\) 6.35939 + 9.79260i 0.681798 + 1.04988i
\(88\) 4.76429 + 7.33636i 0.507875 + 0.782058i
\(89\) −0.981714 + 0.208670i −0.104061 + 0.0221190i −0.259648 0.965703i \(-0.583607\pi\)
0.155587 + 0.987822i \(0.450273\pi\)
\(90\) 7.23495 14.4573i 0.762631 1.52393i
\(91\) −0.235485 0.102964i −0.0246856 0.0107936i
\(92\) −0.513159 + 3.23996i −0.0535005 + 0.337789i
\(93\) 0.498939 1.86207i 0.0517376 0.193087i
\(94\) −0.458824 4.36542i −0.0473241 0.450259i
\(95\) −12.4107 + 5.63363i −1.27331 + 0.577999i
\(96\) 9.29110 + 0.976534i 0.948269 + 0.0996670i
\(97\) −1.77133 11.1837i −0.179851 1.13554i −0.898113 0.439764i \(-0.855062\pi\)
0.718262 0.695773i \(-0.244938\pi\)
\(98\) 5.01371 10.1740i 0.506461 1.02773i
\(99\) 17.5251i 1.76134i
\(100\) −2.68544 + 1.60275i −0.268544 + 0.160275i
\(101\) −10.1623 5.86718i −1.01118 0.583807i −0.0996449 0.995023i \(-0.531771\pi\)
−0.911538 + 0.411216i \(0.865104\pi\)
\(102\) 14.8141 + 0.776377i 1.46682 + 0.0768727i
\(103\) 6.33822 + 7.82705i 0.624523 + 0.771222i 0.986991 0.160774i \(-0.0513991\pi\)
−0.362468 + 0.931996i \(0.618066\pi\)
\(104\) 0.175032 + 0.127168i 0.0171633 + 0.0124699i
\(105\) 8.27452 + 13.8817i 0.807511 + 1.35472i
\(106\) −15.4167 + 11.2009i −1.49740 + 1.08792i
\(107\) 1.09349 + 0.292999i 0.105711 + 0.0283253i 0.311287 0.950316i \(-0.399240\pi\)
−0.205576 + 0.978641i \(0.565907\pi\)
\(108\) −1.94126 1.57201i −0.186798 0.151266i
\(109\) −0.608654 + 2.86349i −0.0582985 + 0.274273i −0.997636 0.0687217i \(-0.978108\pi\)
0.939337 + 0.342995i \(0.111441\pi\)
\(110\) −7.66386 + 11.9905i −0.730720 + 1.14325i
\(111\) −20.0504 6.51476i −1.90310 0.618353i
\(112\) −8.02458 + 10.0461i −0.758252 + 0.949271i
\(113\) −2.12100 + 4.16270i −0.199527 + 0.391594i −0.968991 0.247097i \(-0.920523\pi\)
0.769464 + 0.638690i \(0.220523\pi\)
\(114\) 5.60924 + 26.3894i 0.525353 + 2.47159i
\(115\) 11.3054 3.11719i 1.05423 0.290680i
\(116\) −2.61512 0.555861i −0.242808 0.0516104i
\(117\) −0.155332 0.404655i −0.0143605 0.0374103i
\(118\) −5.91261 + 5.91261i −0.544300 + 0.544300i
\(119\) −5.16397 + 7.20846i −0.473381 + 0.660798i
\(120\) −4.29749 12.9075i −0.392305 1.17829i
\(121\) −0.462683 + 4.40213i −0.0420621 + 0.400194i
\(122\) −10.7904 4.14206i −0.976921 0.375005i
\(123\) 0.0187379 0.357541i 0.00168954 0.0322383i
\(124\) 0.220700 + 0.382263i 0.0198194 + 0.0343283i
\(125\) 9.18572 + 6.37358i 0.821596 + 0.570070i
\(126\) 18.1524 6.03254i 1.61714 0.537422i
\(127\) −7.51832 14.7555i −0.667143 1.30934i −0.937971 0.346713i \(-0.887298\pi\)
0.270829 0.962628i \(-0.412702\pi\)
\(128\) 10.5767 8.56482i 0.934854 0.757030i
\(129\) −29.1428 + 12.9752i −2.56588 + 1.14240i
\(130\) −0.0706812 + 0.344789i −0.00619915 + 0.0302400i
\(131\) −0.163724 + 0.367729i −0.0143046 + 0.0321287i −0.920557 0.390609i \(-0.872264\pi\)
0.906252 + 0.422738i \(0.138931\pi\)
\(132\) 4.74518 + 4.74518i 0.413015 + 0.413015i
\(133\) −15.0938 5.67847i −1.30880 0.492386i
\(134\) 0.860142 0.279477i 0.0743049 0.0241431i
\(135\) −2.24876 + 8.64238i −0.193543 + 0.743817i
\(136\) 5.54717 4.99470i 0.475666 0.428292i
\(137\) 10.6234 6.89895i 0.907623 0.589417i −0.00420463 0.999991i \(-0.501338\pi\)
0.911827 + 0.410574i \(0.134672\pi\)
\(138\) −1.21491 23.1818i −0.103420 1.97336i
\(139\) −4.44619 + 13.6840i −0.377121 + 1.16066i 0.564915 + 0.825149i \(0.308909\pi\)
−0.942036 + 0.335511i \(0.891091\pi\)
\(140\) −3.58725 0.907845i −0.303178 0.0767269i
\(141\) 2.28674 + 7.03788i 0.192579 + 0.592696i
\(142\) 1.53020 0.587388i 0.128411 0.0492925i
\(143\) 0.0987488 + 0.368536i 0.00825779 + 0.0308185i
\(144\) −21.5653 + 2.26661i −1.79711 + 0.188884i
\(145\) 2.05486 + 9.33443i 0.170647 + 0.775182i
\(146\) −2.03221 + 2.79710i −0.168187 + 0.231489i
\(147\) −4.70164 + 18.5346i −0.387785 + 1.52871i
\(148\) 4.30108 2.19151i 0.353547 0.180141i
\(149\) −9.24670 + 5.33859i −0.757519 + 0.437354i −0.828404 0.560131i \(-0.810751\pi\)
0.0708851 + 0.997484i \(0.477418\pi\)
\(150\) 16.2303 15.0452i 1.32520 1.22844i
\(151\) −10.4396 + 18.0820i −0.849565 + 1.47149i 0.0320315 + 0.999487i \(0.489802\pi\)
−0.881597 + 0.472003i \(0.843531\pi\)
\(152\) 11.3852 + 7.39366i 0.923465 + 0.599705i
\(153\) −14.7703 + 2.33939i −1.19411 + 0.189128i
\(154\) −16.4461 + 3.61081i −1.32526 + 0.290967i
\(155\) 0.918259 1.28332i 0.0737563 0.103079i
\(156\) 0.151625 + 0.0675076i 0.0121397 + 0.00540494i
\(157\) 11.5468 3.09395i 0.921533 0.246924i 0.233293 0.972407i \(-0.425050\pi\)
0.688241 + 0.725483i \(0.258383\pi\)
\(158\) 15.7567 19.4579i 1.25354 1.54799i
\(159\) 21.4965 23.8743i 1.70478 1.89335i
\(160\) 6.83879 + 3.42238i 0.540654 + 0.270563i
\(161\) 12.0630 + 6.85743i 0.950695 + 0.540441i
\(162\) −3.57550 1.82181i −0.280918 0.143135i
\(163\) −14.4820 + 0.758967i −1.13431 + 0.0594469i −0.610234 0.792222i \(-0.708924\pi\)
−0.524081 + 0.851668i \(0.675591\pi\)
\(164\) 0.0548546 + 0.0609222i 0.00428342 + 0.00475722i
\(165\) 8.43509 22.4590i 0.656671 1.74843i
\(166\) −13.0251 11.7278i −1.01094 0.910257i
\(167\) −1.65219 0.261681i −0.127850 0.0202495i 0.0921813 0.995742i \(-0.470616\pi\)
−0.220032 + 0.975493i \(0.570616\pi\)
