Properties

Label 175.2.x.a.17.6
Level $175$
Weight $2$
Character 175.17
Analytic conductor $1.397$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(3,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([21, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.x (of order \(60\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 17.6
Character \(\chi\) \(=\) 175.17
Dual form 175.2.x.a.103.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22592 + 0.0642475i) q^{2} +(0.158411 - 0.195621i) q^{3} +(-0.490303 + 0.0515330i) q^{4} +(-2.14702 - 0.624757i) q^{5} +(-0.181630 + 0.249992i) q^{6} +(2.13484 + 1.56284i) q^{7} +(3.02273 - 0.478753i) q^{8} +(0.610561 + 2.87247i) q^{9} +O(q^{10})\) \(q+(-1.22592 + 0.0642475i) q^{2} +(0.158411 - 0.195621i) q^{3} +(-0.490303 + 0.0515330i) q^{4} +(-2.14702 - 0.624757i) q^{5} +(-0.181630 + 0.249992i) q^{6} +(2.13484 + 1.56284i) q^{7} +(3.02273 - 0.478753i) q^{8} +(0.610561 + 2.87247i) q^{9} +(2.67220 + 0.627958i) q^{10} +(6.21946 + 1.32199i) q^{11} +(-0.0675884 + 0.104077i) q^{12} +(-3.08865 + 1.57374i) q^{13} +(-2.71754 - 1.77875i) q^{14} +(-0.462326 + 0.321033i) q^{15} +(-2.71039 + 0.576111i) q^{16} +(1.38605 - 3.61079i) q^{17} +(-0.933045 - 3.48217i) q^{18} +(-0.630632 + 6.00007i) q^{19} +(1.08488 + 0.195678i) q^{20} +(0.643905 - 0.170048i) q^{21} +(-7.70946 - 1.22106i) q^{22} +(-0.0931944 - 1.77825i) q^{23} +(0.385178 - 0.667148i) q^{24} +(4.21936 + 2.68272i) q^{25} +(3.68531 - 2.12772i) q^{26} +(1.33148 + 0.678422i) q^{27} +(-1.12726 - 0.656251i) q^{28} +(1.19010 + 1.63804i) q^{29} +(0.546147 - 0.423263i) q^{30} +(0.613319 + 1.37754i) q^{31} +(-2.62656 + 0.703784i) q^{32} +(1.24384 - 1.00724i) q^{33} +(-1.46720 + 4.51558i) q^{34} +(-3.60714 - 4.68920i) q^{35} +(-0.447387 - 1.37692i) q^{36} +(-6.46577 - 4.19892i) q^{37} +(0.387613 - 7.39609i) q^{38} +(-0.181418 + 0.853502i) q^{39} +(-6.78895 - 0.860578i) q^{40} +(2.44960 + 0.795924i) q^{41} +(-0.778448 + 0.249834i) q^{42} +(4.23024 - 4.23024i) q^{43} +(-3.11755 - 0.327667i) q^{44} +(0.483706 - 6.54868i) q^{45} +(0.228497 + 2.17400i) q^{46} +(-2.45246 + 0.941409i) q^{47} +(-0.316655 + 0.621471i) q^{48} +(2.11506 + 6.67282i) q^{49} +(-5.34493 - 3.01771i) q^{50} +(-0.486781 - 0.843129i) q^{51} +(1.43327 - 0.930780i) q^{52} +(2.37094 + 1.91995i) q^{53} +(-1.67587 - 0.746144i) q^{54} +(-12.5274 - 6.72397i) q^{55} +(7.20125 + 3.70198i) q^{56} +(1.07384 + 1.07384i) q^{57} +(-1.56421 - 1.93163i) q^{58} +(-8.64305 - 9.59907i) q^{59} +(0.210136 - 0.181229i) q^{60} +(-0.0639241 - 0.0575575i) q^{61} +(-0.840380 - 1.64934i) q^{62} +(-3.18575 + 7.08646i) q^{63} +(8.44536 - 2.74406i) q^{64} +(7.61459 - 1.44920i) q^{65} +(-1.46013 + 1.31470i) q^{66} +(-1.23771 - 0.475111i) q^{67} +(-0.493512 + 1.84181i) q^{68} +(-0.362627 - 0.263464i) q^{69} +(4.72331 + 5.51681i) q^{70} +(1.14755 - 0.833741i) q^{71} +(3.22076 + 8.39037i) q^{72} +(7.23837 + 11.1461i) q^{73} +(8.19625 + 4.73211i) q^{74} +(1.19319 - 0.400423i) q^{75} -2.97435i q^{76} +(11.2115 + 12.5422i) q^{77} +(0.167567 - 1.05798i) q^{78} +(1.79663 - 4.03530i) q^{79} +(6.17917 + 0.456413i) q^{80} +(-7.70462 + 3.43032i) q^{81} +(-3.05414 - 0.818354i) q^{82} +(0.0358492 + 0.226343i) q^{83} +(-0.306946 + 0.116558i) q^{84} +(-5.23175 + 