Properties

Label 175.2.x.a.3.10
Level $175$
Weight $2$
Character 175.3
Analytic conductor $1.397$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(3,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([21, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.x (of order \(60\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 3.10
Character \(\chi\) \(=\) 175.3
Dual form 175.2.x.a.117.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0204066 - 0.0314234i) q^{2} +(-0.0391619 + 0.102020i) q^{3} +(0.812902 + 1.82581i) q^{4} +(-2.17394 - 0.523442i) q^{5} +(0.00240666 + 0.00331248i) q^{6} +(1.46457 + 2.20341i) q^{7} +(0.147975 + 0.0234370i) q^{8} +(2.22056 + 1.99940i) q^{9} +O(q^{10})\) \(q+(0.0204066 - 0.0314234i) q^{2} +(-0.0391619 + 0.102020i) q^{3} +(0.812902 + 1.82581i) q^{4} +(-2.17394 - 0.523442i) q^{5} +(0.00240666 + 0.00331248i) q^{6} +(1.46457 + 2.20341i) q^{7} +(0.147975 + 0.0234370i) q^{8} +(2.22056 + 1.99940i) q^{9} +(-0.0608110 + 0.0576309i) q^{10} +(0.920718 + 1.02256i) q^{11} +(-0.218104 + 0.0114304i) q^{12} +(-1.43400 - 0.730661i) q^{13} +(0.0991256 - 0.00105770i) q^{14} +(0.138537 - 0.201287i) q^{15} +(-2.67089 + 2.96632i) q^{16} +(2.74801 - 3.39351i) q^{17} +(0.108142 - 0.0289766i) q^{18} +(-0.0625826 - 0.0278636i) q^{19} +(-0.811494 - 4.39470i) q^{20} +(-0.282148 + 0.0631262i) q^{21} +(0.0509210 - 0.00806510i) q^{22} +(-4.73611 - 3.07566i) q^{23} +(-0.00818604 + 0.0141786i) q^{24} +(4.45202 + 2.27586i) q^{25} +(-0.0522229 + 0.0301509i) q^{26} +(-0.583044 + 0.297076i) q^{27} +(-2.83246 + 4.46519i) q^{28} +(3.88840 - 5.35192i) q^{29} +(-0.00349804 - 0.00846088i) q^{30} +(3.48857 - 0.366663i) q^{31} +(0.116261 + 0.433891i) q^{32} +(-0.140379 + 0.0538864i) q^{33} +(-0.0505580 - 0.155602i) q^{34} +(-2.03053 - 5.55670i) q^{35} +(-1.84543 + 5.67963i) q^{36} +(-0.405127 - 7.73028i) q^{37} +(-0.00215267 + 0.00139796i) q^{38} +(0.130700 - 0.117683i) q^{39} +(-0.309421 - 0.128407i) q^{40} +(-9.12263 + 2.96412i) q^{41} +(-0.00377404 + 0.0101542i) q^{42} +(-3.38639 - 3.38639i) q^{43} +(-1.11855 + 2.51230i) q^{44} +(-3.78079 - 5.50891i) q^{45} +(-0.193296 + 0.0860608i) q^{46} +(5.54003 - 4.48623i) q^{47} +(-0.198028 - 0.388651i) q^{48} +(-2.71005 + 6.45412i) q^{49} +(0.162366 - 0.0934549i) q^{50} +(0.238589 + 0.413248i) q^{51} +(0.168343 - 3.21217i) q^{52} +(-2.76885 - 1.06286i) q^{53} +(-0.00256281 + 0.0243835i) q^{54} +(-1.46633 - 2.70493i) q^{55} +(0.165079 + 0.360376i) q^{56} +(0.00529350 - 0.00529350i) q^{57} +(-0.0888266 - 0.231401i) q^{58} +(10.0677 + 2.13996i) q^{59} +(0.480128 + 0.0893160i) q^{60} +(-1.57245 - 7.39781i) q^{61} +(0.0596680 - 0.117105i) q^{62} +(-1.15333 + 7.82108i) q^{63} +(-7.57643 - 2.46173i) q^{64} +(2.73497 + 2.33903i) q^{65} +(-0.00117136 + 0.00551082i) q^{66} +(6.89851 + 5.58630i) q^{67} +(8.42975 + 2.25874i) q^{68} +(0.499255 - 0.362730i) q^{69} +(-0.216047 - 0.0495872i) q^{70} +(5.52909 + 4.01712i) q^{71} +(0.281728 + 0.347905i) q^{72} +(-0.428243 - 0.0224433i) q^{73} +(-0.251179 - 0.145018i) q^{74} +(-0.406533 + 0.365068i) q^{75} -0.136914i q^{76} +(-0.904665 + 3.52633i) q^{77} +(-0.00103085 - 0.00650856i) q^{78} +(9.05420 + 0.951635i) q^{79} +(7.35904 - 5.05054i) q^{80} +(0.929537 + 8.84395i) q^{81} +(-0.0930190 + 0.347152i) q^{82} +(-0.663758 + 4.19080i) q^{83} +(-0.344615 - 0.463833i) q^{84} +(-7.75030 + 5.93885i) q^{85} +(-0.175517 + 0.0373072i) q^{86} +(0.393727 + 0.606287i) q^{87} +(0.112278 + 0.172893i) q^{88} +(-7.87491 + 1.67386i) q^{89} +(-0.250262 + 0.00638718i) q^{90} +(-0.490253 - 4.22980i) q^{91} +(1.76558 - 11.1474i) q^{92} +(-0.0992118 + 0.370263i) q^{93} +(-0.0279194 - 0.265635i) q^{94} +(0.121466 + 0.0933321i) q^{95} +(-0.0488186 - 0.00513104i) q^{96} +(2.59509 + 16.3848i) q^{97} +(0.147507 + 0.216866i) q^{98} +4.11154i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9} - 36 q^{10} - 6 q^{11} - 36 q^{12} - 20 q^{14} - 28 q^{15} - 30 q^{16} - 42 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} + 32 q^{22} - 40 q^{23} + 2 q^{25} - 48 q^{26} + 22 q^{28} - 58 q^{30} - 18 q^{31} + 8 q^{32} - 30 q^{33} - 2 q^{35} + 40 q^{36} - 10 q^{37} + 72 q^{38} + 30 q^{39} - 48 q^{40} + 6 q^{42} - 108 q^{43} - 10 q^{44} + 186 q^{45} - 6 q^{46} - 54 q^{47} - 248 q^{50} - 16 q^{51} + 216 q^{52} + 50 q^{53} - 30 q^{54} + 4 q^{56} - 216 q^{57} - 4 q^{58} + 90 q^{59} + 96 q^{60} - 18 q^{61} - 66 q^{63} - 100 q^{64} + 14 q^{65} - 90 q^{66} + 4 q^{67} + 342 q^{68} - 60 q^{70} - 24 q^{71} + 58 q^{72} - 6 q^{73} + 216 q^{75} - 80 q^{77} - 132 q^{78} - 10 q^{79} - 6 q^{80} - 10 q^{81} + 216 q^{82} + 20 q^{84} - 48 q^{85} - 6 q^{86} - 48 q^{87} - 122 q^{88} + 120 q^{89} - 12 q^{91} - 4 q^{92} + 106 q^{93} - 30 q^{94} - 98 q^{95} - 90 q^{96} + 222 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0204066 0.0314234i 0.0144296 0.0222197i −0.831382 0.555701i \(-0.812450\pi\)
0.845812 + 0.533481i \(0.179117\pi\)
\(3\) −0.0391619 + 0.102020i −0.0226101 + 0.0589014i −0.944421 0.328739i \(-0.893376\pi\)
0.921811 + 0.387640i \(0.126710\pi\)
\(4\) 0.812902 + 1.82581i 0.406451 + 0.912904i
\(5\) −2.17394 0.523442i −0.972215 0.234090i
\(6\) 0.00240666 + 0.00331248i 0.000982515 + 0.00135232i
\(7\) 1.46457 + 2.20341i 0.553556 + 0.832812i
\(8\) 0.147975 + 0.0234370i 0.0523172 + 0.00828623i
\(9\) 2.22056 + 1.99940i 0.740187 + 0.666467i
\(10\) −0.0608110 + 0.0576309i −0.0192301 + 0.0182245i
\(11\) 0.920718 + 1.02256i 0.277607 + 0.308314i 0.865783 0.500419i \(-0.166821\pi\)
−0.588177 + 0.808733i \(0.700154\pi\)
\(12\) −0.218104 + 0.0114304i −0.0629612 + 0.00329966i
\(13\) −1.43400 0.730661i −0.397721 0.202649i 0.243679 0.969856i \(-0.421646\pi\)
−0.641399 + 0.767207i \(0.721646\pi\)
\(14\) 0.0991256 0.00105770i 0.0264924 0.000282682i
\(15\) 0.138537 0.201287i 0.0357701 0.0519720i
\(16\) −2.67089 + 2.96632i −0.667722 + 0.741580i
\(17\) 2.74801 3.39351i 0.666489 0.823046i −0.326001 0.945369i \(-0.605701\pi\)
0.992490 + 0.122324i \(0.0390346\pi\)
\(18\) 0.108142 0.0289766i 0.0254893 0.00682984i
\(19\) −0.0625826 0.0278636i −0.0143574 0.00639234i 0.399545 0.916713i \(-0.369168\pi\)
−0.413903 + 0.910321i \(0.635835\pi\)
\(20\) −0.811494 4.39470i −0.181456 0.982685i
\(21\) −0.282148 + 0.0631262i −0.0615697 + 0.0137753i
\(22\) 0.0509210 0.00806510i 0.0108564 0.00171949i
\(23\) −4.73611 3.07566i −0.987547 0.641320i −0.0535361 0.998566i \(-0.517049\pi\)
−0.934010 + 0.357246i \(0.883716\pi\)
\(24\) −0.00818604 + 0.0141786i −0.00167097 + 0.00289420i
\(25\) 4.45202 + 2.27586i 0.890403 + 0.455172i
\(26\) −0.0522229 + 0.0301509i −0.0102418 + 0.00591308i
\(27\) −0.583044 + 0.297076i −0.112207 + 0.0571722i