\(168\) 7.21164 14.3907i 0.556390 1.11027i
\(169\) −7.63566 10.5096i −0.587359 0.808430i
\(170\) 11.1288 + 4.85857i 0.853537 + 0.372636i
\(171\) −11.0621 24.8458i −0.845937 1.90001i
\(172\) 2.61765 6.81921i 0.199594 0.519960i
\(173\) −0.153180 + 0.235876i −0.0116460 + 0.0179333i −0.844446 0.535641i \(-0.820070\pi\)
0.832800 + 0.553575i \(0.186737\pi\)
\(174\) 18.9195 1.43429
\(175\) 2.34556 + 13.0192i 0.177308 + 0.984155i
\(176\) 19.0873 1.43876
\(177\) 7.67763 11.8225i 0.577086 0.888634i
\(178\) −0.582792 + 1.51822i −0.0436821 + 0.113796i
\(179\) −5.33375 11.9798i −0.398663 0.895412i −0.995651 0.0931620i \(-0.970303\pi\)
0.596988 0.802250i \(-0.296364\pi\)
\(180\) −3.15933 5.38173i −0.235483 0.401131i
\(181\) −13.5383 18.6338i −1.00629 1.38504i −0.921384 0.388653i \(-0.872940\pi\)
−0.0849076 0.996389i \(-0.527060\pi\)
\(182\) −0.347735 + 0.229142i −0.0257758 + 0.0169851i
\(183\) 19.2456 + 3.04820i 1.42268 + 0.225330i
\(184\) −8.68043 7.81590i −0.639930 0.576196i
\(185\) −13.4898 10.7630i −0.991787 0.791309i
\(186\) −2.09009 2.32129i −0.153253 0.170205i
\(187\) 13.1455 0.688927i 0.961295 0.0503793i
\(188\) −1.50972 0.769242i −0.110108 0.0561027i
\(189\) −9.11516 + 5.34421i −0.663030 + 0.388734i
\(190\) −3.29667 + 21.8368i −0.239166 + 1.58421i
\(191\) 2.70749 3.00698i 0.195907 0.217577i −0.637185 0.770711i \(-0.719901\pi\)
0.833093 + 0.553133i \(0.186568\pi\)
\(192\) −7.18227 + 8.86936i −0.518335 + 0.640091i
\(193\) −2.96976 + 0.795745i −0.213768 + 0.0572790i −0.364114 0.931355i \(-0.618628\pi\)
0.150346 + 0.988634i \(0.451961\pi\)
\(194\) −16.7611 7.46250i −1.20337 0.535776i
\(195\) −0.00429733 0.593342i −0.000307738 0.0424901i
\(196\) −2.23966 3.76212i −0.159976 0.268723i
\(197\) 12.4561 1.97286i 0.887464 0.140560i 0.303973 0.952681i \(-0.401687\pi\)
0.583490 + 0.812120i \(0.301687\pi\)
\(198\) −23.8153 15.4658i −1.69248 1.09911i
\(199\) 2.17496 3.76715i 0.154179 0.267046i −0.778581 0.627545i \(-0.784060\pi\)
0.932760 + 0.360498i \(0.117393\pi\)
\(200\) 0.421673 11.1280i 0.0298168 0.786866i
\(201\) −1.32044 + 0.762355i −0.0931365 + 0.0537724i
\(202\) −16.9412 + 8.63198i −1.19198 + 0.607344i
\(203\) −6.09583 + 9.52558i −0.427843 + 0.668564i
\(204\) 3.36586 4.63270i 0.235657 0.324354i
\(205\) 0.117262 0.268593i 0.00818994 0.0187594i
\(206\) 16.2298 1.70582i 1.13078 0.118850i
\(207\) 6.05670 + 22.6039i 0.420970 + 1.57108i
\(208\) 0.440725 0.169178i 0.0305588 0.0117304i
\(209\) 7.39789 + 22.7684i 0.511723 + 1.57492i
\(210\) 26.1664 + 1.00611i 1.80566 + 0.0694283i
\(211\) 2.05986 6.33961i 0.141807 0.436437i −0.854780 0.518991i \(-0.826308\pi\)
0.996587 + 0.0825543i \(0.0263078\pi\)
\(212\) 0.384980 + 7.34585i 0.0264405 + 0.504515i
\(213\) −2.31745 + 1.50497i −0.158789 + 0.103119i
\(214\) 1.36316 1.22740i 0.0931838 0.0839031i
\(215\) −26.0668 + 1.55548i −1.77774 + 0.106083i
\(216\) 8.45936 2.74861i 0.575586 0.187019i
\(217\) 1.84214 0.304405i 0.125053 0.0206644i
\(218\) 3.35413 + 3.35413i 0.227171 + 0.227171i
\(219\) 2.37076 5.32481i 0.160201 0.359817i
\(220\) 2.27057 + 5.00197i 0.153082 + 0.337233i
\(221\) 0.297423 0.132421i 0.0200069 0.00890762i
\(222\) −26.5474 + 21.4977i −1.78175 + 1.44283i
\(223\) 6.99626 + 13.7309i 0.468504 + 0.919491i 0.997486 + 0.0708583i \(0.0225738\pi\)
−0.528982 + 0.848633i \(0.677426\pi\)
\(224\) 2.85360 + 8.58670i 0.190664 + 0.573723i
\(225\) −12.8507 + 18.2372i −0.856711 + 1.21581i
\(226\) 3.78502 + 6.55584i 0.251776 + 0.436088i
\(227\) 0.693452 13.2319i 0.0460260 0.878229i −0.873892 0.486119i \(-0.838412\pi\)
0.919918 0.392110i \(-0.128255\pi\)
\(228\) 9.72258 + 3.73215i 0.643893 + 0.247168i
\(229\) −0.433550 + 4.12495i −0.0286498 + 0.272584i 0.970814 + 0.239834i \(0.0770932\pi\)
−0.999464 + 0.0327499i \(0.989574\pi\)
\(230\) 5.74091 18.1140i 0.378544 1.19440i
\(231\) 25.8544 11.7189i 1.70109 0.771044i
\(232\) 6.73164 6.73164i 0.441954 0.441954i
\(233\) 9.23458 + 24.0569i 0.604977 + 1.57602i 0.803101 + 0.595843i \(0.203182\pi\)
−0.198124 + 0.980177i \(0.563485\pi\)
\(234\) −0.686975 0.146021i −0.0449090 0.00954570i
\(235\) −0.273206 + 6.05133i −0.0178220 + 0.394745i
\(236\) 0.671086 + 3.15721i 0.0436840 + 0.205517i
\(237\) −19.1630 + 37.6096i −1.24477 + 2.44300i
\(238\) 5.23857 + 13.3789i 0.339566 + 0.867224i
\(239\) −0.618920 0.201099i −0.0400346 0.0130080i 0.288931 0.957350i \(-0.406700\pi\)
−0.328966 + 0.944342i \(0.606700\pi\)
\(240\) −28.7276 7.47496i −1.85436 0.482507i
\(241\) 0.238703 1.12301i 0.0153762 0.0723393i −0.969791 0.243939i \(-0.921560\pi\)
0.985167 + 0.171600i \(0.0548936\pi\)
\(242\) 5.57385 + 4.51361i 0.358300 + 0.290146i
\(243\) 18.1075 + 4.85188i 1.16159 + 0.311248i
\(244\) −3.60952 + 2.62247i −0.231076 + 0.167887i
\(245\) −8.93732 + 12.8501i −0.570984 + 0.820961i
\(246\) −0.469334 0.340991i −0.0299237 0.0217408i
\(247\) 0.372623 + 0.460151i 0.0237094 + 0.0292787i
\(248\) −1.56959 0.0822585i −0.0996688 0.00522342i
\(249\) 25.5895 + 14.7741i 1.62167 + 0.936270i
\(250\) 16.7676 6.85805i 1.06047 0.433741i
\(251\) 13.8492i 0.874153i −0.899424 0.437076i \(-0.856014\pi\)
0.899424 0.437076i \(-0.143986\pi\)