6.88648i) q^{85} +(-4.91413 + 5.45770i) q^{86} +(0.508959 + 0.0266734i) q^{87} +(19.4326 + 1.01842i) q^{88} +(8.63680 - 9.59214i) q^{89} +(-0.172246 + 8.05921i) q^{90} +(-9.05327 - 1.46737i) q^{91} +(0.137332 + 0.867081i) q^{92} +(0.366631 + 0.0982386i) q^{93} +(2.94602 - 1.31165i) q^{94} +(5.10256 - 12.4883i) q^{95} +(-0.278400 + 0.625297i) q^{96} +(0.0559772 - 0.353426i) q^{97} +(-3.02160 - 8.04442i) q^{98} +18.6723i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9} - 36 q^{10} - 6 q^{11} - 36 q^{12} - 20 q^{14} - 28 q^{15} - 30 q^{16} - 42 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} + 32 q^{22} - 40 q^{23} + 2 q^{25} - 48 q^{26} + 22 q^{28} - 58 q^{30} - 18 q^{31} + 8 q^{32} - 30 q^{33} - 2 q^{35} + 40 q^{36} - 10 q^{37} + 72 q^{38} + 30 q^{39} - 48 q^{40} + 6 q^{42} - 108 q^{43} - 10 q^{44} + 186 q^{45} - 6 q^{46} - 54 q^{47} - 248 q^{50} - 16 q^{51} + 216 q^{52} + 50 q^{53} - 30 q^{54} + 4 q^{56} - 216 q^{57} - 4 q^{58} + 90 q^{59} + 96 q^{60} - 18 q^{61} - 66 q^{63} - 100 q^{64} + 14 q^{65} - 90 q^{66} + 4 q^{67} + 342 q^{68} - 60 q^{70} - 24 q^{71} + 58 q^{72} - 6 q^{73} + 216 q^{75} - 80 q^{77} - 132 q^{78} - 10 q^{79} - 6 q^{80} - 10 q^{81} + 216 q^{82} + 20 q^{84} - 48 q^{85} - 6 q^{86} - 48 q^{87} - 122 q^{88} + 120 q^{89} - 12 q^{91} - 4 q^{92} + 106 q^{93} - 30 q^{94} - 98 q^{95} - 90 q^{96} + 222 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22592 + 0.0642475i −0.866853 + 0.0454298i −0.480576 0.876953i \(-0.659572\pi\)
−0.386277 + 0.922383i \(0.626239\pi\)
\(3\) 0.158411 0.195621i 0.0914585 0.112942i −0.729362 0.684128i \(-0.760183\pi\)
0.820821 + 0.571186i \(0.193516\pi\)
\(4\) −0.490303 + 0.0515330i −0.245152 + 0.0257665i
\(5\) −2.14702 0.624757i −0.960175 0.279400i
\(6\) −0.181630 + 0.249992i −0.0741501 + 0.102059i
\(7\) 2.13484 + 1.56284i 0.806893 + 0.590698i
\(8\) 3.02273 0.478753i 1.06870 0.169265i
\(9\) 0.610561 + 2.87247i 0.203520 + 0.957489i
\(10\) 2.67220 + 0.627958i 0.845024 + 0.198578i
\(11\) 6.21946 + 1.32199i 1.87524 + 0.398594i 0.996847 0.0793499i \(-0.0252844\pi\)
0.878390 + 0.477944i \(0.158618\pi\)
\(12\) −0.0675884 + 0.104077i −0.0195111 + 0.0300444i
\(13\) −3.08865 + 1.57374i −0.856637 + 0.436478i −0.826413 0.563065i \(-0.809622\pi\)
−0.0302242 + 0.999543i \(0.509622\pi\)
\(14\) −2.71754 1.77875i −0.726293 0.475391i
\(15\) −0.462326 + 0.321033i −0.119372 + 0.0828904i
\(16\) −2.71039 + 0.576111i −0.677597 + 0.144028i
\(17\) 1.38605 3.61079i 0.336167 0.875746i −0.656440 0.754378i \(-0.727939\pi\)
0.992608 0.121368i \(-0.0387281\pi\)
\(18\) −0.933045 3.48217i −0.219921 0.820756i
\(19\) −0.630632 + 6.00007i −0.144677 + 1.37651i 0.645560 + 0.763709i \(0.276624\pi\)
−0.790237 + 0.612801i \(0.790043\pi\)
\(20\) 1.08488 + 0.195678i 0.242588 + 0.0437550i
\(21\) 0.643905 0.170048i 0.140512 0.0371076i
\(22\) −7.70946 1.22106i −1.64366 0.260331i
\(23\) −0.0931944 1.77825i −0.0194324 0.370792i −0.990985 0.133970i \(-0.957228\pi\)
0.971553 0.236822i \(-0.0761058\pi\)
\(24\) 0.385178 0.667148i 0.0786242 0.136181i
\(25\) 4.21936 + 2.68272i 0.843872 + 0.536545i
\(26\) 3.68531 2.12772i 0.722749 0.417279i
\(27\) 1.33148 + 0.678422i 0.256243 + 0.130562i
\(28\) −1.12726 0.656251i −0.213031 0.124020i