\(28\) −2.83246 + 4.46519i −0.535284 + 0.843841i
\(29\) 3.88840 5.35192i 0.722058 0.993827i −0.277395 0.960756i \(-0.589471\pi\)
0.999453 0.0330712i \(-0.0105288\pi\)
\(30\) −0.00349804 0.00846088i −0.000638651 0.00154474i
\(31\) 3.48857 0.366663i 0.626565 0.0658546i 0.214076 0.976817i \(-0.431326\pi\)
0.412489 + 0.910962i \(0.364659\pi\)
\(32\) 0.116261 + 0.433891i 0.0205522 + 0.0767017i
\(33\) −0.140379 + 0.0538864i −0.0244368 + 0.00938042i
\(34\) −0.0505580 0.155602i −0.00867063 0.0266855i
\(35\) −2.03053 5.55670i −0.343222 0.939254i
\(36\) −1.84543 + 5.67963i −0.307571 + 0.946606i
\(37\) −0.405127 7.73028i −0.0666024 1.27085i −0.803688 0.595050i \(-0.797132\pi\)
0.737086 0.675799i \(-0.236201\pi\)
\(38\) −0.00215267 + 0.00139796i −0.000349209 + 0.000226779i
\(39\) 0.130700 0.117683i 0.0209288 0.0188444i
\(40\) −0.309421 0.128407i −0.0489238 0.0203029i
\(41\) −9.12263 + 2.96412i −1.42472 + 0.462918i −0.917097 0.398664i \(-0.869474\pi\)
−0.507618 + 0.861582i \(0.669474\pi\)
\(42\) −0.00377404 + 0.0101542i −0.000582347 + 0.00156683i
\(43\) −3.38639 3.38639i −0.516420 0.516420i 0.400067 0.916486i \(-0.368987\pi\)
−0.916486 + 0.400067i \(0.868987\pi\)
\(44\) −1.11855 + 2.51230i −0.168627 + 0.378743i
\(45\) −3.78079 5.50891i −0.563607 0.821220i
\(46\) −0.193296 + 0.0860608i −0.0284999 + 0.0126890i
\(47\) 5.54003 4.48623i 0.808096 0.654384i −0.133529 0.991045i \(-0.542631\pi\)
0.941626 + 0.336661i \(0.109298\pi\)
\(48\) −0.198028 0.388651i −0.0285828 0.0560970i
\(49\) −2.71005 + 6.45412i −0.387151 + 0.922016i
\(50\) 0.162366 0.0934549i 0.0229620 0.0132165i
\(51\) 0.238589 + 0.413248i 0.0334091 + 0.0578663i
\(52\) 0.168343 3.21217i 0.0233449 0.445448i
\(53\) −2.76885 1.06286i −0.380331 0.145996i 0.160689 0.987005i \(-0.448628\pi\)
−0.541020 + 0.841010i \(0.681962\pi\)
\(54\) −0.00256281 + 0.0243835i −0.000348754 + 0.00331818i
\(55\) −1.46633 2.70493i −0.197720 0.364732i
\(56\) 0.165079 + 0.360376i 0.0220596 + 0.0481572i
\(57\) 0.00529350 0.00529350i 0.000701141 0.000701141i
\(58\) −0.0888266 0.231401i −0.0116635 0.0303845i
\(59\) 10.0677 + 2.13996i 1.31071 + 0.278599i 0.809700 0.586844i \(-0.199630\pi\)
0.501007 + 0.865443i \(0.332963\pi\)
\(60\) 0.480128 + 0.0893160i 0.0619843 + 0.0115306i
\(61\) −1.57245 7.39781i −0.201332 0.947192i −0.956516 0.291679i \(-0.905786\pi\)
0.755184 0.655513i \(-0.227547\pi\)
\(62\) 0.0596680 0.117105i 0.00757784 0.0148723i
\(63\) −1.15333 + 7.82108i −0.145307 + 0.985363i
\(64\) −7.57643 2.46173i −0.947053 0.307716i
\(65\) 2.73497 + 2.33903i 0.339232 + 0.290121i
\(66\) −0.00117136 + 0.00551082i −0.000144185 + 0.000678335i
\(67\) 6.89851 + 5.58630i 0.842787 + 0.682475i 0.950166 0.311743i \(-0.100913\pi\)
−0.107380 + 0.994218i \(0.534246\pi\)
\(68\) 8.42975 + 2.25874i 1.02226 + 0.273913i
\(69\) 0.499255 0.362730i 0.0601032 0.0436675i
\(70\) −0.216047 0.0495872i −0.0258225 0.00592680i
\(71\) 5.52909 + 4.01712i 0.656182 + 0.476744i 0.865372 0.501131i \(-0.167082\pi\)
−0.209189 + 0.977875i \(0.567082\pi\)
\(72\) 0.281728 + 0.347905i 0.0332020 + 0.0410010i
\(73\) −0.428243 0.0224433i −0.0501221 0.00262679i 0.0272584 0.999628i \(-0.491322\pi\)
−0.0773805 + 0.997002i \(0.524656\pi\)
\(74\) −0.251179 0.145018i −0.0291989 0.0168580i
\(75\) −0.406533 + 0.365068i −0.0469424 + 0.0421545i
\(76\) 0.136914i 0.0157051i
\(77\) −0.904665 + 3.52633i −0.103096 + 0.401863i
\(78\) −0.00103085 0.00650856i −0.000116721 0.000736949i
\(79\) 9.05420 + 0.951635i 1.01868 + 0.107067i 0.599118 0.800661i \(-0.295518\pi\)
0.419559 + 0.907728i \(0.362185\pi\)
\(80\) 7.35904 5.05054i 0.822766 0.564668i
\(81\) 0.929537 + 8.84395i 0.103282 + 0.982661i
\(82\) −0.0930190 + 0.347152i −0.0102722 + 0.0383365i
\(83\) −0.663758 + 4.19080i −0.0728569 + 0.460000i 0.924107 + 0.382134i \(0.124811\pi\)
−0.996964 + 0.0778662i \(0.975189\pi\)
\(84\) −0.344615 0.463833i −0.0376006 0.0506083i
\(85\) −7.75030 + 5.93885i −0.840638 + 0.644159i
\(86\) −0.175517 + 0.0373072i −0.0189264 + 0.00402294i
\(87\) 0.393727 + 0.606287i 0.0422120 + 0.0650007i
\(88\) 0.112278 + 0.172893i 0.0119688 + 0.0184304i
\(89\) −7.87491 + 1.67386i −0.834739 + 0.177429i −0.605404 0.795918i \(-0.706988\pi\)
−0.229335 + 0.973348i \(0.573655\pi\)
\(90\) −0.250262 + 0.00638718i −0.0263799 + 0.000673268i
\(91\) −0.490253 4.22980i −0.0513925 0.443404i
\(92\) 1.76558 11.1474i 0.184075 1.16220i
\(93\) −0.0992118 + 0.370263i −0.0102878 + 0.0383945i
\(94\) −0.0279194 0.265635i −0.00287966 0.0273982i
\(95\) 0.121466 + 0.0933321i 0.0124621 + 0.00957567i
\(96\) −0.0488186 0.00513104i −0.00498253 0.000523684i
\(97\) 2.59509 + 16.3848i 0.263492 + 1.66362i 0.664306 + 0.747461i \(0.268727\pi\)
−0.400814 + 0.916159i \(0.631273\pi\)
\(98\) 0.147507 + 0.216866i 0.0149005 + 0.0219067i
\(99\) 4.11154i 0.413225i
\(100\) −0.536234 + 9.97858i −0.0536234 + 0.997858i
\(101\) −3.41526 1.97180i −0.339831 0.196202i 0.320366 0.947294i \(-0.396194\pi\)
−0.660197 + 0.751092i \(0.729527\pi\)
\(102\) 0.0178544 0.000935712i 0.00176785 9.26493e-5i
\(103\) −4.83309 5.96836i −0.476218 0.588080i 0.481263 0.876576i \(-0.340178\pi\)
−0.957481 + 0.288496i \(0.906845\pi\)
\(104\) −0.195072 0.141728i −0.0191284 0.0138976i
\(105\) 0.646415 + 0.0104557i 0.0630837 + 0.00102038i
\(106\) −0.0899016 + 0.0653174i −0.00873202 + 0.00634418i
\(107\) −10.4235 2.79297i −1.00768 0.270006i −0.283019 0.959114i \(-0.591336\pi\)
−0.724659 + 0.689108i \(0.758003\pi\)
\(108\) −1.01636 0.823033i −0.0977994 0.0791964i
\(109\) 0.599063 2.81837i 0.0573798 0.269951i −0.940100 0.340898i \(-0.889269\pi\)
0.997480 + 0.0709472i \(0.0226022\pi\)
\(110\) −0.114921 0.00912119i −0.0109573 0.000869671i
\(111\) 0.804510 + 0.261401i 0.0763607 + 0.0248111i
\(112\) −10.4477 1.54068i −0.987218 0.145580i
\(113\) 4.61149 9.05056i 0.433812 0.851405i −0.565826 0.824524i \(-0.691443\pi\)
0.999639 0.0268803i \(-0.00855729\pi\)
\(114\) −5.83174e−5 0 0.000274362i −5.46193e−6 0 2.56964e-5i
\(115\) 8.68607 + 9.16538i 0.809980 + 0.854676i
\(116\) 12.9325 + 2.74888i 1.20075 + 0.255227i
\(117\) −1.72340 4.48962i −0.159329 0.415066i
\(118\) 0.272693 0.272693i 0.0251034 0.0251034i
\(119\) 11.5019 + 1.08496i 1.05438 + 0.0994579i
\(120\) 0.0252176 0.0265386i 0.00230204 0.00242263i
\(121\) 0.951904 9.05676i 0.0865367 0.823342i
\(122\) −0.264553 0.101552i −0.0239515 0.00919411i
\(123\) 0.0548590 1.04677i 0.00494647 0.0943843i
\(124\) 3.50532 + 6.07139i 0.314787 + 0.545227i
\(125\) −8.48713 7.27796i −0.759112 0.650960i
\(126\) 0.222229 + 0.195843i 0.0197978 + 0.0174471i
\(127\) 9.60727 + 18.8553i 0.852507 + 1.67314i 0.732919 + 0.680316i \(0.238157\pi\)
0.119588 + 0.992824i \(0.461843\pi\)