\(252\) 1.86337 7.14493i 0.117381 0.450088i
\(253\) −3.22237 20.3452i −0.202589 1.27909i
\(254\) −26.6865 2.80487i −1.67446 0.175993i
\(255\) −20.0546 4.11117i −1.25587 0.257451i
\(256\) −1.43165 13.6212i −0.0894778 0.851325i
\(257\) −0.0943752 + 0.352213i −0.00588696 + 0.0219704i −0.968807 0.247817i \(-0.920287\pi\)
0.962920 + 0.269788i \(0.0869535\pi\)
\(258\) −8.08608 + 51.0535i −0.503417 + 3.17845i
\(259\) −2.27010 20.2925i −0.141057 1.26092i
\(260\) 0.0967620 + 0.0953705i 0.00600092 + 0.00591462i
\(261\) −18.6557 + 3.96540i −1.15476 + 0.245452i
\(262\) 0.355231 + 0.547007i 0.0219462 + 0.0337942i
\(263\) −16.2018 24.9486i −0.999045 1.53839i −0.833744 0.552151i \(-0.813807\pi\)
−0.165301 0.986243i \(-0.552859\pi\)
\(264\) −23.3734 + 4.96816i −1.43853 + 0.305769i
\(265\) 23.3441 12.1082i 1.43402 0.743800i
\(266\) −21.0368 + 15.5001i −1.28985 + 0.950371i
\(267\) 0.428885 2.70787i 0.0262473 0.165719i
\(268\) 0.0903576 0.337219i 0.00551947 0.0205989i
\(269\) 2.16638 + 20.6117i 0.132087 + 1.25672i 0.836911 + 0.547338i \(0.184359\pi\)
−0.704825 + 0.709381i \(0.748974\pi\)
\(270\) 9.75981 + 10.6828i 0.593963 + 0.650132i
\(271\) −5.57572 0.586032i −0.338701 0.0355989i −0.0663487 0.997796i \(-0.521135\pi\)
−0.272352 + 0.962198i \(0.587802\pi\)
\(272\) −2.54792 16.0869i −0.154490 0.975413i
\(273\) 0.493108 0.499746i 0.0298443 0.0302460i
\(274\) 20.5248i 1.23995i
\(275\) 12.9278 14.7828i 0.779574 0.891439i
\(276\) −7.76028 4.48040i −0.467114 0.269688i
\(277\) 5.90329 + 0.309378i 0.354694 + 0.0185887i 0.228851 0.973461i \(-0.426503\pi\)
0.125843 + 0.992050i \(0.459836\pi\)
\(278\) 14.6717 + 18.1181i 0.879953 + 1.08665i
\(279\) 2.54748 + 1.85085i 0.152514 + 0.110808i
\(280\) 9.66810 8.95214i 0.577779 0.534993i
\(281\) −6.92124 + 5.02858i −0.412887 + 0.299980i −0.774769 0.632244i \(-0.782134\pi\)
0.361883 + 0.932224i \(0.382134\pi\)
\(282\) 11.5820 + 3.10338i 0.689697 + 0.184804i
\(283\) 11.7275 + 9.49677i 0.697130 + 0.564525i 0.911035 0.412330i \(-0.135285\pi\)
−0.213905 + 0.976855i \(0.568618\pi\)
\(284\) 0.131547 0.618878i 0.00780585 0.0367236i
\(285\) −2.21775 37.1650i −0.131368 2.20147i
\(286\) 0.587957 + 0.191039i 0.0347666 + 0.0112964i
\(287\) 0.322900 0.126433i 0.0190602 0.00746312i
\(288\) −6.92789 + 13.5968i −0.408230 + 0.801196i
\(289\) 1.19910 + 5.64132i 0.0705353 + 0.331843i
\(290\) 14.4982 + 5.44519i 0.851363 + 0.319753i
\(291\) 30.2551 + 6.43093i 1.77359 + 0.376988i
\(292\) 0.478282 + 1.24597i 0.0279893 + 0.0729147i
\(293\) 7.80680 7.80680i 0.456078 0.456078i −0.441288 0.897366i \(-0.645478\pi\)
0.897366 + 0.441288i \(0.145478\pi\)
\(294\) 21.0380 + 22.7459i 1.22696 + 1.32657i
\(295\) 9.28604 6.85000i 0.540654 0.398823i
\(296\) −1.79672 + 17.0946i −0.104432 + 0.993605i
\(297\) 14.6439 + 5.62128i 0.849727 + 0.326180i
\(298\) −0.905441 + 17.2768i −0.0524508 + 1.00082i
\(299\) −0.254733 0.441210i −0.0147316 0.0255158i
\(300\) −1.45848 8.41749i −0.0842055 0.485984i
\(301\) −23.0990 20.5205i −1.33141 1.18278i
\(302\) 15.3591 + 30.1439i 0.883817 + 1.73459i
\(303\) 24.9109 20.1725i 1.43109 1.15888i
\(304\) 27.0605 12.0481i 1.55203 0.691007i
\(305\) 13.8708 + 7.87490i 0.794238 + 0.450915i
\(306\) −9.85570 + 22.1363i −0.563413 + 1.26545i
\(307\) 8.14095 + 8.14095i 0.464628 + 0.464628i 0.900169 0.435541i \(-0.143443\pi\)
−0.435541 + 0.900169i \(0.643443\pi\)
\(308\) −2.28864 + 6.08338i −0.130407 + 0.346632i
\(309\) −26.1655 + 8.50169i −1.48850 + 0.483644i
\(310\) −0.933573 2.38037i −0.0530234 0.135196i
\(311\) −21.3562 + 19.2292i −1.21100 + 1.09039i −0.217556 + 0.976048i \(0.569808\pi\)
−0.993442 + 0.114339i \(0.963525\pi\)
\(312\) −0.495655 + 0.321882i −0.0280610 + 0.0182230i
\(313\) 0.498133 + 9.50493i 0.0281561 + 0.537251i 0.975900 + 0.218218i \(0.0700245\pi\)
−0.947744 + 0.319032i \(0.896642\pi\)
\(314\) 5.98554 18.4216i 0.337783 1.03959i
\(315\) −26.0125 + 4.49222i −1.46564 + 0.253108i
\(316\) −2.98662 9.19189i −0.168011 0.517084i
\(317\) 7.28729 2.79733i 0.409295 0.157114i −0.145004 0.989431i \(-0.546320\pi\)
0.554299 + 0.832317i \(0.312986\pi\)
\(318\) −13.4728 50.2810i −0.755515 2.81962i
\(319\) 16.6965 1.75487i 0.934824 0.0982540i
\(320\) −8.05650 + 4.72955i −0.450372 + 0.264390i
\(321\) −1.81768 + 2.50182i −0.101453 + 0.139638i
\(322\) 19.9642 10.3410i 1.11256 0.576281i
\(323\) 18.2019 9.27431i 1.01278 0.516036i
\(324\) −1.34150 + 0.774516i −0.0745278 + 0.0430287i
\(325\) 0.167475 0.455920i 0.00928986 0.0252899i
\(326\) −11.7489 + 20.3497i −0.650711 + 1.12706i
\(327\) −6.70673 4.35540i −0.370883 0.240854i
\(328\) −0.288317 + 0.0456650i −0.0159197 + 0.00252143i
\(329\) −5.29417 + 4.83138i −0.291877 + 0.266362i
\(330\) −23.0762 31.2826i −1.27030 1.72205i
\(331\) 0.945325 + 0.420886i 0.0519597 + 0.0231340i 0.432552 0.901609i \(-0.357613\pi\)
−0.380592 + 0.924743i \(0.624280\pi\)
\(332\) −6.53515 + 1.75109i −0.358663 + 0.0961035i
\(333\) 21.6715 26.7621i 1.18759 1.46655i
\(334\) −1.81366 + 2.01427i −0.0992388 + 0.110216i
\(335\) −1.23127 + 0.204167i −0.0672717 + 0.0111548i
\(336\) −17.7644 30.2991i −0.969125 1.65295i
\(337\) −1.66773 0.849753i −0.0908472 0.0462890i 0.407977 0.912992i \(-0.366235\pi\)
