Properties

Label 175.2.x.a.17.9
Level $175$
Weight $2$
Character 175.17
Analytic conductor $1.397$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(3,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([21, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.x (of order \(60\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 17.9
Character \(\chi\) \(=\) 175.17
Dual form 175.2.x.a.103.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0374168 + 0.00196093i) q^{2} +(0.0687711 - 0.0849253i) q^{3} +(-1.98765 + 0.208910i) q^{4} +(-0.633655 + 2.14441i) q^{5} +(-0.00240666 + 0.00331248i) q^{6} +(-2.20341 + 1.46457i) q^{7} +(0.147975 - 0.0234370i) q^{8} +(0.621252 + 2.92276i) q^{9} +O(q^{10})\) \(q+(-0.0374168 + 0.00196093i) q^{2} +(0.0687711 - 0.0849253i) q^{3} +(-1.98765 + 0.208910i) q^{4} +(-0.633655 + 2.14441i) q^{5} +(-0.00240666 + 0.00331248i) q^{6} +(-2.20341 + 1.46457i) q^{7} +(0.147975 - 0.0234370i) q^{8} +(0.621252 + 2.92276i) q^{9} +(0.0195043 - 0.0814793i) q^{10} +(-1.34592 - 0.286085i) q^{11} +(-0.118951 + 0.183169i) q^{12} +(1.43400 - 0.730661i) q^{13} +(0.0795726 - 0.0591203i) q^{14} +(0.138537 + 0.201287i) q^{15} +(3.90435 - 0.829896i) q^{16} +(-1.56486 + 4.07660i) q^{17} +(-0.0289766 - 0.108142i) q^{18} +(-0.00716074 + 0.0681299i) q^{19} +(0.811494 - 4.39470i) q^{20} +(-0.0271520 + 0.287846i) q^{21} +(0.0509210 + 0.00806510i) q^{22} +(-0.295550 - 5.63942i) q^{23} +(0.00818604 - 0.0141786i) q^{24} +(-4.19696 - 2.71763i) q^{25} +(-0.0522229 + 0.0301509i) q^{26} +(0.583044 + 0.297076i) q^{27} +(4.07364 - 3.37137i) q^{28} +(3.88840 + 5.35192i) q^{29} +(-0.00557832 - 0.00725983i) q^{30} +(1.42674 + 3.20452i) q^{31} +(-0.433891 + 0.116261i) q^{32} +(-0.116856 + 0.0946285i) q^{33} +(0.0505580 - 0.155602i) q^{34} +(-1.74444 - 5.65305i) q^{35} +(-1.84543 - 5.67963i) q^{36} +(-6.49205 - 4.21599i) q^{37} +(0.000134334 - 0.00256324i) q^{38} +(0.0365664 - 0.172031i) q^{39} +(-0.0435068 + 0.332170i) q^{40} +(9.12263 + 2.96412i) q^{41} +(0.000451493 - 0.0108235i) q^{42} +(-3.38639 + 3.38639i) q^{43} +(2.73499 + 0.287459i) q^{44} +(-6.66125 - 0.519805i) q^{45} +(0.0221170 + 0.210429i) q^{46} +(6.65520 - 2.55469i) q^{47} +(0.198028 - 0.388651i) q^{48} +(2.71005 - 6.45412i) q^{49} +(0.162366 + 0.0934549i) q^{50} +(0.238589 + 0.413248i) q^{51} +(-2.69765 + 1.75187i) q^{52} +(2.30489 + 1.86647i) q^{53} +(-0.0223982 - 0.00997230i) q^{54} +(1.46633 - 2.70493i) q^{55} +(-0.291725 + 0.268362i) q^{56} +(0.00529350 + 0.00529350i) q^{57} +(-0.155986 - 0.192627i) q^{58} +(6.88713 + 7.64893i) q^{59} +(-0.317414 - 0.371145i) q^{60} +(5.62046 + 5.06069i) q^{61} +(-0.0596680 - 0.117105i) q^{62} +(-5.64947 - 5.53018i) q^{63} +(-7.57643 + 2.46173i) q^{64} +(0.658171 + 3.53807i) q^{65} +(0.00418683 - 0.00376984i) q^{66} +(-8.28713 - 3.18113i) q^{67} +(2.25874 - 8.42975i) q^{68} +(-0.499255 - 0.362730i) q^{69} +(0.0763564 + 0.208098i) q^{70} +(5.52909 - 4.01712i) q^{71} +(0.160431 + 0.417936i) q^{72} +(-0.233558 - 0.359648i) q^{73} +(0.251179 + 0.145018i) q^{74} +(-0.519425 + 0.169534i) q^{75} -0.136914i q^{76} +(3.38461 - 1.34084i) q^{77} +(-0.00103085 + 0.00650856i) q^{78} +(-3.70296 + 8.31698i) q^{79} +(-0.694378 + 8.89839i) q^{80} +(-8.12386 + 3.61697i) q^{81} +(-0.347152 - 0.0930190i) q^{82} +(0.663758 + 4.19080i) q^{83} +(-0.00616537 - 0.577808i) q^{84} +(-7.75030 - 5.93885i) q^{85} +(0.120067 - 0.133348i) q^{86} +(0.721923 + 0.0378344i) q^{87} +(-0.205868 - 0.0107891i) q^{88} +(-5.38706 + 5.98294i) q^{89} +(0.250262 + 0.00638718i) q^{90} +(-2.08959 + 3.71015i) q^{91} +(1.76558 + 11.1474i) q^{92} +(0.370263 + 0.0992118i) q^{93} +(-0.244007 + 0.108639i) q^{94} +(-0.141561 - 0.0585264i) q^{95} +(-0.0199657 + 0.0448436i) q^{96} +(-2.59509 + 16.3848i) q^{97} +(-0.0887454 + 0.246806i) q^{98} -4.11154i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9} - 36 q^{10} - 6 q^{11} - 36 q^{12} - 20 q^{14} - 28 q^{15} - 30 q^{16} - 42 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} + 32 q^{22} - 40 q^{23} + 2 q^{25} - 48 q^{26} + 22 q^{28} - 58 q^{30} - 18 q^{31} + 8 q^{32} - 30 q^{33} - 2 q^{35} + 40 q^{36} - 10 q^{37} + 72 q^{38} + 30 q^{39} - 48 q^{40} + 6 q^{42} - 108 q^{43} - 10 q^{44} + 186 q^{45} - 6 q^{46} - 54 q^{47} - 248 q^{50} - 16 q^{51} + 216 q^{52} + 50 q^{53} - 30 q^{54} + 4 q^{56} - 216 q^{57} - 4 q^{58} + 90 q^{59} + 96 q^{60} - 18 q^{61} - 66 q^{63} - 100 q^{64} + 14 q^{65} - 90 q^{66} + 4 q^{67} + 342 q^{68} - 60 q^{70} - 24 q^{71} + 58 q^{72} - 6 q^{73} + 216 q^{75} - 80 q^{77} - 132 q^{78} - 10 q^{79} - 6 q^{80} - 10 q^{81} + 216 q^{82} + 20 q^{84} - 48 q^{85} - 6 q^{86} - 48 q^{87} - 122 q^{88} + 120 q^{89} - 12 q^{91} - 4 q^{92} + 106 q^{93} - 30 q^{94} - 98 q^{95} - 90 q^{96} + 222 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0374168 + 0.00196093i −0.0264576 + 0.00138659i −0.0655602 0.997849i \(-0.520883\pi\)
0.0391025 + 0.999235i \(0.487550\pi\)
\(3\) 0.0687711 0.0849253i 0.0397050 0.0490316i −0.756907 0.653523i \(-0.773290\pi\)
0.796612 + 0.604491i \(0.206624\pi\)
\(4\) −1.98765 + 0.208910i −0.993824 + 0.104455i
\(5\) −0.633655 + 2.14441i −0.283379 + 0.959008i
\(6\) −0.00240666 + 0.00331248i −0.000982515 + 0.00135232i
\(7\) −2.20341 + 1.46457i −0.832812 + 0.553556i
\(8\) 0.147975 0.0234370i 0.0523172 0.00828623i
\(9\) 0.621252 + 2.92276i 0.207084 + 0.974254i
\(10\) 0.0195043 0.0814793i 0.00616780 0.0257660i
\(11\) −1.34592 0.286085i −0.405811 0.0862578i 0.000483800 1.00000i \(-0.499846\pi\)
−0.406295 + 0.913742i \(0.633179\pi\)
\(12\) −0.118951 + 0.183169i −0.0343382 + 0.0528762i
\(13\) 1.43400 0.730661i 0.397721 0.202649i −0.243679 0.969856i \(-0.578354\pi\)
0.641399 + 0.767207i \(0.278354\pi\)
\(14\) 0.0795726 0.0591203i 0.0212667 0.0158006i
\(15\) 0.138537 + 0.201287i 0.0357701 + 0.0519720i
\(16\) 3.90435 0.829896i 0.976088 0.207474i
\(17\) −1.56486 + 4.07660i −0.379534 + 0.988720i 0.602180 + 0.798360i \(0.294299\pi\)
−0.981714 + 0.190360i \(0.939035\pi\)
\(18\) −0.0289766 0.108142i −0.00682984 0.0254893i
\(19\) −0.00716074 + 0.0681299i −0.00164279 + 0.0156301i −0.995313 0.0967102i \(-0.969168\pi\)
0.993670 + 0.112340i \(0.0358347\pi\)
\(20\) 0.811494 4.39470i 0.181456 0.982685i
\(21\) −0.0271520 + 0.287846i −0.00592504 + 0.0628131i
\(22\) 0.0509210 + 0.00806510i 0.0108564 + 0.00171949i
\(23\) −0.295550 5.63942i −0.0616263 1.17590i −0.838015 0.545647i \(-0.816284\pi\)
0.776389 0.630254i \(-0.217049\pi\)
\(24\) 0.00818604 0.0141786i 0.00167097 0.00289420i
\(25\) −4.19696 2.71763i −0.839393 0.543526i
\(26\) −0.0522229 + 0.0301509i −0.0102418 + 0.00591308i
\(27\) 0.583044 + 0.297076i 0.112207 + 0.0571722i