\(128\) −0.930148 + 0.753219i −0.0822142 + 0.0665758i
\(129\) 0.478097 0.212863i 0.0420941 0.0187415i
\(130\) 0.129312 0.0382106i 0.0113414 0.00335129i
\(131\) −0.708263 + 1.59079i −0.0618813 + 0.138988i −0.941839 0.336064i \(-0.890904\pi\)
0.879958 + 0.475052i \(0.157571\pi\)
\(132\) −0.212501 0.212501i −0.0184958 0.0184958i
\(133\) −0.0302618 0.178704i −0.00262403 0.0154956i
\(134\) 0.316315 0.102777i 0.0273255 0.00887859i
\(135\) 1.42300 0.340635i 0.122473 0.0293172i
\(136\) 0.486171 0.437750i 0.0416888 0.0375367i
\(137\) −5.34189 + 3.46906i −0.456388 + 0.296382i −0.752285 0.658838i \(-0.771048\pi\)
0.295897 + 0.955220i \(0.404382\pi\)
\(138\) −0.00121011 0.0230904i −0.000103012 0.00196558i
\(139\) 6.65731 20.4891i 0.564665 1.73786i −0.104278 0.994548i \(-0.533253\pi\)
0.668944 0.743313i \(-0.266747\pi\)
\(140\) 8.49485 8.22442i 0.717946 0.695090i
\(141\) 0.240728 + 0.740884i 0.0202729 + 0.0623937i
\(142\) 0.239062 0.0917671i 0.0200616 0.00770093i
\(143\) −0.573166 2.13909i −0.0479306 0.178879i
\(144\) −11.8617 + 1.24672i −0.988478 + 0.103893i
\(145\) −11.2546 + 9.59940i −0.934641 + 0.797187i
\(146\) −0.00944423 + 0.0129989i −0.000781610 + 0.00107579i
\(147\) −0.552319 0.529236i −0.0455545 0.0436506i
\(148\) 13.7847 7.02364i 1.13309 0.577340i
\(149\) −16.9996 + 9.81475i −1.39266 + 0.804055i −0.993610 0.112871i \(-0.963995\pi\)
−0.399055 + 0.916927i \(0.630662\pi\)
\(150\) 0.00317573 + 0.0202245i 0.000259298 + 0.00165132i
\(151\) 4.56259 7.90264i 0.371299 0.643108i −0.618467 0.785811i \(-0.712246\pi\)
0.989766 + 0.142703i \(0.0455793\pi\)
\(152\) −0.00860764 0.00558987i −0.000698172 0.000453398i
\(153\) 12.8871 2.04111i 1.04186 0.165014i
\(154\) 0.0923483 + 0.100388i 0.00744164 + 0.00808951i
\(155\) −7.77586 1.02896i −0.624572 0.0826480i
\(156\) 0.321113 + 0.142969i 0.0257096 + 0.0114467i
\(157\) −17.8330 + 4.77834i −1.42323 + 0.381353i −0.886628 0.462483i \(-0.846959\pi\)
−0.536601 + 0.843836i \(0.680292\pi\)
\(158\) 0.214669 0.265094i 0.0170781 0.0210898i
\(159\) 0.216867 0.240855i 0.0171987 0.0191011i
\(160\) −0.0256268 1.00411i −0.00202598 0.0793816i
\(161\) −0.159415 14.9401i −0.0125637 1.17745i
\(162\) 0.296876 + 0.151266i 0.0233248 + 0.0118846i
\(163\) −3.45202 + 0.180913i −0.270383 + 0.0141702i −0.187046 0.982351i \(-0.559891\pi\)
−0.0833374 + 0.996521i \(0.526558\pi\)
\(164\) −12.8277 14.2466i −1.00168 1.11248i
\(165\) 0.333381 0.0436655i 0.0259537 0.00339935i
\(166\) 0.118144 + 0.106377i 0.00916977 + 0.00825649i
\(167\) −13.0850 2.07246i −1.01255 0.160372i −0.371954 0.928251i \(-0.621312\pi\)
−0.640595 + 0.767879i \(0.721312\pi\)
\(168\) −0.0432304 + 0.00272842i −0.00333530 + 0.000210502i
\(169\) −6.11871 8.42168i −0.470670 0.647822i
\(170\) 0.0284616 + 0.364732i 0.00218290 + 0.0279737i
\(171\) −0.0832580 0.187000i −0.00636690 0.0143003i
\(172\) 3.43009 8.93570i 0.261542 0.681341i
\(173\) −5.52749 + 8.51158i −0.420247 + 0.647123i −0.983865 0.178912i \(-0.942742\pi\)
0.563618 + 0.826035i \(0.309409\pi\)
\(174\) 0.0270862 0.00205340
\(175\) 1.50564 + 13.1428i 0.113815 + 0.993502i
\(176\) −5.49238 −0.414003
\(177\) −0.612591 + 0.943307i −0.0460451 + 0.0709033i
\(178\) −0.108102 + 0.281614i −0.00810256 + 0.0211079i
\(179\) −3.67055 8.24419i −0.274350 0.616200i 0.722848 0.691007i \(-0.242833\pi\)
−0.997198 + 0.0748069i \(0.976166\pi\)
\(180\) 6.98480 11.3812i 0.520616 0.848305i
\(181\) −9.31589 12.8222i −0.692445 0.953069i −0.999999 0.00153805i \(-0.999510\pi\)
0.307554 0.951531i \(-0.400490\pi\)
\(182\) −0.142919 0.0709105i −0.0105939 0.00525623i
\(183\) 0.816306 + 0.129290i 0.0603430 + 0.00955740i
\(184\) −0.628743 0.566122i −0.0463515 0.0417351i
\(185\) −3.16563 + 17.0172i −0.232742 + 1.25113i
\(186\) 0.00961036 + 0.0106734i 0.000704666 + 0.000782611i
\(187\) 6.00020 0.314457i 0.438778 0.0229954i
\(188\) 12.6945 + 6.46817i 0.925841 + 0.471740i
\(189\) −1.50849 0.849597i −0.109727 0.0617991i
\(190\) 0.00541151 0.00191228i 0.000392592 0.000138731i
\(191\) 14.9793 16.6362i 1.08386 1.20375i 0.106028 0.994363i \(-0.466187\pi\)
0.977833 0.209387i \(-0.0671468\pi\)
\(192\) 0.547853 0.676542i 0.0395379 0.0488252i
\(193\) −11.7643 + 3.15224i −0.846814 + 0.226903i −0.656036 0.754730i \(-0.727768\pi\)
−0.190779 + 0.981633i \(0.561101\pi\)
\(194\) 0.567822 + 0.252811i 0.0407672 + 0.0181507i
\(195\) −0.345735 + 0.187422i −0.0247586 + 0.0134216i
\(196\) −13.9870 + 0.298524i −0.999071 + 0.0213231i
\(197\) 13.1804 2.08757i 0.939067 0.148734i 0.331906 0.943313i \(-0.392308\pi\)
0.607161 + 0.794579i \(0.292308\pi\)
\(198\) 0.129199 + 0.0839025i 0.00918174 + 0.00596269i
\(199\) −9.16969 + 15.8824i −0.650022 + 1.12587i 0.333095 + 0.942893i \(0.391907\pi\)
−0.983117 + 0.182978i \(0.941426\pi\)
\(200\) 0.605449 + 0.441113i 0.0428117 + 0.0311914i
\(201\) −0.840074 + 0.485017i −0.0592542 + 0.0342104i
\(202\) −0.131654 + 0.0670813i −0.00926318 + 0.00471982i
\(203\) 17.4873 + 0.729470i 1.22737 + 0.0511987i
\(204\) −0.560562 + 0.771548i −0.0392472 + 0.0540192i
\(205\) 21.3836 1.66865i 1.49349 0.116544i
\(206\) −0.286173 + 0.0300780i −0.0199386 + 0.00209563i
\(207\) −4.36732 16.2991i −0.303550 1.13286i
\(208\) 5.99743 2.30220i 0.415847 0.159629i
\(209\) −0.0291287 0.0896490i −0.00201488 0.00620115i
\(210\) 0.0135197 0.0200992i 0.000932947 0.00138698i
\(211\) −2.94624 + 9.06760i −0.202828 + 0.624239i 0.796968 + 0.604022i \(0.206436\pi\)
−0.999796 + 0.0202178i \(0.993564\pi\)
\(212\) −0.310223 5.91940i −0.0213062 0.406546i
\(213\) −0.626357 + 0.406761i −0.0429173 + 0.0278708i
\(214\) −0.300473 + 0.270547i −0.0205399 + 0.0184942i
\(215\) 5.58922 + 9.13438i 0.381182 + 0.622960i
\(216\) −0.0932387 + 0.0302951i −0.00634409 + 0.00206132i
\(217\) 5.91717 + 7.14975i 0.401684 + 0.485356i
\(218\) −0.0763379 0.0763379i −0.00517026 0.00517026i
\(219\) 0.0190605 0.0428105i 0.00128799 0.00289287i
\(220\) 3.74669 4.87608i 0.252602 0.328745i
\(221\) −6.42015 + 2.85843i −0.431866 + 0.192279i
\(222\) 0.0246314 0.0199461i 0.00165315 0.00133870i
\(223\) 11.4092 + 22.3918i 0.764015 + 1.49946i 0.863458 + 0.504421i \(0.168294\pi\)
−0.0994426 + 0.995043i \(0.531706\pi\)
\(224\) −0.785768 + 0.891634i −0.0525013 + 0.0595748i
\(225\) 5.33561 + 13.9551i 0.355707 + 0.930337i
\(226\) −0.190294 0.329600i −0.0126582 0.0219246i
\(227\) −0.647595 + 12.3568i −0.0429824 + 0.820153i 0.889057 + 0.457796i \(0.151361\pi\)
−0.932040 + 0.362357i \(0.881972\pi\)
\(228\) 0.0139680 + 0.00536182i 0.000925054 + 0.000355095i
\(229\) 1.54378 14.6881i 0.102016 0.970617i −0.817064 0.576547i \(-0.804400\pi\)
0.919080 0.394070i \(-0.128933\pi\)
\(230\) 0.465261 0.0859117i 0.0306784 0.00566485i