−0.498824 + 0.866703i \(0.666235\pi\)
\(338\) −21.0202 + 1.10162i −1.14335 + 0.0599202i
\(339\) −8.53950 9.48407i −0.463802 0.515104i
\(340\) 3.91261 2.58136i 0.212191 0.139994i
\(341\) −2.05982 1.85467i −0.111545 0.100436i
\(342\) −43.5258 6.89381i −2.35361 0.372774i
\(343\) −18.2305 + 3.26350i −0.984352 + 0.176212i
\(344\) 15.2880 + 21.0421i 0.824272 + 1.13451i
\(345\) −3.11773 + 31.8828i −0.167853 + 1.71651i
\(346\) 0.185357 + 0.416319i 0.00996486 + 0.0223814i
\(347\) 0.712508 1.85615i 0.0382494 0.0996431i −0.913125 0.407679i \(-0.866338\pi\)
0.951375 + 0.308036i \(0.0996716\pi\)
\(348\) 3.97762 6.12500i 0.213223 0.328335i
\(349\) 4.37015 0.233929 0.116964 0.993136i \(-0.462684\pi\)
0.116964 + 0.993136i \(0.462684\pi\)
\(350\) 19.7620 + 8.30190i 1.05632 + 0.443755i
\(351\) 0.387952 0.0207073
\(352\) 7.31587 11.2654i 0.389937 0.600450i
\(353\) 6.69256 17.4347i 0.356209 0.927957i −0.632017 0.774955i \(-0.717773\pi\)
0.988226 0.153002i \(-0.0488940\pi\)
\(354\) −9.29042 20.8666i −0.493780 1.10905i
\(355\) −2.20903 + 0.486291i −0.117243 + 0.0258096i
\(356\) 0.368984 + 0.507863i 0.0195561 + 0.0269167i
\(357\) −13.3280 20.2260i −0.705393 1.07047i
\(358\) −20.9867 3.32396i −1.10918 0.175677i
\(359\) −12.4207 11.1836i −0.655539 0.590250i 0.272761 0.962082i \(-0.412063\pi\)
−0.928300 + 0.371832i \(0.878730\pi\)
\(360\) 22.1988 + 1.00223i 1.16998 + 0.0528223i
\(361\) 12.1464 + 13.4899i 0.639282 + 0.709995i
\(362\) −37.2694 + 1.95321i −1.95884 + 0.102658i
\(363\) −10.7735 5.48937i −0.565462 0.288117i
\(364\) 0.00107477 + 0.160750i 5.63332e−5 + 0.00842560i
\(365\) 3.34925 3.39812i 0.175308 0.177866i
\(366\) 21.1264 23.4633i 1.10430 1.22644i
\(367\) −6.07938 + 7.50742i −0.317341 + 0.391884i −0.910710 0.413047i \(-0.864464\pi\)
0.593368 + 0.804931i \(0.297798\pi\)
\(368\) −24.6188 + 6.59659i −1.28334 + 0.343871i
\(369\) 0.534260 + 0.237868i 0.0278125 + 0.0123829i
\(370\) −26.5307 + 8.83328i −1.37927 + 0.459221i
\(371\) 29.6563 + 9.41718i 1.53968 + 0.488916i
\(372\) −1.19091 + 0.188622i −0.0617459 + 0.00977959i
\(373\) −4.12458 2.67853i −0.213563 0.138689i 0.433425 0.901190i \(-0.357305\pi\)
−0.646988 + 0.762500i \(0.723972\pi\)
\(374\) 10.6647 18.4717i 0.551456 0.955150i
\(375\) −25.2464 + 17.1863i −1.30372 + 0.887499i
\(376\) 5.22511 3.01672i 0.269465 0.155575i
\(377\) 0.369967 0.188508i 0.0190543 0.00970865i
\(378\) −0.781708 + 17.1030i −0.0402067 + 0.879686i
\(379\) 7.39900 10.1839i 0.380061 0.523109i −0.575540 0.817774i \(-0.695208\pi\)
0.955601 + 0.294665i \(0.0952079\pi\)
\(380\) 6.37635 + 5.65821i 0.327100 + 0.290260i
\(381\) 44.9900 4.72864i 2.30491 0.242255i
\(382\) −1.69690 6.33292i −0.0868210 0.324020i
\(383\) −16.7403 + 6.42601i −0.855391 + 0.328354i −0.746245 0.665672i \(-0.768145\pi\)
−0.109146 + 0.994026i \(0.534812\pi\)
\(384\) 11.4883 + 35.3574i 0.586260 + 1.80432i
\(385\) 23.1852 1.53916i 1.18163 0.0784429i
\(386\) −1.53944 + 4.73792i −0.0783556 + 0.241154i
\(387\) −2.72712 52.0365i −0.138627 2.64516i
\(388\) −5.93974 + 3.85731i −0.301544 + 0.195825i
\(389\) −8.86329 + 7.98055i −0.449387 + 0.404630i −0.862506 0.506047i \(-0.831106\pi\)
0.413119 + 0.910677i \(0.364439\pi\)
\(390\) −0.810099 0.517782i −0.0410209 0.0262189i
\(391\) −16.7170 + 5.43168i −0.845415 + 0.274692i
\(392\) 15.5785 + 0.607684i 0.786832 + 0.0306927i
\(393\) −0.777518 0.777518i −0.0392206 0.0392206i
\(394\) 8.31153 18.6680i 0.418729 0.940480i
\(395\) −25.5091 + 23.3052i −1.28350 + 1.17261i
\(396\) −10.0138 + 4.45844i −0.503213 + 0.224045i
\(397\) 29.1590 23.6125i 1.46345 1.18508i 0.519732 0.854329i \(-0.326032\pi\)
0.943719 0.330750i \(-0.107302\pi\)
\(398\) −3.19987 6.28010i −0.160395 0.314793i
\(399\) 29.2573 32.9337i 1.46470 1.64875i
\(400\) −19.8628 13.9962i −0.993141 0.699808i
\(401\) 0.106730 + 0.184861i 0.00532982 + 0.00923152i 0.868678 0.495377i \(-0.164970\pi\)
−0.863348 + 0.504609i \(0.831637\pi\)
\(402\) −0.129298 + 2.46715i −0.00644879 + 0.123050i
\(403\) −0.0639999 0.0245673i −0.00318806 0.00122378i
\(404\) −0.767189 + 7.29932i −0.0381691 + 0.363155i
\(405\) 4.50363 + 3.22250i 0.223787 + 0.160127i
\(406\) 7.56499 + 16.6900i 0.375444 + 0.828313i
\(407\) −21.4341 + 21.4341i −1.06245 + 1.06245i
\(408\) 7.30726 + 19.0361i 0.361763 + 0.942426i
\(409\) 31.2443 + 6.64117i 1.54493 + 0.328385i 0.900011 0.435867i \(-0.143558\pi\)
0.644918 + 0.764252i \(0.276891\pi\)
\(410\) −0.261515 0.396383i −0.0129153 0.0195759i
\(411\) 7.19417 + 33.8459i 0.354862 + 1.66950i
\(412\) 2.85990 5.61287i 0.140897 0.276526i
\(413\) 13.4992 + 2.04565i 0.664255 + 0.100660i
\(414\) 36.0620 + 11.7173i 1.77235 + 0.575872i
\(415\) 15.3573 + 18.6864i 0.753862 + 0.917278i
\(416\) 0.0690729 0.324962i 0.00338658 0.0159326i
\(417\) −30.5447 24.7346i −1.49578 1.21126i
\(418\) 37.4691 + 10.0398i 1.83267 + 0.491063i
\(419\) −8.57555 + 6.23050i −0.418943 + 0.304380i −0.777212 0.629238i \(-0.783367\pi\)
0.358269 + 0.933618i \(0.383367\pi\)
\(420\) 5.82692 8.25959i 0.284325 0.403027i
\(421\) 7.12732 + 5.17830i 0.347364 + 0.252375i 0.747762 0.663966i \(-0.231128\pi\)