\(28\) 4.07364 3.37137i 0.769846 0.637129i
\(29\) 3.88840 + 5.35192i 0.722058 + 0.993827i 0.999453 + 0.0330712i \(0.0105288\pi\)
−0.277395 + 0.960756i \(0.589471\pi\)
\(30\) −0.00557832 0.00725983i −0.00101846 0.00132546i
\(31\) 1.42674 + 3.20452i 0.256251 + 0.575549i 0.995161 0.0982550i \(-0.0313261\pi\)
−0.738911 + 0.673804i \(0.764659\pi\)
\(32\) −0.433891 + 0.116261i −0.0767017 + 0.0205522i
\(33\) −0.116856 + 0.0946285i −0.0203421 + 0.0164727i
\(34\) 0.0505580 0.155602i 0.00867063 0.0266855i
\(35\) −1.74444 5.65305i −0.294864 0.955539i
\(36\) −1.84543 5.67963i −0.307571 0.946606i
\(37\) −6.49205 4.21599i −1.06729 0.693104i −0.113485 0.993540i \(-0.536201\pi\)
−0.953802 + 0.300436i \(0.902868\pi\)
\(38\) 0.000134334 0.00256324i 2.17918e−5 0.000415813i
\(39\) 0.0365664 0.172031i 0.00585531 0.0275471i
\(40\) −0.0435068 + 0.332170i −0.00687904 + 0.0525207i
\(41\) 9.12263 + 2.96412i 1.42472 + 0.462918i 0.917097 0.398664i \(-0.130526\pi\)
0.507618 + 0.861582i \(0.330526\pi\)
\(42\) 0.000451493 0.0108235i 6.96669e−5 0.00167010i
\(43\) −3.38639 + 3.38639i −0.516420 + 0.516420i −0.916486 0.400067i \(-0.868987\pi\)
0.400067 + 0.916486i \(0.368987\pi\)
\(44\) 2.73499 + 0.287459i 0.412315 + 0.0433360i
\(45\) −6.66125 0.519805i −0.993001 0.0774880i
\(46\) 0.0221170 + 0.210429i 0.00326098 + 0.0310261i
\(47\) 6.65520 2.55469i 0.970761 0.372640i 0.179256 0.983803i \(-0.442631\pi\)
0.791505 + 0.611162i \(0.209298\pi\)
\(48\) 0.198028 0.388651i 0.0285828 0.0560970i
\(49\) 2.71005 6.45412i 0.387151 0.922016i
\(50\) 0.162366 + 0.0934549i 0.0229620 + 0.0132165i
\(51\) 0.238589 + 0.413248i 0.0334091 + 0.0578663i
\(52\) −2.69765 + 1.75187i −0.374097 + 0.242941i
\(53\) 2.30489 + 1.86647i 0.316601 + 0.256379i 0.774427 0.632663i \(-0.218038\pi\)
−0.457826 + 0.889042i \(0.651372\pi\)
\(54\) −0.0223982 0.00997230i −0.00304800 0.00135706i
\(55\) 1.46633 2.70493i 0.197720 0.364732i
\(56\) −0.291725 + 0.268362i −0.0389835 + 0.0358614i
\(57\) 0.00529350 + 0.00529350i 0.000701141 + 0.000701141i
\(58\) −0.155986 0.192627i −0.0204820 0.0252931i
\(59\) 6.88713 + 7.64893i 0.896627 + 0.995806i 0.999999 + 0.00116291i \(0.000370164\pi\)
−0.103372 + 0.994643i \(0.532963\pi\)
\(60\) −0.317414 0.371145i −0.0409780 0.0479146i
\(61\) 5.62046 + 5.06069i 0.719626 + 0.647954i 0.945283 0.326253i \(-0.105786\pi\)
−0.225656 + 0.974207i \(0.572453\pi\)
\(62\) −0.0596680 0.117105i −0.00757784 0.0148723i
\(63\) −5.64947 5.53018i −0.711767 0.696737i
\(64\) −7.57643 + 2.46173i −0.947053 + 0.307716i
\(65\) 0.658171 + 3.53807i 0.0816361 + 0.438844i
\(66\) 0.00418683 0.00376984i 0.000515363 0.000464035i
\(67\) −8.28713 3.18113i −1.01243 0.388637i −0.205106 0.978740i \(-0.565754\pi\)
−0.807328 + 0.590103i \(0.799087\pi\)
\(68\) 2.25874 8.42975i 0.273913 1.02226i
\(69\) −0.499255 0.362730i −0.0601032 0.0436675i
\(70\) 0.0763564 + 0.208098i 0.00912633 + 0.0248725i
\(71\) 5.52909 4.01712i 0.656182 0.476744i −0.209189 0.977875i \(-0.567082\pi\)
0.865372 + 0.501131i \(0.167082\pi\)
\(72\) 0.160431 + 0.417936i 0.0189069 + 0.0492543i
\(73\) −0.233558 0.359648i −0.0273359 0.0420936i 0.824738 0.565514i \(-0.191322\pi\)
−0.852074 + 0.523421i \(0.824656\pi\)
\(74\) 0.251179 + 0.145018i 0.0291989 + 0.0168580i
\(75\) −0.519425 + 0.169534i −0.0599781 + 0.0195761i
\(76\) 0.136914i 0.0157051i
\(77\) 3.38461 1.34084i 0.385713 0.152803i
\(78\) −0.00103085 + 0.00650856i −0.000116721 + 0.000736949i
\(79\) −3.70296 + 8.31698i −0.416616 + 0.935734i 0.576336 + 0.817213i \(0.304482\pi\)
−0.992952 + 0.118521i \(0.962185\pi\)
\(80\) −0.694378 + 8.89839i −0.0776338 + 0.994870i
\(81\) −8.12386 + 3.61697i −0.902651 + 0.401886i
\(82\) −0.347152 0.0930190i −0.0383365 0.0102722i
\(83\) 0.663758 + 4.19080i 0.0728569 + 0.460000i 0.996964 + 0.0778662i \(0.0248107\pi\)
−0.924107 + 0.382134i \(0.875189\pi\)
\(84\) −0.00616537 0.577808i −0.000672697 0.0630440i
\(85\) −7.75030 5.93885i −0.840638 0.644159i
\(86\) 0.120067 0.133348i 0.0129472 0.0143793i
\(87\) 0.721923 + 0.0378344i 0.0773983 + 0.00405627i
\(88\) −0.205868 0.0107891i −0.0219456 0.00115012i
\(89\) −5.38706 + 5.98294i −0.571027 + 0.634190i −0.957611 0.288064i \(-0.906988\pi\)
0.386584 + 0.922254i \(0.373655\pi\)
\(90\) 0.250262 + 0.00638718i 0.0263799 + 0.000673268i
\(91\) −2.08959 + 3.71015i −0.219049 + 0.388929i
\(92\) 1.76558 + 11.1474i 0.184075 + 1.16220i
\(93\) 0.370263 + 0.0992118i 0.0383945 + 0.0102878i
\(94\) −0.244007 + 0.108639i −0.0251674 + 0.0112052i
\(95\) −0.141561 0.0585264i −0.0145238 0.00600468i
\(96\) −0.0199657 + 0.0448436i −0.00203774 + 0.00457684i
\(97\) −2.59509 + 16.3848i −0.263492 + 1.66362i 0.400814 + 0.916159i \(0.368727\pi\)
−0.664306 + 0.747461i \(0.731273\pi\)
\(98\) −0.0887454 + 0.246806i −0.00896464 + 0.0249312i
\(99\) 4.11154i 0.413225i
\(100\) 8.90982 + 4.52490i 0.890982 + 0.452490i
\(101\) −3.41526 1.97180i −0.339831 0.196202i 0.320366 0.947294i \(-0.396194\pi\)
−0.660197 + 0.751092i \(0.729527\pi\)
\(102\) −0.00973757 0.0149945i −0.000964164 0.00148468i
\(103\) 2.75221 + 7.16976i 0.271184 + 0.706457i 0.999769 + 0.0215022i \(0.00684488\pi\)
−0.728585 + 0.684955i \(0.759822\pi\)
\(104\) 0.195072 0.141728i 0.0191284 0.0138976i
\(105\) −0.600053 0.240620i −0.0585592 0.0234821i
\(106\) −0.0899016 0.0653174i −0.00873202 0.00634418i
\(107\) 2.79297 10.4235i 0.270006 1.00768i −0.689108 0.724659i \(-0.741997\pi\)
0.959114 0.283019i \(-0.0913359\pi\)
\(108\) −1.22095 0.468678i −0.117486 0.0450986i
\(109\) 2.14125 1.92799i 0.205094 0.184668i −0.560182 0.828369i \(-0.689269\pi\)
0.765277 + 0.643702i \(0.222602\pi\)
\(110\) −0.0495612 + 0.104085i −0.00472548 + 0.00992411i
\(111\) −0.804510 + 0.261401i −0.0763607 + 0.0248111i
\(112\) −7.38746 + 7.54681i −0.698049 + 0.713107i
\(113\) 4.61149 + 9.05056i 0.433812 + 0.851405i 0.999639 + 0.0268803i \(0.00855729\pi\)
−0.565826 + 0.824524i \(0.691443\pi\)
\(114\) −0.000208446 0 0.000187685i −1.95227e−5 0 1.75783e-5i
\(115\) 12.2805 + 2.93967i 1.14516 + 0.274126i
\(116\) −8.84684 9.82541i −0.821408 0.912266i
\(117\) 3.02642 + 3.73732i 0.279793 + 0.345516i
\(118\) −0.272693 0.272693i −0.0251034 0.0251034i
\(119\) −2.52244 11.2743i −0.231232 1.03351i
\(120\) 0.0252176 + 0.0265386i 0.00230204 + 0.00242263i
\(121\) −8.31934 3.70401i −0.756303 0.336728i
\(122\) −0.220223 0.178333i −0.0199381 0.0161455i
\(123\) 0.879102 0.570896i 0.0792660 0.0514759i
\(124\) −3.50532 6.07139i −0.314787 0.545227i
\(125\) 8.48713 7.27796i 0.759112 0.650960i
\(126\) 0.222229 + 0.195843i 0.0197978 + 0.0174471i
\(127\) 9.60727 18.8553i 0.852507 1.67314i 0.119588 0.992824i \(-0.461843\pi\)
0.732919 0.680316i \(-0.238157\pi\)
