Properties

Label 175.2.x.a.3.13
Level $175$
Weight $2$
Character 175.3
Analytic conductor $1.397$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(3,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([21, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.x (of order \(60\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 3.13
Character \(\chi\) \(=\) 175.3
Dual form 175.2.x.a.117.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.668598 - 1.02955i) q^{2} +(-0.0902073 + 0.234998i) q^{3} +(0.200523 + 0.450382i) q^{4} +(-0.532453 + 2.17175i) q^{5} +(0.181630 + 0.249992i) q^{6} +(1.56284 - 2.13484i) q^{7} +(3.02273 + 0.478753i) q^{8} +(2.18235 + 1.96499i) q^{9} +O(q^{10})\) \(q+(0.668598 - 1.02955i) q^{2} +(-0.0902073 + 0.234998i) q^{3} +(0.200523 + 0.450382i) q^{4} +(-0.532453 + 2.17175i) q^{5} +(0.181630 + 0.249992i) q^{6} +(1.56284 - 2.13484i) q^{7} +(3.02273 + 0.478753i) q^{8} +(2.18235 + 1.96499i) q^{9} +(1.87993 + 2.00021i) q^{10} +(-4.25460 - 4.72522i) q^{11} +(-0.123927 + 0.00649476i) q^{12} +(3.08865 + 1.57374i) q^{13} +(-1.15301 - 3.03637i) q^{14} +(-0.462326 - 0.321033i) q^{15} +(1.85412 - 2.05921i) q^{16} +(-2.43401 + 3.00575i) q^{17} +(3.48217 - 0.933045i) q^{18} +(-5.51153 - 2.45389i) q^{19} +(-1.08488 + 0.195678i) q^{20} +(0.360703 + 0.559843i) q^{21} +(-7.70946 + 1.22106i) q^{22} +(-1.49342 - 0.969836i) q^{23} +(-0.385178 + 0.667148i) q^{24} +(-4.43299 - 2.31271i) q^{25} +(3.68531 - 2.12772i) q^{26} +(-1.33148 + 0.678422i) q^{27} +(1.27488 + 0.275791i) q^{28} +(1.19010 - 1.63804i) q^{29} +(-0.639630 + 0.261346i) q^{30} +(1.49964 - 0.157619i) q^{31} +(0.703784 + 2.62656i) q^{32} +(1.49421 - 0.573575i) q^{33} +(1.46720 + 4.51558i) q^{34} +(3.80419 + 4.53080i) q^{35} +(-0.447387 + 1.37692i) q^{36} +(-0.403486 - 7.69898i) q^{37} +(-6.21140 + 4.03373i) q^{38} +(-0.648446 + 0.583863i) q^{39} +(-2.64919 + 6.30969i) q^{40} +(-2.44960 + 0.795924i) q^{41} +(0.817551 + 0.00294727i) q^{42} +(4.23024 + 4.23024i) q^{43} +(1.27501 - 2.86371i) q^{44} +(-5.42947 + 3.69324i) q^{45} +(-1.99699 + 0.889117i) q^{46} +(-2.04151 + 1.65318i) q^{47} +(0.316655 + 0.621471i) q^{48} +(-2.11506 - 6.67282i) q^{49} +(-5.34493 + 3.01771i) q^{50} +(-0.486781 - 0.843129i) q^{51} +(-0.0894413 + 1.70664i) q^{52} +(-2.84820 - 1.09332i) q^{53} +(-0.191754 + 1.82442i) q^{54} +(12.5274 - 6.72397i) q^{55} +(5.74610 - 5.70482i) q^{56} +(1.07384 - 1.07384i) q^{57} +(-0.890740 - 2.32046i) q^{58} +(-12.6346 - 2.68556i) q^{59} +(0.0518806 - 0.272598i) q^{60} +(0.0178842 + 0.0841387i) q^{61} +(0.840380 - 1.64934i) q^{62} +(7.60560 - 1.58799i) q^{63} +(8.44536 + 2.74406i) q^{64} +(-5.06234 + 5.86982i) q^{65} +(0.408504 - 1.92186i) q^{66} +(1.03031 + 0.834329i) q^{67} +(-1.84181 - 0.493512i) q^{68} +(0.362627 - 0.263464i) q^{69} +(7.20816 - 0.887327i) q^{70} +(1.14755 + 0.833741i) q^{71} +(5.65589 + 6.98445i) q^{72} +(13.2720 + 0.695556i) q^{73} +(-8.19625 - 4.73211i) q^{74} +(0.943370 - 0.833121i) q^{75} -2.97435i q^{76} +(-16.7368 + 1.69813i) q^{77} +(0.167567 + 1.05798i) q^{78} +(-4.39299 - 0.461722i) q^{79} +(3.48485 + 5.12312i) q^{80} +(0.881568 + 8.38756i) q^{81} +(-0.818354 + 3.05414i) q^{82} +(-0.0358492 + 0.226343i) q^{83} +(-0.179814 + 0.274715i) q^{84} +(-5.23175 - 6.88648i) q^{85} +(7.18357 - 1.52692i) q^{86} +(0.277580 + 0.427435i) q^{87} +(-10.5983 - 16.3199i) q^{88} +(12.6254 - 2.68362i) q^{89} +(0.172246 + 8.05921i) q^{90} +(8.18675 - 4.13425i) q^{91} +(0.137332 - 0.867081i) q^{92} +(-0.0982386 + 0.366631i) q^{93} +(0.337085 + 3.20715i) q^{94} +(8.26386 - 10.6631i) q^{95} +(-0.680723 - 0.0715469i) q^{96} +(-0.0559772 - 0.353426i) q^{97} +(-8.28413 - 2.28387i) q^{98} -18.6723i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9} - 36 q^{10} - 6 q^{11} - 36 q^{12} - 20 q^{14} - 28 q^{15} - 30 q^{16} - 42 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} + 32 q^{22} - 40 q^{23} + 2 q^{25} - 48 q^{26} + 22 q^{28} - 58 q^{30} - 18 q^{31} + 8 q^{32} - 30 q^{33} - 2 q^{35} + 40 q^{36} - 10 q^{37} + 72 q^{38} + 30 q^{39} - 48 q^{40} + 6 q^{42} - 108 q^{43} - 10 q^{44} + 186 q^{45} - 6 q^{46} - 54 q^{47} - 248 q^{50} - 16 q^{51} + 216 q^{52} + 50 q^{53} - 30 q^{54} + 4 q^{56} - 216 q^{57} - 4 q^{58} + 90 q^{59} + 96 q^{60} - 18 q^{61} - 66 q^{63} - 100 q^{64} + 14 q^{65} - 90 q^{66} + 4 q^{67} + 342 q^{68} - 60 q^{70} - 24 q^{71} + 58 q^{72} - 6 q^{73} + 216 q^{75} - 80 q^{77} - 132 q^{78} - 10 q^{79} - 6 q^{80} - 10 q^{81} + 216 q^{82} + 20 q^{84} - 48 q^{85} - 6 q^{86} - 48 q^{87} - 122 q^{88} + 120 q^{89} - 12 q^{91} - 4 q^{92} + 106 q^{93} - 30 q^{94} - 98 q^{95} - 90 q^{96} + 222 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.668598 1.02955i 0.472770 0.728002i −0.519176 0.854668i \(-0.673761\pi\)
0.991945 + 0.126666i \(0.0404276\pi\)
\(3\) −0.0902073 + 0.234998i −0.0520812 + 0.135676i −0.957153 0.289582i \(-0.906484\pi\)
0.905072 + 0.425259i \(0.139817\pi\)
\(4\) 0.200523 + 0.450382i 0.100261 + 0.225191i
\(5\) −0.532453 + 2.17175i −0.238120 + 0.971236i
\(6\) 0.181630 + 0.249992i 0.0741501 + 0.102059i
\(7\) 1.56284 2.13484i 0.590698 0.806893i
\(8\) 3.02273 + 0.478753i 1.06870 + 0.169265i
\(9\) 2.18235 + 1.96499i 0.727449 + 0.654998i
\(10\) 1.87993 + 2.00021i 0.594485 + 0.632523i
\(11\) −4.25460 4.72522i −1.28281 1.42471i −0.853107 0.521736i \(-0.825284\pi\)
−0.429704 0.902970i \(-0.641382\pi\)
\(12\) −0.123927 + 0.00649476i −0.0357748 + 0.00187488i
\(13\) 3.08865 + 1.57374i 0.856637 + 0.436478i 0.826413 0.563065i \(-0.190378\pi\)
0.0302242 + 0.999543i \(0.490378\pi\)
\(14\) −1.15301 3.03637i −0.308155 0.811504i
\(15\) −0.462326 0.321033i −0.119372 0.0828904i
\(16\) 1.85412 2.05921i 0.463530 0.514802i
\(17\) −2.43401 + 3.00575i −0.590334 + 0.729002i −0.981531 0.191305i \(-0.938728\pi\)
0.391196 + 0.920307i \(0.372061\pi\)
\(18\) 3.48217 0.933045i 0.820756 0.219921i
\(19\) −5.51153 2.45389i −1.26443 0.562961i −0.338611 0.940926i \(-0.609957\pi\)
−0.925820 + 0.377965i \(0.876624\pi\)
\(20\) −1.08488 + 0.195678i −0.242588 + 0.0437550i
\(21\) 0.360703 + 0.559843i 0.0787119 + 0.122168i
\(22\) −7.70946 + 1.22106i −1.64366 + 0.260331i
\(23\) −1.49342 0.969836i −0.311399 0.202225i 0.379472 0.925203i \(-0.376106\pi\)
−0.690870 + 0.722979i \(0.742772\pi\)
\(24\) −0.385178 + 0.667148i −0.0786242 + 0.136181i
\(25\) −4.43299 2.31271i −0.886597 0.462542i
\(26\) 3.68531 2.12772i 0.722749 0.417279i
\(27\) −1.33148 + 0.678422i −0.256243 + 0.130562i