−0.400398 + 0.916341i \(0.631128\pi\)
\(422\) −6.79723 8.39388i −0.330884 0.408608i
\(423\) −12.0710 0.632612i −0.586910 0.0307586i
\(424\) −22.6839 13.0965i −1.10163 0.636024i
\(425\) −14.1848 8.92230i −0.688064 0.432795i
\(426\) 4.47737i 0.216929i
\(427\) 5.00637 + 18.1965i 0.242275 + 0.880591i
\(428\) −0.110767 0.699356i −0.00535413 0.0338047i
\(429\) −1.03652 0.108943i −0.0500436 0.00525980i
\(430\) −20.8900 + 36.7955i −1.00741 + 1.77444i
\(431\) −0.640581 6.09472i −0.0308557 0.293572i −0.999058 0.0434025i \(-0.986180\pi\)
0.968202 0.250170i \(-0.0804864\pi\)
\(432\) 5.02322 18.7469i 0.241680 0.901961i
\(433\) 5.58866 35.2854i 0.268574 1.69571i −0.372339 0.928097i \(-0.621444\pi\)
0.640913 0.767613i \(-0.278556\pi\)
\(434\) 1.21202 2.77197i 0.0581787 0.133059i
\(435\) −25.8165 3.89749i −1.23781 0.186870i
\(436\) 1.79104 0.380697i 0.0857751 0.0182321i
\(437\) −17.4106 26.8100i −0.832861 1.28249i
\(438\) −5.14383 7.92080i −0.245782 0.378470i
\(439\) −25.5065 + 5.42157i −1.21736 + 0.258757i −0.771431 0.636312i \(-0.780459\pi\)
−0.445926 + 0.895070i \(0.647126\pi\)
\(440\) −19.3411 2.91990i −0.922049 0.139201i
\(441\) −25.5120 18.0194i −1.21486 0.858064i
\(442\) 0.0825241 0.521037i 0.00392527 0.0247832i
\(443\) −8.76626 + 32.7161i −0.416498 + 1.55439i 0.365319 + 0.930882i \(0.380960\pi\)
−0.781817 + 0.623508i \(0.785707\pi\)
\(444\) 1.37835 + 13.1141i 0.0654135 + 0.622368i
\(445\) 1.10801 1.95163i 0.0525245 0.0925160i
\(446\) 24.8335 + 2.61010i 1.17590 + 0.123592i
\(447\) −4.56264 28.8074i −0.215805 1.36254i
\(448\) −10.6960 2.78948i −0.505340 0.131791i
\(449\) 17.8247i 0.841199i −0.907246 0.420600i \(-0.861820\pi\)
0.907246 0.420600i \(-0.138180\pi\)
\(450\) 13.4423 + 33.5573i 0.633677 + 1.58191i
\(451\) −0.445816 0.257392i −0.0209927 0.0121201i
\(452\) 2.91814 + 0.152933i 0.137258 + 0.00719338i
\(453\) −35.8934 44.3247i −1.68642 2.08255i
\(454\) −17.3691 12.6194i −0.815173 0.592258i
\(455\) 0.521704 0.241039i 0.0244579 0.0113001i
\(456\) −30.0010 + 21.7970i −1.40493 + 1.02074i
\(457\) 8.24133 + 2.20826i 0.385513 + 0.103298i 0.446370 0.894849i \(-0.352717\pi\)
−0.0608568 + 0.998147i \(0.519383\pi\)
\(458\) 5.22289 + 4.22941i 0.244050 + 0.197627i
\(459\) 2.78288 13.0924i 0.129893 0.611101i
\(460\) −4.65727 5.66684i −0.217146 0.264218i
\(461\) 25.2246 + 8.19596i 1.17483 + 0.381724i 0.830442 0.557105i \(-0.188088\pi\)
0.344384 + 0.938829i \(0.388088\pi\)
\(462\) 6.89134 45.4760i 0.320614 2.11573i
\(463\) −10.3899 + 20.3912i −0.482857 + 0.947661i 0.513142 + 0.858304i \(0.328481\pi\)
−0.996000 + 0.0893575i \(0.971519\pi\)
\(464\) −4.31887 20.3187i −0.200498 0.943271i
\(465\) 2.37383 + 3.59806i 0.110084 + 0.166856i
\(466\) 40.8410 + 8.68102i 1.89192 + 0.402140i
\(467\) 3.19548 + 8.32450i 0.147869 + 0.385212i 0.987431 0.158052i \(-0.0505215\pi\)
−0.839562 + 0.543264i \(0.817188\pi\)
\(468\) −0.191702 + 0.191702i −0.00886142 + 0.00886142i
\(469\) −1.20050 0.860009i −0.0554338 0.0397115i
\(470\) 7.98219 + 5.71154i 0.368191 + 0.263453i
\(471\) −3.41334 + 32.4757i −0.157278 + 1.49640i
\(472\) −10.7300 4.11886i −0.493888 0.189586i
\(473\) −2.40053 + 45.8047i −0.110376 + 2.10610i
\(474\) 34.1972 + 59.2314i 1.57073 + 2.72059i
\(475\) 8.99691 29.1182i 0.412807 1.33603i
\(476\) 5.43263 + 1.11683i 0.249004 + 0.0511899i
\(477\) 23.8235 + 46.7562i 1.09080 + 2.14082i
\(478\) −0.819472 + 0.663596i −0.0374818 + 0.0303522i
\(479\) −2.18656 + 0.973518i −0.0999064 + 0.0444812i −0.456081 0.889938i \(-0.650747\pi\)
0.356175 + 0.934419i \(0.384081\pi\)
\(480\) −15.4226 + 14.0902i −0.703943 + 0.643126i
\(481\) −0.304934 + 0.684892i −0.0139038 + 0.0312284i
\(482\) −1.31543 1.31543i −0.0599161 0.0599161i
\(483\) −29.2970 + 24.0503i −1.33306 + 1.09433i
\(484\) 2.63308 0.855538i 0.119685 0.0388881i
\(485\) 21.3339 + 13.6357i 0.968722 + 0.619167i
\(486\) 22.5731 20.3249i 1.02394 0.921957i
\(487\) −4.06415 + 2.63929i −0.184164 + 0.119598i −0.633428 0.773801i \(-0.718353\pi\)
0.449264 + 0.893399i \(0.351686\pi\)
\(488\) −0.831460 15.8652i −0.0376384 0.718184i
\(489\) 12.2414 37.6753i 0.553577 1.70374i
\(490\) 9.57513 + 23.4853i 0.432560 + 1.06096i
\(491\) −9.20020 28.3153i −0.415199 1.27785i −0.912073 0.410029i \(-0.865519\pi\)
0.496874 0.867823i \(-0.334481\pi\)
\(492\) −0.209065 + 0.0802525i −0.00942537 + 0.00361806i
\(493\) −3.70780 13.8377i −0.166991 0.623218i
\(494\) 0.954148 0.100285i 0.0429291 0.00451203i
\(495\) 29.3110 + 26.0099i 1.31743 + 1.16906i
\(496\) −2.01583 + 2.77456i −0.0905136 + 0.124581i
\(497\) −2.25426 1.44260i −0.101117 0.0647094i
\(498\) 42.6595 21.7361i 1.91162 0.974018i
\(499\) −33.6862 + 19.4488i −1.50800 + 0.870646i −0.508046 + 0.861330i \(0.669632\pi\)
−0.999957 + 0.00931623i \(0.997035\pi\)
\(500\) 1.30498 6.87016i 0.0583603 0.307243i
\(501\) 2.28474 3.95729i 0.102075 0.176799i
\(502\) −18.8200 12.2218i −0.839977 0.545488i
\(503\) 37.4880 5.93752i 1.67151 0.264741i 0.752389 0.658719i \(-0.228902\pi\)
0.919120 + 0.393979i \(0.128902\pi\)
\(504\) 17.7235 + 19.4212i 0.789467 + 0.865090i
\(505\) 24.8952 8.28877i 1.10782 0.368845i
\(506\) −30.4914 13.5756i −1.35551 0.603510i