\(29\) 1.19010 + 1.63804i 0.220997 + 0.304176i 0.905091 0.425218i \(-0.139802\pi\)
−0.684095 + 0.729393i \(0.739802\pi\)
\(30\) 0.546147 0.423263i 0.0997123 0.0772769i
\(31\) 0.613319 + 1.37754i 0.110155 + 0.247413i 0.960209 0.279284i \(-0.0900970\pi\)
−0.850053 + 0.526697i \(0.823430\pi\)
\(32\) −2.62656 + 0.703784i −0.464314 + 0.124413i
\(33\) 1.24384 1.00724i 0.216524 0.175338i
\(34\) −1.46720 + 4.51558i −0.251623 + 0.774415i
\(35\) −3.60714 4.68920i −0.609717 0.792619i
\(36\) −0.447387 1.37692i −0.0745645 0.229486i
\(37\) −6.46577 4.19892i −1.06297 0.690298i −0.110171 0.993913i \(-0.535140\pi\)
−0.952795 + 0.303615i \(0.901806\pi\)
\(38\) 0.387613 7.39609i 0.0628791 1.19980i
\(39\) −0.181418 + 0.853502i −0.0290501 + 0.136670i
\(40\) −6.78895 0.860578i −1.07343 0.136069i
\(41\) 2.44960 + 0.795924i 0.382563 + 0.124302i 0.493984 0.869471i \(-0.335540\pi\)
−0.111421 + 0.993773i \(0.535540\pi\)
\(42\) −0.778448 + 0.249834i −0.120117 + 0.0385503i
\(43\) 4.23024 4.23024i 0.645106 0.645106i −0.306701 0.951806i \(-0.599225\pi\)
0.951806 + 0.306701i \(0.0992250\pi\)
\(44\) −3.11755 0.327667i −0.469988 0.0493977i
\(45\) 0.483706 6.54868i 0.0721067 0.976220i
\(46\) 0.228497 + 2.17400i 0.0336900 + 0.320539i
\(47\) −2.45246 + 0.941409i −0.357727 + 0.137319i −0.530593 0.847627i \(-0.678031\pi\)
0.172866 + 0.984945i \(0.444697\pi\)
\(48\) −0.316655 + 0.621471i −0.0457052 + 0.0897016i
\(49\) 2.11506 + 6.67282i 0.302152 + 0.953260i
\(50\) −5.34493 3.01771i −0.755888 0.426769i
\(51\) −0.486781 0.843129i −0.0681630 0.118062i
\(52\) 1.43327 0.930780i 0.198759 0.129076i
\(53\) 2.37094 + 1.91995i 0.325674 + 0.263726i 0.778188 0.628032i \(-0.216139\pi\)
−0.452514 + 0.891758i \(0.649473\pi\)
\(54\) −1.67587 0.746144i −0.228057 0.101537i
\(55\) −12.5274 6.72397i −1.68919 0.906660i
\(56\) 7.20125 + 3.70198i 0.962307 + 0.494698i
\(57\) 1.07384 + 1.07384i 0.142234 + 0.142234i
\(58\) −1.56421 1.93163i −0.205390 0.253636i
\(59\) −8.64305 9.59907i −1.12523 1.24969i −0.964897 0.262630i \(-0.915410\pi\)
−0.160332 0.987063i \(-0.551257\pi\)
\(60\) 0.210136 0.181229i 0.0271285 0.0233965i
\(61\) −0.0639241 0.0575575i −0.00818465 0.00736949i 0.665028 0.746818i \(-0.268420\pi\)
−0.673213 + 0.739449i \(0.735086\pi\)
\(62\) −0.840380 1.64934i −0.106728 0.209466i
\(63\) −3.18575 + 7.08646i −0.401367 + 0.892810i
\(64\) 8.44536 2.74406i 1.05567 0.343008i
\(65\) 7.61459 1.44920i 0.944473 0.179752i
\(66\) −1.46013 + 1.31470i −0.179729 + 0.161829i
\(67\) −1.23771 0.475111i −0.151210 0.0580440i 0.281586 0.959536i \(-0.409140\pi\)
−0.432796 + 0.901492i \(0.642473\pi\)
\(68\) −0.493512 + 1.84181i −0.0598471 + 0.223352i
\(69\) −0.362627 0.263464i −0.0436551 0.0317173i
\(70\) 4.72331 + 5.51681i 0.564544 + 0.659385i
\(71\) 1.14755 0.833741i 0.136189 0.0989469i −0.517605 0.855620i \(-0.673176\pi\)
0.653794 + 0.756673i \(0.273176\pi\)
\(72\) 3.22076 + 8.39037i 0.379570 + 0.988815i
\(73\) 7.23837 + 11.1461i 0.847187 + 1.30455i 0.950759 + 0.309931i \(0.100306\pi\)
−0.103572 + 0.994622i \(0.533027\pi\)
\(74\) 8.19625 + 4.73211i 0.952795 + 0.550096i
\(75\) 1.19319 0.400423i 0.137778 0.0462368i
\(76\) 2.97435i 0.341182i
\(77\) 11.2115 + 12.5422i 1.27767 + 1.42932i
\(78\) 0.167567 1.05798i 0.0189732 0.119792i