\(231\) −0.324329 0.230392i −0.0213393 0.0151587i
\(232\) 0.700820 0.700820i 0.0460111 0.0460111i
\(233\) −0.434909 1.13298i −0.0284918 0.0742237i 0.918597 0.395197i \(-0.129324\pi\)
−0.947088 + 0.320973i \(0.895990\pi\)
\(234\) −0.176248 0.0374627i −0.0115217 0.00244901i
\(235\) −14.3920 + 6.85290i −0.938828 + 0.447034i
\(236\) 4.27692 + 20.1213i 0.278404 + 1.30979i
\(237\) −0.451665 + 0.886443i −0.0293388 + 0.0575807i
\(238\) 0.268809 0.339290i 0.0174243 0.0219929i
\(239\) −24.4748 7.95235i −1.58314 0.514395i −0.620280 0.784380i \(-0.712981\pi\)
−0.962864 + 0.269986i \(0.912981\pi\)
\(240\) 0.227064 + 0.948560i 0.0146569 + 0.0612293i
\(241\) 2.84821 13.3998i 0.183470 0.863156i −0.786054 0.618158i \(-0.787879\pi\)
0.969524 0.244998i \(-0.0787874\pi\)
\(242\) −0.265169 0.214730i −0.0170457 0.0138033i
\(243\) −2.83487 0.759601i −0.181857 0.0487284i
\(244\) 12.2287 8.88469i 0.782864 0.568784i
\(245\) 9.26985 12.6123i 0.592229 0.805770i
\(246\) −0.0317737 0.0230849i −0.00202582 0.00147184i
\(247\) 0.0693848 + 0.0856831i 0.00441485 + 0.00545188i
\(248\) 0.524815 + 0.0275044i 0.0333258 + 0.00174653i
\(249\) −0.401552 0.231836i −0.0254473 0.0146920i
\(250\) −0.401892 + 0.118176i −0.0254179 + 0.00747411i
\(251\) 24.5816i 1.55158i 0.630992 + 0.775789i \(0.282648\pi\)
−0.630992 + 0.775789i \(0.717352\pi\)
\(252\) −15.2173 + 4.25200i −0.958602 + 0.267851i
\(253\) −1.21556 7.67477i −0.0764219 0.482509i
\(254\) 0.788550 + 0.0828799i 0.0494780 + 0.00520035i
\(255\) −0.302366 1.02326i −0.0189349 0.0640792i
\(256\) −1.66073 15.8008i −0.103796 0.987548i
\(257\) −5.30267 + 19.7898i −0.330772 + 1.23446i 0.577610 + 0.816313i \(0.303986\pi\)
−0.908381 + 0.418143i \(0.862681\pi\)
\(258\) 0.00306747 0.0193672i 0.000190972 0.00120575i
\(259\) 16.4397 12.2142i 1.02151 0.758954i
\(260\) −2.04735 + 6.89494i −0.126971 + 0.427606i
\(261\) 19.3351 4.10979i 1.19681 0.254390i
\(262\) 0.0355346 + 0.0547186i 0.00219534 + 0.00338052i
\(263\) −6.93796 10.6835i −0.427813 0.658774i 0.557373 0.830262i \(-0.311809\pi\)
−0.985186 + 0.171488i \(0.945143\pi\)
\(264\) −0.0220355 + 0.00468380i −0.00135619 + 0.000288268i
\(265\) 5.46297 + 3.75993i 0.335588 + 0.230971i
\(266\) −0.00623301 0.00269580i −0.000382171 0.000165290i
\(267\) 0.137628 0.868951i 0.00842272 0.0531790i
\(268\) −4.59170 + 17.1365i −0.280483 + 1.04678i
\(269\) 2.07737 + 19.7649i 0.126660 + 1.20509i 0.854542 + 0.519383i \(0.173838\pi\)
−0.727882 + 0.685703i \(0.759495\pi\)
\(270\) 0.0183348 0.0516668i 0.00111582 0.00314434i
\(271\) 8.02915 + 0.843898i 0.487736 + 0.0512631i 0.345205 0.938527i \(-0.387809\pi\)
0.142531 + 0.989790i \(0.454476\pi\)
\(272\) 2.72661 + 17.2151i 0.165325 + 1.04382i
\(273\) 0.450725 + 0.115631i 0.0272791 + 0.00699833i
\(274\) 0.238652i 0.0144175i
\(275\) 1.77184 + 6.64788i 0.106846 + 0.400882i
\(276\) 1.06812 + 0.616679i 0.0642933 + 0.0371197i
\(277\) −4.04324 0.211897i −0.242935 0.0127317i −0.0695201 0.997581i \(-0.522147\pi\)
−0.173415 + 0.984849i \(0.555480\pi\)
\(278\) −0.507984 0.627307i −0.0304668 0.0376234i
\(279\) 8.47968 + 6.16085i 0.507665 + 0.368840i
\(280\) −0.170236 0.869844i −0.0101736 0.0519831i
\(281\) 1.03849 0.754506i 0.0619510 0.0450100i −0.556379 0.830929i \(-0.687810\pi\)
0.618330 + 0.785919i \(0.287810\pi\)
\(282\) 0.0281935 + 0.00755443i 0.00167890 + 0.000449860i
\(283\) −0.243356 0.197066i −0.0144660 0.0117143i 0.622060 0.782969i \(-0.286296\pi\)
−0.636526 + 0.771255i \(0.719629\pi\)
\(284\) −2.83988 + 13.3606i −0.168516 + 0.792805i
\(285\) −0.0142786 + 0.00873690i −0.000845790 + 0.000517529i
\(286\) −0.0789137 0.0256406i −0.00466627 0.00151616i
\(287\) −19.8919 15.7597i −1.17418 0.930268i
\(288\) −0.609358 + 1.19593i −0.0359067 + 0.0704709i
\(289\) −0.429840 2.02224i −0.0252847 0.118955i
\(290\) 0.0719784 + 0.549548i 0.00422672 + 0.0322705i
\(291\) −1.77320 0.376906i −0.103947 0.0220946i
\(292\) −0.307143 0.800134i −0.0179742 0.0468243i
\(293\) 13.9434 13.9434i 0.814584 0.814584i −0.170733 0.985317i \(-0.554614\pi\)
0.985317 + 0.170733i \(0.0546137\pi\)
\(294\) −0.0279013 + 0.00655585i −0.00162724 + 0.000382345i
\(295\) −20.7665 9.92202i −1.20907 0.577682i
\(296\) 0.121226 1.15338i 0.00704610 0.0670391i
\(297\) −0.840597 0.322675i −0.0487764 0.0187235i
\(298\) −0.0384920 + 0.734472i −0.00222978 + 0.0425468i
\(299\) 4.54432 + 7.87099i 0.262805 + 0.455191i
\(300\) −0.997017 0.445487i −0.0575628 0.0257202i
\(301\) 2.50200 12.4212i 0.144213 0.715948i
\(302\) −0.155221 0.304638i −0.00893196 0.0175300i
\(303\) 0.334911 0.271206i 0.0192402 0.0155804i
\(304\) 0.249803 0.111220i 0.0143272 0.00637888i
\(305\) −0.453910 + 16.9055i −0.0259908 + 0.968004i
\(306\) 0.198843 0.446608i 0.0113671 0.0255309i
\(307\) 14.7442 + 14.7442i 0.841499 + 0.841499i 0.989054 0.147555i \(-0.0471404\pi\)
−0.147555 + 0.989054i \(0.547140\pi\)
\(308\) −7.17382 + 1.21482i −0.408766 + 0.0692208i
\(309\) 0.798166 0.259340i 0.0454061 0.0147533i
\(310\) −0.191012 + 0.223346i −0.0108488 + 0.0126852i
\(311\) −6.37447 + 5.73960i −0.361463 + 0.325463i −0.829773 0.558102i \(-0.811530\pi\)
0.468309 + 0.883565i \(0.344863\pi\)
\(312\) 0.0220986 0.0143510i 0.00125108 0.000812464i
\(313\) −1.27272 24.2850i −0.0719386 1.37267i −0.761369 0.648319i \(-0.775472\pi\)
0.689430 0.724352i \(-0.257861\pi\)
\(314\) −0.213759 + 0.657884i −0.0120631 + 0.0371265i
\(315\) 6.60116 16.3988i 0.371933 0.923970i
\(316\) 5.62268 + 17.3048i 0.316300 + 0.973472i
\(317\) 4.27191 1.63983i 0.239934 0.0921021i −0.235430 0.971891i \(-0.575650\pi\)
0.475364 + 0.879789i \(0.342316\pi\)
\(318\) −0.00314297 0.0117297i −0.000176249 0.000657771i
\(319\) 9.05278 0.951486i 0.506858 0.0532730i
\(320\) 15.1821 + 9.31747i 0.848706 + 0.520863i
\(321\) 0.693143 0.954029i 0.0386875 0.0532487i
\(322\) −0.472723 0.299868i −0.0263438 0.0167110i
\(323\) −0.266533 + 0.135805i −0.0148303 + 0.00755640i
\(324\) −15.3917 + 8.88642i −0.855097 + 0.493690i
\(325\) −4.72132 6.51650i −0.261892 0.361471i
\(326\) −0.0647591 + 0.112166i −0.00358667 + 0.00621230i
\(327\) 0.264070 + 0.171489i 0.0146031 + 0.00948338i
\(328\) −1.41939 + 0.224810i −0.0783729 + 0.0124130i
\(329\) 17.9988 + 5.63657i 0.992305 + 0.310754i
\(330\) 0.00543106 0.0113670i 0.000298970 0.000625735i
\(331\) 2.17087 + 0.966535i 0.119322 + 0.0531256i 0.465529 0.885032i \(-0.345864\pi\)
−0.346207 + 0.938158i \(0.612531\pi\)
\(332\) −8.19117 + 2.19482i −0.449549 + 0.120456i
\(333\) 14.5563 17.9756i 0.797681 0.985054i
\(334\) −0.332144 + 0.368884i −0.0181741 + 0.0201844i
\(335\) −12.0728 15.7552i −0.659609 0.860801i
\(336\) 0.566333 1.00554i 0.0308960 0.0548569i