\(507\) 34.2767 9.18442i 1.52228 0.407894i
\(508\) −6.51859 + 8.04979i −0.289216 + 0.357152i
\(509\) −6.94597 + 7.71429i −0.307875 + 0.341930i −0.877149 0.480218i \(-0.840558\pi\)
0.569274 + 0.822148i \(0.307224\pi\)
\(510\) −23.2849 + 23.6246i −1.03107 + 1.04612i
\(511\) 5.64528 0.0377441i 0.249733 0.00166970i
\(512\) 4.47894 + 2.28214i 0.197943 + 0.100857i
\(513\) 24.3093 1.27400i 1.07328 0.0562483i
\(514\) 0.395345 + 0.439075i 0.0174379 + 0.0193668i
\(515\) −22.4977 1.01573i −0.991368 0.0447583i
\(516\) 14.8280 + 13.3512i 0.652768 + 0.587755i
\(517\) 10.5090 + 1.66446i 0.462184 + 0.0732027i
\(518\) −29.5794 14.8232i −1.29964 0.651293i
\(519\) −0.451584 0.621552i −0.0198223 0.0272831i
\(520\) −0.472465 + 0.104008i −0.0207190 + 0.00456103i
\(521\) −4.89041 10.9840i −0.214253 0.481219i 0.774164 0.632985i \(-0.218171\pi\)
−0.988416 + 0.151766i \(0.951504\pi\)
\(522\) −11.0749 + 28.8512i −0.484737 + 1.26278i
\(523\) −13.0588 + 20.1088i −0.571023 + 0.879298i −0.999708 0.0241556i \(-0.992310\pi\)
0.428685 + 0.903454i \(0.358977\pi\)
\(524\) 0.251771 0.0109987
\(525\) −35.4980 6.76326i −1.54926 0.295173i
\(526\) −48.2012 −2.10167
\(527\) −1.28817 + 1.98361i −0.0561136 + 0.0864074i
\(528\) −18.6853 + 48.6769i −0.813175 + 2.11839i
\(529\) 1.83261 + 4.11611i 0.0796787 + 0.178961i
\(530\) 4.14699 42.4083i 0.180134 1.84210i
\(531\) 13.5344 + 18.6285i 0.587342 + 0.808407i
\(532\) 0.595233 + 10.0692i 0.0258066 + 0.436554i
\(533\) −0.0125753 0.00199173i −0.000544695 8.62712e-5i
\(534\) −3.30130 2.97251i −0.142861 0.128633i
\(535\) −2.11294 + 1.39402i −0.0913505 + 0.0602688i
\(536\) 0.831817 + 0.923827i 0.0359290 + 0.0399032i
\(537\) 35.7727 1.87477i 1.54370 0.0809021i
\(538\) 29.9216 + 15.2458i 1.29001 + 0.657294i
\(539\) 20.6758 + 18.1219i 0.890570 + 0.780565i
\(540\) 5.51033 0.913707i 0.237127 0.0393197i
\(541\) −12.8091 + 14.2259i −0.550705 + 0.611620i −0.952659 0.304040i \(-0.901664\pi\)
0.401954 + 0.915660i \(0.368331\pi\)
\(542\) −5.71693 + 7.05982i −0.245563 + 0.303245i
\(543\) 60.7737 16.2843i 2.60805 0.698825i
\(544\) −10.4712 4.66208i −0.448949 0.199885i
\(545\) −3.88590 5.26783i −0.166454 0.225649i
\(546\) −0.243952 1.11112i −0.0104402 0.0475516i
\(547\) −12.3236 + 1.95187i −0.526919 + 0.0834558i −0.414226 0.910174i \(-0.635948\pi\)
−0.112693 + 0.993630i \(0.535948\pi\)
\(548\) −6.64468 4.31510i −0.283847 0.184332i
\(549\) −15.9141 + 27.5641i −0.679199 + 1.17641i
\(550\) −8.68006 30.6136i −0.370119 1.30537i
\(551\) 22.5633 13.0269i 0.961230 0.554967i
\(552\) 28.4300 14.4858i 1.21006 0.616556i
\(553\) −40.8400 1.86663i −1.73669 0.0793770i
\(554\) 5.63005 7.74910i 0.239198 0.329228i
\(555\) 40.6537 23.8657i 1.72565 1.01304i
\(556\) 8.95012 0.940695i 0.379570 0.0398944i
\(557\) −5.89390 21.9963i −0.249732 0.932014i −0.970946 0.239301i \(-0.923082\pi\)
0.721213 0.692713i \(-0.243585\pi\)
\(558\) 4.76331 1.82846i 0.201647 0.0774050i
\(559\) 0.350558 + 1.07891i 0.0148270 + 0.0456329i
\(560\) −4.89264 28.3312i −0.206752 1.19721i
\(561\) −11.1118 + 34.1985i −0.469139 + 1.44386i
\(562\) 0.725488 + 13.8431i 0.0306029 + 0.583937i
\(563\) −24.4754 + 15.8945i −1.03152 + 0.669874i −0.945233 0.326397i \(-0.894165\pi\)
−0.0862825 + 0.996271i \(0.527499\pi\)
\(564\) 3.43967 3.09710i 0.144836 0.130411i
\(565\) −3.81430 9.72546i −0.160469 0.409153i
\(566\) 23.2549 7.55597i 0.977476 0.317601i
\(567\) 1.06827 + 6.46474i 0.0448631 + 0.271494i
\(568\) 1.59307 + 1.59307i 0.0668436 + 0.0668436i
\(569\) 0.645950 1.45083i 0.0270796 0.0608218i −0.899499 0.436922i \(-0.856069\pi\)
0.926579 + 0.376100i \(0.122735\pi\)
\(570\) −52.4616 29.7842i −2.19737 1.24752i
\(571\) 3.28341 1.46187i 0.137406 0.0611773i −0.336882 0.941547i \(-0.609372\pi\)
0.474288 + 0.880370i \(0.342706\pi\)
\(572\) 0.185458 0.150181i 0.00775441 0.00627940i
\(573\) 5.01800 + 9.84838i 0.209630 + 0.411422i
\(574\) 0.113145 0.550374i 0.00472258 0.0229722i
\(575\) −11.5653 + 23.5348i −0.482305 + 0.981468i
\(576\) −9.32098 16.1444i −0.388374 0.672683i
\(577\) −1.16904 + 22.3066i −0.0486677 + 0.928634i 0.859788 + 0.510652i \(0.170596\pi\)
−0.908455 + 0.417982i \(0.862737\pi\)
\(578\) 8.72433 + 3.34896i 0.362884 + 0.139298i
\(579\) 0.877889 8.35256i 0.0364838 0.347121i
\(580\) 4.81091 3.54885i 0.199762 0.147358i
\(581\) −2.80113 + 28.4815i −0.116210 + 1.18161i
\(582\) 35.4392 35.4392i 1.46900 1.46900i
\(583\) −16.5535 43.1234i −0.685577 1.78599i
\(584\) −4.64845 0.988058i −0.192354 0.0408861i
\(585\) 0.907327 + 0.340772i 0.0375134 + 0.0140892i
\(586\) −3.71938 17.4983i −0.153646 0.722848i
\(587\) −19.7026 + 38.6684i −0.813211 + 1.59602i −0.0102788 + 0.999947i \(0.503272\pi\)
−0.802933 + 0.596070i \(0.796728\pi\)
\(588\) 11.7868 2.02875i 0.486078 0.0836644i
\(589\) −4.09095 1.32923i −0.168565 0.0547699i
\(590\) −1.11374 18.6641i −0.0458521 0.768390i
\(591\) −7.16259 + 33.6973i −0.294630 + 1.38612i
\(592\) 29.1476 + 23.6033i 1.19796 + 0.970088i
\(593\) −12.4912 3.34701i −0.512953 0.137445i −0.00694789 0.999976i \(-0.502212\pi\)
−0.506005 + 0.862531i \(0.668878\pi\)
\(594\) 20.5621 14.9392i 0.843673 0.612964i