\(128\) 1.11738 0.428922i 0.0987634 0.0379117i
\(129\) 0.0547042 + 0.520476i 0.00481644 + 0.0458253i
\(130\) −0.0315645 0.131093i −0.00276839 0.0114976i
\(131\) −1.73179 0.182019i −0.151307 0.0159030i 0.0285719 0.999592i \(-0.490904\pi\)
−0.179879 + 0.983689i \(0.557571\pi\)
\(132\) 0.212501 0.212501i 0.0184958 0.0184958i
\(133\) −0.0840031 0.160606i −0.00728400 0.0139263i
\(134\) 0.316315 + 0.102777i 0.0273255 + 0.00887859i
\(135\) −1.00650 + 1.06204i −0.0866257 + 0.0914058i
\(136\) −0.136017 + 0.639911i −0.0116634 + 0.0548719i
\(137\) −0.333352 + 6.36074i −0.0284802 + 0.543435i 0.946713 + 0.322079i \(0.104382\pi\)
−0.975193 + 0.221356i \(0.928952\pi\)
\(138\) 0.0193918 + 0.0125932i 0.00165074 + 0.00107200i
\(139\) −6.65731 20.4891i −0.564665 1.73786i −0.668944 0.743313i \(-0.733253\pi\)
0.104278 0.994548i \(-0.466747\pi\)
\(140\) 4.64830 + 10.8718i 0.392853 + 0.918838i
\(141\) 0.240728 0.740884i 0.0202729 0.0623937i
\(142\) −0.199003 + 0.161150i −0.0167000 + 0.0135234i
\(143\) −2.13909 + 0.573166i −0.178879 + 0.0479306i
\(144\) 4.85118 + 10.8959i 0.404265 + 0.907993i
\(145\) −13.9406 + 4.94704i −1.15770 + 0.410829i
\(146\) 0.00944423 + 0.0129989i 0.000781610 + 0.00107579i
\(147\) −0.361744 0.674009i −0.0298361 0.0555913i
\(148\) 13.7847 + 7.02364i 1.13309 + 0.577340i
\(149\) 16.9996 9.81475i 1.39266 0.804055i 0.399055 0.916927i \(-0.369338\pi\)
0.993610 + 0.112871i \(0.0360048\pi\)
\(150\) 0.0191028 0.00736196i 0.00155973 0.000601102i
\(151\) 4.56259 7.90264i 0.371299 0.643108i −0.618467 0.785811i \(-0.712246\pi\)
0.989766 + 0.142703i \(0.0455793\pi\)
\(152\) 0.000537147 0.0102494i 4.35684e−5 0.000831334i
\(153\) −12.8871 2.04111i −1.04186 0.165014i
\(154\) −0.124012 + 0.0568068i −0.00999317 + 0.00457762i
\(155\) −7.77586 + 1.02896i −0.624572 + 0.0826480i
\(156\) −0.0367420 + 0.349577i −0.00294171 + 0.0279885i
\(157\) −4.77834 17.8330i −0.381353 1.42323i −0.843836 0.536601i \(-0.819708\pi\)
0.462483 0.886628i \(-0.346959\pi\)
\(158\) 0.122244 0.318456i 0.00972519 0.0253350i
\(159\) 0.317020 0.0673847i 0.0251413 0.00534396i
\(160\) 0.0256268 1.00411i 0.00202598 0.0793816i
\(161\) 8.91056 + 11.9931i 0.702250 + 0.945190i
\(162\) 0.296876 0.151266i 0.0233248 0.0118846i
\(163\) 1.88268 2.89908i 0.147463 0.227073i −0.757218 0.653162i \(-0.773442\pi\)
0.904682 + 0.426088i \(0.140109\pi\)
\(164\) −18.7518 3.98582i −1.46427 0.311240i
\(165\) −0.128875 0.310549i −0.0100329 0.0241762i
\(166\) −0.0330535 0.155505i −0.00256545 0.0120695i
\(167\) 13.0850 2.07246i 1.01255 0.160372i 0.371954 0.928251i \(-0.378688\pi\)
0.640595 + 0.767879i \(0.278688\pi\)
\(168\) 0.00272842 + 0.0432304i 0.000210502 + 0.00333530i
\(169\) −6.11871 + 8.42168i −0.470670 + 0.647822i
\(170\) 0.301637 + 0.207015i 0.0231345 + 0.0158773i
\(171\) −0.203576 + 0.0213967i −0.0155679 + 0.00163625i
\(172\) 6.02350 7.43840i 0.459287 0.567173i
\(173\) −10.1350 + 0.531152i −0.770549 + 0.0403828i −0.433559 0.901125i \(-0.642742\pi\)
−0.336990 + 0.941508i \(0.609409\pi\)
\(174\) −0.0270862 −0.00205340
\(175\) 13.2278 0.158700i 0.999928 0.0119966i
\(176\) −5.49238 −0.414003
\(177\) 1.12322 0.0588656i 0.0844266 0.00442461i
\(178\) 0.189834 0.234426i 0.0142287 0.0175710i
\(179\) 8.97496 0.943306i 0.670820 0.0705060i 0.237006 0.971508i \(-0.423834\pi\)
0.433814 + 0.901002i \(0.357167\pi\)
\(180\) 13.3488 0.358414i 0.994962 0.0267146i
\(181\) 9.31589 12.8222i 0.692445 0.953069i −0.307554 0.951531i \(-0.599510\pi\)
0.999999 0.00153805i \(-0.000489576\pi\)
\(182\) 0.0709105 0.142919i 0.00525623 0.0105939i
\(183\) 0.816306 0.129290i 0.0603430 0.00955740i
\(184\) −0.175905 0.827568i −0.0129679 0.0610091i
\(185\) 13.1545 11.2501i 0.967139 0.827125i
\(186\) −0.0140486 0.00298612i −0.00103009 0.000218953i
\(187\) 3.27243 5.03910i 0.239304 0.368495i
\(188\) −12.6945 + 6.46817i −0.925841 + 0.471740i
\(189\) −1.71978 + 0.199330i −0.125095 + 0.0144991i
\(190\) 0.00541151 + 0.00191228i 0.000392592 + 0.000138731i
\(191\) −21.8970 + 4.65434i −1.58441 + 0.336776i −0.914158 0.405358i \(-0.867147\pi\)
−0.670251 + 0.742135i \(0.733813\pi\)
\(192\) −0.311976 + 0.812726i −0.0225150 + 0.0586535i
\(193\) 3.15224 + 11.7643i 0.226903 + 0.846814i 0.981633 + 0.190779i \(0.0611013\pi\)
−0.754730 + 0.656036i \(0.772232\pi\)
\(194\) 0.0649705 0.618153i 0.00466461 0.0443808i
\(195\) 0.345735 + 0.187422i 0.0247586 + 0.0134216i
\(196\) −4.03830 + 13.3947i −0.288450 + 0.956762i
\(197\) 13.1804 + 2.08757i 0.939067 + 0.148734i 0.607161 0.794579i \(-0.292308\pi\)
0.331906 + 0.943313i \(0.392308\pi\)
\(198\) 0.00806244 + 0.153841i 0.000572973 + 0.0109330i
\(199\) 9.16969 15.8824i 0.650022 1.12587i −0.333095 0.942893i \(-0.608093\pi\)
0.983117 0.182978i \(-0.0585738\pi\)
\(200\) −0.684740 0.303778i −0.0484184 0.0214803i
\(201\) −0.840074 + 0.485017i −0.0592542 + 0.0342104i
\(202\) 0.131654 + 0.0670813i 0.00926318 + 0.00471982i
\(203\) −16.4060 6.09765i −1.15148 0.427971i
\(204\) −0.560562 0.771548i −0.0392472 0.0540192i
\(205\) −12.1369 + 17.6844i −0.847677 + 1.23513i
\(206\) −0.117038 0.262872i −0.00815444 0.0183152i
\(207\) 16.2991 4.36732i 1.13286 0.303550i
\(208\) 4.99248 4.04283i 0.346166 0.280320i
\(209\) 0.0291287 0.0896490i 0.00201488 0.00620115i
\(210\) 0.0229239 + 0.00782655i 0.00158190 + 0.000540083i
\(211\) −2.94624 9.06760i −0.202828 0.624239i −0.999796 0.0202178i \(-0.993564\pi\)
0.796968 0.604022i \(-0.206436\pi\)
\(212\) −4.97124 3.22836i −0.341426 0.221725i
\(213\) 0.0390869 0.745822i 0.00267819 0.0511029i
\(214\) −0.0840641 + 0.395490i −0.00574650 + 0.0270352i
\(215\) −5.11599 9.40760i −0.348908 0.641593i
\(216\) 0.0932387 + 0.0302951i 0.00634409 + 0.00206132i
\(217\) −7.83695 4.97131i −0.532007 0.337474i
\(218\) −0.0763379 + 0.0763379i −0.00517026 + 0.00517026i
\(219\) −0.0466053 0.00489841i −0.00314929 0.000331004i
\(220\) −2.34946 + 5.68277i −0.158401 + 0.383132i
\(221\) 0.734597 + 6.98923i 0.0494144 + 0.470146i
\(222\) 0.0295896 0.0113584i 0.00198592 0.000762324i
\(223\) −11.4092 + 22.3918i −0.764015 + 1.49946i 0.0994426 + 0.995043i \(0.468294\pi\)
−0.863458 + 0.504421i \(0.831706\pi\)
\(224\) 0.785768 0.891634i 0.0525013 0.0595748i
\(225\) 5.33561 13.9551i 0.355707 0.930337i
\(226\) −0.190294 0.329600i −0.0126582 0.0219246i
\(227\) 10.3775 6.73926i 0.688782 0.447300i −0.152210 0.988348i \(-0.548639\pi\)
0.840992 + 0.541048i \(0.181972\pi\)
\(228\) −0.0116275 0.00941575i −0.000770048 0.000623573i
\(229\) 13.4922 + 6.00710i 0.891587 + 0.396960i 0.800815 0.598912i \(-0.204400\pi\)
0.0907719 + 0.995872i \(0.471067\pi\)
\(230\) −0.465261 0.0859117i −0.0306784 0.00566485i
\(231\) 0.118893 0.379650i 0.00782256 0.0249791i