\(28\) 1.27488 + 0.275791i 0.240929 + 0.0521195i
\(29\) 1.19010 1.63804i 0.220997 0.304176i −0.684095 0.729393i \(-0.739802\pi\)
0.905091 + 0.425218i \(0.139802\pi\)
\(30\) −0.639630 + 0.261346i −0.116780 + 0.0477149i
\(31\) 1.49964 0.157619i 0.269344 0.0283091i 0.0311061 0.999516i \(-0.490097\pi\)
0.238237 + 0.971207i \(0.423430\pi\)
\(32\) 0.703784 + 2.62656i 0.124413 + 0.464314i
\(33\) 1.49421 0.573575i 0.260109 0.0998466i
\(34\) 1.46720 + 4.51558i 0.251623 + 0.774415i
\(35\) 3.80419 + 4.53080i 0.643026 + 0.765844i
\(36\) −0.447387 + 1.37692i −0.0745645 + 0.229486i
\(37\) −0.403486 7.69898i −0.0663327 1.26570i −0.805668 0.592367i \(-0.798194\pi\)
0.739336 0.673337i \(-0.235140\pi\)
\(38\) −6.21140 + 4.03373i −1.00762 + 0.654357i
\(39\) −0.648446 + 0.583863i −0.103834 + 0.0934930i
\(40\) −2.64919 + 6.30969i −0.418874 + 0.997650i
\(41\) −2.44960 + 0.795924i −0.382563 + 0.124302i −0.493984 0.869471i \(-0.664460\pi\)
0.111421 + 0.993773i \(0.464460\pi\)
\(42\) 0.817551 + 0.00294727i 0.126151 + 0.000454774i
\(43\) 4.23024 + 4.23024i 0.645106 + 0.645106i 0.951806 0.306701i \(-0.0992250\pi\)
−0.306701 + 0.951806i \(0.599225\pi\)
\(44\) 1.27501 2.86371i 0.192214 0.431720i
\(45\) −5.42947 + 3.69324i −0.809378 + 0.550556i
\(46\) −1.99699 + 0.889117i −0.294440 + 0.131093i
\(47\) −2.04151 + 1.65318i −0.297785 + 0.241142i −0.766555 0.642179i \(-0.778031\pi\)
0.468770 + 0.883320i \(0.344697\pi\)
\(48\) 0.316655 + 0.621471i 0.0457052 + 0.0897016i
\(49\) −2.11506 6.67282i −0.302152 0.953260i
\(50\) −5.34493 + 3.01771i −0.755888 + 0.426769i
\(51\) −0.486781 0.843129i −0.0681630 0.118062i
\(52\) −0.0894413 + 1.70664i −0.0124033 + 0.236669i
\(53\) −2.84820 1.09332i −0.391230 0.150179i 0.154798 0.987946i \(-0.450527\pi\)
−0.546028 + 0.837767i \(0.683861\pi\)
\(54\) −0.191754 + 1.82442i −0.0260944 + 0.248271i
\(55\) 12.5274 6.72397i 1.68919 0.906660i
\(56\) 5.74610 5.70482i 0.767855 0.762338i
\(57\) 1.07384 1.07384i 0.142234 0.142234i
\(58\) −0.890740 2.32046i −0.116960 0.304691i
\(59\) −12.6346 2.68556i −1.64488 0.349630i −0.709893 0.704310i \(-0.751257\pi\)
−0.934988 + 0.354680i \(0.884590\pi\)
\(60\) 0.0518806 0.272598i 0.00669776 0.0351922i
\(61\) 0.0178842 + 0.0841387i 0.00228984 + 0.0107729i 0.979278 0.202522i \(-0.0649138\pi\)
−0.976988 + 0.213295i \(0.931580\pi\)
\(62\) 0.840380 1.64934i 0.106728 0.209466i
\(63\) 7.60560 1.58799i 0.958216 0.200067i
\(64\) 8.44536 + 2.74406i 1.05567 + 0.343008i
\(65\) −5.06234 + 5.86982i −0.627906 + 0.728062i
\(66\) 0.408504 1.92186i 0.0502833 0.236564i
\(67\) 1.03031 + 0.834329i 0.125872 + 0.101930i 0.690190 0.723629i \(-0.257527\pi\)
−0.564317 + 0.825558i \(0.690860\pi\)
\(68\) −1.84181 0.493512i −0.223352 0.0598471i
\(69\) 0.362627 0.263464i 0.0436551 0.0317173i
\(70\) 7.20816 0.887327i 0.861539 0.106056i
\(71\) 1.14755 + 0.833741i 0.136189 + 0.0989469i 0.653794 0.756673i \(-0.273176\pi\)
−0.517605 + 0.855620i \(0.673176\pi\)
\(72\) 5.65589 + 6.98445i 0.666554 + 0.823125i
\(73\) 13.2720 + 0.695556i 1.55337 + 0.0814087i 0.809582 0.587007i \(-0.199694\pi\)
0.743788 + 0.668416i \(0.233027\pi\)
\(74\) −8.19625 4.73211i −0.952795 0.550096i
\(75\) 0.943370 0.833121i 0.108931 0.0962005i
\(76\) 2.97435i 0.341182i
\(77\) −16.7368 + 1.69813i −1.90734 + 0.193520i
\(78\) 0.167567 + 1.05798i 0.0189732 + 0.119792i
\(79\) −4.39299 0.461722i −0.494250 0.0519478i −0.145875 0.989303i \(-0.546600\pi\)
−0.348375 + 0.937355i \(0.613266\pi\)
\(80\) 3.48485 + 5.12312i 0.389618 + 0.572782i
\(81\) 0.881568 + 8.38756i 0.0979520 + 0.931951i
\(82\) −0.818354 + 3.05414i −0.0903721 + 0.337273i
\(83\) −0.0358492 + 0.226343i −0.00393496 + 0.0248444i −0.989578 0.144000i \(-0.954004\pi\)
0.985643 + 0.168844i \(0.0540035\pi\)
\(84\) −0.179814 + 0.274715i −0.0196193 + 0.0299739i
\(85\) −5.23175 6.88648i −0.567462 0.746944i
\(86\) 7.18357 1.52692i 0.774624 0.164652i
\(87\) 0.277580 + 0.427435i 0.0297597 + 0.0458258i
\(88\) −10.5983 16.3199i −1.12978 1.73971i
\(89\) 12.6254 2.68362i 1.33829 0.284463i 0.517498 0.855684i \(-0.326863\pi\)
0.820796 + 0.571221i \(0.193530\pi\)
\(90\) 0.172246 + 8.05921i 0.0181564 + 0.849515i
\(91\) 8.18675 4.13425i 0.858205 0.433387i
\(92\) 0.137332 0.867081i 0.0143179 0.0903995i
\(93\) −0.0982386 + 0.366631i −0.0101869 + 0.0380179i
\(94\) 0.337085 + 3.20715i 0.0347677 + 0.330793i
\(95\) 8.26386 10.6631i 0.847854 1.09401i
\(96\) −0.680723 0.0715469i −0.0694760 0.00730222i
\(97\) −0.0559772 0.353426i −0.00568363 0.0358850i 0.984684 0.174351i \(-0.0557828\pi\)
−0.990367 + 0.138466i \(0.955783\pi\)
\(98\) −8.28413 2.28387i −0.836823 0.230705i
\(99\) 18.6723i 1.87664i
\(100\) 0.152687 2.46029i 0.0152687 0.246029i
\(101\) −3.72935 2.15314i −0.371084 0.214246i 0.302848 0.953039i \(-0.402063\pi\)
−0.673932 + 0.738793i \(0.735396\pi\)
\(102\) −1.19350 0.0625489i −0.118175 0.00619327i
\(103\) 6.82272 + 8.42536i 0.672263 + 0.830175i 0.993138 0.116946i \(-0.0373105\pi\)
−0.320876 + 0.947121i \(0.603977\pi\)
\(104\) 8.58271 + 6.23570i 0.841604 + 0.611461i
\(105\) −1.40790 + 0.485267i −0.137396 + 0.0473572i
\(106\) −3.02993 + 2.20137i −0.294293 + 0.213816i
\(107\) 9.62039 + 2.57778i 0.930038 + 0.249203i 0.691871 0.722021i \(-0.256787\pi\)
0.238167 + 0.971224i \(0.423453\pi\)
\(108\) −0.572541 0.463634i −0.0550928 0.0446132i
\(109\) −0.595124 + 2.79984i −0.0570026 + 0.268176i −0.997415 0.0718609i \(-0.977106\pi\)
0.940412 + 0.340037i \(0.110440\pi\)
\(110\) 1.45309 17.3932i 0.138547 1.65837i
\(111\) 1.84564 + 0.599686i 0.175181 + 0.0569197i
\(112\) −1.49838 7.17646i −0.141584 0.678112i
\(113\) −4.40329 + 8.64195i −0.414227 + 0.812966i 0.585770 + 0.810477i \(0.300792\pi\)
−0.999997 + 0.00248866i \(0.999208\pi\)
\(114\) −0.387605 1.82354i −0.0363025 0.170790i
\(115\) 2.90141 2.72693i 0.270558 0.254288i
\(116\) 0.976384 + 0.207537i 0.0906550 + 0.0192693i
\(117\) 3.64810 + 9.50364i 0.337267 + 0.878611i
\(118\) −11.2124 + 11.2124i −1.03218 + 1.03218i
\(119\) 2.61283 + 9.89373i 0.239517 + 0.906957i
\(120\) −1.24379 1.19174i −0.113542 0.108790i
\(121\) −3.07620 + 29.2681i −0.279655 + 2.66074i
\(122\) 0.0985823 + 0.0378422i 0.00892523 + 0.00342607i
\(123\) 0.0339314 0.647450i 0.00305949 0.0583786i
\(124\) 0.371701 + 0.643805i 0.0333797 + 0.0578154i
\(125\) 7.38298 8.39593i 0.660354 0.750954i
\(126\) 3.45018 8.89207i 0.307366 0.792169i
\(127\) 3.47660 + 6.82321i 0.308498 + 0.605462i 0.992251 0.124252i \(-0.0396532\pi\)
−0.683753 + 0.729714i \(0.739653\pi\)