\(337\) 19.0320 + 9.69727i 1.03674 + 0.528244i 0.887621 0.460575i \(-0.152357\pi\)
0.149117 + 0.988820i \(0.452357\pi\)
\(338\) −0.389500 + 0.0204128i −0.0211860 + 0.00111031i
\(339\) 0.742745 + 0.824902i 0.0403404 + 0.0448025i
\(340\) −17.1434 9.32286i −0.929733 0.505603i
\(341\) 3.58692 + 3.22968i 0.194243 + 0.174897i
\(342\) −0.00757520 0.00119979i −0.000409620 6.48774e-5i
\(343\) −18.1902 + 3.48115i −0.982176 + 0.187964i
\(344\) −0.421735 0.580469i −0.0227384 0.0312968i
\(345\) −1.27522 + 0.527221i −0.0686554 + 0.0283846i
\(346\) 0.154666 + 0.347385i 0.00831488 + 0.0186755i
\(347\) 9.40506 24.5010i 0.504890 1.31528i −0.410186 0.912002i \(-0.634536\pi\)
0.915076 0.403282i \(-0.132130\pi\)
\(348\) −0.786901 + 1.21172i −0.0421823 + 0.0649551i
\(349\) 16.7152 0.894745 0.447373 0.894348i \(-0.352360\pi\)
0.447373 + 0.894348i \(0.352360\pi\)
\(350\) 0.443716 + 0.220887i 0.0237176 + 0.0118069i
\(351\) 1.05315 0.0562129
\(352\) −0.336636 + 0.518374i −0.0179428 + 0.0276294i
\(353\) −10.3220 + 26.8897i −0.549383 + 1.43119i 0.324887 + 0.945753i \(0.394674\pi\)
−0.874270 + 0.485440i \(0.838660\pi\)
\(354\) 0.0171410 + 0.0384994i 0.000911035 + 0.00204622i
\(355\) −9.91717 11.6271i −0.526349 0.617104i
\(356\) −9.45769 13.0174i −0.501256 0.689920i
\(357\) −0.561125 + 1.13094i −0.0296979 + 0.0598558i
\(358\) −0.333964 0.0528947i −0.0176505 0.00279557i
\(359\) 3.33552 + 3.00332i 0.176042 + 0.158509i 0.752441 0.658659i \(-0.228876\pi\)
−0.576399 + 0.817168i \(0.695543\pi\)
\(360\) −0.430351 0.903793i −0.0226815 0.0476341i
\(361\) −12.7103 14.1163i −0.668965 0.742961i
\(362\) −0.593024 + 0.0310791i −0.0311686 + 0.00163348i
\(363\) 0.886694 + 0.451793i 0.0465394 + 0.0237130i
\(364\) 7.32428 4.33353i 0.383897 0.227138i
\(365\) 0.919227 + 0.272951i 0.0481145 + 0.0142869i
\(366\) 0.0207208 0.0230127i 0.00108309 0.00120289i
\(367\) 20.6467 25.4966i 1.07775 1.33091i 0.137472 0.990506i \(-0.456102\pi\)
0.940279 0.340406i \(-0.110564\pi\)
\(368\) 21.7730 5.83406i 1.13500 0.304121i
\(369\) −26.1838 11.6578i −1.36307 0.606880i
\(370\) 0.470139 + 0.446738i 0.0244413 + 0.0232248i
\(371\) −1.71326 7.65757i −0.0889480 0.397561i
\(372\) −0.756679 + 0.119846i −0.0392320 + 0.00621374i
\(373\) −31.6429 20.5491i −1.63841 1.06399i −0.935869 0.352349i \(-0.885383\pi\)
−0.702539 0.711645i \(-0.747950\pi\)
\(374\) 0.112562 0.194964i 0.00582046 0.0100813i
\(375\) 1.07487 0.580840i 0.0555061 0.0299944i
\(376\) 0.924931 0.534009i 0.0476997 0.0275394i
\(377\) −9.48641 + 4.83357i −0.488575 + 0.248941i
\(378\) −0.0574804 + 0.0300645i −0.00295647 + 0.00154635i
\(379\) −2.24596 + 3.09129i −0.115367 + 0.158789i −0.862795 0.505553i \(-0.831288\pi\)
0.747428 + 0.664343i \(0.231288\pi\)
\(380\) −0.0716667 + 0.297643i −0.00367642 + 0.0152688i
\(381\) −2.29986 + 0.241725i −0.117825 + 0.0123840i
\(382\) −0.217089 0.810186i −0.0111072 0.0414527i
\(383\) −15.0198 + 5.76557i −0.767477 + 0.294607i −0.710433 0.703765i \(-0.751501\pi\)
−0.0570442 + 0.998372i \(0.518168\pi\)
\(384\) −0.0404172 0.124391i −0.00206253 0.00634782i
\(385\) 3.81252 7.19250i 0.194304 0.366563i
\(386\) −0.141016 + 0.434001i −0.00717751 + 0.0220901i
\(387\) −0.748930 14.2904i −0.0380702 0.726423i
\(388\) −27.8059 + 18.0573i −1.41163 + 0.916723i
\(389\) −11.4454 + 10.3055i −0.580306 + 0.522510i −0.906174 0.422905i \(-0.861010\pi\)
0.325867 + 0.945415i \(0.394344\pi\)
\(390\) −0.00116584 + 0.0146888i −5.90346e−5 + 0.000743796i
\(391\) −23.4521 + 7.62006i −1.18603 + 0.385363i
\(392\) −0.552286 + 0.891534i −0.0278947 + 0.0450293i
\(393\) −0.134555 0.134555i −0.00678742 0.00678742i
\(394\) 0.203369 0.456774i 0.0102456 0.0230119i
\(395\) −19.1851 6.80814i −0.965309 0.342555i
\(396\) −7.50689 + 3.34228i −0.377235 + 0.167956i
\(397\) −9.10252 + 7.37108i −0.456842 + 0.369944i −0.829944 0.557847i \(-0.811628\pi\)
0.373102 + 0.927791i \(0.378294\pi\)
\(398\) 0.311956 + 0.612248i 0.0156369 + 0.0306892i
\(399\) 0.0194165 + 0.00391105i 0.000972040 + 0.000195797i
\(400\) −18.6418 + 7.12754i −0.932089 + 0.356377i
\(401\) 6.37349 + 11.0392i 0.318277 + 0.551271i 0.980129 0.198363i \(-0.0635626\pi\)
−0.661852 + 0.749635i \(0.730229\pi\)
\(402\) −0.00190217 + 0.0362955i −9.48715e−5 + 0.00181026i
\(403\) −5.27052 2.02316i −0.262543 0.100781i
\(404\) 0.823859 7.83849i 0.0409885 0.389979i
\(405\) 2.60854 19.7128i 0.129619 0.979535i
\(406\) 0.379779 0.534626i 0.0188481 0.0265330i
\(407\) 7.53167 7.53167i 0.373331 0.373331i
\(408\) 0.0256200 + 0.0667423i 0.00126838 + 0.00330424i
\(409\) 9.90022 + 2.10436i 0.489534 + 0.104054i 0.446064 0.895001i \(-0.352825\pi\)
0.0434702 + 0.999055i \(0.486159\pi\)
\(410\) 0.383931 0.705996i 0.0189610 0.0348667i
\(411\) −0.144716 0.680835i −0.00713831 0.0335831i
\(412\) 6.96826 13.6760i 0.343302 0.673768i
\(413\) 10.0297 + 25.3175i 0.493529 + 1.24579i
\(414\) −0.601294 0.195372i −0.0295520 0.00960203i
\(415\) 3.63661 8.76310i 0.178514 0.430164i
\(416\) 0.150309 0.707147i 0.00736949 0.0346707i
\(417\) 1.82959 + 1.48157i 0.0895953 + 0.0725528i
\(418\) −0.00341149 0.000914107i −0.000166862 4.47104e-5i
\(419\) 2.20460 1.60174i 0.107702 0.0782499i −0.532631 0.846348i \(-0.678797\pi\)
0.640333 + 0.768098i \(0.278797\pi\)
\(420\) 0.506382 + 1.18873i 0.0247089 + 0.0580041i
\(421\) 27.0480 + 19.6515i 1.31824 + 0.957756i 0.999952 + 0.00976112i \(0.00310711\pi\)
0.318286 + 0.947995i \(0.396893\pi\)
\(422\) 0.224812 + 0.277620i 0.0109437 + 0.0135143i
\(423\) 21.2717 + 1.11480i 1.03427 + 0.0542037i
\(424\) −0.384812 0.222171i −0.0186881 0.0107896i
\(425\) 19.9573 8.85386i 0.968072 0.429475i
\(426\) 0.0279829i 0.00135577i
\(427\) 13.9974 14.2994i 0.677384 0.691996i
\(428\) −3.37386 21.3017i −0.163082 1.02966i
\(429\) 0.240676 + 0.0252961i 0.0116200 + 0.00122131i
\(430\) 0.401090 + 0.0107692i 0.0193423 + 0.000519338i
\(431\) 3.25558 + 30.9747i 0.156816 + 1.49200i 0.736099 + 0.676874i \(0.236666\pi\)
−0.579283 + 0.815126i \(0.696668\pi\)
\(432\) 0.676023 2.52295i 0.0325252 0.121386i
\(433\) 0.835932 5.27787i 0.0401723 0.253638i −0.959427 0.281959i \(-0.909016\pi\)
0.999599 + 0.0283205i \(0.00901590\pi\)
\(434\) 0.345419 0.0400356i 0.0165806 0.00192177i
\(435\) −0.538582 1.52412i −0.0258231 0.0730761i
\(436\) 5.63278 1.19729i 0.269761 0.0573396i
\(437\) 0.210699 + 0.324448i 0.0100791 + 0.0155204i
\(438\) −0.000956293 0.00147256i −4.56935e−5 7.03617e-5i
\(439\) 26.1495 5.55824i 1.24805 0.265280i 0.463917 0.885878i \(-0.346443\pi\)
0.784129 + 0.620598i \(0.213110\pi\)
\(440\) −0.153586 0.434629i −0.00732191 0.0207201i
\(441\) −18.9222 + 8.91326i −0.901057 + 0.424441i
\(442\) −0.0411916 + 0.260074i −0.00195929 + 0.0123704i