\(595\) −4.39216 19.3352i −0.180061 0.792668i
\(596\) 5.40284 + 3.92539i 0.221309 + 0.160790i
\(597\) 7.47793 + 9.23448i 0.306051 + 0.377942i
\(598\) −0.824371 0.0432035i −0.0337110 0.00176672i
\(599\) 19.9444 + 11.5149i 0.814905 + 0.470485i 0.848656 0.528945i \(-0.177412\pi\)
−0.0337516 + 0.999430i \(0.510745\pi\)
\(600\) 27.9661 + 11.9690i 1.14171 + 0.488632i
\(601\) 14.0409i 0.572740i 0.958119 + 0.286370i \(0.0924486\pi\)
−0.958119 + 0.286370i \(0.907551\pi\)
\(602\) −48.2705 + 13.2806i −1.96736 + 0.541276i
\(603\) −0.389602 2.45985i −0.0158658 0.100173i
\(604\) 12.9879 + 1.36508i 0.528469 + 0.0555443i
\(605\) −6.67594 7.30725i −0.271416 0.297082i
\(606\) −5.42907 51.6542i −0.220541 2.09831i
\(607\) 10.2468 38.2415i 0.415904 1.55218i −0.367113 0.930176i \(-0.619654\pi\)
0.783017 0.622000i \(-0.213680\pi\)
\(608\) 3.26100 20.5892i 0.132251 0.835001i
\(609\) −18.3249 24.8707i −0.742564 1.00781i
\(610\) 22.9423 11.8997i 0.928906 0.481807i
\(611\) 0.257404 0.0547130i 0.0104135 0.00221345i
\(612\) 5.09433 + 7.84459i 0.205926 + 0.317099i
\(613\) 2.11361 + 3.25467i 0.0853679 + 0.131455i 0.878775 0.477236i \(-0.158361\pi\)
−0.793407 + 0.608691i \(0.791695\pi\)
\(614\) 18.2473 3.87858i 0.736400 0.156527i
\(615\) 0.570182 + 0.561982i 0.0229920 + 0.0226613i
\(616\) −13.7286 18.6325i −0.553140 0.750725i
\(617\) −4.36290 + 27.5463i −0.175644 + 1.10897i 0.729536 + 0.683943i \(0.239736\pi\)
−0.905180 + 0.425029i \(0.860264\pi\)
\(618\) −11.5378 + 43.0597i −0.464118 + 1.73211i
\(619\) −2.82187 26.8483i −0.113421 1.07913i −0.892142 0.451755i \(-0.850798\pi\)
0.778721 0.627370i \(-0.215869\pi\)
\(620\) −0.966893 0.198211i −0.0388313 0.00796036i
\(621\) −20.8305 2.18937i −0.835898 0.0878564i
\(622\) 7.28427 + 45.9911i 0.292073 + 1.84408i
\(623\) 2.56027 0.704401i 0.102575 0.0282212i
\(624\) 1.28957i 0.0516239i
\(625\) −24.2929 + 5.90393i −0.971715 + 0.236157i
\(626\) 13.3561 + 7.71114i 0.533816 + 0.308199i
\(627\) −65.3067 3.42258i −2.60810 0.136685i
\(628\) −4.70541 5.81069i −0.187766 0.231872i
\(629\) 20.9260 + 15.2037i 0.834376 + 0.606209i
\(630\) −16.8513 + 39.3134i −0.671373 + 1.56628i
\(631\) 8.70119 6.32178i 0.346389 0.251666i −0.400964 0.916094i \(-0.631325\pi\)
0.747353 + 0.664428i \(0.231325\pi\)
\(632\) 33.2423 + 8.90724i 1.32231 + 0.354311i
\(633\) 14.1510 + 11.4592i 0.562451 + 0.455464i
\(634\) 2.62964 12.3715i 0.104436 0.491335i
\(635\) 35.8371 + 9.32488i 1.42215 + 0.370047i
\(636\) −19.1105 6.20937i −0.757780 0.246217i
\(637\) 0.638026 + 0.235176i 0.0252795 + 0.00931801i
\(638\) 12.3498 24.2379i 0.488935 0.959589i
\(639\) −0.938426 4.41495i −0.0371236 0.174653i
\(640\) −1.37255 + 30.4011i −0.0542548 + 1.20171i
\(641\) −29.4673 6.26346i −1.16389 0.247392i −0.414831 0.909898i \(-0.636159\pi\)
−0.749056 + 0.662506i \(0.769493\pi\)
\(642\) 1.79569 + 4.67792i 0.0708701 + 0.184623i
\(643\) −20.4056 + 20.4056i −0.804720 + 0.804720i −0.983829 0.179110i \(-0.942678\pi\)
0.179110 + 0.983829i \(0.442678\pi\)
\(644\) 0.849471 8.63730i 0.0334739 0.340357i
\(645\) 21.5510 67.9990i 0.848570 2.67746i
\(646\) 3.45998 32.9195i 0.136131 1.29520i
\(647\) −17.8718 6.86034i −0.702613 0.269708i −0.0192794 0.999814i \(-0.506137\pi\)
−0.683334 + 0.730106i \(0.739471\pi\)
\(648\) 0.288675 5.50825i 0.0113402 0.216384i
\(649\) −10.1343 17.5531i −0.397805 0.689019i
\(650\) −0.471764 0.629933i −0.0185041 0.0247080i
\(651\) −1.02704 + 4.99588i −0.0402531 + 0.195804i
\(652\) 4.11792 + 8.08188i 0.161270 + 0.316511i
\(653\) 9.38043 7.59612i 0.367084 0.297259i −0.427975 0.903791i \(-0.640773\pi\)
0.795060 + 0.606531i \(0.207440\pi\)
\(654\) −11.8373 + 5.27031i −0.462876 + 0.206086i
\(655\) −0.372043 0.819595i −0.0145369 0.0320242i
\(656\) −0.259071 + 0.581883i −0.0101150 + 0.0227187i
\(657\) 6.73225 + 6.73225i 0.262650 + 0.262650i
\(658\) 1.89339 + 11.4580i 0.0738120 + 0.446681i
\(659\) 15.5052 5.03793i 0.603995 0.196250i 0.00897383 0.999960i \(-0.497144\pi\)
0.595022 + 0.803710i \(0.297144\pi\)
\(660\) −14.9789 + 0.893839i −0.583054 + 0.0347926i
\(661\) 10.4225 9.38450i 0.405390 0.365015i −0.441065 0.897475i \(-0.645399\pi\)
0.846455 + 0.532460i \(0.178732\pi\)
\(662\) 1.40620 0.913195i 0.0546534 0.0354923i
\(663\) 0.0465449 + 0.888130i 0.00180766 + 0.0344921i
\(664\) 7.44463 22.9122i 0.288908 0.889166i
\(665\) 31.8987 16.8169i 1.23698 0.652131i
\(666\) −17.2426 53.0674i −0.668138 2.05632i
\(667\) −20.9287 + 8.03376i −0.810361 + 0.311069i
\(668\) 0.270798 + 1.01063i 0.0104775 + 0.0391025i
\(669\) −41.8660 + 4.40029i −1.61863 + 0.170125i
\(670\) −0.809148 + 1.85338i −0.0312601 + 0.0716025i
\(671\) 16.4678 22.6659i 0.635731 0.875008i
\(672\) −24.6916 1.12855i −0.952498 0.0435347i
\(673\) −0.252552 + 0.128682i −0.00973515 + 0.00496031i −0.458851 0.888513i \(-0.651739\pi\)
0.449116 + 0.893473i \(0.351739\pi\)
\(674\) −2.62652 + 1.51642i −0.101170 + 0.0584103i
\(675\) −11.1170 16.5876i −0.427894 0.638459i
\(676\) −4.06262 + 7.03667i −0.156255 + 0.270641i
\(677\) −28.0912 18.2427i −1.07963 0.701123i −0.122998 0.992407i \(-0.539251\pi\)
−0.956637 + 0.291284i \(0.905917\pi\)
\(678\) −20.4242 + 3.23488i −0.784387 + 0.124235i