\(128\) 4.24525 3.43773i 0.375230 0.303856i
\(129\) −1.37570 + 0.612500i −0.121123 + 0.0539276i
\(130\) 2.65861 + 9.13648i 0.233175 + 0.801322i
\(131\) −3.45729 + 7.76520i −0.302065 + 0.678448i −0.999261 0.0384316i \(-0.987764\pi\)
0.697197 + 0.716880i \(0.254430\pi\)
\(132\) 0.557951 + 0.557951i 0.0485634 + 0.0485634i
\(133\) −13.8523 + 7.93118i −1.20115 + 0.687720i
\(134\) 1.54785 0.502926i 0.133714 0.0434462i
\(135\) −0.764413 3.25287i −0.0657902 0.279962i
\(136\) −8.79637 + 7.92028i −0.754282 + 0.679159i
\(137\) 14.3330 9.30796i 1.22455 0.795233i 0.240076 0.970754i \(-0.422828\pi\)
0.984476 + 0.175521i \(0.0561611\pi\)
\(138\) −0.0287977 0.549494i −0.00245143 0.0467760i
\(139\) 4.98856 15.3532i 0.423124 1.30224i −0.481656 0.876361i \(-0.659964\pi\)
0.904779 0.425880i \(-0.140036\pi\)
\(140\) −1.27776 + 2.62187i −0.107990 + 0.221588i
\(141\) −0.204336 0.628881i −0.0172082 0.0529613i
\(142\) 1.62563 0.624019i 0.136419 0.0523665i
\(143\) −5.70469 21.2902i −0.477050 1.78038i
\(144\) 8.09267 0.850574i 0.674389 0.0708811i
\(145\) 2.92373 + 3.45678i 0.242803 + 0.287070i
\(146\) 9.58974 13.1991i 0.793652 1.09237i
\(147\) 1.75889 + 0.104901i 0.145071 + 0.00865210i
\(148\) 3.38657 1.72554i 0.278374 0.141839i
\(149\) −13.1522 + 7.59345i −1.07747 + 0.622080i −0.930214 0.367018i \(-0.880379\pi\)
−0.147260 + 0.989098i \(0.547045\pi\)
\(150\) −0.227004 1.52827i −0.0185348 0.124783i
\(151\) −7.07212 + 12.2493i −0.575521 + 0.996832i 0.420464 + 0.907309i \(0.361867\pi\)
−0.995985 + 0.0895225i \(0.971466\pi\)
\(152\) −15.4850 10.0561i −1.25600 0.815657i
\(153\) −11.2181 + 1.77678i −0.906934 + 0.143644i
\(154\) −9.44189 + 18.3668i −0.760849 + 1.48004i
\(155\) −0.456181 + 3.34077i −0.0366413 + 0.268337i
\(156\) −0.392990 0.174970i −0.0314643 0.0140088i
\(157\) 4.44121 1.19002i 0.354447 0.0949739i −0.0772018 0.997015i \(-0.524599\pi\)
0.431649 + 0.902042i \(0.357932\pi\)
\(158\) −3.41251 + 4.21410i −0.271485 + 0.335256i
\(159\) 0.513857 0.570696i 0.0407515 0.0452591i
\(160\) −6.07896 + 0.129923i −0.480584 + 0.0102713i
\(161\) −4.40441 + 1.67250i −0.347116 + 0.131812i
\(162\) 9.22483 + 4.70028i 0.724771 + 0.369289i
\(163\) 9.72937 0.509895i 0.762063 0.0399381i 0.332655 0.943049i \(-0.392055\pi\)
0.429408 + 0.903110i \(0.358722\pi\)
\(164\) −0.849670 0.943654i −0.0663481 0.0736870i
\(165\) 0.450062 + 3.55046i 0.0350373 + 0.276403i
\(166\) 0.209063 + 0.188241i 0.0162264 + 0.0146103i
\(167\) −17.9190 2.83810i −1.38662 0.219618i −0.581892 0.813266i \(-0.697687\pi\)
−0.804725 + 0.593648i \(0.797687\pi\)
\(168\) 0.822281 + 1.86494i 0.0634404 + 0.143883i
\(169\) −0.578133 0.795732i −0.0444718 0.0612101i
\(170\) −10.5879 + 0.782056i −0.812056 + 0.0599810i
\(171\) −7.20619 16.1854i −0.551071 1.23773i
\(172\) −1.05696 + 2.75348i −0.0805927 + 0.209951i
\(173\) −6.81817 + 10.4991i −0.518376 + 0.798228i −0.996803 0.0798987i \(-0.974540\pi\)
0.478427 + 0.878127i \(0.341207\pi\)
\(174\) 0.625655 0.0474308
\(175\) −11.8653 + 5.84931i −0.896933 + 0.442167i
\(176\) −17.6187 −1.32806
\(177\) 1.77083 2.72684i 0.133104 0.204962i
\(178\) 5.67842 14.7928i 0.425615 1.10877i
\(179\) 6.52722 + 14.6604i 0.487868 + 1.09577i 0.974952 + 0.222414i \(0.0713936\pi\)
−0.487085 + 0.873355i \(0.661940\pi\)
\(180\) −2.75210 1.70476i −0.205130 0.127065i
\(181\) −8.02423 11.0444i −0.596436 0.820924i 0.398940 0.916977i \(-0.369378\pi\)
−0.995376 + 0.0960528i \(0.969378\pi\)
\(182\) 1.21722 11.1928i 0.0902267 0.829667i
\(183\) −0.0213857 0.00338717i −0.00158088 0.000250387i
\(184\) −4.04988 3.64653i −0.298561 0.268826i
\(185\) 16.9351 + 3.22307i 1.24509 + 0.236965i
\(186\) 0.311783 + 0.346270i 0.0228611 + 0.0253898i
\(187\) 24.5586 1.28706i 1.79590 0.0941192i
\(188\) −1.15393 0.587958i −0.0841592 0.0428813i
\(189\) −0.632566 + 3.90276i −0.0460124 + 0.283884i
\(190\) −5.45297 15.6374i −0.395600 1.13445i
\(191\) 0.744251 0.826574i 0.0538521 0.0598088i −0.715617 0.698493i \(-0.753854\pi\)
0.769469 + 0.638684i \(0.220521\pi\)
\(192\) −1.40668 + 1.73711i −0.101519 + 0.125365i
\(193\) 10.1893 2.73020i 0.733438 0.196524i 0.127278 0.991867i \(-0.459376\pi\)
0.606160 + 0.795343i \(0.292709\pi\)
\(194\) −0.401296 0.178669i −0.0288114 0.0128277i
\(195\) −0.922738 1.71914i −0.0660786 0.123110i
\(196\) 2.58120 2.29064i 0.184371 0.163617i
\(197\) 0.109704 0.0173753i 0.00781605 0.00123794i −0.152525 0.988300i \(-0.548741\pi\)
0.160341 + 0.987062i \(0.448741\pi\)
\(198\) −19.2241 12.4843i −1.36620 0.887219i
\(199\) −9.56773 + 16.5718i −0.678239 + 1.17474i 0.297272 + 0.954793i \(0.403923\pi\)
−0.975511 + 0.219951i \(0.929410\pi\)
\(200\) −12.2925 9.11300i −0.869211 0.644386i
\(201\) −0.289007 + 0.166858i −0.0203850 + 0.0117693i
\(202\) −4.71020 + 2.39997i −0.331409 + 0.168861i
\(203\) −1.63700 5.10067i −0.114895 0.357997i
\(204\) 0.282119 0.388304i 0.0197523 0.0271867i
\(205\) −0.424248 5.74371i −0.0296308 0.401158i
\(206\) 13.2360 1.39116i 0.922195 0.0969266i
\(207\) −1.35343 5.05107i −0.0940700 0.351074i
\(208\) 8.96739 3.44226i 0.621777 0.238678i
\(209\) 11.8542 + 36.4835i 0.819972 + 2.52362i
\(210\) −0.441708 + 1.77395i −0.0304808 + 0.122414i
\(211\) −5.50057 + 16.9290i −0.378675 + 1.16544i 0.562290 + 0.826940i \(0.309920\pi\)
−0.940966 + 0.338502i \(0.890080\pi\)
\(212\) −0.0787171 1.50201i −0.00540632 0.103159i
\(213\) −0.299445 + 0.194462i −0.0205176 + 0.0133243i
\(214\) 9.08612 8.18118i 0.621114 0.559254i
\(215\) −11.4394 + 6.93461i −0.780162 + 0.472937i
\(216\) −4.34949 + 1.41324i −0.295946 + 0.0961585i
\(217\) 2.00721 3.44782i 0.136258 0.234053i
\(218\) 2.48468 + 2.48468i 0.168283 + 0.168283i
\(219\) −1.36069 + 3.05615i −0.0919466 + 0.206516i
\(220\) 5.54038 + 4.29378i 0.373532 + 0.289487i
\(221\) −12.2481 + 5.45320i −0.823896 + 0.366822i
\(222\) 1.85140 1.49923i 0.124258 0.100622i
\(223\) 3.11940 + 6.12217i 0.208891 + 0.409971i 0.971552 0.236827i \(-0.0761075\pi\)
−0.762661 + 0.646798i \(0.776108\pi\)
\(224\) 6.70718 + 2.60243i 0.448142 + 0.173882i
\(225\) −5.12986 13.7579i −0.341991 0.917195i
\(226\) 5.95329 + 10.3114i 0.396007 + 0.685904i
\(227\) 0.447330 8.53557i 0.0296903 0.566525i −0.942768 0.333449i \(-0.891787\pi\)
0.972458 0.233076i \(-0.0748792\pi\)
\(228\) 0.698967 + 0.268308i 0.0462902 + 0.0177692i
\(229\) 0.934425 8.89046i 0.0617485 0.587498i −0.919276 0.393614i \(-0.871225\pi\)
0.981024 0.193884i \(-0.0621086\pi\)
\(230\) −0.867635 4.81037i −0.0572102 0.317187i
\(231\) 1.11073 4.08631i 0.0730805 0.268859i