\(79\) 1.79663 4.03530i 0.202137 0.454007i −0.783824 0.620983i \(-0.786734\pi\)
0.985961 + 0.166976i \(0.0534002\pi\)
\(80\) 6.17917 + 0.456413i 0.690853 + 0.0510285i
\(81\) −7.70462 + 3.43032i −0.856069 + 0.381147i
\(82\) −3.05414 0.818354i −0.337273 0.0903721i
\(83\) 0.0358492 + 0.226343i 0.00393496 + 0.0248444i 0.989578 0.144000i \(-0.0459965\pi\)
−0.985643 + 0.168844i \(0.945996\pi\)
\(84\) −0.306946 + 0.116558i −0.0334905 + 0.0127175i
\(85\) −5.23175 + 6.88648i −0.567462 + 0.746944i
\(86\) −4.91413 + 5.45770i −0.529905 + 0.588519i
\(87\) 0.508959 + 0.0266734i 0.0545662 + 0.00285969i
\(88\) 19.4326 + 1.01842i 2.07153 + 0.108564i
\(89\) 8.63680 9.59214i 0.915499 1.01677i −0.0842940 0.996441i \(-0.526863\pi\)
0.999793 0.0203242i \(-0.00646983\pi\)
\(90\) −0.172246 + 8.05921i −0.0181564 + 0.849515i
\(91\) −9.05327 1.46737i −0.949041 0.153822i
\(92\) 0.137332 + 0.867081i 0.0143179 + 0.0903995i
\(93\) 0.366631 + 0.0982386i 0.0380179 + 0.0101869i
\(94\) 2.94602 1.31165i 0.303859 0.135287i
\(95\) 5.10256 12.4883i 0.523512 1.28127i
\(96\) −0.278400 + 0.625297i −0.0284141 + 0.0638191i
\(97\) 0.0559772 0.353426i 0.00568363 0.0358850i −0.984684 0.174351i \(-0.944217\pi\)
0.990367 + 0.138466i \(0.0442172\pi\)
\(98\) −3.02160 8.04442i −0.305228 0.812609i
\(99\) 18.6723i 1.87664i
\(100\) −2.20701 1.09791i −0.220701 0.109791i
\(101\) −3.72935 2.15314i −0.371084 0.214246i 0.302848 0.953039i \(-0.402063\pi\)
−0.673932 + 0.738793i \(0.735396\pi\)
\(102\) 0.650921 + 1.00233i 0.0644508 + 0.0992455i
\(103\) −3.88521 10.1213i −0.382822 0.997284i −0.980669 0.195674i \(-0.937310\pi\)
0.597847 0.801610i \(-0.296023\pi\)
\(104\) −8.58271 + 6.23570i −0.841604 + 0.611461i
\(105\) −1.48871 0.0371874i −0.145284 0.00362912i
\(106\) −3.02993 2.20137i −0.294293 0.213816i
\(107\) −2.57778 + 9.62039i −0.249203 + 0.930038i 0.722021 + 0.691871i \(0.243213\pi\)
−0.971224 + 0.238167i \(0.923453\pi\)
\(108\) −0.687790 0.264018i −0.0661826 0.0254051i
\(109\) −2.12717 + 1.91531i −0.203746 + 0.183454i −0.764687 0.644402i \(-0.777106\pi\)
0.560941 + 0.827856i \(0.310440\pi\)
\(110\) 15.7895 + 7.43817i 1.50547 + 0.709202i
\(111\) −1.84564 + 0.599686i −0.175181 + 0.0569197i
\(112\) −6.68661 3.00600i −0.631825 0.284040i
\(113\) −4.40329 8.64195i −0.414227 0.812966i −0.999997 0.00248866i \(-0.999208\pi\)
0.585770 0.810477i \(-0.300792\pi\)
\(114\) −1.38543 1.24745i −0.129757 0.116834i
\(115\) −0.910886 + 3.87616i −0.0849406 + 0.361454i
\(116\) −0.667924 0.741805i −0.0620152 0.0688749i
\(117\) −6.40634 7.91117i −0.592266 0.731388i
\(118\) 11.2124 + 11.2124i 1.03218 + 1.03218i
\(119\) 8.60209 5.54228i 0.788552 0.508060i
\(120\) −1.24379 + 1.19174i −0.113542 + 0.108790i
\(121\) 26.8850 + 11.9700i 2.44409 + 1.08818i
\(122\) 0.0820635 + 0.0664537i 0.00742968 + 0.00601644i
\(123\) 0.543742 0.353110i 0.0490276 0.0318389i
\(124\) −0.371701 0.643805i −0.0333797 0.0578154i
\(125\) −7.38298 8.39593i −0.660354 0.750954i
\(126\) 3.45018 8.89207i 0.307366 0.792169i
\(127\) 3.47660 6.82321i 0.308498 0.605462i −0.683753 0.729714i \(-0.739653\pi\)
0.992251 + 0.124252i \(0.0396532\pi\)
\(128\) −5.09979 + 1.95763i −0.450762 + 0.173031i
\(129\) −0.157408 1.49764i −0.0138590 0.131860i
\(130\) −9.24173 + 2.26582i −0.810553 + 0.198725i