\(679\) 6.42445 + 29.2613i 0.246548 + 1.12295i
\(680\) 0.120883 + 16.6906i 0.00463566 + 0.640055i
\(681\) 33.0654 + 14.7217i 1.26707 + 0.564136i
\(682\) −4.33814 + 1.16240i −0.166116 + 0.0445106i
\(683\) −14.2385 + 17.5831i −0.544821 + 0.672798i −0.972976 0.230907i \(-0.925831\pi\)
0.428155 + 0.903706i \(0.359164\pi\)
\(684\) −11.3826 + 12.6417i −0.435225 + 0.483367i
\(685\) −4.22817 + 28.0069i −0.161550 + 1.07009i
\(686\) −11.6535 + 27.6538i −0.444931 + 1.05583i
\(687\) −10.0951 5.14374i −0.385154 0.196246i
\(688\) 56.6749 2.97020i 2.16071 0.113238i
\(689\) −0.764441 0.848997i −0.0291229 0.0323442i
\(690\) 40.5750 + 32.3732i 1.54466 + 1.23243i
\(691\) 21.1493 + 19.0429i 0.804557 + 0.724427i 0.964895 0.262636i \(-0.0845917\pi\)
−0.160338 + 0.987062i \(0.551258\pi\)
\(692\) 0.173748 + 0.0275190i 0.00660492 + 0.00104612i
\(693\) 2.73619 + 46.2863i 0.103939 + 1.75827i
\(694\) −1.89358 2.60628i −0.0718792 0.0989332i
\(695\) −16.2879 27.7454i −0.617833 1.05244i
\(696\) 10.5773 + 23.7571i 0.400933 + 0.900511i
\(697\) −0.157421 + 0.410097i −0.00596276 + 0.0155335i
\(698\) 3.85664 5.93870i 0.145976 0.224783i
\(699\) −70.3907 −2.66242
\(700\) 6.84240 4.65236i 0.258618 0.175843i
\(701\) 29.7376 1.12317 0.561587 0.827418i \(-0.310191\pi\)
0.561587 + 0.827418i \(0.310191\pi\)
\(702\) 0.342366 0.527197i 0.0129218 0.0198978i
\(703\) −16.8582 + 43.9171i −0.635819 + 1.65637i
\(704\) 6.67433 + 14.9908i 0.251548 + 0.564986i
\(705\) −15.1648 6.62063i −0.571140 0.249347i
\(706\) −17.7863 24.4807i −0.669396 0.921345i
\(707\) 27.7560 + 13.9094i 1.04387 + 0.523118i
\(708\) −8.70856 1.37930i −0.327288 0.0518373i
\(709\) −6.43362 5.79286i −0.241620 0.217555i 0.539420 0.842037i \(-0.318644\pi\)
−0.781039 + 0.624482i \(0.785310\pi\)
\(710\) −1.28862 + 3.43105i −0.0483612 + 0.128765i
\(711\) −46.1349 51.2380i −1.73020 1.92158i
\(712\) −2.23225 + 0.116987i −0.0836570 + 0.00438428i
\(713\) 3.29773 + 1.68028i 0.123501 + 0.0629269i
\(714\) −39.2475 + 0.262407i −1.46880 + 0.00982033i
\(715\) −0.762939 0.381802i −0.0285323 0.0142786i
\(716\) −5.48831 + 6.09539i −0.205108 + 0.227795i
\(717\) 1.11873 1.38152i 0.0417799 0.0515939i
\(718\) −26.1589 + 7.00926i −0.976242 + 0.261583i
\(719\) −24.7026 10.9983i −0.921251 0.410167i −0.109377 0.994000i \(-0.534886\pi\)
−0.811874 + 0.583833i \(0.801552\pi\)
\(720\) 28.2152 39.4323i 1.05152 1.46955i
\(721\) −17.9622 19.6828i −0.668946 0.733024i
\(722\) 29.0509 4.60121i 1.08116 0.171239i
\(723\) 2.63025 + 1.70811i 0.0978201 + 0.0635251i
\(724\) −7.20316 + 12.4762i −0.267703 + 0.463676i
\(725\) −18.6617 10.4169i −0.693078 0.386873i
\(726\) −16.9672 + 9.79602i −0.629712 + 0.363565i
\(727\) 15.5218 7.90873i 0.575670 0.293318i −0.141814 0.989893i \(-0.545294\pi\)
0.717484 + 0.696575i \(0.245294\pi\)
\(728\) −0.482140 0.308542i −0.0178693 0.0114353i
\(729\) −25.7325 + 35.4177i −0.953055 + 1.31177i
\(730\) −1.66209 7.55021i −0.0615166 0.279446i
\(731\) 38.9251 4.09119i 1.43970 0.151318i
\(732\) −3.15439 11.7724i −0.116590 0.435119i
\(733\) 42.8618 16.4531i 1.58314 0.607709i 0.601567 0.798822i \(-0.294543\pi\)
0.981568 + 0.191113i \(0.0612098\pi\)
\(734\) 4.83698 + 14.8867i 0.178536 + 0.549477i
\(735\) −24.0215 35.3717i −0.886047 1.30470i
\(736\) −5.54266 + 17.0586i −0.204305 + 0.628787i
\(737\) 0.114734 + 2.18925i 0.00422628 + 0.0806422i
\(738\) 0.794727 0.516102i 0.0292543 0.0189980i
\(739\) −18.2915 + 16.4697i −0.672864 + 0.605849i −0.933066 0.359705i \(-0.882877\pi\)
0.260202 + 0.965554i \(0.416211\pi\)
\(740\) −2.71810 + 10.4461i −0.0999195 + 0.384008i
\(741\) −1.53827 + 0.499813i −0.0565096 + 0.0183611i
\(742\) 38.9688 31.9901i 1.43059 1.17439i
\(743\) −10.2323 10.2323i −0.375388 0.375388i 0.494047 0.869435i \(-0.335517\pi\)
−0.869435 + 0.494047i \(0.835517\pi\)
\(744\) 1.74631 3.92228i 0.0640229 0.143798i
\(745\) 4.79460 23.3885i 0.175661 0.856888i
\(746\) −7.27985 + 3.24120i −0.266534 + 0.118669i
\(747\) −37.5090 + 30.3742i −1.37238 + 1.11133i
\(748\) −3.73790 7.33605i −0.136671 0.268233i
\(749\) −2.93380 0.603126i −0.107199 0.0220377i
\(750\) 1.07513 + 49.4748i 0.0392581 + 1.80656i
\(751\) 5.60583 + 9.70959i 0.204560 + 0.354308i 0.949992 0.312273i \(-0.101090\pi\)
−0.745433 + 0.666581i \(0.767757\pi\)
\(752\) 0.689001 13.1469i 0.0251253 0.479419i
\(753\) 35.3186 + 13.5575i 1.28708 + 0.494064i
\(754\) 0.0703268 0.669115i 0.00256115 0.0243677i
\(755\) −14.7484 44.2968i −0.536750 1.61212i
\(756\) 5.37259 + 3.84880i 0.195399 + 0.139979i
\(757\) −34.2009 + 34.2009i −1.24305 + 1.24305i −0.284326 + 0.958728i \(0.591770\pi\)
−0.958728 + 0.284326i \(0.908230\pi\)
\(758\) −7.30949 19.0419i −0.265493 0.691632i
\(759\) 55.0395 + 11.6990i 1.99781 + 0.424647i
\(760\) −29.2634 + 8.06870i −1.06149 + 0.292683i
\(761\) −3.57175 16.8038i −0.129476 0.609135i −0.994260 0.106992i \(-0.965878\pi\)
0.864784 0.502144i \(-0.167455\pi\)
\(762\) 33.2776 65.3109i 1.20552 2.36597i
\(763\) 1.16047 7.65792i 0.0420117 0.277235i
\(764\) −2.40697 0.782073i −0.0870812 0.0282944i
\(765\) 18.0087 28.1756i 0.651105 1.01869i
\(766\) −6.04081 + 28.4198i −0.218263 + 1.02685i