\(232\) 4.38157 4.38157i 0.287664 0.287664i
\(233\) −2.24413 5.84615i −0.147018 0.382994i 0.840221 0.542245i \(-0.182425\pi\)
−0.987238 + 0.159251i \(0.949092\pi\)
\(234\) 12.2236 + 2.59820i 0.799081 + 0.169850i
\(235\) −2.50329 5.31389i −0.163297 0.346640i
\(236\) −1.32399 6.22889i −0.0861845 0.405466i
\(237\) 0.504784 0.990694i 0.0327892 0.0643525i
\(238\) 11.9330 + 3.92489i 0.773503 + 0.254413i
\(239\) 22.1170 + 7.18624i 1.43063 + 0.464839i 0.918963 0.394345i \(-0.129028\pi\)
0.511666 + 0.859184i \(0.329028\pi\)
\(240\) −1.51828 + 0.356791i −0.0980047 + 0.0230308i
\(241\) −0.777157 + 3.65624i −0.0500611 + 0.235519i −0.996064 0.0886400i \(-0.971748\pi\)
0.946003 + 0.324159i \(0.105081\pi\)
\(242\) 28.0762 + 22.7357i 1.80481 + 1.46150i
\(243\) −6.38089 1.70975i −0.409334 0.109681i
\(244\) −0.0343083 + 0.0249265i −0.00219637 + 0.00159575i
\(245\) 15.6179 1.04042i 0.997788 0.0664702i
\(246\) −0.643896 0.467817i −0.0410533 0.0298270i
\(247\) −13.1614 16.2529i −0.837438 1.03415i
\(248\) 4.60847 + 0.241520i 0.292638 + 0.0153365i
\(249\) −0.0499564 0.0288423i −0.00316586 0.00182781i
\(250\) −3.70778 13.2146i −0.234501 0.835768i
\(251\) 7.23085i 0.456407i −0.973613 0.228204i \(-0.926715\pi\)
0.973613 0.228204i \(-0.0732852\pi\)
\(252\) 2.24030 + 3.10700i 0.141125 + 0.195722i
\(253\) 1.77121 + 11.1830i 0.111355 + 0.703068i
\(254\) 9.34928 + 0.982649i 0.586626 + 0.0616569i
\(255\) 2.09025 0.608239i 0.130897 0.0380894i
\(256\) 1.15546 + 10.9935i 0.0722165 + 0.687094i
\(257\) 5.53721 20.6651i 0.345401 1.28906i −0.546741 0.837302i \(-0.684132\pi\)
0.892143 0.451754i \(-0.149202\pi\)
\(258\) −0.289189 + 1.82587i −0.0180041 + 0.113673i
\(259\) −17.0667 11.1709i −1.06047 0.694125i
\(260\) −3.65878 1.10295i −0.226908 0.0684021i
\(261\) 5.81595 1.23622i 0.359998 0.0765200i
\(262\) 5.68312 + 8.75124i 0.351105 + 0.540654i
\(263\) 8.88784 + 13.6861i 0.548048 + 0.843920i 0.998812 0.0487233i \(-0.0155153\pi\)
−0.450765 + 0.892643i \(0.648849\pi\)
\(264\) 4.79120 1.01840i 0.294878 0.0626783i
\(265\) 3.89095 5.60343i 0.239019 0.344216i
\(266\) −1.09606 + 19.5644i −0.0672039 + 1.19957i
\(267\) −0.508262 + 3.20904i −0.0311051 + 0.196390i
\(268\) −0.169166 + 0.631335i −0.0103334 + 0.0385649i
\(269\) −1.57606 14.9952i −0.0960942 0.914275i −0.931279 0.364306i \(-0.881306\pi\)
0.835185 0.549969i \(-0.185361\pi\)
\(270\) −3.86007 1.38786i −0.234917 0.0844623i
\(271\) 5.10011 + 0.536043i 0.309809 + 0.0325623i 0.258157 0.966103i \(-0.416885\pi\)
0.0516520 + 0.998665i \(0.483551\pi\)
\(272\) 1.67653 + 10.5852i 0.101654 + 0.641820i
\(273\) 0.233036 + 2.29681i 0.0141040 + 0.139009i
\(274\) 20.9798i 1.26744i
\(275\) 7.93255 + 30.7865i 0.478351 + 1.85649i
\(276\) 0.191374 + 0.110490i 0.0115194 + 0.00665071i
\(277\) 0.285419 + 0.0149582i 0.0171492 + 0.000898750i 0.0609086 0.998143i \(-0.480600\pi\)
−0.0437594 + 0.999042i \(0.513934\pi\)
\(278\) −12.4715 15.4011i −0.747994 0.923695i
\(279\) 3.58246 + 2.60281i 0.214476 + 0.155826i
\(280\) 9.32990 + 15.5166i 0.557568 + 0.927296i
\(281\) −0.915304 + 0.665008i −0.0546025 + 0.0396710i −0.614752 0.788721i \(-0.710744\pi\)
0.560149 + 0.828392i \(0.310744\pi\)
\(282\) −0.784083 0.210094i −0.0466915 0.0125109i
\(283\) 2.43928 + 1.97529i 0.145000 + 0.117419i 0.699076 0.715047i \(-0.253595\pi\)
−0.554076 + 0.832466i \(0.686928\pi\)
\(284\) −0.145393 + 0.684018i −0.00862746 + 0.0405890i
\(285\) 1.76034 + 2.90388i 0.104274 + 0.172011i
\(286\) −25.7335 8.36131i −1.52165 0.494414i
\(287\) −2.12917 + 6.47340i −0.125681 + 0.382113i
\(288\) −3.62527 + 7.11500i −0.213621 + 0.419255i
\(289\) 0.424355 + 1.99643i 0.0249620 + 0.117437i
\(290\) 5.51373 0.698929i 0.323777 0.0410425i
\(291\) 0.0881041 + 0.0187271i 0.00516476 + 0.00109780i
\(292\) 2.34807 + 6.11694i 0.137411 + 0.357967i
\(293\) 1.98002 1.98002i 0.115674 0.115674i −0.646900 0.762575i \(-0.723935\pi\)
0.762575 + 0.646900i \(0.223935\pi\)
\(294\) 1.28399 1.74073i 0.0748840 0.101522i
\(295\) 12.5597 26.0092i 0.731253 1.51431i
\(296\) 2.46628 23.4651i 0.143350 1.36388i
\(297\) 8.87061 + 3.40511i 0.514725 + 0.197584i
\(298\) −0.975720 + 18.6178i −0.0565219 + 1.07850i
\(299\) −3.08636 5.34574i −0.178489 0.309152i
\(300\) 0.564390 + 0.257817i 0.0325850 + 0.0148851i
\(301\) 15.6421 2.41969i 0.901594 0.139469i
\(302\) 7.88284 + 15.4709i 0.453606 + 0.890253i
\(303\) 0.842399 0.682161i 0.0483946 0.0391891i
\(304\) −15.2721 + 6.79958i −0.875915 + 0.389983i
\(305\) −0.192251 0.00595985i −0.0110082 0.000341260i
\(306\) −5.67114 + 12.7376i −0.324198 + 0.728160i
\(307\) −18.7431 18.7431i −1.06973 1.06973i −0.997379 0.0723483i \(-0.976951\pi\)
−0.0723483 0.997379i \(-0.523049\pi\)
\(308\) −4.12092 7.19745i −0.234811 0.410113i
\(309\) −2.59540 + 0.843298i −0.147647 + 0.0479735i
\(310\) 3.13449 + 2.70329i 0.178027 + 0.153537i
\(311\) 22.4840 20.2447i 1.27495 1.14797i 0.293562 0.955940i \(-0.405159\pi\)
0.981389 0.192031i \(-0.0615075\pi\)
\(312\) −2.23960 + 1.45441i −0.126792 + 0.0823400i
\(313\) −1.04388 19.9185i −0.0590038 1.12586i −0.854348 0.519701i \(-0.826043\pi\)
0.795344 0.606158i \(-0.207290\pi\)
\(314\) 1.74420 5.36809i 0.0984308 0.302939i
\(315\) −0.600921 + 17.3630i −0.0338581 + 0.978294i
\(316\) −0.672944 2.07111i −0.0378561 0.116509i
\(317\) 16.1871 6.21364i 0.909157 0.348993i 0.141563 0.989929i \(-0.454787\pi\)
0.767594 + 0.640937i \(0.221454\pi\)
\(318\) −0.243997 0.910607i −0.0136826 0.0510643i
\(319\) −12.8035 + 1.34570i −0.716858 + 0.0753448i
\(320\) −10.4562 + 16.8801i −0.584518 + 0.943627i
\(321\) −1.47360 + 2.02824i −0.0822485 + 0.113205i
\(322\) −1.22285 + 5.65279i −0.0681470 + 0.315018i
\(323\) 20.7909 10.5935i 1.15684 0.589438i
\(324\) −3.60083 + 2.07894i −0.200046 + 0.115497i
\(325\) −10.0523 14.1195i −0.557603 0.783211i
\(326\) 5.98007 10.3578i 0.331206 0.573665i
\(327\) −0.604272 0.392419i −0.0334163 0.0217008i
\(328\) −7.78553 + 1.23311i −0.429884 + 0.0680869i
\(329\) 0.338723 + 6.94196i 0.0186744 + 0.382723i
\(330\) 3.95628 + 1.91047i 0.217786 + 0.105168i
\(331\) −5.73969 2.55547i −0.315482 0.140462i 0.242887 0.970055i \(-0.421906\pi\)
−0.558368 + 0.829593i \(0.688572\pi\)
\(332\) −0.109129 + 0.0292411i −0.00598925 + 0.00160482i
\(333\) 14.2479 17.5947i 0.780780 0.964183i
\(334\) −14.9026 + 16.5510i −0.815433 + 0.905630i
\(335\) −2.36055 + 1.79333i −0.128970 + 0.0979803i
\(336\) 1.82162 + 0.295252i 0.0993775 + 0.0161073i
\(337\) −28.1439 14.3400i −1.53310 0.781152i −0.535123 0.844774i \(-0.679735\pi\)