\(443\) −7.64058 + 28.5150i −0.363015 + 1.35479i 0.507077 + 0.861901i \(0.330726\pi\)
−0.870092 + 0.492889i \(0.835941\pi\)
\(444\) 0.176720 + 1.68137i 0.00838674 + 0.0797945i
\(445\) 17.9957 + 0.483183i 0.853080 + 0.0229051i
\(446\) 0.936448 + 0.0984247i 0.0443421 + 0.00466054i
\(447\) −0.335564 2.11867i −0.0158717 0.100210i
\(448\) −5.67202 20.2994i −0.267978 0.959055i
\(449\) 16.6858i 0.787450i −0.919228 0.393725i \(-0.871186\pi\)
0.919228 0.393725i \(-0.128814\pi\)
\(450\) 0.547397 + 0.117112i 0.0258045 + 0.00552072i
\(451\) −11.4304 6.59932i −0.538235 0.310750i
\(452\) 20.2733 + 1.06248i 0.953575 + 0.0499747i
\(453\) 0.627549 + 0.774959i 0.0294848 + 0.0364107i
\(454\) 0.375079 + 0.272511i 0.0176033 + 0.0127896i
\(455\) −1.14828 + 9.45195i −0.0538321 + 0.443114i
\(456\) 0.000907371 0 0.000659243i 4.24915e−5 0 3.08719e-5i
\(457\) 10.2464 + 2.74552i 0.479308 + 0.128430i 0.490380 0.871509i \(-0.336858\pi\)
−0.0110724 + 0.999939i \(0.503525\pi\)
\(458\) −0.430047 0.348245i −0.0200948 0.0162724i
\(459\) −0.594080 + 2.79493i −0.0277293 + 0.130456i
\(460\) −9.67330 + 23.3097i −0.451020 + 1.08682i
\(461\) −19.5350 6.34729i −0.909833 0.295623i −0.183544 0.983012i \(-0.558757\pi\)
−0.726290 + 0.687389i \(0.758757\pi\)
\(462\) −0.0138581 + 0.00549000i −0.000644739 + 0.000255418i
\(463\) −1.32037 + 2.59137i −0.0613628 + 0.120431i −0.919651 0.392737i \(-0.871528\pi\)
0.858288 + 0.513168i \(0.171528\pi\)
\(464\) 5.49004 + 25.8286i 0.254869 + 1.19906i
\(465\) 0.409492 0.752998i 0.0189897 0.0349195i
\(466\) −0.0444770 0.00945387i −0.00206036 0.000437942i
\(467\) −2.62833 6.84704i −0.121625 0.316843i 0.859228 0.511592i \(-0.170944\pi\)
−0.980853 + 0.194749i \(0.937611\pi\)
\(468\) 6.79623 6.79623i 0.314156 0.314156i
\(469\) −2.20556 + 23.3818i −0.101843 + 1.07967i
\(470\) −0.0783497 + 0.592089i −0.00361400 + 0.0273110i
\(471\) 0.210887 2.00646i 0.00971716 0.0924526i
\(472\) 1.43962 + 0.552619i 0.0662639 + 0.0254363i
\(473\) 0.344880 6.58070i 0.0158576 0.302581i
\(474\) 0.0186381 + 0.0322821i 0.000856077 + 0.00148277i
\(475\) −0.215205 0.266478i −0.00987429 0.0122269i
\(476\) 7.36903 + 21.8823i 0.337759 + 1.00297i
\(477\) −4.02332 7.89620i −0.184215 0.361542i
\(478\) −0.749338 + 0.606802i −0.0342739 + 0.0277545i
\(479\) 5.39262 2.40095i 0.246395 0.109702i −0.279824 0.960051i \(-0.590276\pi\)
0.526219 + 0.850349i \(0.323609\pi\)
\(480\) 0.103443 + 0.0367083i 0.00472150 + 0.00167550i
\(481\) −5.06726 + 11.3812i −0.231047 + 0.518940i
\(482\) −0.362945 0.362945i −0.0165317 0.0165317i
\(483\) 1.53044 + 0.568820i 0.0696373 + 0.0258822i
\(484\) 17.3097 5.62427i 0.786805 0.255649i
\(485\) 2.93491 36.9778i 0.133267 1.67908i
\(486\) −0.0817193 + 0.0735804i −0.00370686 + 0.00333767i
\(487\) −14.5855 + 9.47193i −0.660932 + 0.429214i −0.831041 0.556211i \(-0.812255\pi\)
0.170109 + 0.985425i \(0.445588\pi\)
\(488\) −0.0593018 1.13155i −0.00268447 0.0512227i
\(489\) 0.116731 0.359261i 0.00527875 0.0162463i
\(490\) −0.207155 0.548664i −0.00935831 0.0247861i
\(491\) −1.67096 5.14268i −0.0754092 0.232086i 0.906246 0.422751i \(-0.138936\pi\)
−0.981655 + 0.190665i \(0.938936\pi\)
\(492\) 1.95580 0.750762i 0.0881743 0.0338470i
\(493\) −7.47643 27.9024i −0.336721 1.25666i
\(494\) 0.00410836 0.000431806i 0.000184844 1.94279e-5i
\(495\) 2.15215 8.93824i 0.0967321 0.401744i
\(496\) −8.22993 + 11.3275i −0.369535 + 0.508621i
\(497\) −0.753618 + 18.0662i −0.0338044 + 0.810381i
\(498\) −0.0154794 + 0.00788715i −0.000693648 + 0.000353432i
\(499\) 2.08554 1.20409i 0.0933616 0.0539023i −0.452592 0.891718i \(-0.649501\pi\)
0.545954 + 0.837815i \(0.316167\pi\)
\(500\) 6.38895 21.4121i 0.285723 0.957580i
\(501\) 0.723867 1.25377i 0.0323400 0.0560145i
\(502\) 0.772438 + 0.501627i 0.0344756 + 0.0223887i
\(503\) −24.0156 + 3.80370i −1.07080 + 0.169599i −0.666859 0.745184i \(-0.732362\pi\)
−0.403946 + 0.914783i \(0.632362\pi\)
\(504\) −0.353968 + 1.13030i −0.0157670 + 0.0503474i
\(505\) 6.39244 + 6.07426i 0.284460 + 0.270301i
\(506\) −0.265973 0.118419i −0.0118239 0.00526436i
\(507\) 1.09880 0.294423i 0.0487995 0.0130758i
\(508\) −26.6164 + 32.8686i −1.18091 + 1.45831i
\(509\) −12.1317 + 13.4736i −0.537726 + 0.597205i −0.949378 0.314136i \(-0.898285\pi\)
0.411652 + 0.911341i \(0.364952\pi\)
\(510\) −0.0383247 0.0113800i −0.00169705 0.000503913i
\(511\) −0.577742 0.976467i −0.0255578 0.0431963i
\(512\) −2.66325 1.35700i −0.117700 0.0599713i
\(513\) 0.0447660 0.00234609i 0.00197647 0.000103582i
\(514\) 0.513655 + 0.570471i 0.0226563 + 0.0251624i
\(515\) 7.38274 + 15.5047i 0.325322 + 0.683219i
\(516\) 0.777293 + 0.699878i 0.0342184 + 0.0308104i
\(517\) 9.68824 + 1.53447i 0.426088 + 0.0674858i
\(518\) −0.0483347 0.765840i −0.00212371 0.0336491i
\(519\) −0.651886 0.897245i −0.0286146 0.0393847i
\(520\) 0.349889 + 0.410218i 0.0153436 + 0.0179892i
\(521\) 6.29845 + 14.1465i 0.275940 + 0.619772i 0.997351 0.0727354i \(-0.0231729\pi\)
−0.721411 + 0.692507i \(0.756506\pi\)
\(522\) 0.265419 0.691440i 0.0116171 0.0302635i
\(523\) −10.7494 + 16.5526i −0.470037 + 0.723794i −0.991589 0.129426i \(-0.958687\pi\)
0.521552 + 0.853220i \(0.325353\pi\)
\(524\) −3.48022 −0.152034
\(525\) −1.39979 0.361091i −0.0610920 0.0157593i
\(526\) −0.477293 −0.0208110
\(527\) 8.34233 12.8461i 0.363398 0.559583i
\(528\) 0.215092 0.560333i 0.00936067 0.0243854i
\(529\) 3.61606 + 8.12180i 0.157220 + 0.353122i
\(530\) 0.229631 0.0949376i 0.00997451 0.00412383i
\(531\) 18.0774 + 24.8813i 0.784490 + 1.07976i
\(532\) 0.301679 0.200521i 0.0130794 0.00869368i
\(533\) 15.2476 + 2.41499i 0.660448 + 0.104605i
\(534\) −0.0244969 0.0220571i −0.00106008 0.000954503i
\(535\) 21.1981 + 11.5278i 0.916473 + 0.498392i
\(536\) 0.889882 + 0.988314i 0.0384371 + 0.0426887i
\(537\) 0.984820 0.0516122i 0.0424981 0.00222723i
\(538\) 0.663472 + 0.338056i 0.0286043 + 0.0145746i
\(539\) −9.09492 + 3.17122i −0.391746 + 0.136594i
\(540\) 1.77870 + 2.32123i 0.0765429 + 0.0998898i
\(541\) −18.2785 + 20.3003i −0.785853 + 0.872778i −0.994449 0.105224i \(-0.966444\pi\)
0.208596 + 0.978002i \(0.433111\pi\)
\(542\) 0.190366 0.235082i 0.00817691 0.0100976i
\(543\) 1.67295 0.448267i 0.0717933 0.0192370i
\(544\) 1.79189 + 0.797803i 0.0768269 + 0.0342055i
\(545\) −2.77758 + 5.81339i −0.118978 + 0.249018i
\(546\) 0.0128313 0.0118037i 0.000549128 0.000505150i
\(547\) 10.0134 1.58597i 0.428143 0.0678111i 0.0613554 0.998116i \(-0.480458\pi\)
0.366787 + 0.930305i \(0.380458\pi\)
\(548\) −10.6763 6.93325i −0.456068 0.296174i
\(549\) 11.2995 19.5712i 0.482249 0.835280i
\(550\) 0.245056 + 0.0799833i 0.0104492 + 0.00341050i
\(551\) −0.392470 + 0.226593i −0.0167198 + 0.00965317i