\(131\) −8.45350 0.888499i −0.738586 0.0776285i −0.272238 0.962230i \(-0.587764\pi\)
−0.466348 + 0.884601i \(0.654430\pi\)
\(132\) −0.557951 + 0.557951i −0.0485634 + 0.0485634i
\(133\) −10.7234 + 11.8236i −0.929840 + 1.02524i
\(134\) 1.54785 + 0.502926i 0.133714 + 0.0434462i
\(135\) −2.43486 2.28843i −0.209559 0.196957i
\(136\) 2.46098 11.5780i 0.211028 0.992807i
\(137\) 0.894429 17.0667i 0.0764163 1.45811i −0.644244 0.764820i \(-0.722828\pi\)
0.720660 0.693289i \(-0.243839\pi\)
\(138\) 0.461477 + 0.299686i 0.0392835 + 0.0255110i
\(139\) −4.98856 15.3532i −0.423124 1.30224i −0.904779 0.425880i \(-0.859964\pi\)
0.481656 0.876361i \(-0.340036\pi\)
\(140\) 2.01024 + 2.11324i 0.169896 + 0.178602i
\(141\) −0.204336 + 0.628881i −0.0172082 + 0.0529613i
\(142\) −1.35323 + 1.09582i −0.113560 + 0.0919594i
\(143\) −21.2902 + 5.70469i −1.78038 + 0.477050i
\(144\) −3.30972 7.43374i −0.275810 0.619479i
\(145\) −1.53180 4.26042i −0.127209 0.353808i
\(146\) −9.58974 13.1991i −0.793652 1.09237i
\(147\) 1.64039 + 0.643295i 0.135297 + 0.0530581i
\(148\) 3.38657 + 1.72554i 0.278374 + 0.141839i
\(149\) 13.1522 7.59345i 1.07747 0.622080i 0.147260 0.989098i \(-0.452955\pi\)
0.930214 + 0.367018i \(0.119621\pi\)
\(150\) −1.43702 + 0.567543i −0.117332 + 0.0463397i
\(151\) −7.07212 + 12.2493i −0.575521 + 0.996832i 0.420464 + 0.907309i \(0.361867\pi\)
−0.995985 + 0.0895225i \(0.971466\pi\)
\(152\) 0.966320 + 18.4385i 0.0783789 + 1.49556i
\(153\) 11.2181 + 1.77678i 0.906934 + 0.143644i
\(154\) −14.5501 14.6554i −1.17248 1.18097i
\(155\) −0.456181 3.34077i −0.0366413 0.268337i
\(156\) 0.0449661 0.427824i 0.00360017 0.0342533i
\(157\) 1.19002 + 4.44121i 0.0949739 + 0.354447i 0.997015 0.0772018i \(-0.0245986\pi\)
−0.902042 + 0.431649i \(0.857932\pi\)
\(158\) −1.94326 + 5.06237i −0.154598 + 0.402740i
\(159\) 0.751166 0.159665i 0.0595713 0.0126623i
\(160\) 6.07896 + 0.129923i 0.480584 + 0.0102713i
\(161\) 2.58017 3.94193i 0.203346 0.310668i
\(162\) 9.22483 4.70028i 0.724771 0.369289i
\(163\) −5.30627 + 8.17094i −0.415619 + 0.639997i −0.983032 0.183436i \(-0.941278\pi\)
0.567412 + 0.823434i \(0.307945\pi\)
\(164\) −1.24206 0.264009i −0.0969889 0.0206156i
\(165\) −3.29982 + 1.38546i −0.256890 + 0.107858i
\(166\) −0.0584901 0.275174i −0.00453971 0.0213577i
\(167\) 17.9190 2.83810i 1.38662 0.219618i 0.581892 0.813266i \(-0.302313\pi\)
0.804725 + 0.593648i \(0.202313\pi\)
\(168\) 1.86494 0.822281i 0.143883 0.0634404i
\(169\) −0.578133 + 0.795732i −0.0444718 + 0.0612101i
\(170\) 5.97124 8.77837i 0.457973 0.673271i
\(171\) −17.6200 + 1.85194i −1.34744 + 0.141621i
\(172\) −1.85610 + 2.29210i −0.141527 + 0.174771i
\(173\) −12.5015 + 0.655177i −0.950474 + 0.0498122i −0.521267 0.853394i \(-0.674540\pi\)
−0.429207 + 0.903206i \(0.641207\pi\)
\(174\) −0.625655 −0.0474308
\(175\) 4.81498 + 12.3214i 0.363978 + 0.931408i
\(176\) −17.6187 −1.32806
\(177\) −3.24693 + 0.170164i −0.244054 + 0.0127903i
\(178\) −9.97172 + 12.3140i −0.747412 + 0.922977i
\(179\) −15.9599 + 1.67745i −1.19290 + 0.125379i −0.680092 0.733127i \(-0.738060\pi\)
−0.512805 + 0.858505i \(0.671394\pi\)
\(180\) 0.100310 + 3.23577i 0.00747668 + 0.241180i
\(181\) 8.02423 11.0444i 0.596436 0.820924i −0.398940 0.916977i \(-0.630622\pi\)
0.995376 + 0.0960528i \(0.0306218\pi\)