−0.997974 + 0.0636218i \(0.979735\pi\)
\(338\) −1.20578 + 0.0631925i −0.0655860 + 0.00343722i
\(339\) −1.63363 1.81433i −0.0887267 0.0985410i
\(340\) 2.05246 3.73718i 0.111310 0.202677i
\(341\) −7.12516 6.41552i −0.385849 0.347420i
\(342\) −21.4817 3.40236i −1.16160 0.183979i
\(343\) −17.5509 5.91323i −0.947659 0.319284i
\(344\) 10.7616 + 14.8121i 0.580228 + 0.798615i
\(345\) 0.379095 + 0.927816i 0.0204098 + 0.0499520i
\(346\) 6.25069 + 14.0393i 0.336039 + 0.754757i
\(347\) −4.55257 + 11.8599i −0.244395 + 0.636670i −0.999828 0.0185555i \(-0.994093\pi\)
0.755433 + 0.655226i \(0.227427\pi\)
\(348\) −0.136848 + 0.210727i −0.00733581 + 0.0112962i
\(349\) −18.9164 −1.01257 −0.506287 0.862365i \(-0.668982\pi\)
−0.506287 + 0.862365i \(0.668982\pi\)
\(350\) −1.91095 + 16.1268i −0.102145 + 0.862012i
\(351\) −5.18013 −0.276495
\(352\) 9.41673 14.5005i 0.501914 0.772879i
\(353\) −10.2699 + 26.7541i −0.546613 + 1.42398i 0.330552 + 0.943788i \(0.392765\pi\)
−0.877165 + 0.480189i \(0.840568\pi\)
\(354\) −1.62345 3.64632i −0.0862852 0.193800i
\(355\) −2.42169 + 2.04825i −0.128530 + 0.108710i
\(356\) 3.74034 + 5.14814i 0.198238 + 0.272851i
\(357\) −2.56070 0.278478i −0.135527 0.0147386i
\(358\) 19.4577 + 3.08179i 1.02837 + 0.162878i
\(359\) −23.5570 21.2109i −1.24329 1.11947i −0.988300 0.152523i \(-0.951260\pi\)
−0.254993 0.966943i \(-0.582073\pi\)
\(360\) −18.1800 + 8.56429i −0.958168 + 0.451378i
\(361\) 11.6419 + 12.9296i 0.612730 + 0.680506i
\(362\) −16.7358 + 0.877084i −0.879612 + 0.0460985i
\(363\) −6.60045 3.36310i −0.346434 0.176517i
\(364\) 3.50362 + 2.85815i 0.183640 + 0.149808i
\(365\) −8.57729 + 28.4531i −0.448956 + 1.48930i
\(366\) −0.0177857 + 0.0197530i −0.000929674 + 0.00103251i
\(367\) 8.36452 10.3293i 0.436624 0.539186i −0.510574 0.859834i \(-0.670567\pi\)
0.947199 + 0.320647i \(0.103900\pi\)
\(368\) −4.76607 + 1.27706i −0.248448 + 0.0665716i
\(369\) −6.90987 3.07647i −0.359713 0.160155i
\(370\) 14.6411 15.2806i 0.761153 0.794399i
\(371\) −6.78534 + 4.37176i −0.352277 + 0.226970i
\(372\) −0.184823 + 0.0292731i −0.00958263 + 0.00151774i
\(373\) −19.1176 12.4151i −0.989871 0.642830i −0.0552493 0.998473i \(-0.517595\pi\)
−0.934622 + 0.355643i \(0.884262\pi\)
\(374\) 15.0947 26.1448i 0.780529 1.35192i
\(375\) 1.30703 + 2.49236i 0.0674946 + 0.128705i
\(376\) −6.96240 + 4.01974i −0.359058 + 0.207302i
\(377\) 6.25366 3.18640i 0.322080 0.164108i
\(378\) 3.59515 + 3.26063i 0.184915 + 0.167709i
\(379\) 8.90518 12.2569i 0.457428 0.629596i −0.516545 0.856260i \(-0.672782\pi\)
0.973973 + 0.226664i \(0.0727820\pi\)
\(380\) 6.45954 + 1.58370i 0.331368 + 0.0812422i
\(381\) −1.91706 + 0.201491i −0.0982137 + 0.0103227i
\(382\) −0.353395 1.31889i −0.0180813 0.0674802i
\(383\) −3.27535 + 1.25729i −0.167362 + 0.0642444i −0.440607 0.897700i \(-0.645237\pi\)
0.273244 + 0.961945i \(0.411903\pi\)
\(384\) 0.424909 + 1.30773i 0.0216835 + 0.0667350i
\(385\) 5.22366 37.2524i 0.266222 1.89856i
\(386\) 4.00163 12.3158i 0.203678 0.626855i
\(387\) 0.919455 + 17.5443i 0.0467385 + 0.891825i
\(388\) 0.147952 0.0960812i 0.00751113 0.00487778i
\(389\) 2.95236 2.65832i 0.149691 0.134782i −0.590883 0.806757i \(-0.701221\pi\)
0.740574 + 0.671975i \(0.234554\pi\)
\(390\) −2.38688 0.199410i −0.120864 0.0100975i
\(391\) 6.55008 2.12825i 0.331252 0.107630i
\(392\) −3.19863 21.1827i −0.161555 1.06989i
\(393\) −1.51293 1.51293i −0.0763174 0.0763174i
\(394\) 0.0554587 0.124562i 0.00279397 0.00627536i
\(395\) 3.34181 9.29463i 0.168145 0.467664i
\(396\) 8.40968 3.74423i 0.422602 0.188155i
\(397\) −25.0612 + 20.2941i −1.25778 + 1.01853i −0.259173 + 0.965831i \(0.583450\pi\)
−0.998610 + 0.0527017i \(0.983217\pi\)
\(398\) 10.6645 + 20.9303i 0.534565 + 1.04914i
\(399\) −0.614234 3.97071i −0.0307502 0.198784i
\(400\) −12.9816 + 4.84041i −0.649082 + 0.242020i
\(401\) 7.36782 + 12.7614i 0.367932 + 0.637276i 0.989242 0.146288i \(-0.0467327\pi\)
−0.621310 + 0.783565i \(0.713399\pi\)
\(402\) −0.0214405 + 0.409109i −0.00106935 + 0.0204045i
\(403\) 4.87992 + 1.87322i 0.243086 + 0.0933119i
\(404\) 0.221915 2.11138i 0.0110407 0.105045i
\(405\) −18.6851 2.55144i −0.928469 0.126782i
\(406\) −6.34589 1.72492i −0.314941 0.0856062i
\(407\) −34.6627 + 34.6627i −1.71816 + 1.71816i
\(408\) −1.06776 2.78160i −0.0528618 0.137710i
\(409\) 16.0700 + 3.41578i 0.794611 + 0.168900i 0.587293 0.809374i \(-0.300193\pi\)
0.207317 + 0.978274i \(0.433527\pi\)
\(410\) −6.19709 3.40345i −0.306052 0.168084i
\(411\) 0.894412 + 4.20788i 0.0441181 + 0.207559i
\(412\) −2.42652 + 4.76230i −0.119546 + 0.234622i
\(413\) −25.4790 + 22.7756i −1.25374 + 1.12072i
\(414\) −6.10523 1.98371i −0.300056 0.0974941i
\(415\) −0.472472 0.198373i −0.0231928 0.00973773i
\(416\) −1.95979 + 9.22009i −0.0960867 + 0.452052i
\(417\) 3.15797 + 2.55727i 0.154646 + 0.125230i
\(418\) 45.4873 + 12.1883i 2.22485 + 0.596148i
\(419\) 7.57258 5.50180i 0.369945 0.268781i −0.387243 0.921978i \(-0.626573\pi\)
0.757188 + 0.653197i \(0.226573\pi\)
\(420\) −0.500871 0.536783i −0.0244400 0.0261923i
\(421\) −9.78581 7.10980i −0.476931 0.346511i 0.323205 0.946329i \(-0.395240\pi\)
−0.800136 + 0.599818i \(0.795240\pi\)
\(422\) 13.7516 + 16.9818i 0.669418 + 0.826662i
\(423\) −7.70379 0.403738i −0.374571 0.0196304i
\(424\) −8.08590 4.66840i −0.392686 0.226717i
\(425\) 17.7414 7.69531i 0.860583 0.373277i
\(426\) 0.438310i 0.0212362i
\(427\) 0.207573 + 0.0933154i 0.0100451 + 0.00451585i
\(428\) 0.768125 + 4.84975i 0.0371287 + 0.234422i
\(429\) 5.51776 + 0.579940i 0.266400 + 0.0279998i
\(430\) −0.508839 + 16.4139i −0.0245384 + 0.791550i
\(431\) −2.84276 27.0471i −0.136931 1.30281i −0.819960 0.572421i \(-0.806004\pi\)
0.683029 0.730391i \(-0.260662\pi\)
\(432\) −1.07171 + 3.99967i −0.0515626 + 0.192434i
\(433\) −4.60452 + 29.0718i −0.221279 + 1.39710i 0.587612 + 0.809143i \(0.300068\pi\)
−0.808891 + 0.587959i \(0.799932\pi\)
\(434\) −2.20769 4.37173i −0.105973 0.209850i
\(435\) −1.07608 + 0.375244i −0.0515941 + 0.0179916i
\(436\) −1.38033 + 0.293399i −0.0661059 + 0.0140512i
\(437\) 5.85113 + 9.00996i 0.279898 + 0.431005i
\(438\) 2.23671 + 3.44423i 0.106874 + 0.164572i
\(439\) 2.21580 0.470982i 0.105754 0.0224788i −0.154731 0.987957i \(-0.549451\pi\)
0.260485 + 0.965478i \(0.416118\pi\)
\(440\) 41.0859 14.3272i 1.95869 0.683024i
\(441\) 8.49625 18.7185i 0.404583 0.891357i
\(442\) −2.57470 + 16.2560i −0.122466 + 0.773220i
\(443\) −3.88631 + 14.5039i −0.184644 + 0.689102i 0.810062 + 0.586344i \(0.199433\pi\)