\(232\) 0.700820 + 0.700820i 0.0460111 + 0.0460111i
\(233\) −0.763731 0.943130i −0.0500337 0.0617865i 0.751515 0.659716i \(-0.229324\pi\)
−0.801549 + 0.597930i \(0.795990\pi\)
\(234\) −0.120568 0.133904i −0.00788175 0.00875357i
\(235\) 1.26120 + 15.8903i 0.0822716 + 1.03657i
\(236\) −15.2871 13.7646i −0.995107 0.895998i
\(237\) 0.451665 + 0.886443i 0.0293388 + 0.0575807i
\(238\) 0.116490 + 0.416900i 0.00755090 + 0.0270236i
\(239\) −24.4748 + 7.95235i −1.58314 + 0.514395i −0.962864 0.269986i \(-0.912981\pi\)
−0.620280 + 0.784380i \(0.712981\pi\)
\(240\) 0.707945 + 0.670923i 0.0456977 + 0.0433079i
\(241\) −10.1804 + 9.16652i −0.655780 + 0.590467i −0.928367 0.371664i \(-0.878787\pi\)
0.272587 + 0.962131i \(0.412121\pi\)
\(242\) 0.318546 + 0.122278i 0.0204769 + 0.00786035i
\(243\) −0.759601 + 2.83487i −0.0487284 + 0.181857i
\(244\) −12.2287 8.88469i −0.782864 0.568784i
\(245\) 12.1230 + 9.90114i 0.774511 + 0.632561i
\(246\) −0.0317737 + 0.0230849i −0.00202582 + 0.00147184i
\(247\) 0.0395113 + 0.102931i 0.00251405 + 0.00654931i
\(248\) 0.286227 + 0.440751i 0.0181754 + 0.0279877i
\(249\) 0.401552 + 0.231836i 0.0254473 + 0.0146920i
\(250\) −0.303289 + 0.288960i −0.0191817 + 0.0182754i
\(251\) 24.5816i 1.55158i 0.630992 + 0.775789i \(0.282648\pi\)
−0.630992 + 0.775789i \(0.717352\pi\)
\(252\) 12.3845 + 9.81182i 0.780148 + 0.618087i
\(253\) −1.21556 + 7.67477i −0.0764219 + 0.482509i
\(254\) −0.322499 + 0.724344i −0.0202354 + 0.0454494i
\(255\) −1.03736 + 0.249775i −0.0649617 + 0.0156415i
\(256\) 14.5142 6.46215i 0.907140 0.403885i
\(257\) −19.7898 5.30267i −1.23446 0.330772i −0.418143 0.908381i \(-0.637319\pi\)
−0.816313 + 0.577610i \(0.803986\pi\)
\(258\) −0.00306747 0.0193672i −0.000190972 0.00120575i
\(259\) 20.4793 0.218520i 1.27252 0.0135782i
\(260\) −2.04735 6.89494i −0.126971 0.427606i
\(261\) −13.2267 + 14.6898i −0.818713 + 0.909273i
\(262\) 0.0651550 + 0.00341463i 0.00402529 + 0.000210956i
\(263\) 12.7212 + 0.666689i 0.784422 + 0.0411098i 0.440341 0.897830i \(-0.354857\pi\)
0.344080 + 0.938940i \(0.388191\pi\)
\(264\) −0.0150741 + 0.0167414i −0.000927744 + 0.00103036i
\(265\) −5.46297 + 3.75993i −0.335588 + 0.230971i
\(266\) 0.00345806 + 0.00584462i 0.000212027 + 0.000358357i
\(267\) 0.137628 + 0.868951i 0.00842272 + 0.0531790i
\(268\) 17.1365 + 4.59170i 1.04678 + 0.280483i
\(269\) 18.1556 8.08338i 1.10696 0.492852i 0.229895 0.973215i \(-0.426162\pi\)
0.877070 + 0.480363i \(0.159495\pi\)
\(270\) 0.0355774 0.0417118i 0.00216517 0.00253850i
\(271\) 3.28374 7.37540i 0.199473 0.448024i −0.785918 0.618331i \(-0.787809\pi\)
0.985391 + 0.170307i \(0.0544760\pi\)
\(272\) −2.72661 + 17.2151i −0.165325 + 1.04382i
\(273\) 0.171382 + 0.432610i 0.0103725 + 0.0261828i
\(274\) 0.238652i 0.0144175i
\(275\) 4.87131 + 4.85840i 0.293751 + 0.292973i
\(276\) 1.06812 + 0.616679i 0.0642933 + 0.0371197i
\(277\) 2.20513 + 3.39560i 0.132493 + 0.204022i 0.898690 0.438584i \(-0.144520\pi\)
−0.766197 + 0.642606i \(0.777853\pi\)
\(278\) 0.289272 + 0.753580i 0.0173494 + 0.0451968i
\(279\) −8.47968 + 6.16085i −0.507665 + 0.368840i
\(280\) −0.390624 0.795627i −0.0233442 0.0475478i
\(281\) 1.03849 + 0.754506i 0.0619510 + 0.0450100i 0.618330 0.785919i \(-0.287810\pi\)
−0.556379 + 0.830929i \(0.687810\pi\)
\(282\) −0.00755443 + 0.0281935i −0.000449860 + 0.00167890i
\(283\) −0.292342 0.112220i −0.0173779 0.00667076i 0.349663 0.936875i \(-0.386296\pi\)
−0.367041 + 0.930205i \(0.619629\pi\)
\(284\) −10.1507 + 9.13970i −0.602331 + 0.542342i
\(285\) −0.0147057 + 0.00799716i −0.000871089 + 0.000473711i
\(286\) 0.0789137 0.0256406i 0.00466627 0.00151616i
\(287\) −24.4421 + 6.82957i −1.44277 + 0.403137i
\(288\) −0.609358 1.19593i −0.0359067 0.0704709i
\(289\) −1.53639 1.38337i −0.0903759 0.0813748i
\(290\) 0.511911 0.212439i 0.0300605 0.0124748i
\(291\) 1.21301 + 1.34719i 0.0711081 + 0.0789735i
\(292\) 0.539365 + 0.666061i 0.0315640 + 0.0389783i
\(293\) −13.9434 13.9434i −0.814584 0.814584i 0.170733 0.985317i \(-0.445386\pi\)
−0.985317 + 0.170733i \(0.945386\pi\)
\(294\) 0.0148570 + 0.0245099i 0.000866476 + 0.00142944i
\(295\) −20.7665 + 9.92202i −1.20907 + 0.577682i
\(296\) −1.05947 0.471708i −0.0615806 0.0274175i
\(297\) −0.699743 0.566641i −0.0406032 0.0328798i
\(298\) −0.616825 + 0.400571i −0.0357317 + 0.0232045i
\(299\) −4.54432 7.87099i −0.262805 0.455191i
\(300\) 0.997017 0.445487i 0.0575628 0.0257202i
\(301\) 2.50200 12.4212i 0.144213 0.715948i
\(302\) −0.155221 + 0.304638i −0.00893196 + 0.0175300i
\(303\) −0.402327 + 0.154439i −0.0231131 + 0.00887228i
\(304\) 0.0285827 + 0.271946i 0.00163933 + 0.0155972i
\(305\) −14.4136 + 8.84583i −0.825321 + 0.506511i
\(306\) 0.486196 + 0.0511012i 0.0277940 + 0.00292126i
\(307\) −14.7442 + 14.7442i −0.841499 + 0.841499i −0.989054 0.147555i \(-0.952860\pi\)
0.147555 + 0.989054i \(0.452860\pi\)
\(308\) −6.44730 + 3.37219i −0.367369 + 0.192149i
\(309\) 0.798166 + 0.259340i 0.0454061 + 0.0147533i
\(310\) 0.288930 0.0537482i 0.0164101 0.00305270i
\(311\) 1.78340 8.39025i 0.101128 0.475768i −0.898217 0.439553i \(-0.855137\pi\)
0.999344 0.0362144i \(-0.0115299\pi\)
\(312\) 0.00137903 0.0263134i 7.80720e−5 0.00148970i
\(313\) 20.3951 + 13.2447i 1.15280 + 0.748636i 0.972022 0.234888i \(-0.0754724\pi\)
0.180776 + 0.983524i \(0.442139\pi\)
\(314\) 0.213759 + 0.657884i 0.0120631 + 0.0371265i
\(315\) 15.4388 8.61054i 0.869877 0.485149i
\(316\) 5.62268 17.3048i 0.316300 0.973472i
\(317\) −3.55609 + 2.87966i −0.199730 + 0.161738i −0.723968 0.689834i \(-0.757684\pi\)
0.524238 + 0.851572i \(0.324350\pi\)
\(318\) −0.0117297 + 0.00314297i −0.000657771 + 0.000176249i
\(319\) −3.70238 8.31568i −0.207293 0.465589i
\(320\) −0.478111 17.8068i −0.0267272 0.995432i
\(321\) −0.693143 0.954029i −0.0386875 0.0532487i
\(322\) −0.356922 0.431271i −0.0198905 0.0240338i
\(323\) −0.266533 0.135805i −0.0148303 0.00755640i
\(324\) 15.3917 8.88642i 0.855097 0.493690i
\(325\) −8.00412 0.830529i −0.443989 0.0460695i
\(326\) −0.0647591 + 0.112166i −0.00358667 + 0.00621230i
\(327\) −0.0164789 0.314436i −0.000911285 0.0173884i
\(328\) 1.41939 + 0.224810i 0.0783729 + 0.0124130i
\(329\) −10.9226 + 15.3761i −0.602184 + 0.847710i
\(330\) 0.00543106 + 0.0113670i 0.000298970 + 0.000625735i
\(331\) −0.248393 + 2.36330i −0.0136529 + 0.129899i −0.999225 0.0393560i \(-0.987469\pi\)
0.985572 + 0.169255i \(0.0541360\pi\)
\(332\) −2.19482 8.19117i −0.120456 0.449549i
\(333\) 8.28913 21.5939i 0.454241 1.18334i
\(334\) −0.485535 + 0.103204i −0.0265673 + 0.00564705i
\(335\) 12.0728 15.7552i 0.659609 0.860801i
\(336\) 0.132871 + 1.14638i 0.00724872 + 0.0625404i