\(182\) 11.1928 + 1.21722i 0.829667 + 0.0902267i
\(183\) −0.0213857 + 0.00338717i −0.00158088 + 0.000250387i
\(184\) −1.13305 5.33056i −0.0835292 0.392974i
\(185\) 11.2588 + 13.0547i 0.827764 + 0.959799i
\(186\) −0.455770 0.0968770i −0.0334187 0.00710337i
\(187\) 13.3939 20.6248i 0.979460 1.50824i
\(188\) 1.15393 0.587958i 0.0841592 0.0428813i
\(189\) 1.78223 + 3.52921i 0.129638 + 0.256712i
\(190\) −5.45297 + 15.6374i −0.395600 + 1.13445i
\(191\) −1.08796 + 0.231253i −0.0787220 + 0.0167329i −0.247104 0.968989i \(-0.579479\pi\)
0.168382 + 0.985722i \(0.446146\pi\)
\(192\) 0.801039 2.08678i 0.0578100 0.150600i
\(193\) −2.73020 10.1893i −0.196524 0.733438i −0.991867 0.127278i \(-0.959376\pi\)
0.795343 0.606160i \(-0.207291\pi\)
\(194\) −0.0459166 + 0.436867i −0.00329662 + 0.0313652i
\(195\) 0.922738 1.71914i 0.0660786 0.123110i
\(196\) −1.38089 3.16271i −0.0986352 0.225908i
\(197\) 0.109704 + 0.0173753i 0.00781605 + 0.00123794i 0.160341 0.987062i \(-0.448741\pi\)
−0.152525 + 0.988300i \(0.548741\pi\)
\(198\) −1.19965 22.8907i −0.0852555 1.62677i
\(199\) 9.56773 16.5718i 0.678239 1.17474i −0.297272 0.954793i \(-0.596077\pi\)
0.975511 0.219951i \(-0.0705897\pi\)
\(200\) 14.0383 + 6.08912i 0.992660 + 0.430565i
\(201\) −0.289007 + 0.166858i −0.0203850 + 0.0117693i
\(202\) 4.71020 + 2.39997i 0.331409 + 0.168861i
\(203\) −0.0193115 + 5.35688i −0.00135541 + 0.375979i
\(204\) 0.282119 + 0.388304i 0.0197523 + 0.0271867i
\(205\) −4.76207 3.23926i −0.332598 0.226240i
\(206\) 5.41321 + 12.1583i 0.377156 + 0.847107i
\(207\) 5.05107 1.35343i 0.351074 0.0940700i
\(208\) 7.46478 6.04486i 0.517589 0.419136i
\(209\) −11.8542 + 36.4835i −0.819972 + 2.52362i
\(210\) 1.82743 0.0500576i 0.126104 0.00345430i
\(211\) −5.50057 16.9290i −0.378675 1.16544i −0.940966 0.338502i \(-0.890080\pi\)
0.562290 0.826940i \(-0.309920\pi\)
\(212\) −1.26142 0.819177i −0.0866348 0.0562613i
\(213\) 0.0186864 0.356558i 0.00128037 0.0244309i
\(214\) 2.54205 11.9594i 0.173771 0.817528i
\(215\) −11.7253 + 6.43952i −0.799656 + 0.439172i
\(216\) 4.34949 + 1.41324i 0.295946 + 0.0961585i
\(217\) −0.843533 + 3.89934i −0.0572628 + 0.264704i
\(218\) 2.48468 2.48468i 0.168283 0.168283i
\(219\) 3.32705 + 0.349687i 0.224821 + 0.0236296i
\(220\) 6.48871 + 2.65122i 0.437469 + 0.178745i
\(221\) 1.40143 + 13.3338i 0.0942707 + 0.896926i
\(222\) 2.22407 0.853742i 0.149270 0.0572994i
\(223\) −3.11940 + 6.12217i −0.208891 + 0.409971i −0.971552 0.236827i \(-0.923892\pi\)
0.762661 + 0.646798i \(0.223892\pi\)
\(224\) −6.70718 2.60243i −0.448142 0.173882i
\(225\) −5.12986 + 13.7579i −0.341991 + 0.917195i
\(226\) 5.95329 + 10.3114i 0.396007 + 0.685904i
\(227\) −7.16835 + 4.65518i −0.475780 + 0.308975i −0.760159 0.649737i \(-0.774879\pi\)
0.284379 + 0.958712i \(0.408213\pi\)
\(228\) −0.581845 0.471169i −0.0385337 0.0312039i
\(229\) 8.16658 + 3.63599i 0.539663 + 0.240273i 0.658421 0.752650i \(-0.271225\pi\)
−0.118758 + 0.992923i \(0.537891\pi\)
\(230\) 0.867635 4.81037i 0.0572102 0.317187i
\(231\) 4.22954 0.206375i 0.278284 0.0135784i
\(232\) 4.38157 + 4.38157i 0.287664 + 0.287664i
\(233\) −3.94085 4.86654i −0.258174 0.318818i 0.631534 0.775348i \(-0.282425\pi\)
−0.889708 + 0.456530i \(0.849092\pi\)