−0.994706 + 0.102758i \(0.967233\pi\)
\(444\) 0.100006 + 0.951494i 0.00474608 + 0.0451559i
\(445\) −0.894307 + 28.8482i −0.0423942 + 1.36754i
\(446\) 8.38871 + 0.881689i 0.397217 + 0.0417492i
\(447\) −0.598018 3.77574i −0.0282853 0.178586i
\(448\) 19.0569 13.7409i 0.900353 0.649198i
\(449\) 16.3116i 0.769793i −0.922960 0.384897i \(-0.874237\pi\)
0.922960 0.384897i \(-0.125763\pi\)
\(450\) −17.5943 3.91708i −0.829403 0.184653i
\(451\) 14.1830 + 8.18855i 0.667851 + 0.385584i
\(452\) −4.77513 0.250254i −0.224603 0.0117710i
\(453\) −2.24060 2.76691i −0.105273 0.130001i
\(454\) −8.48871 6.16741i −0.398395 0.289451i
\(455\) 4.61949 + 19.9809i 0.216565 + 0.936717i
\(456\) 3.76003 2.73182i 0.176079 0.127929i
\(457\) 1.28545 + 0.344436i 0.0601310 + 0.0161121i 0.288759 0.957402i \(-0.406757\pi\)
−0.228628 + 0.973514i \(0.573424\pi\)
\(458\) −8.52842 6.90618i −0.398507 0.322704i
\(459\) 1.20166 5.65338i 0.0560889 0.263877i
\(460\) 1.80996 + 0.759931i 0.0843898 + 0.0354320i
\(461\) 24.7473 + 8.04087i 1.15259 + 0.374501i 0.822120 0.569314i \(-0.192791\pi\)
0.330474 + 0.943815i \(0.392791\pi\)
\(462\) −3.46443 3.87565i −0.161180 0.180311i
\(463\) 14.0944 27.6618i 0.655023 1.28555i −0.289522 0.957171i \(-0.593496\pi\)
0.944545 0.328383i \(-0.106504\pi\)
\(464\) −1.16647 5.48779i −0.0541518 0.254764i
\(465\) −0.743924 0.408563i −0.0344986 0.0189467i
\(466\) −7.51932 1.59828i −0.348326 0.0740389i
\(467\) 2.59522 + 6.76079i 0.120093 + 0.312852i 0.980428 0.196876i \(-0.0630795\pi\)
−0.860336 + 0.509728i \(0.829746\pi\)
\(468\) −3.54874 + 3.54874i −0.164040 + 0.164040i
\(469\) 3.39137 0.895623i 0.156599 0.0413560i
\(470\) −7.14461 0.975594i −0.329556 0.0450008i
\(471\) −0.120978 + 1.15102i −0.00557435 + 0.0530364i
\(472\) −36.9051 14.1666i −1.69870 0.652068i
\(473\) 1.99080 37.9868i 0.0915372 1.74663i
\(474\) −0.682472 1.18208i −0.0313470 0.0542946i
\(475\) 18.7574 + 23.6246i 0.860648 + 1.08397i
\(476\) −3.93202 + 3.16069i −0.180224 + 0.144870i
\(477\) −4.06739 7.98270i −0.186233 0.365503i
\(478\) 22.1860 17.9658i 1.01476 0.821738i
\(479\) −16.5055 + 7.34871i −0.754154 + 0.335771i −0.747548 0.664207i \(-0.768769\pi\)
−0.00660539 + 0.999978i \(0.502103\pi\)
\(480\) 0.517835 1.44026i 0.0236358 0.0657388i
\(481\) 10.8700 24.4144i 0.495629 1.11320i
\(482\) 3.24467 + 3.24467i 0.147791 + 0.147791i
\(483\) 0.00427517 1.18590i 0.000194527 0.0539604i
\(484\) −13.7987 + 4.48346i −0.627212 + 0.203793i
\(485\) 0.797359 + 0.0666145i 0.0362062 + 0.00302481i
\(486\) −6.02652 + 5.42631i −0.273369 + 0.246142i
\(487\) −18.4169 + 11.9600i −0.834547 + 0.541961i −0.889715 0.456516i \(-0.849097\pi\)
0.0551681 + 0.998477i \(0.482431\pi\)
\(488\) 0.0137775 + 0.262890i 0.000623678 + 0.0119005i
\(489\) −0.757837 + 2.33238i −0.0342706 + 0.105474i
\(490\) 9.37089 16.7750i 0.423334 0.757817i
\(491\) 0.143207 + 0.440744i 0.00646282 + 0.0198905i 0.954236 0.299055i \(-0.0966714\pi\)
−0.947773 + 0.318945i \(0.896671\pi\)
\(492\) 0.298404 0.114546i 0.0134531 0.00516415i
\(493\) 2.02681 + 7.56416i 0.0912829 + 0.340673i
\(494\) −25.5329 + 2.68361i −1.14878 + 0.120741i
\(495\) 40.5516 + 9.94214i 1.82266 + 0.446866i
\(496\) 2.45594 3.38032i 0.110275 0.151781i
\(497\) 3.57333 1.14682i 0.160286 0.0514420i
\(498\) −0.0630953 + 0.0321487i −0.00282737 + 0.00144062i
\(499\) −7.05051 + 4.07061i −0.315624 + 0.182226i −0.649440 0.760412i \(-0.724997\pi\)
0.333816 + 0.942638i \(0.391663\pi\)
\(500\) 5.26183 + 1.64158i 0.235316 + 0.0734139i
\(501\) 2.28338 3.95492i 0.102014 0.176693i
\(502\) −7.44452 4.83453i −0.332265 0.215776i
\(503\) 20.1887 3.19758i 0.900171 0.142573i 0.310838 0.950463i \(-0.399390\pi\)
0.589334 + 0.807890i \(0.299390\pi\)
\(504\) 23.7499 1.15884i 1.05791 0.0516190i
\(505\) 6.66179 6.95277i 0.296446 0.309394i
\(506\) 12.6977 + 5.65336i 0.564480 + 0.251323i
\(507\) 0.239147 0.0640793i 0.0106209 0.00284586i
\(508\) −2.37591 + 2.93400i −0.105414 + 0.130175i
\(509\) 27.2532 30.2678i 1.20798 1.34160i 0.284155 0.958778i \(-0.408287\pi\)
0.923824 0.382818i \(-0.125046\pi\)
\(510\) 0.771326 2.55869i 0.0341549 0.113301i
\(511\) 22.2269 27.2465i 0.983260 1.20531i
\(512\) 21.8254 + 11.1206i 0.964554 + 0.491465i
\(513\) 9.00325 0.471841i 0.397503 0.0208323i
\(514\) −17.5736 19.5175i −0.775139 0.860880i
\(515\) −21.9305 + 10.3311i −0.966375 + 0.455244i
\(516\) −0.551717 0.496769i −0.0242880 0.0218690i
\(517\) 16.4975 + 2.61294i 0.725558 + 0.114917i
\(518\) −22.9117 + 10.1021i −1.00668 + 0.443863i
\(519\) −1.85221 2.54935i −0.0813030 0.111904i
\(520\) −18.1123 + 15.3193i −0.794275 + 0.671794i
\(521\) 5.76944 + 12.9584i 0.252764 + 0.567716i 0.994708 0.102745i \(-0.0327627\pi\)
−0.741944 + 0.670462i \(0.766096\pi\)
\(522\) 2.61578 6.81435i 0.114490 0.298256i
\(523\) −11.2240 + 17.2834i −0.490790 + 0.755751i −0.994113 0.108348i \(-0.965444\pi\)
0.503323 + 0.864098i \(0.332111\pi\)
\(524\) −4.19057 −0.183066
\(525\) −0.304240 3.31598i −0.0132781 0.144721i
\(526\) 20.0329 0.873475
\(527\) −3.17638 + 4.89120i −0.138365 + 0.213064i
\(528\) 1.58934 4.14037i 0.0691672 0.180187i
\(529\) −8.06523 18.1148i −0.350662 0.787600i
\(530\) −3.16753 7.75237i −0.137589 0.336741i
\(531\) −22.2959 30.6877i −0.967560 1.33173i
\(532\) −6.34976 4.64843i −0.275297 0.201535i
\(533\) −8.81854 1.39672i −0.381973 0.0604986i
\(534\) 2.96404 + 2.66884i 0.128267 + 0.115492i
\(535\) −10.7207 + 19.5205i −0.463496 + 0.843946i
\(536\) 2.71491 + 3.01521i 0.117266 + 0.130237i
\(537\) −4.03397 + 0.211411i −0.174079 + 0.00912307i
\(538\) −16.4921 8.40314i −0.711025 0.362285i
\(539\) −22.5317 + 38.3843i −0.970511 + 1.65333i
\(540\) 1.31175 0.996551i 0.0564487 0.0428847i
\(541\) −12.2065 + 13.5567i −0.524797 + 0.582846i −0.946019 0.324111i \(-0.894935\pi\)
0.421222 + 0.906958i \(0.361601\pi\)
\(542\) 3.96180 4.89242i 0.170174 0.210147i
\(543\) 3.31926 0.889393i 0.142443 0.0381675i
\(544\) −9.60781 4.27767i −0.411931 0.183404i
\(545\) −5.76367 2.78324i −0.246889 0.119221i
\(546\) 2.52049 + 1.29572i 0.107867 + 0.0554517i
\(547\) 29.6025 4.68857i 1.26571 0.200469i 0.512752 0.858537i \(-0.328626\pi\)
0.752959 + 0.658068i \(0.228626\pi\)
\(548\) 7.06623 + 4.58886i 0.301854 + 0.196027i
\(549\) −0.126302 + 0.218762i −0.00539046 + 0.00933655i
\(550\) 36.9999 + 12.4168i 1.57768 + 0.529454i
\(551\) −10.5788 + 6.10770i −0.450674 + 0.260197i
\(552\) 1.22226 0.622770i 0.0520227 0.0265069i
\(553\) −7.85124 + 8.65673i −0.333869 + 0.368121i