\(337\) 19.0320 9.69727i 1.03674 0.528244i 0.149117 0.988820i \(-0.452357\pi\)
0.887621 + 0.460575i \(0.152357\pi\)
\(338\) 0.212428 0.327110i 0.0115546 0.0177925i
\(339\) 1.08576 + 0.230785i 0.0589703 + 0.0125345i
\(340\) 16.6456 + 10.1852i 0.902732 + 0.552371i
\(341\) −1.00352 4.72120i −0.0543438 0.255667i
\(342\) 0.00757520 0.00119979i 0.000409620 6.48774e-5i
\(343\) 3.48115 + 18.1902i 0.187964 + 0.982176i
\(344\) −0.421735 + 0.580469i −0.0227384 + 0.0312968i
\(345\) 1.09420 0.840760i 0.0589095 0.0452650i
\(346\) 0.378177 0.0397480i 0.0203309 0.00213686i
\(347\) 16.5160 20.3955i 0.886624 1.09489i −0.108286 0.994120i \(-0.534536\pi\)
0.994910 0.100770i \(-0.0321305\pi\)
\(348\) −1.44283 + 0.0756157i −0.0773439 + 0.00405342i
\(349\) −16.7152 −0.894745 −0.447373 0.894348i \(-0.647640\pi\)
−0.447373 + 0.894348i \(0.647640\pi\)
\(350\) −0.494630 + 0.0318768i −0.0264391 + 0.00170389i
\(351\) 1.05315 0.0562129
\(352\) 0.617243 0.0323484i 0.0328992 0.00172417i
\(353\) 18.1261 22.3839i 0.964758 1.19138i −0.0167319 0.999860i \(-0.505326\pi\)
0.981489 0.191516i \(-0.0613405\pi\)
\(354\) −0.0419119 + 0.00440512i −0.00222759 + 0.000234130i
\(355\) 5.11080 + 14.4021i 0.271253 + 0.764384i
\(356\) 9.45769 13.0174i 0.501256 0.689920i
\(357\) −1.13094 0.561125i −0.0598558 0.0296979i
\(358\) −0.333964 + 0.0528947i −0.0176505 + 0.00279557i
\(359\) 0.933188 + 4.39030i 0.0492518 + 0.231711i 0.995888 0.0905925i \(-0.0288761\pi\)
−0.946636 + 0.322304i \(0.895543\pi\)
\(360\) −0.997883 + 0.0792013i −0.0525931 + 0.00417428i
\(361\) 18.5802 + 3.94935i 0.977906 + 0.207860i
\(362\) −0.323427 + 0.498034i −0.0169989 + 0.0261761i
\(363\) −0.886694 + 0.451793i −0.0465394 + 0.0237130i
\(364\) 3.37829 7.81100i 0.177070 0.409408i
\(365\) 0.919227 0.272951i 0.0481145 0.0142869i
\(366\) −0.0302900 + 0.00643833i −0.00158328 + 0.000336537i
\(367\) −11.7573 + 30.6289i −0.613728 + 1.59882i 0.175339 + 0.984508i \(0.443898\pi\)
−0.789067 + 0.614307i \(0.789436\pi\)
\(368\) −5.83406 21.7730i −0.304121 1.13500i
\(369\) −2.99597 + 28.5047i −0.155964 + 1.48390i
\(370\) −0.470139 + 0.446738i −0.0244413 + 0.0232248i
\(371\) −7.81221 0.736911i −0.405590 0.0382585i
\(372\) −0.756679 0.119846i −0.0392320 0.00621374i
\(373\) −1.97463 37.6781i −0.102242 1.95090i −0.265033 0.964239i \(-0.585383\pi\)
0.162791 0.986661i \(-0.447950\pi\)
\(374\) −0.112562 + 0.194964i −0.00582046 + 0.0100813i
\(375\) −0.0344132 1.22128i −0.00177709 0.0630669i
\(376\) 0.924931 0.534009i 0.0476997 0.0275394i
\(377\) 9.48641 + 4.83357i 0.488575 + 0.248941i
\(378\) 0.0639575 0.0108306i 0.00328962 0.000557067i
\(379\) −2.24596 3.09129i −0.115367 0.158789i 0.747428 0.664343i \(-0.231288\pi\)
−0.862795 + 0.505553i \(0.831288\pi\)
\(380\) 0.293600 + 0.0867564i 0.0150614 + 0.00445051i
\(381\) −0.940591 2.11260i −0.0481879 0.108232i
\(382\) 0.810186 0.217089i 0.0414527 0.0111072i
\(383\) −12.5030 + 10.1248i −0.638876 + 0.517351i −0.893137 0.449784i \(-0.851501\pi\)
0.254262 + 0.967135i \(0.418168\pi\)
\(384\) 0.0404172 0.124391i 0.00206253 0.00634782i
\(385\) 0.730626 + 8.10762i 0.0372361 + 0.413202i
\(386\) −0.141016 0.434001i −0.00717751 0.0220901i
\(387\) −12.0014 7.79381i −0.610066 0.396182i
\(388\) 1.73518 33.1093i 0.0880906 1.68087i
\(389\) −3.20212 + 15.0648i −0.162354 + 0.763815i 0.819334 + 0.573317i \(0.194344\pi\)
−0.981688 + 0.190498i \(0.938990\pi\)
\(390\) −0.0133038 0.00633475i −0.000673664 0.000320773i
\(391\) 23.4521 + 7.62006i 1.18603 + 0.385363i
\(392\) 0.249756 1.01857i 0.0126146 0.0514453i
\(393\) −0.134555 + 0.134555i −0.00678742 + 0.00678742i
\(394\) −0.497262 0.0522644i −0.0250517 0.00263304i
\(395\) −15.4886 13.2108i −0.779316 0.664705i
\(396\) 0.858943 + 8.17229i 0.0431635 + 0.410673i
\(397\) −10.9348 + 4.19748i −0.548802 + 0.210665i −0.616939 0.787011i \(-0.711628\pi\)
0.0681376 + 0.997676i \(0.478294\pi\)
\(398\) −0.311956 + 0.612248i −0.0156369 + 0.0306892i
\(399\) −0.0194165 0.00391105i −0.000972040 0.000195797i
\(400\) −18.6418 7.12754i −0.932089 0.356377i
\(401\) 6.37349 + 11.0392i 0.318277 + 0.551271i 0.980129 0.198363i \(-0.0635626\pi\)
−0.661852 + 0.749635i \(0.730229\pi\)
\(402\) 0.0304818 0.0197951i 0.00152029 0.000987289i
\(403\) 4.38737 + 3.55282i 0.218550 + 0.176979i
\(404\) 7.20026 + 3.20576i 0.358226 + 0.159493i
\(405\) −2.60854 19.7128i −0.129619 0.979535i
\(406\) 0.625817 + 0.195983i 0.0310588 + 0.00972649i
\(407\) 7.53167 + 7.53167i 0.373331 + 0.373331i
\(408\) 0.0449906 + 0.0555587i 0.00222736 + 0.00275057i
\(409\) 6.77254 + 7.52166i 0.334880 + 0.371922i 0.886942 0.461881i \(-0.152825\pi\)
−0.552061 + 0.833803i \(0.686159\pi\)
\(410\) 0.419445 0.685492i 0.0207149 0.0338541i
\(411\) 0.517262 + 0.465745i 0.0255147 + 0.0229735i
\(412\) −6.96826 13.6760i −0.343302 0.673768i
\(413\) −26.3776 6.76705i −1.29796 0.332985i
\(414\) −0.601294 + 0.195372i −0.0295520 + 0.00960203i
\(415\) −9.40738 1.23216i −0.461790 0.0604841i
\(416\) −0.537253 + 0.483745i −0.0263410 + 0.0237175i
\(417\) −2.19787 0.843684i −0.107630 0.0413154i
\(418\) −0.000914107 0.00341149i −4.47104e−5 0.000166862i
\(419\) −2.20460 1.60174i −0.107702 0.0782499i 0.532631 0.846348i \(-0.321203\pi\)
−0.640333 + 0.768098i \(0.721203\pi\)
\(420\) 1.24296 + 0.352910i 0.0606504 + 0.0172202i
\(421\) 27.0480 19.6515i 1.31824 0.957756i 0.318286 0.947995i \(-0.396893\pi\)
0.999952 0.00976112i \(-0.00310711\pi\)
\(422\) 0.128020 + 0.333503i 0.00623190 + 0.0162347i
\(423\) 11.6013 + 17.8645i 0.564075 + 0.868600i
\(424\) 0.384812 + 0.222171i 0.0186881 + 0.0107896i
\(425\) 17.6463 12.8566i 0.855973 0.623638i
\(426\) 0.0279829i 0.00135577i
\(427\) −19.7959 2.91921i −0.957993 0.141270i
\(428\) −3.37386 + 21.3017i −0.163082 + 1.02966i
\(429\) −0.0984310 + 0.221080i −0.00475230 + 0.0106738i
\(430\) 0.209872 + 0.341970i 0.0101209 + 0.0164912i
\(431\) −28.4527 + 12.6680i −1.37052 + 0.610194i −0.954240 0.299043i \(-0.903332\pi\)
−0.416278 + 0.909237i \(0.636666\pi\)
\(432\) 2.52295 + 0.676023i 0.121386 + 0.0325252i
\(433\) −0.835932 5.27787i −0.0401723 0.253638i 0.959427 0.281959i \(-0.0909841\pi\)
−0.999599 + 0.0283205i \(0.990984\pi\)
\(434\) 0.302982 + 0.170642i 0.0145436 + 0.00819110i
\(435\) −0.538582 + 1.52412i −0.0258231 + 0.0730761i
\(436\) −3.85327 + 4.27949i −0.184538 + 0.204950i
\(437\) 0.386330 + 0.0202467i 0.0184807 + 0.000968530i
\(438\) 0.00175342 9.18930e-5i 8.37818e−5 4.39082e-6i
\(439\) 17.8883 19.8670i 0.853763 0.948200i −0.145389 0.989375i \(-0.546443\pi\)
0.999152 + 0.0411749i \(0.0131101\pi\)
\(440\) 0.153586 0.434629i 0.00732191 0.0207201i
\(441\) 20.5475 + 3.91121i 0.978451 + 0.186248i
\(442\) −0.0411916 0.260074i −0.00195929 0.0123704i