\(234\) 8.36190 + 9.28683i 0.546635 + 0.607099i
\(235\) 5.85361 0.489034i 0.381848 0.0319011i
\(236\) 4.73238 + 4.26106i 0.308052 + 0.277371i
\(237\) −0.504784 0.990694i −0.0327892 0.0643525i
\(238\) −10.1894 + 7.34702i −0.660478 + 0.476237i
\(239\) 22.1170 7.18624i 1.43063 0.464839i 0.511666 0.859184i \(-0.329028\pi\)
0.918963 + 0.394345i \(0.129028\pi\)
\(240\) 1.06813 1.13648i 0.0689476 0.0733592i
\(241\) 2.77782 2.50116i 0.178935 0.161114i −0.574796 0.818296i \(-0.694919\pi\)
0.753731 + 0.657183i \(0.228252\pi\)
\(242\) −33.7278 12.9469i −2.16810 0.832257i
\(243\) −1.70975 + 6.38089i −0.109681 + 0.409334i
\(244\) 0.0343083 + 0.0249265i 0.00219637 + 0.00159575i
\(245\) −0.372189 15.6481i −0.0237783 0.999717i
\(246\) −0.643896 + 0.467817i −0.0410533 + 0.0298270i
\(247\) −7.49477 19.5246i −0.476881 1.24232i
\(248\) 2.51340 + 3.87029i 0.159601 + 0.245764i
\(249\) 0.0499564 + 0.0288423i 0.00316586 + 0.00182781i
\(250\) 9.59033 + 9.81836i 0.606546 + 0.620967i
\(251\) 7.23085i 0.456407i −0.973613 0.228204i \(-0.926715\pi\)
0.973613 0.228204i \(-0.0732852\pi\)
\(252\) 1.19680 3.63869i 0.0753913 0.229216i
\(253\) 1.77121 11.1830i 0.111355 0.703068i
\(254\) −3.82364 + 8.58803i −0.239916 + 0.538861i
\(255\) 0.518376 + 2.11433i 0.0324620 + 0.132405i
\(256\) −10.0984 + 4.49609i −0.631150 + 0.281006i
\(257\) 20.6651 + 5.53721i 1.28906 + 0.345401i 0.837302 0.546741i \(-0.184132\pi\)
0.451754 + 0.892143i \(0.350798\pi\)
\(258\) 0.289189 + 1.82587i 0.0180041 + 0.113673i
\(259\) −7.24113 19.0690i −0.449942 1.18489i
\(260\) −3.65878 + 1.10295i −0.226908 + 0.0684021i
\(261\) −3.97857 + 4.41865i −0.246267 + 0.273508i
\(262\) 10.4204 + 0.546108i 0.643772 + 0.0337387i
\(263\) −16.2964 0.854059i −1.00488 0.0526635i −0.457211 0.889359i \(-0.651151\pi\)
−0.547669 + 0.836695i \(0.684485\pi\)
\(264\) 3.27756 3.64010i 0.201720 0.224033i
\(265\) −3.89095 5.60343i −0.239019 0.344216i
\(266\) 12.3864 15.1837i 0.759459 0.930971i
\(267\) −0.508262 3.20904i −0.0311051 0.196390i
\(268\) 0.631335 + 0.169166i 0.0385649 + 0.0103334i
\(269\) −13.7743 + 6.13271i −0.839833 + 0.373918i −0.781138 0.624358i \(-0.785361\pi\)
−0.0586947 + 0.998276i \(0.518694\pi\)
\(270\) 3.13196 + 2.64899i 0.190605 + 0.161213i
\(271\) 2.08583 4.68484i 0.126705 0.284584i −0.839043 0.544065i \(-0.816885\pi\)
0.965748 + 0.259481i \(0.0835513\pi\)
\(272\) −1.67653 + 10.5852i −0.101654 + 0.641820i
\(273\) −1.72118 + 1.53856i −0.104171 + 0.0931180i
\(274\) 20.9798i 1.26744i
\(275\) 22.6956 + 22.2630i 1.36860 + 1.34251i
\(276\) 0.191374 + 0.110490i 0.0115194 + 0.00665071i
\(277\) −0.155664 0.239701i −0.00935293 0.0144022i 0.833963 0.551820i \(-0.186066\pi\)
−0.843316 + 0.537418i \(0.819400\pi\)
\(278\) 7.10195 + 18.5012i 0.425947 + 1.10963i
\(279\) −3.58246 + 2.60281i −0.214476 + 0.155826i
\(280\) −13.1484 12.4472i −0.785765 0.743864i
\(281\) −0.915304 0.665008i −0.0546025 0.0396710i 0.560149 0.828392i \(-0.310744\pi\)
−0.614752 + 0.788721i \(0.710744\pi\)
\(282\) 0.210094 0.784083i 0.0125109 0.0466915i
\(283\) 2.93029 + 1.12483i 0.174188 + 0.0668644i 0.443899 0.896077i \(-0.353595\pi\)
−0.269711 + 0.962941i \(0.586928\pi\)
\(284\) −0.519681 + 0.467923i −0.0308374 + 0.0277661i
\(285\) −1.63466 2.97644i −0.0968291 0.176309i
\(286\) 25.7335 8.36131i 1.52165 0.494414i