\(554\) 0.206231 0.283852i 0.00876190 0.0120597i
\(555\) −2.28509 + 3.68897i −0.0969965 + 0.156588i
\(556\) 7.91512 0.831912i 0.335676 0.0352809i
\(557\) −6.17658 23.0513i −0.261710 0.976716i −0.964233 0.265055i \(-0.914610\pi\)
0.702523 0.711661i \(-0.252057\pi\)
\(558\) 5.07494 1.94809i 0.214840 0.0824692i
\(559\) 6.40840 + 19.7230i 0.271047 + 0.834196i
\(560\) 16.3833 + 0.567014i 0.692320 + 0.0239607i
\(561\) −1.91291 + 5.88733i −0.0807630 + 0.248563i
\(562\) 0.0726882 + 1.38697i 0.00306617 + 0.0585060i
\(563\) 3.07725 1.99839i 0.129691 0.0842222i −0.478163 0.878271i \(-0.658697\pi\)
0.607854 + 0.794049i \(0.292031\pi\)
\(564\) 0.242262 0.218134i 0.0102011 0.00918510i
\(565\) −16.4236 14.1643i −0.690946 0.595896i
\(566\) 3.66456 1.19069i 0.154033 0.0500483i
\(567\) 19.2838 + 11.2264i 0.809845 + 0.471465i
\(568\) 3.06956 + 3.06956i 0.128796 + 0.128796i
\(569\) 16.5717 37.2207i 0.694723 1.56037i −0.127900 0.991787i \(-0.540824\pi\)
0.822623 0.568587i \(-0.192510\pi\)
\(570\) 4.16665 + 0.129168i 0.174522 + 0.00541025i
\(571\) 9.71455 4.32520i 0.406541 0.181004i −0.193269 0.981146i \(-0.561909\pi\)
0.599811 + 0.800142i \(0.295242\pi\)
\(572\) 8.44479 6.83846i 0.353094 0.285930i
\(573\) 0.127107 + 0.249461i 0.00530995 + 0.0104214i
\(574\) 5.24113 + 6.52018i 0.218761 + 0.272147i
\(575\) 4.37735 + 7.75311i 0.182548 + 0.323327i
\(576\) 13.0386 + 22.5836i 0.543277 + 0.940983i
\(577\) 1.71681 32.7588i 0.0714719 1.36377i −0.693851 0.720119i \(-0.744087\pi\)
0.765323 0.643647i \(-0.222579\pi\)
\(578\) 2.33915 + 0.897915i 0.0972957 + 0.0373483i
\(579\) −0.277553 + 2.64074i −0.0115347 + 0.109745i
\(580\) −0.970597 + 2.00996i −0.0403019 + 0.0834590i
\(581\) 0.427179 + 0.430270i 0.0177224 + 0.0178506i
\(582\) 0.0781867 0.0781867i 0.00324094 0.00324094i
\(583\) 6.95178 + 18.1100i 0.287913 + 0.750040i
\(584\) 39.7846 + 8.45648i 1.64630 + 0.349932i
\(585\) −22.5820 + 2.86253i −0.933649 + 0.118351i
\(586\) −0.714694 3.36237i −0.0295237 0.138898i
\(587\) −14.7169 + 28.8836i −0.607433 + 1.19215i 0.358541 + 0.933514i \(0.383274\pi\)
−0.965974 + 0.258640i \(0.916726\pi\)
\(588\) 0.305453 + 0.813209i 0.0125967 + 0.0335362i
\(589\) −8.65209 2.81124i −0.356503 0.115835i
\(590\) −18.3804 30.3205i −0.756708 1.24827i
\(591\) −0.00581289 + 0.0273475i −0.000239110 + 0.00112493i
\(592\) −16.6019 13.4440i −0.682335 0.552544i
\(593\) 37.8985 + 10.1549i 1.55631 + 0.417011i 0.931492 0.363762i \(-0.118508\pi\)
0.624815 + 0.780773i \(0.285174\pi\)
\(594\) 9.43659 6.85609i 0.387188 0.281309i
\(595\) −22.8779 + 0.406455i −0.937903 + 0.0166630i
\(596\) −6.05727 4.40087i −0.248116 0.180267i
\(597\) −3.03126 3.74330i −0.124061 0.153203i
\(598\) −7.56724 0.396582i −0.309447 0.0162175i
\(599\) 24.9966 + 14.4318i 1.02133 + 0.589668i 0.914490 0.404608i \(-0.132592\pi\)
0.106845 + 0.994276i \(0.465925\pi\)
\(600\) 3.25041 2.06665i 0.132697 0.0843708i
\(601\) 4.29834i 0.175333i −0.996150 0.0876666i \(-0.972059\pi\)
0.996150 0.0876666i \(-0.0279410\pi\)
\(602\) 7.96706 17.7221i 0.324713 0.722298i
\(603\) 0.609044 + 3.84535i 0.0248022 + 0.156595i
\(604\) −6.93497 0.728895i −0.282180 0.0296583i
\(605\) −61.9250 22.2646i −2.51761 0.905186i
\(606\) −0.139093 1.32338i −0.00565027 0.0537588i
\(607\) −1.79188 + 6.68738i −0.0727301 + 0.271432i −0.992709 0.120535i \(-0.961539\pi\)
0.919979 + 0.391968i \(0.128206\pi\)
\(608\) 2.56636 16.2034i 0.104080 0.657133i
\(609\) 1.34632 + 0.0754252i 0.0545555 + 0.00305638i
\(610\) −0.134674 + 0.193947i −0.00545280 + 0.00785268i
\(611\) −8.90720 + 1.89328i −0.360347 + 0.0765941i
\(612\) −3.04972 4.69616i −0.123278 0.189831i
\(613\) 5.28880 + 8.14403i 0.213612 + 0.328934i 0.929192 0.369597i \(-0.120504\pi\)
−0.715580 + 0.698531i \(0.753837\pi\)
\(614\) −31.8286 + 6.76538i −1.28450 + 0.273029i
\(615\) 1.38803 + 0.418427i 0.0559708 + 0.0168726i
\(616\) −51.4039 2.87982i −2.07112 0.116031i
\(617\) −0.775761 + 4.89796i −0.0312310 + 0.197184i −0.998371 0.0570609i \(-0.981827\pi\)
0.967140 + 0.254245i \(0.0818271\pi\)
\(618\) −0.867063 + 3.23592i −0.0348784 + 0.130168i
\(619\) 3.61746 + 34.4178i 0.145398 + 1.38337i 0.787294 + 0.616578i \(0.211482\pi\)
−0.641896 + 0.766792i \(0.721852\pi\)
\(620\) −1.59610 + 0.464445i −0.0641007 + 0.0186526i
\(621\) 2.64641 + 0.278149i 0.106197 + 0.0111617i
\(622\) −5.81017 36.6840i −0.232967 1.47089i
\(623\) 14.0024 31.1473i 0.560996 1.24789i
\(624\) 2.41784i 0.0967910i
\(625\) 14.3028 + 20.5044i 0.572110 + 0.820177i
\(626\) −21.2050 12.2427i −0.847523 0.489318i
\(627\) −9.64289 0.505362i −0.385100 0.0201822i
\(628\) 1.42653 + 1.76161i 0.0569246 + 0.0702961i
\(629\) 24.1233 + 17.5266i 0.961860 + 0.698832i
\(630\) 17.4743 + 12.2275i 0.696193 + 0.487157i
\(631\) −31.6801 + 23.0169i −1.26116 + 0.916289i −0.998814 0.0486840i \(-0.984497\pi\)
−0.262349 + 0.964973i \(0.584497\pi\)
\(632\) −13.0578 3.49882i −0.519410 0.139175i
\(633\) −3.48210 2.81975i −0.138401 0.112075i
\(634\) 4.42539 20.8198i 0.175755 0.826861i
\(635\) −16.6694 + 3.91726i −0.661506 + 0.155452i
\(636\) 0.360071 + 0.116994i 0.0142777 + 0.00463912i
\(637\) 3.96863 23.9386i 0.157243 0.948480i
\(638\) −7.17492 + 14.0816i −0.284058 + 0.557495i
\(639\) 0.866048 + 4.07444i 0.0342603 + 0.161182i
\(640\) 5.20550 + 11.0500i 0.205765 + 0.436791i
\(641\) 20.0822 + 4.26861i 0.793200 + 0.168600i 0.586655 0.809837i \(-0.300445\pi\)
0.206545 + 0.978437i \(0.433778\pi\)
\(642\) 1.10293 + 2.87322i 0.0435291 + 0.113397i
\(643\) 33.0301 33.0301i 1.30258 1.30258i 0.375934 0.926646i \(-0.377322\pi\)
0.926646 0.375934i \(-0.122678\pi\)
\(644\) −1.63645 1.64829i −0.0644852 0.0649518i
\(645\) −0.597702 3.31380i −0.0235345 0.130481i
\(646\) 2.99422 28.4881i 0.117806 1.12085i
\(647\) 4.43443 + 1.70222i 0.174335 + 0.0669211i 0.443970 0.896042i \(-0.353570\pi\)
−0.269635 + 0.962963i \(0.586903\pi\)
\(648\) −1.35083 + 25.7754i −0.0530656 + 1.01255i
\(649\) 41.0652 + 71.1270i 1.61195 + 2.79198i
\(650\) −21.2577 + 0.909082i −0.833797 + 0.0356571i
\(651\) 0.629167 + 0.782709i 0.0246590 + 0.0306768i
\(652\) 2.18061 + 4.27969i 0.0853992 + 0.167605i
\(653\) 4.65894 3.77273i 0.182318 0.147638i −0.533817 0.845600i \(-0.679243\pi\)
0.716135 + 0.697962i \(0.245909\pi\)
\(654\) −0.808030 + 0.359758i −0.0315965 + 0.0140677i
\(655\) −15.0232 11.6430i −0.587006 0.454928i
\(656\) −2.90288 + 6.51998i −0.113338 + 0.254562i
\(657\) 27.5973 + 27.5973i 1.07668 + 1.07668i
\(658\) 7.37356 + 4.29264i 0.287451 + 0.167345i