\(443\) 28.5150 + 7.64058i 1.35479 + 0.363015i 0.861901 0.507077i \(-0.169274\pi\)
0.492889 + 0.870092i \(0.335941\pi\)
\(444\) 1.54447 0.687643i 0.0732974 0.0326341i
\(445\) −9.41632 15.3432i −0.446376 0.727336i
\(446\) 0.382986 0.860200i 0.0181349 0.0407317i
\(447\) 0.335564 2.11867i 0.0158717 0.100210i
\(448\) 13.0886 16.5204i 0.618379 0.780517i
\(449\) 16.6858i 0.787450i 0.919228 + 0.393725i \(0.128814\pi\)
−0.919228 + 0.393725i \(0.871186\pi\)
\(450\) −0.172276 + 0.532616i −0.00812118 + 0.0251077i
\(451\) −11.4304 6.59932i −0.538235 0.310750i
\(452\) −11.0568 17.0259i −0.520067 0.800832i
\(453\) −0.357359 0.930953i −0.0167902 0.0437400i
\(454\) −0.375079 + 0.272511i −0.0176033 + 0.0127896i
\(455\) −6.63198 6.83189i −0.310912 0.320284i
\(456\) 0.000907371 0 0.000659243i 4.24915e−5 0 3.08719e-5i
\(457\) −2.74552 + 10.2464i −0.128430 + 0.479308i −0.999939 0.0110724i \(-0.996475\pi\)
0.871509 + 0.490380i \(0.163142\pi\)
\(458\) −0.516612 0.198309i −0.0241397 0.00926637i
\(459\) −2.12344 + 1.91195i −0.0991136 + 0.0892423i
\(460\) −25.0234 3.27751i −1.16672 0.152814i
\(461\) 19.5350 6.34729i 0.909833 0.295623i 0.183544 0.983012i \(-0.441243\pi\)
0.726290 + 0.687389i \(0.241243\pi\)
\(462\) −0.00370411 + 0.0144384i −0.000172331 + 0.000671736i
\(463\) −1.32037 2.59137i −0.0613628 0.120431i 0.858288 0.513168i \(-0.171528\pi\)
−0.919651 + 0.392737i \(0.871528\pi\)
\(464\) 19.6232 + 17.6688i 0.910985 + 0.820255i
\(465\) −0.447370 + 0.731129i −0.0207463 + 0.0339053i
\(466\) 0.0304258 + 0.0337912i 0.00140945 + 0.00156535i
\(467\) 4.61554 + 5.69972i 0.213582 + 0.263752i 0.872666 0.488318i \(-0.162389\pi\)
−0.659084 + 0.752069i \(0.729056\pi\)
\(468\) −6.79623 6.79623i −0.314156 0.314156i
\(469\) 22.9190 5.12776i 1.05830 0.236778i
\(470\) −0.0783497 0.592089i −0.00361400 0.0273110i
\(471\) −1.84309 0.820595i −0.0849249 0.0378110i
\(472\) 1.19839 + 0.970439i 0.0551605 + 0.0446681i
\(473\) 5.52661 3.58902i 0.254114 0.165023i
\(474\) −0.0186381 0.0322821i −0.000856077 0.00148277i
\(475\) 0.215205 0.266478i 0.00987429 0.0122269i
\(476\) 7.36903 + 21.8823i 0.337759 + 1.00297i
\(477\) −4.02332 + 7.89620i −0.184215 + 0.361542i
\(478\) 0.900174 0.345545i 0.0411730 0.0158048i
\(479\) 0.617027 + 5.87062i 0.0281927 + 0.268235i 0.999533 + 0.0305441i \(0.00972400\pi\)
−0.971341 + 0.237691i \(0.923609\pi\)
\(480\) −0.0835117 0.0712299i −0.00381177 0.00325119i
\(481\) −12.3901 1.30225i −0.564939 0.0593774i
\(482\) 0.362945 0.362945i 0.0165317 0.0165317i
\(483\) 1.63131 + 0.0680487i 0.0742271 + 0.00309632i
\(484\) 17.3097 + 5.62427i 0.786805 + 0.255649i
\(485\) −33.4912 15.9472i −1.52076 0.724126i
\(486\) 0.0228628 0.107561i 0.00103708 0.00487907i
\(487\) −0.910186 + 17.3674i −0.0412444 + 0.786991i 0.897213 + 0.441597i \(0.145588\pi\)
−0.938458 + 0.345394i \(0.887745\pi\)
\(488\) 0.950297 + 0.617130i 0.0430179 + 0.0279362i
\(489\) −0.116731 0.359261i −0.00527875 0.0162463i
\(490\) −0.473019 0.346696i −0.0213688 0.0156621i
\(491\) −1.67096 + 5.14268i −0.0754092 + 0.232086i −0.981655 0.190665i \(-0.938936\pi\)
0.906246 + 0.422751i \(0.138936\pi\)
\(492\) −1.62808 + 1.31839i −0.0733995 + 0.0594377i
\(493\) −27.9024 + 7.47643i −1.25666 + 0.336721i
\(494\) −0.00168022 0.00377385i −7.55969e−5 0.000169793i
\(495\) 8.81682 + 2.60530i 0.396286 + 0.117099i
\(496\) 8.22993 + 11.3275i 0.369535 + 0.508621i
\(497\) −6.29951 + 16.9491i −0.282572 + 0.760272i
\(498\) −0.0154794 0.00788715i −0.000693648 0.000353432i
\(499\) −2.08554 + 1.20409i −0.0933616 + 0.0539023i −0.545954 0.837815i \(-0.683833\pi\)
0.452592 + 0.891718i \(0.350499\pi\)
\(500\) −15.3490 + 16.2391i −0.686427 + 0.726233i
\(501\) 0.723867 1.25377i 0.0323400 0.0560145i
\(502\) −0.0482028 0.919765i −0.00215140 0.0410511i
\(503\) 24.0156 + 3.80370i 1.07080 + 0.169599i 0.666859 0.745184i \(-0.267638\pi\)
0.403946 + 0.914783i \(0.367638\pi\)
\(504\) −0.965593 0.685924i −0.0430109 0.0305535i
\(505\) 6.39244 6.07426i 0.284460 0.270301i
\(506\) 0.0304328 0.289549i 0.00135290 0.0128720i
\(507\) 0.294423 + 1.09880i 0.0130758 + 0.0487995i
\(508\) −15.1568 + 39.4848i −0.672474 + 1.75185i
\(509\) −17.7343 + 3.76954i −0.786058 + 0.167082i −0.583419 0.812172i \(-0.698285\pi\)
−0.202639 + 0.979253i \(0.564952\pi\)
\(510\) 0.0383247 0.0113800i 0.00169705 0.000503913i
\(511\) 1.04136 + 0.450390i 0.0460668 + 0.0199241i
\(512\) −2.66325 + 1.35700i −0.117700 + 0.0599713i
\(513\) −0.0244148 + 0.0375954i −0.00107794 + 0.00165988i
\(514\) 0.750870 + 0.159602i 0.0331194 + 0.00703976i
\(515\) −17.1188 + 1.35871i −0.754346 + 0.0598719i
\(516\) −0.217465 1.02309i −0.00957338 0.0450392i
\(517\) −9.68824 + 1.53447i −0.426088 + 0.0674858i
\(518\) −0.765840 + 0.0483347i −0.0336491 + 0.00212371i
\(519\) −0.651886 + 0.897245i −0.0286146 + 0.0393847i
\(520\) 0.180315 + 0.508122i 0.00790733 + 0.0222826i
\(521\) 15.4005 1.61866i 0.674708 0.0709147i 0.239023 0.971014i \(-0.423173\pi\)
0.435685 + 0.900099i \(0.356506\pi\)
\(522\) 0.466095 0.575580i 0.0204004 0.0251924i
\(523\) −19.7096 + 1.03294i −0.861843 + 0.0451673i −0.478134 0.878287i \(-0.658687\pi\)
−0.383709 + 0.923454i \(0.625353\pi\)
\(524\) 3.48022 0.152034
\(525\) 0.896213 1.13429i 0.0391140 0.0495044i
\(526\) −0.477293 −0.0208110
\(527\) −15.2962 + 0.801639i −0.666312 + 0.0349199i
\(528\) −0.377717 + 0.466442i −0.0164380 + 0.0202993i
\(529\) −8.84171 + 0.929301i −0.384422 + 0.0404044i
\(530\) 0.197034 0.151397i 0.00855860 0.00657627i
\(531\) −18.0774 + 24.8813i −0.784490 + 1.07976i
\(532\) 0.200521 + 0.301679i 0.00869368 + 0.0130794i
\(533\) 15.2476 2.41499i 0.660448 0.104605i
\(534\) −0.00685356 0.0322435i −0.000296582 0.00139531i
\(535\) 20.5824 + 12.5942i 0.889857 + 0.544493i
\(536\) −1.30085 0.276503i −0.0561880 0.0119431i
\(537\) 0.537107 0.827073i 0.0231779 0.0356908i
\(538\) −0.663472 + 0.338056i −0.0286043 + 0.0145746i
\(539\) −5.49395 + 7.91143i −0.236641 + 0.340770i
\(540\) 1.77870 2.32123i 0.0765429 0.0998898i
\(541\) 26.7198 5.67947i 1.14877 0.244179i 0.406098 0.913830i \(-0.366889\pi\)
0.742677 + 0.669650i \(0.233556\pi\)
\(542\) −0.108404 + 0.282403i −0.00465636 + 0.0121302i
\(543\) −0.448267 1.67295i −0.0192370 0.0717933i
\(544\) 0.205030 1.95073i 0.00879058 0.0836368i
\(545\) 2.77758 + 5.81339i 0.118978 + 0.249018i
\(546\) −0.00726086 0.0158508i −0.000310736 0.000678352i
\(547\) 10.0134 + 1.58597i 0.428143 + 0.0678111i 0.366787 0.930305i \(-0.380458\pi\)
0.0613554 + 0.998116i \(0.480458\pi\)
\(548\) −0.666236 12.7125i −0.0284602 0.543053i
\(549\) −11.2995 + 19.5712i −0.482249 + 0.835280i
\(550\) −0.191796 0.172233i −0.00817820 0.00734406i
\(551\) −0.392470 + 0.226593i −0.0167198 + 0.00965317i