\(552\) 0.0823786 0.0419740i 0.00350627 0.00178653i
\(553\) 11.1637 + 21.3439i 0.474728 + 0.907634i
\(554\) −0.0891673 + 0.122728i −0.00378836 + 0.00521423i
\(555\) −1.61213 0.989384i −0.0684309 0.0419970i
\(556\) 42.8209 4.50066i 1.81601 0.190870i
\(557\) 0.0898136 + 0.335189i 0.00380552 + 0.0142024i 0.967802 0.251711i \(-0.0809932\pi\)
−0.963997 + 0.265913i \(0.914327\pi\)
\(558\) 0.366636 0.140738i 0.0155209 0.00595793i
\(559\) 2.38179 + 7.33039i 0.100739 + 0.310042i
\(560\) 21.9063 + 8.81812i 0.925709 + 0.372634i
\(561\) −0.202898 + 0.624456i −0.00856637 + 0.0263646i
\(562\) −0.00251713 0.0480297i −0.000106179 0.00202601i
\(563\) 12.6921 8.24238i 0.534910 0.347375i −0.248747 0.968569i \(-0.580019\pi\)
0.783657 + 0.621194i \(0.213352\pi\)
\(564\) −1.15702 + 1.04179i −0.0487195 + 0.0438672i
\(565\) −14.7625 + 17.2615i −0.621065 + 0.726197i
\(566\) −0.0111585 + 0.00362563i −0.000469029 + 0.000152397i
\(567\) −18.1255 + 15.0008i −0.761200 + 0.629973i
\(568\) 0.724020 + 0.724020i 0.0303792 + 0.0303792i
\(569\) 3.67748 8.25975i 0.154168 0.346267i −0.819905 0.572499i \(-0.805974\pi\)
0.974073 + 0.226232i \(0.0726407\pi\)
\(570\) −1.68341e−5 0 0.000626972i −7.05104e−7 0 2.62610e-5i
\(571\) 16.8896 7.51972i 0.706806 0.314690i −0.0216664 0.999765i \(-0.506897\pi\)
0.728473 + 0.685075i \(0.240231\pi\)
\(572\) 3.43963 2.78536i 0.143818 0.116462i
\(573\) 1.11061 + 2.17969i 0.0463963 + 0.0910579i
\(574\) −0.901151 + 0.303469i −0.0376133 + 0.0126666i
\(575\) −14.0854 24.4716i −0.587403 1.02054i
\(576\) −11.9019 20.6147i −0.495914 0.858947i
\(577\) 1.38404 26.4090i 0.0576183 1.09942i −0.804905 0.593404i \(-0.797784\pi\)
0.862523 0.506018i \(-0.168883\pi\)
\(578\) −0.0723172 0.0277600i −0.00300800 0.00115466i
\(579\) 0.139121 1.32365i 0.00578166 0.0550088i
\(580\) −26.6755 12.7453i −1.10764 0.529220i
\(581\) −10.2062 + 4.67520i −0.423424 + 0.193960i
\(582\) −0.0480288 + 0.0480288i −0.00199086 + 0.00199086i
\(583\) −1.46249 3.80992i −0.0605702 0.157791i
\(584\) −0.0628434 0.0133578i −0.00260048 0.000552749i
\(585\) 1.39652 + 10.6623i 0.0577389 + 0.440830i
\(586\) −0.153612 0.722688i −0.00634566 0.0298540i
\(587\) −8.79450 + 17.2602i −0.362988 + 0.712404i −0.998202 0.0599321i \(-0.980912\pi\)
0.635215 + 0.772336i \(0.280912\pi\)
\(588\) 0.517301 1.43865i 0.0213331 0.0593288i
\(589\) −0.228540 0.0742572i −0.00941683 0.00305971i
\(590\) −0.735557 + 0.450079i −0.0302824 + 0.0185294i
\(591\) −0.303196 + 1.42642i −0.0124718 + 0.0586752i
\(592\) 24.0125 + 19.4450i 0.986909 + 0.799183i
\(593\) 39.8994 + 10.6910i 1.63847 + 0.439027i 0.956353 0.292215i \(-0.0943924\pi\)
0.682118 + 0.731242i \(0.261059\pi\)
\(594\) −0.0272933 + 0.0198297i −0.00111986 + 0.000813623i
\(595\) −24.4366 8.37924i −1.00180 0.343515i
\(596\) −31.7389 23.0597i −1.30008 0.944560i
\(597\) −1.26122 1.55748i −0.0516183 0.0637433i
\(598\) 0.340068 + 0.0178222i 0.0139064 + 0.000728803i
\(599\) 2.44181 + 1.40978i 0.0997698 + 0.0576021i 0.549055 0.835786i \(-0.314988\pi\)
−0.449285 + 0.893389i \(0.648321\pi\)
\(600\) −0.0687130 + 0.0444932i −0.00280520 + 0.00181643i
\(601\) 33.6982i 1.37458i −0.726384 0.687289i \(-0.758801\pi\)
0.726384 0.687289i \(-0.241199\pi\)
\(602\) −0.339260 0.332096i −0.0138272 0.0135352i
\(603\) 4.14929 + 26.1976i 0.168972 + 1.06685i
\(604\) 18.1377 + 1.90634i 0.738011 + 0.0775680i
\(605\) −6.81007 + 19.1906i −0.276869 + 0.780208i
\(606\) −0.00168781 0.0160584i −6.85626e−5 0.000652330i
\(607\) 8.74821 32.6488i 0.355079 1.32517i −0.525306 0.850913i \(-0.676049\pi\)
0.880385 0.474259i \(-0.157284\pi\)
\(608\) 0.00481385 0.0303934i 0.000195227 0.00123262i
\(609\) −0.759258 + 1.75549i −0.0307667 + 0.0711362i
\(610\) 0.521964 + 0.359246i 0.0211337 + 0.0145455i
\(611\) −11.2223 + 2.38538i −0.454007 + 0.0965021i
\(612\) 14.2026 + 21.8701i 0.574107 + 0.884048i
\(613\) −3.21949 4.95757i −0.130034 0.200235i 0.767656 0.640862i \(-0.221423\pi\)
−0.897690 + 0.440627i \(0.854756\pi\)
\(614\) 0.764194 0.162434i 0.0308404 0.00655532i
\(615\) −0.667185 + 2.24690i −0.0269035 + 0.0906039i
\(616\) −0.216515 + 0.500608i −0.00872363 + 0.0201701i
\(617\) −0.740149 + 4.67312i −0.0297973 + 0.188133i −0.998097 0.0616571i \(-0.980361\pi\)
0.968300 + 0.249790i \(0.0803615\pi\)
\(618\) 0.00813851 0.0303733i 0.000327379 0.00122180i
\(619\) −0.113041 1.07551i −0.00454350 0.0432285i 0.992015 0.126118i \(-0.0402518\pi\)
−0.996559 + 0.0828895i \(0.973585\pi\)
\(620\) −4.44233 15.0337i −0.178408 0.603767i
\(621\) 3.67506 + 0.386265i 0.147475 + 0.0155003i
\(622\) 0.0502765 + 0.317433i 0.00201590 + 0.0127279i
\(623\) −15.2216 14.9002i −0.609840 0.596963i
\(624\) 0.702018i 0.0281032i
\(625\) 14.6409 + 20.2644i 0.585636 + 0.810574i
\(626\) −0.789090 0.455581i −0.0315384 0.0182087i
\(627\) 0.0102867 0.000539105i 0.000410813 2.15298e-5i
\(628\) −23.2208 28.6753i −0.926612 1.14427i
\(629\) −27.3460 19.8680i −1.09036 0.792191i
\(630\) −0.380600 0.542075i −0.0151635 0.0215968i
\(631\) −17.6839 + 12.8481i −0.703983 + 0.511474i −0.881227 0.472693i \(-0.843282\pi\)
0.177244 + 0.984167i \(0.443282\pi\)
\(632\) 1.31749 + 0.353022i 0.0524071 + 0.0140424i
\(633\) −0.809698 0.655680i −0.0321826 0.0260610i
\(634\) 0.0356460 0.167701i 0.00141568 0.00666026i
\(635\) −11.0159 46.0192i −0.437154 1.82621i
\(636\) 0.616047 + 0.200166i 0.0244279 + 0.00793709i
\(637\) 8.60199 7.27508i 0.340823 0.288249i
\(638\) 0.154838 0.303886i 0.00613008 0.0120310i
\(639\) 4.24584 + 19.9751i 0.167963 + 0.790204i
\(640\) 2.41635 1.15057i 0.0955146 0.0454804i
\(641\) 21.5459 + 4.57972i 0.851011 + 0.180888i 0.612715 0.790304i \(-0.290078\pi\)
0.238297 + 0.971192i \(0.423411\pi\)
\(642\) −0.0158342 0.0412494i −0.000624924 0.00162798i
\(643\) −7.57933 + 7.57933i −0.298899 + 0.298899i −0.840583 0.541683i \(-0.817787\pi\)
0.541683 + 0.840583i \(0.317787\pi\)
\(644\) 27.1482 12.4359i 1.06979 0.490044i
\(645\) −1.15078 + 0.212494i −0.0453117 + 0.00836694i
\(646\) −0.00117156 + 0.0111467i −4.60945e−5 + 0.000438560i
\(647\) −32.4289 12.4483i −1.27491 0.489393i −0.375633 0.926769i \(-0.622575\pi\)
−0.899279 + 0.437376i \(0.855908\pi\)
\(648\) −0.0697271 + 1.33047i −0.00273914 + 0.0522659i
\(649\) 7.08130 + 12.2652i 0.277965 + 0.481450i
\(650\) −0.301117 + 0.0153802i −0.0118108 + 0.000603262i
\(651\) −0.961146 + 0.323673i −0.0376703 + 0.0126857i
\(652\) −3.13647 6.15566i −0.122834 0.241074i
\(653\) 12.9000 10.4462i 0.504817 0.408792i −0.342794 0.939410i \(-0.611373\pi\)
0.847611 + 0.530618i \(0.178040\pi\)
\(654\) 0.0107775 0.00479847i 0.000421435 0.000187635i
\(655\) 2.37241 3.08753i 0.0926975 0.120640i
\(656\) 15.5730 34.9775i 0.608023 1.36564i