\(659\) −27.7363 + 9.01207i −1.08045 + 0.351060i −0.794550 0.607198i \(-0.792293\pi\)
−0.285903 + 0.958259i \(0.592293\pi\)
\(660\) −1.50881 + 0.914647i −0.0587305 + 0.0356026i
\(661\) −15.0457 + 13.5472i −0.585211 + 0.526926i −0.907685 0.419652i \(-0.862152\pi\)
0.322474 + 0.946578i \(0.395485\pi\)
\(662\) −6.46853 + 4.20071i −0.251407 + 0.163265i
\(663\) −0.176625 3.37020i −0.00685953 0.130888i
\(664\) −0.216725 + 0.667011i −0.00841056 + 0.0258850i
\(665\) −9.84883 34.3067i −0.381921 1.33036i
\(666\) −8.58850 26.4327i −0.332798 1.02425i
\(667\) −3.36595 + 1.29207i −0.130330 + 0.0500290i
\(668\) −2.31495 8.63951i −0.0895681 0.334273i
\(669\) −1.72009 + 0.180789i −0.0665026 + 0.00698971i
\(670\) 0.268073 + 3.62932i 0.0103566 + 0.140213i
\(671\) 0.321483 0.442484i 0.0124107 0.0170819i
\(672\) −1.21660 + 1.34142i −0.0469314 + 0.0517463i
\(673\) −3.57412 + 1.82110i −0.137772 + 0.0701984i −0.521518 0.853240i \(-0.674634\pi\)
0.383746 + 0.923439i \(0.374634\pi\)
\(674\) −33.5808 + 19.3879i −1.29348 + 0.746792i
\(675\) 7.47142 + 0.0718859i 0.287575 + 0.00276689i
\(676\) 0.242454 0.419943i 0.00932516 0.0161517i
\(677\) 41.5962 + 27.0129i 1.59867 + 1.03819i 0.964175 + 0.265265i \(0.0854596\pi\)
0.634498 + 0.772925i \(0.281207\pi\)
\(678\) −2.96019 + 0.468848i −0.113685 + 0.0180060i
\(679\) −0.841992 0.432847i −0.0323127 0.0166111i
\(680\) −12.5172 23.3207i −0.480013 0.894307i
\(681\) 1.96549 + 0.875093i 0.0753177 + 0.0335336i
\(682\) −11.3690 + 3.04631i −0.435340 + 0.116649i
\(683\) 9.13221 11.2773i 0.349434 0.431515i −0.571878 0.820339i \(-0.693785\pi\)
0.921312 + 0.388823i \(0.127118\pi\)
\(684\) 5.84458 6.49107i 0.223473 0.248192i
\(685\) 12.5829 + 36.0837i 0.480768 + 1.37869i
\(686\) −17.8224 + 14.1159i −0.680464 + 0.538949i
\(687\) 2.00495 + 1.02157i 0.0764936 + 0.0389754i
\(688\) 16.5543 0.867575i 0.631128 0.0330760i
\(689\) −7.07648 7.85922i −0.269592 0.299413i
\(690\) 1.20870 + 0.230038i 0.0460143 + 0.00875740i
\(691\) −2.25683 2.03206i −0.0858540 0.0773033i 0.625086 0.780556i \(-0.285064\pi\)
−0.710940 + 0.703252i \(0.751730\pi\)
\(692\) −6.09578 0.965477i −0.231727 0.0367019i
\(693\) −39.8624 29.1819i −1.51425 1.10853i
\(694\) 9.16648 + 12.6166i 0.347955 + 0.478919i
\(695\) 30.6871 + 19.0087i 1.16403 + 0.721043i
\(696\) 0.634411 + 1.42491i 0.0240473 + 0.0540111i
\(697\) 3.57001 9.30018i 0.135224 0.352270i
\(698\) −12.6475 + 19.4754i −0.478715 + 0.737156i
\(699\) 1.57627 0.0596200
\(700\) −5.01369 4.17100i −0.189500 0.157649i
\(701\) −14.2658 −0.538811 −0.269405 0.963027i \(-0.586827\pi\)
−0.269405 + 0.963027i \(0.586827\pi\)
\(702\) −3.46342 + 5.33321i −0.130719 + 0.201289i
\(703\) −16.6686 + 43.4232i −0.628669 + 1.63774i
\(704\) −22.9654 51.5811i −0.865540 1.94403i
\(705\) 1.47457 0.108916i 0.0555356 0.00410203i
\(706\) 20.6782 + 28.4611i 0.778235 + 1.07115i
\(707\) −10.4250 + 4.59654i −0.392072 + 0.172871i
\(708\) 1.58321 + 0.250756i 0.0595008 + 0.00942399i
\(709\) 4.67089 + 4.20569i 0.175419 + 0.157948i 0.752163 0.658977i \(-0.229010\pi\)
−0.576744 + 0.816925i \(0.695677\pi\)
\(710\) 0.489643 + 3.86271i 0.0183760 + 0.144965i
\(711\) −8.67975 9.63984i −0.325516 0.361522i
\(712\) 39.4481 2.06739i 1.47838 0.0774785i
\(713\) −2.39245 1.21902i −0.0895981 0.0456525i
\(714\) −1.99879 + 2.45018i −0.0748028 + 0.0916958i
\(715\) 49.2744 1.05312i 1.84276 0.0393846i
\(716\) −5.29391 + 5.87948i −0.197843 + 0.219727i
\(717\) −3.68387 + 4.54920i −0.137577 + 0.169893i
\(718\) −37.5878 + 10.0716i −1.40276 + 0.375870i
\(719\) −30.9003 13.7577i −1.15239 0.513075i −0.260562 0.965457i \(-0.583908\pi\)
−0.891824 + 0.452382i \(0.850574\pi\)
\(720\) −2.46173 + 18.0281i −0.0917434 + 0.671869i
\(721\) 28.6496 1.39792i 1.06697 0.0520611i
\(722\) 21.0954 3.34118i 0.785090 0.124346i
\(723\) −0.789104 0.512450i −0.0293471 0.0190582i
\(724\) 3.36516 5.82862i 0.125065 0.216619i
\(725\) −9.06401 + 4.50903i −0.336629 + 0.167461i
\(726\) −7.87552 + 4.54694i −0.292288 + 0.168753i
\(727\) −0.691104 + 0.352135i −0.0256316 + 0.0130600i −0.466759 0.884384i \(-0.654579\pi\)
0.441128 + 0.897444i \(0.354579\pi\)
\(728\) 26.7256 8.57728i 0.990517 0.317895i
\(729\) −13.8943 + 19.1239i −0.514605 + 0.708293i
\(730\) 23.5591 + 27.8544i 0.871963 + 1.03094i
\(731\) −23.0115 + 2.41861i −0.851112 + 0.0894554i
\(732\) −0.00276281 0.0103109i −0.000102116 0.000381103i
\(733\) −41.2853 + 15.8479i −1.52491 + 0.585357i −0.969255 0.246057i \(-0.920865\pi\)
−0.555653 + 0.831415i \(0.687532\pi\)
\(734\) −5.04206 15.5179i −0.186106 0.572774i
\(735\) −1.16435 + 3.76402i −0.0429476 + 0.138838i
\(736\) 1.49629 4.60510i 0.0551539 0.169746i
\(737\) −0.441178 8.41818i −0.0162510 0.310088i
\(738\) −7.78730 + 5.05713i −0.286654 + 0.186156i
\(739\) 3.53703 3.18475i 0.130112 0.117153i −0.601506 0.798868i \(-0.705432\pi\)
0.731618 + 0.681715i \(0.238766\pi\)
\(740\) 1.94426 + 8.27355i 0.0714723 + 0.304142i
\(741\) 5.00666 1.62676i 0.183924 0.0597607i
\(742\) −0.0357212 + 9.90880i −0.00131137 + 0.363763i
\(743\) −11.1811 11.1811i −0.410196 0.410196i 0.471611 0.881807i \(-0.343673\pi\)
−0.881807 + 0.471611i \(0.843673\pi\)
\(744\) −0.472474 + 1.06119i −0.0173217 + 0.0389053i
\(745\) −9.48811 32.6065i −0.347618 1.19461i
\(746\) −25.5639 + 11.3818i −0.935963 + 0.416717i
\(747\) −0.522998 + 0.423516i −0.0191355 + 0.0154956i
\(748\) 5.50423 + 10.8027i 0.201254 + 0.394984i
\(749\) 20.5383 16.5093i 0.750452 0.603237i
\(750\) 3.43989 + 0.320736i 0.125607 + 0.0117116i
\(751\) −25.2501 43.7345i −0.921390 1.59589i −0.797266 0.603628i \(-0.793721\pi\)
−0.124124 0.992267i \(-0.539612\pi\)
\(752\) −0.380957 + 7.26910i −0.0138921 + 0.265077i
\(753\) 1.69924 + 0.652276i 0.0619236 + 0.0237703i
\(754\) 0.900625 8.56888i 0.0327988 0.312060i
\(755\) −22.8368 21.8810i −0.831115 0.796333i
\(756\) −1.88457 + 0.497695i −0.0685413 + 0.0181010i
\(757\) −6.78176 + 6.78176i −0.246487 + 0.246487i −0.819527 0.573040i \(-0.805764\pi\)
0.573040 + 0.819527i \(0.305764\pi\)
\(758\) −6.66514 17.3633i −0.242089 0.630663i
\(759\) −2.78776 0.592556i −0.101189 0.0215084i
\(760\) 30.0844 28.2752i 1.09128 1.02565i
\(761\) 0.693871 + 3.26440i 0.0251528 + 0.118335i 0.988933 0.148364i \(-0.0474006\pi\)
−0.963780 + 0.266698i \(0.914067\pi\)
\(762\) −1.07429 + 2.10842i −0.0389176 + 0.0763800i
\(763\) 5.04712 + 5.64619i 0.182718 + 0.204406i
\(764\) 0.521513 + 0.169450i 0.0188677 + 0.00613048i
\(765\) 2.11442 25.3091i 0.0764470 0.915051i
\(766\) −0.895448 + 4.21275i −0.0323539