\(552\) −0.0823786 0.0419740i −0.00350627 0.00178653i
\(553\) −4.02168 23.7490i −0.171019 1.00991i
\(554\) −0.0891673 0.122728i −0.00378836 0.00521423i
\(555\) −0.0507687 1.89083i −0.00215501 0.0802614i
\(556\) 17.5128 + 39.3343i 0.742706 + 1.66815i
\(557\) −0.335189 + 0.0898136i −0.0142024 + 0.00380552i −0.265913 0.963997i \(-0.585673\pi\)
0.251711 + 0.967802i \(0.419007\pi\)
\(558\) 0.305201 0.247147i 0.0129202 0.0104626i
\(559\) −2.38179 + 7.33039i −0.100739 + 0.310042i
\(560\) −11.5023 20.6238i −0.486062 0.871514i
\(561\) −0.202898 0.624456i −0.00856637 0.0263646i
\(562\) −0.0403364 0.0261948i −0.00170149 0.00110496i
\(563\) −0.792034 + 15.1129i −0.0333803 + 0.636933i 0.929798 + 0.368070i \(0.119981\pi\)
−0.963178 + 0.268863i \(0.913352\pi\)
\(564\) −0.323704 + 1.52291i −0.0136304 + 0.0641259i
\(565\) −22.3302 + 4.15398i −0.939437 + 0.174759i
\(566\) 0.0111585 + 0.00362563i 0.000469029 + 0.000152397i
\(567\) 12.6029 19.8677i 0.529271 0.834363i
\(568\) 0.724020 0.724020i 0.0303792 0.0303792i
\(569\) −8.99190 0.945086i −0.376960 0.0396201i −0.0858458 0.996308i \(-0.527359\pi\)
−0.291114 + 0.956688i \(0.594026\pi\)
\(570\) 0.000534557 0 0.000328065i 2.23901e−5 0 1.37411e-5i
\(571\) −1.93251 18.3867i −0.0808732 0.769457i −0.957529 0.288338i \(-0.906897\pi\)
0.876655 0.481119i \(-0.159769\pi\)
\(572\) 4.13201 1.58613i 0.172768 0.0663194i
\(573\) −1.11061 + 2.17969i −0.0463963 + 0.0910579i
\(574\) 0.901151 0.303469i 0.0376133 0.0126666i
\(575\) −14.0854 + 24.4716i −0.587403 + 1.02054i
\(576\) −11.9019 20.6147i −0.495914 0.858947i
\(577\) −22.1789 + 14.4031i −0.923318 + 0.599610i −0.916355 0.400366i \(-0.868883\pi\)
−0.00696286 + 0.999976i \(0.502216\pi\)
\(578\) 0.0601994 + 0.0487485i 0.00250397 + 0.00202767i
\(579\) 1.21587 + 0.541341i 0.0505299 + 0.0224974i
\(580\) 26.6755 12.7453i 1.10764 0.529220i
\(581\) −7.60026 8.26194i −0.315312 0.342763i
\(582\) −0.0480288 0.0480288i −0.00199086 0.00199086i
\(583\) −2.56824 3.17151i −0.106366 0.131351i
\(584\) −0.0429899 0.0477451i −0.00177893 0.00197571i
\(585\) −9.93205 + 4.12171i −0.410640 + 0.170412i
\(586\) 0.549060 + 0.494376i 0.0226815 + 0.0204225i
\(587\) 8.79450 + 17.2602i 0.362988 + 0.712404i 0.998202 0.0599321i \(-0.0190884\pi\)
−0.635215 + 0.772336i \(0.719088\pi\)
\(588\) 0.859827 + 1.26412i 0.0354587 + 0.0521314i
\(589\) −0.228540 + 0.0742572i −0.00941683 + 0.00305971i
\(590\) 0.757558 0.411971i 0.0311882 0.0169606i
\(591\) 1.08372 0.975787i 0.0445783 0.0401385i
\(592\) −28.8461 11.0730i −1.18557 0.455097i
\(593\) 10.6910 39.8994i 0.439027 1.63847i −0.292215 0.956353i \(-0.594392\pi\)
0.731242 0.682118i \(-0.238941\pi\)
\(594\) 0.0272933 + 0.0198297i 0.00111986 + 0.000813623i
\(595\) 25.7750 + 1.73486i 1.05667 + 0.0711222i
\(596\) −31.7389 + 23.0597i −1.30008 + 0.944560i
\(597\) −0.718205 1.87099i −0.0293942 0.0765744i
\(598\) 0.185468 + 0.285596i 0.00758436 + 0.0116789i
\(599\) −2.44181 1.40978i −0.0997698 0.0576021i 0.449285 0.893389i \(-0.351679\pi\)
−0.549055 + 0.835786i \(0.685012\pi\)
\(600\) −0.0728887 + 0.0372606i −0.00297567 + 0.00152116i
\(601\) 33.6982i 1.37458i −0.726384 0.687289i \(-0.758801\pi\)
0.726384 0.687289i \(-0.241199\pi\)
\(602\) −0.0692596 + 0.469668i −0.00282281 + 0.0191422i
\(603\) 4.14929 26.1976i 0.168972 1.06685i
\(604\) −7.41788 + 16.6608i −0.301829 + 0.677920i
\(605\) 13.2145 15.4930i 0.537245 0.629879i
\(606\) 0.0147509 0.00656754i 0.000599215 0.000266788i
\(607\) 32.6488 + 8.74821i 1.32517 + 0.355079i 0.850913 0.525306i \(-0.176049\pi\)
0.474259 + 0.880385i \(0.342716\pi\)
\(608\) −0.00481385 0.0303934i −0.000195227 0.00123262i
\(609\) −1.64611 + 0.973944i −0.0667036 + 0.0394662i
\(610\) 0.521964 0.359246i 0.0211337 0.0145455i
\(611\) 7.67696 8.52613i 0.310577 0.344930i
\(612\) 26.0414 + 1.36477i 1.05266 + 0.0551676i
\(613\) 5.90313 + 0.309370i 0.238425 + 0.0124953i 0.171174 0.985241i \(-0.445244\pi\)
0.0672508 + 0.997736i \(0.478577\pi\)
\(614\) 0.522769 0.580594i 0.0210973 0.0234309i
\(615\) 0.667185 + 2.24690i 0.0269035 + 0.0906039i
\(616\) 0.469414 0.277736i 0.0189132 0.0111903i
\(617\) −0.740149 4.67312i −0.0297973 0.188133i 0.968300 0.249790i \(-0.0803615\pi\)
−0.998097 + 0.0616571i \(0.980361\pi\)
\(618\) −0.0303733 0.00813851i −0.00122180 0.000327379i
\(619\) −0.987941 + 0.439860i −0.0397087 + 0.0176795i −0.426495 0.904490i \(-0.640252\pi\)
0.386786 + 0.922169i \(0.373585\pi\)
\(620\) 15.2407 3.66967i 0.612081 0.147377i
\(621\) 1.50302 3.37583i 0.0603140 0.135467i
\(622\) −0.0502765 + 0.317433i −0.00201590 + 0.0127279i
\(623\) 3.10747 21.0726i 0.124498 0.844257i
\(624\) 0.702018i 0.0281032i
\(625\) 10.2290 + 22.8116i 0.409160 + 0.912463i
\(626\) −0.789090 0.455581i −0.0315384 0.0182087i
\(627\) −0.00561025 0.00863903i −0.000224052 0.000345010i
\(628\) 13.2232 + 34.4475i 0.527661 + 1.37460i
\(629\) 27.3460 19.8680i 1.09036 0.792191i
\(630\) −0.560784 + 0.352453i −0.0223422 + 0.0140421i
\(631\) −17.6839 12.8481i −0.703983 0.511474i 0.177244 0.984167i \(-0.443282\pi\)
−0.881227 + 0.472693i \(0.843282\pi\)
\(632\) −0.353022 + 1.31749i −0.0140424 + 0.0524071i
\(633\) −0.972685 0.373379i −0.0386608 0.0148405i
\(634\) 0.127410 0.114721i 0.00506012 0.00455615i
\(635\) 34.3458 + 32.5497i 1.36297 + 1.29169i
\(636\) −0.616047 + 0.200166i −0.0244279 + 0.00793709i
\(637\) −0.829543 11.2353i −0.0328677 0.445161i
\(638\) 0.154838 + 0.303886i 0.00613008 + 0.0120310i
\(639\) 15.1760 + 13.6646i 0.600355 + 0.540562i
\(640\) 0.211750 + 2.66791i 0.00837015 + 0.105458i
\(641\) −14.7391 16.3694i −0.582159 0.646553i 0.378066 0.925779i \(-0.376589\pi\)
−0.960226 + 0.279225i \(0.909922\pi\)
\(642\) 0.0278059 + 0.0343375i 0.00109741 + 0.00135519i
\(643\) 7.57933 + 7.57933i 0.298899 + 0.298899i 0.840583 0.541683i \(-0.182213\pi\)
−0.541683 + 0.840583i \(0.682213\pi\)
\(644\) −20.2165 21.9766i −0.796643 0.865999i
\(645\) −1.15078 0.212494i −0.0453117 0.00836694i
\(646\) 0.0102391 + 0.00455874i 0.000402852 + 0.000179361i
\(647\) −26.9950 21.8601i −1.06128 0.859410i −0.0708609 0.997486i \(-0.522575\pi\)
−0.990422 + 0.138077i \(0.955908\pi\)
\(648\) −1.11736 + 0.725621i −0.0438940 + 0.0285051i
\(649\) −7.08130 12.2652i −0.277965 0.481450i
\(650\) 0.301117 + 0.0153802i 0.0118108 + 0.000603262i
\(651\) −0.961146 + 0.323673i −0.0376703 + 0.0126857i
\(652\) −3.13647 + 6.15566i −0.122834 + 0.241074i
\(653\) −15.4967 + 5.94863i −0.606433 + 0.232788i −0.642156 0.766574i \(-0.721960\pi\)
0.0357231 + 0.999362i \(0.488627\pi\)
\(654\) 0.00123317 + 0.0117329i 4.82209e−5 + 0.000458791i
\(655\) 1.48768 3.59833i 0.0581285 0.140598i
\(656\) 38.0779 + 4.00215i 1.48669 + 0.156258i