\(657\) −0.906067 0.906067i −0.0353490 0.0353490i
\(658\) 0.544414 0.450560i 0.0212235 0.0175647i
\(659\) −23.7349 + 7.71192i −0.924579 + 0.300414i −0.732344 0.680935i \(-0.761574\pi\)
−0.192235 + 0.981349i \(0.561574\pi\)
\(660\) 0.350731 + 0.573195i 0.0136522 + 0.0223116i
\(661\) 2.27939 2.05237i 0.0886581 0.0798281i −0.623610 0.781736i \(-0.714335\pi\)
0.712268 + 0.701907i \(0.247668\pi\)
\(662\) 0.0746719 0.0484925i 0.00290221 0.00188472i
\(663\) −0.0401929 0.766926i −0.00156096 0.0297849i
\(664\) −0.196439 + 0.604578i −0.00762333 + 0.0234622i
\(665\) −0.0277536 + 0.404331i −0.00107624 + 0.0156793i
\(666\) −0.267808 0.824229i −0.0103774 0.0319382i
\(667\) −34.8766 + 13.3879i −1.35043 + 0.518380i
\(668\) −6.85292 25.5754i −0.265147 0.989543i
\(669\) −2.73122 + 0.287063i −0.105595 + 0.0110985i
\(670\) −0.741448 + 0.0578583i −0.0286446 + 0.00223526i
\(671\) 6.11692 8.41922i 0.236141 0.325020i
\(672\) −0.0601925 0.115082i −0.00232198 0.00443939i
\(673\) 8.48294 4.32228i 0.326993 0.166611i −0.282785 0.959183i \(-0.591258\pi\)
0.609779 + 0.792572i \(0.291258\pi\)
\(674\) 0.693099 0.400161i 0.0266972 0.0154136i
\(675\) −3.27182 0.00434165i −0.125933 0.000167110i
\(676\) 10.4025 18.0176i 0.400095 0.692985i
\(677\) 8.74643 + 5.68000i 0.336153 + 0.218300i 0.701666 0.712506i \(-0.252440\pi\)
−0.365513 + 0.930806i \(0.619107\pi\)
\(678\) 0.0410781 0.00650613i 0.00157760 0.000249867i
\(679\) −32.3017 + 29.7147i −1.23963 + 1.14035i
\(680\) −1.28604 + 0.697159i −0.0493174 + 0.0267348i
\(681\) −1.23529 0.549985i −0.0473363 0.0210755i
\(682\) 0.174684 0.0468065i 0.00668901 0.00179231i
\(683\) 6.01135 7.42340i 0.230018 0.284048i −0.649049 0.760746i \(-0.724833\pi\)
0.879067 + 0.476698i \(0.158166\pi\)
\(684\) 0.273746 0.304026i 0.0104670 0.0116247i
\(685\) 13.4288 4.74536i 0.513087 0.181311i
\(686\) −0.261809 + 0.642635i −0.00999593 + 0.0245359i
\(687\) 1.43803 + 0.732711i 0.0548641 + 0.0279546i
\(688\) 19.0898 1.00045i 0.727791 0.0381419i
\(689\) 3.19395 + 3.54724i 0.121680 + 0.135139i
\(690\) −0.00945575 + 0.0508304i −0.000359974 + 0.00193508i
\(691\) −17.3929 15.6606i −0.661655 0.595757i 0.268342 0.963324i \(-0.413524\pi\)
−0.929997 + 0.367567i \(0.880191\pi\)
\(692\) −20.0338 3.17305i −0.761572 0.120621i
\(693\) −9.05942 + 6.02165i −0.344139 + 0.228744i
\(694\) −0.577980 0.795521i −0.0219398 0.0301976i
\(695\) −25.1974 + 41.0573i −0.955793 + 1.55739i
\(696\) 0.0440524 + 0.0989432i 0.00166980 + 0.00375043i
\(697\) −15.0103 + 39.1031i −0.568555 + 1.48114i
\(698\) 0.341101 0.525249i 0.0129108 0.0198810i
\(699\) 0.132618 0.00501608
\(700\) −22.7723 + 13.4328i −0.860712 + 0.507713i
\(701\) 24.9909 0.943892 0.471946 0.881628i \(-0.343552\pi\)
0.471946 + 0.881628i \(0.343552\pi\)
\(702\) 0.0214912 0.0330935i 0.000811131 0.00124903i
\(703\) −0.190039 + 0.495069i −0.00716746 + 0.0186719i
\(704\) −4.45848 10.0139i −0.168035 0.377414i
\(705\) −0.135517 1.73664i −0.00510388 0.0654058i
\(706\) 0.634328 + 0.873078i 0.0238733 + 0.0328587i
\(707\) −0.657204 10.4131i −0.0247167 0.391624i
\(708\) −2.22027 0.351657i −0.0834430 0.0132161i
\(709\) −36.0921 32.4975i −1.35547 1.22047i −0.952234 0.305371i \(-0.901220\pi\)
−0.403233 0.915097i \(-0.632114\pi\)
\(710\) −0.567740 + 0.0743612i −0.0213069 + 0.00279073i
\(711\) 18.2027 + 20.2161i 0.682654 + 0.758164i
\(712\) −1.20452 + 0.0631263i −0.0451414 + 0.00236576i
\(713\) −17.6500 8.99310i −0.660996 0.336794i
\(714\) 0.0240874 + 0.0407111i 0.000901447 + 0.00152358i
\(715\) 0.126340 + 4.95026i 0.00472487 + 0.185129i
\(716\) 12.0685 13.4034i 0.451022 0.500910i
\(717\) 1.76978 2.18550i 0.0660937 0.0816189i
\(718\) 0.162441 0.0435259i 0.00606224 0.00162437i
\(719\) −5.43700 2.42071i −0.202766 0.0902773i 0.302841 0.953041i \(-0.402065\pi\)
−0.505607 + 0.862764i \(0.668731\pi\)
\(720\) 26.4393 + 3.49864i 0.985333 + 0.130387i
\(721\) 6.07237 19.3904i 0.226147 0.722136i
\(722\) −0.702956 + 0.111337i −0.0261613 + 0.00414354i
\(723\) 1.25551 + 0.815336i 0.0466928 + 0.0303227i
\(724\) 15.8380 27.4323i 0.588615 1.01951i
\(725\) 29.4915 14.9774i 1.09529 0.556246i
\(726\) 0.0322913 0.0186434i 0.00119844 0.000691921i
\(727\) −9.26956 + 4.72308i −0.343789 + 0.175169i −0.617356 0.786684i \(-0.711796\pi\)
0.273567 + 0.961853i \(0.411796\pi\)
\(728\) 0.0265885 0.637396i 0.000985434 0.0236235i
\(729\) −15.4924 + 21.3235i −0.573793 + 0.789759i
\(730\) 0.0273353 0.0233152i 0.00101173 0.000862935i
\(731\) −20.7975 + 2.18591i −0.769225 + 0.0808488i
\(732\) 0.427518 + 1.59552i 0.0158015 + 0.0589720i
\(733\) 35.7938 13.7400i 1.32208 0.507497i 0.407978 0.912992i \(-0.366234\pi\)
0.914097 + 0.405494i \(0.132901\pi\)
\(734\) −0.379860 1.16909i −0.0140209 0.0431519i
\(735\) 0.923684 + 1.43963i 0.0340706 + 0.0531017i
\(736\) 0.783879 2.41253i 0.0288942 0.0889271i
\(737\) 0.639246 + 12.1975i 0.0235469 + 0.449302i
\(738\) −0.900650 + 0.584889i −0.0331534 + 0.0215301i
\(739\) 21.5518 19.4054i 0.792797 0.713838i −0.169592 0.985514i \(-0.554245\pi\)
0.962389 + 0.271677i \(0.0875782\pi\)
\(740\) −33.6435 + 8.05349i −1.23676 + 0.296052i
\(741\) −0.0114586 + 0.00372314i −0.000420944 + 0.000136773i
\(742\) −0.275589 0.102428i −0.0101172 0.00376027i
\(743\) −26.0302 26.0302i −0.954956 0.954956i 0.0440723 0.999028i \(-0.485967\pi\)
−0.999028 + 0.0440723i \(0.985967\pi\)
\(744\) −0.0233587 + 0.0524646i −0.000856373 + 0.00192345i
\(745\) 42.0936 12.4383i 1.54219 0.455705i
\(746\) −1.29145 + 0.574990i −0.0472833 + 0.0210519i
\(747\) −9.85301 + 7.97881i −0.360503 + 0.291929i
\(748\) 5.45172 + 10.6996i 0.199335 + 0.391216i
\(749\) −9.11191 27.0578i −0.332942 0.988669i
\(750\) 0.00368248 0.0456290i 0.000134465 0.00166614i
\(751\) 3.63171 + 6.29030i 0.132523 + 0.229536i 0.924648 0.380822i \(-0.124359\pi\)
−0.792126 + 0.610358i \(0.791026\pi\)
\(752\) −1.48920 + 28.4157i −0.0543057 + 1.03621i
\(753\) −2.50782 0.962662i −0.0913901 0.0350814i
\(754\) −0.0416982 + 0.396732i −0.00151856 + 0.0144481i
\(755\) −14.0554 + 14.7916i −0.511527 + 0.538322i
\(756\) 0.324947 3.44485i 0.0118182 0.125288i
\(757\) −19.0809 + 19.0809i −0.693507 + 0.693507i −0.963002 0.269495i \(-0.913143\pi\)
0.269495 + 0.963002i \(0.413143\pi\)
\(758\) 0.0513066 + 0.133658i 0.00186354 + 0.00485469i
\(759\) 0.830586 + 0.176546i 0.0301483 + 0.00640823i
\(760\) 0.0157865 + 0.0166576i 0.000572637 + 0.000604236i
\(761\) −1.15394 5.42884i −0.0418302 0.196795i 0.952271 0.305255i \(-0.0987416\pi\)
−0.994101 + 0.108459i \(0.965408\pi\)
\(762\) −0.0393365 + 0.0772023i −0.00142501 + 0.00279674i
\(763\) 7.08741 2.80772i 0.256581 0.101646i
\(764\) 42.5511 + 13.8257i 1.53944 + 0.500196i