\(657\) 0.906067 0.906067i 0.0353490 0.0353490i
\(658\) 0.378538 0.596741i 0.0147569 0.0232634i
\(659\) −23.7349 7.71192i −0.924579 0.300414i −0.192235 0.981349i \(-0.561574\pi\)
−0.732344 + 0.680935i \(0.761574\pi\)
\(660\) 0.321036 + 0.590340i 0.0124963 + 0.0229789i
\(661\) −0.637712 + 3.00020i −0.0248041 + 0.116694i −0.988808 0.149194i \(-0.952332\pi\)
0.964004 + 0.265889i \(0.0856653\pi\)
\(662\) 0.00465979 0.0889140i 0.000181108 0.00345574i
\(663\) 0.644081 + 0.418271i 0.0250140 + 0.0162443i
\(664\) 0.196439 + 0.604578i 0.00762333 + 0.0234622i
\(665\) 0.397633 0.0783683i 0.0154195 0.00303899i
\(666\) −0.267808 + 0.824229i −0.0103774 + 0.0319382i
\(667\) 29.0325 23.5101i 1.12414 0.910314i
\(668\) −25.5754 + 6.85292i −0.989543 + 0.265147i
\(669\) 1.11701 + 2.50884i 0.0431859 + 0.0969972i
\(670\) −0.420831 + 0.613184i −0.0162581 + 0.0236894i
\(671\) −6.11692 8.41922i −0.236141 0.325020i
\(672\) −0.0216841 0.128050i −0.000836484 0.00493965i
\(673\) 8.48294 + 4.32228i 0.326993 + 0.166611i 0.609779 0.792572i \(-0.291258\pi\)
−0.282785 + 0.959183i \(0.591258\pi\)
\(674\) −0.693099 + 0.400161i −0.0266972 + 0.0154136i
\(675\) −1.63967 2.83131i −0.0631110 0.108977i
\(676\) 10.4025 18.0176i 0.400095 0.692985i
\(677\) −0.545808 10.4146i −0.0209771 0.400267i −0.988858 0.148859i \(-0.952440\pi\)
0.967881 0.251408i \(-0.0808935\pi\)
\(678\) −0.0410781 0.00650613i −0.00157760 0.000249867i
\(679\) −18.2786 39.9031i −0.701469 1.53134i
\(680\) −1.28604 0.697159i −0.0493174 0.0267348i
\(681\) 0.141342 1.34478i 0.00541625 0.0515322i
\(682\) 0.0468065 + 0.174684i 0.00179231 + 0.00668901i
\(683\) 3.42318 8.91768i 0.130984 0.341226i −0.852366 0.522946i \(-0.824833\pi\)
0.983350 + 0.181720i \(0.0581664\pi\)
\(684\) 0.400168 0.0850583i 0.0153008 0.00325228i
\(685\) −13.4288 4.74536i −0.513087 0.181311i
\(686\) −0.165923 0.673790i −0.00633497 0.0257254i
\(687\) 1.43803 0.732711i 0.0548641 0.0279546i
\(688\) −10.4113 + 16.0320i −0.396927 + 0.611215i
\(689\) 4.66898 + 0.992421i 0.177874 + 0.0378082i
\(690\) −0.0392926 + 0.0336041i −0.00149584 + 0.00127929i
\(691\) 4.86605 + 22.8929i 0.185113 + 0.870889i 0.968434 + 0.249271i \(0.0801910\pi\)
−0.783321 + 0.621618i \(0.786476\pi\)
\(692\) 20.0338 3.17305i 0.761572 0.120621i
\(693\) 6.02165 + 9.05942i 0.228744 + 0.344139i
\(694\) −0.577980 + 0.795521i −0.0219398 + 0.0301976i
\(695\) 48.1554 1.29297i 1.82664 0.0490450i
\(696\) 0.107713 0.0113211i 0.00408287 0.000429127i
\(697\) −26.3592 + 32.5508i −0.998424 + 1.23295i
\(698\) 0.625429 0.0327774i 0.0236728 0.00124064i
\(699\) −0.132618 −0.00501608
\(700\) −26.2591 + 3.07886i −0.992499 + 0.116370i
\(701\) 24.9909 0.943892 0.471946 0.881628i \(-0.343552\pi\)
0.471946 + 0.881628i \(0.343552\pi\)
\(702\) −0.0394054 + 0.00206515i −0.00148726 + 7.79440e-5i
\(703\) 0.333723 0.412113i 0.0125866 0.0155431i
\(704\) 10.9015 1.14580i 0.410867 0.0431839i
\(705\) 1.43622 + 0.985683i 0.0540911 + 0.0371230i
\(706\) −0.634328 + 0.873078i −0.0238733 + 0.0328587i
\(707\) 10.4131 0.657204i 0.391624 0.0247167i
\(708\) −2.22027 + 0.351657i −0.0834430 + 0.0132161i
\(709\) −10.0976 47.5054i −0.379223 1.78410i −0.590881 0.806759i \(-0.701220\pi\)
0.211658 0.977344i \(-0.432114\pi\)
\(710\) −0.219471 0.528858i −0.00823661 0.0198477i
\(711\) −26.6090 5.65593i −0.997917 0.212114i
\(712\) −0.656930 + 1.01158i −0.0246195 + 0.0379107i
\(713\) 17.6500 8.99310i 0.660996 0.336794i
\(714\) 0.0434165 + 0.0187778i 0.00162482 + 0.000702741i
\(715\) 0.126340 4.95026i 0.00472487 0.185129i
\(716\) −17.6420 + 3.74992i −0.659312 + 0.140141i
\(717\) −1.00781 + 2.62542i −0.0376372 + 0.0980482i
\(718\) −0.0435259 0.162441i −0.00162437 0.00606224i
\(719\) −0.622106 + 5.91894i −0.0232006 + 0.220739i 0.976778 + 0.214252i \(0.0687315\pi\)
−0.999979 + 0.00648680i \(0.997935\pi\)
\(720\) −26.4393 + 3.49864i −0.985333 + 0.130387i
\(721\) −16.5649 11.7671i −0.616909 0.438231i
\(722\) −0.702956 0.111337i −0.0261613 0.00414354i
\(723\) 0.0783480 + 1.49497i 0.00291379 + 0.0555985i
\(724\) −15.8380 + 27.4323i −0.588615 + 1.01951i
\(725\) −1.77493 33.0290i −0.0659193 1.22667i
\(726\) 0.0322913 0.0186434i 0.00119844 0.000691921i
\(727\) 9.26956 + 4.72308i 0.343789 + 0.175169i 0.617356 0.786684i \(-0.288204\pi\)
−0.273567 + 0.961853i \(0.588204\pi\)
\(728\) −0.222253 + 0.597984i −0.00823726 + 0.0221628i
\(729\) −15.4924 21.3235i −0.573793 0.789759i
\(730\) −0.0338592 + 0.0120155i −0.00125319 + 0.000444713i
\(731\) −8.50572 19.1042i −0.314595 0.706593i
\(732\) −1.59552 + 0.427518i −0.0589720 + 0.0158015i
\(733\) 29.7961 24.1284i 1.10054 0.891202i 0.105880 0.994379i \(-0.466234\pi\)
0.994663 + 0.103177i \(0.0329007\pi\)
\(734\) 0.379860 1.16909i 0.0140209 0.0431519i
\(735\) 1.67457 0.348637i 0.0617675 0.0128597i
\(736\) 0.783879 + 2.41253i 0.0288942 + 0.0889271i
\(737\) 10.2438 + 6.65238i 0.377334 + 0.245043i
\(738\) 0.0562037 1.07243i 0.00206889 0.0394767i
\(739\) 6.02962 28.3671i 0.221803 1.04350i −0.716473 0.697615i \(-0.754245\pi\)
0.938276 0.345887i \(-0.112422\pi\)
\(740\) −23.7963 + 25.1094i −0.874768 + 0.923039i
\(741\) 0.0114586 + 0.00372314i 0.000420944 + 0.000136773i
\(742\) 0.293752 + 0.0122536i 0.0107840 + 0.000449845i
\(743\) −26.0302 + 26.0302i −0.954956 + 0.954956i −0.999028 0.0440723i \(-0.985967\pi\)
0.0440723 + 0.999028i \(0.485967\pi\)
\(744\) 0.0571151 + 0.00600303i 0.00209394 + 0.000220082i
\(745\) 10.2749 + 42.6733i 0.376443 + 1.56343i
\(746\) 0.147768 + 1.40592i 0.00541018 + 0.0514744i
\(747\) −11.8364 + 4.54355i −0.433069 + 0.166240i
\(748\) −5.45172 + 10.6996i −0.199335 + 0.391216i
\(749\) 9.11191 + 27.0578i 0.332942 + 0.988669i
\(750\) 0.00368248 + 0.0456290i 0.000134465 + 0.00166614i
\(751\) 3.63171 + 6.29030i 0.132523 + 0.229536i 0.924648 0.380822i \(-0.124359\pi\)
−0.792126 + 0.610358i \(0.791026\pi\)
\(752\) 23.8641 15.4975i 0.870235 0.565137i
\(753\) 2.08760 + 1.69051i 0.0760764 + 0.0616055i
\(754\) −0.364429 0.162254i −0.0132717 0.00590895i
\(755\) 14.0554 + 14.7916i 0.511527 + 0.538322i
\(756\) 3.37667 0.755476i 0.122808 0.0274764i
\(757\) −19.0809 19.0809i −0.693507 0.693507i 0.269495 0.963002i \(-0.413143\pi\)
−0.963002 + 0.269495i \(0.913143\pi\)
\(758\) 0.0900982 + 0.111262i 0.00327252 + 0.00404122i
\(759\) 0.568187 + 0.631035i 0.0206239 + 0.0229051i
\(760\) −0.0223192 0.00534270i −0.000809602 0.000193800i
\(761\) 4.12455 + 3.71376i 0.149515 + 0.134624i 0.740494 0.672063i \(-0.234592\pi\)
−0.590979 + 0.806687i \(0.701258\pi\)
\(762\) 0.0393365 + 0.0772023i 0.00142501 + 0.00279674i
\(763\) −1.89438 + 7.38417i −0.0685810 + 0.267325i
\(764\) 42.5511 13.8257i 1.53944 0.500196i