\(287\) 3.98560 + 5.52750i 0.235262 + 0.326278i
\(288\) −3.62527 7.11500i −0.213621 0.419255i
\(289\) 1.51678 + 1.36572i 0.0892225 + 0.0803363i
\(290\) 2.15157 + 5.12449i 0.126345 + 0.300921i
\(291\) −0.0602702 0.0669369i −0.00353310 0.00392391i
\(292\) −4.12339 5.09196i −0.241303 0.297984i
\(293\) −1.98002 1.98002i −0.115674 0.115674i 0.646900 0.762575i \(-0.276065\pi\)
−0.762575 + 0.646900i \(0.776065\pi\)
\(294\) −2.05231 0.683234i −0.119693 0.0398470i
\(295\) 12.5597 + 26.0092i 0.731253 + 1.51431i
\(296\) −21.5545 9.59668i −1.25283 0.557796i
\(297\) 7.38421 + 5.97962i 0.428475 + 0.346973i
\(298\) −15.6357 + 10.1539i −0.905750 + 0.588201i
\(299\) 3.08636 + 5.34574i 0.178489 + 0.309152i
\(300\) −0.564390 + 0.257817i −0.0325850 + 0.0148851i
\(301\) 15.6421 2.41969i 0.901594 0.139469i
\(302\) 7.88284 15.4709i 0.453606 0.890253i
\(303\) −1.01197 + 0.388458i −0.0581361 + 0.0223163i
\(304\) −1.74744 16.6258i −0.100223 0.953556i
\(305\) 0.101287 + 0.163514i 0.00579966 + 0.00936278i
\(306\) −13.8667 1.45744i −0.792704 0.0833165i
\(307\) 18.7431 18.7431i 1.06973 1.06973i 0.0723483 0.997379i \(-0.476951\pi\)
0.997379 0.0723483i \(-0.0230493\pi\)
\(308\) −6.14337 5.57174i −0.350051 0.317480i
\(309\) −2.59540 0.843298i −0.147647 0.0479735i
\(310\) 0.773875 + 4.06619i 0.0439531 + 0.230944i
\(311\) −6.29041 + 29.5941i −0.356697 + 1.67813i 0.324390 + 0.945923i \(0.394841\pi\)
−0.681087 + 0.732202i \(0.738492\pi\)
\(312\) −0.139759 + 2.66676i −0.00791229 + 0.150975i
\(313\) 16.7280 + 10.8633i 0.945521 + 0.614029i 0.922620 0.385709i \(-0.126043\pi\)
0.0229007 + 0.999738i \(0.492710\pi\)
\(314\) −1.74420 5.36809i −0.0984308 0.302939i
\(315\) 11.2672 13.2244i 0.634834 0.745112i
\(316\) −0.672944 + 2.07111i −0.0378561 + 0.116509i
\(317\) −13.4747 + 10.9116i −0.756815 + 0.612857i −0.928085 0.372367i \(-0.878546\pi\)
0.171270 + 0.985224i \(0.445213\pi\)
\(318\) −0.910607 + 0.243997i −0.0510643 + 0.0136826i
\(319\) 5.23633 + 11.7610i 0.293178 + 0.658490i
\(320\) −19.8467 + 0.615256i −1.10946 + 0.0343939i
\(321\) 1.47360 + 2.02824i 0.0822485 + 0.113205i
\(322\) −2.90981 + 4.99824i −0.162158 + 0.278541i
\(323\) 20.7909 + 10.5935i 1.15684 + 0.589438i
\(324\) 3.60083 2.07894i 0.200046 0.115497i
\(325\) −17.2540 1.64580i −0.957082 0.0912925i
\(326\) 5.98007 10.3578i 0.331206 0.573665i
\(327\) 0.0377087 + 0.719525i 0.00208530 + 0.0397898i
\(328\) 7.78553 + 1.23311i 0.429884 + 0.0680869i
\(329\) −6.70687 1.82304i −0.369761 0.100507i
\(330\) 3.95628 1.91047i 0.217786 0.105168i
\(331\) 0.656739 6.24845i 0.0360976 0.343446i −0.961535 0.274681i \(-0.911428\pi\)
0.997633 0.0687646i \(-0.0219057\pi\)
\(332\) −0.0292411 0.109129i −0.00160482 0.00598925i
\(333\) 8.11350 21.1364i 0.444617 1.15827i
\(334\) −21.7849 + 4.63052i −1.19202 + 0.253371i
\(335\) 2.36055 + 1.79333i 0.128970 + 0.0979803i
\(336\) −1.64727 + 0.831858i −0.0898657 + 0.0453816i
\(337\) −28.1439 + 14.3400i −1.53310 + 0.781152i −0.997974 0.0636218i \(-0.979735\pi\)
−0.535123 + 0.844774i \(0.679735\pi\)
\(338\) 0.657618 1.01264i 0.0357697 0.0550805i
\(339\) −2.38807 0.507601i −0.129702 0.0275691i
\(340\) 2.21026 3.64607i 0.119868 0.197736i
\(341\) 1.99343 + 9.37833i 0.107950 + 0.507865i
\(342\) 21.4817 3.40236i 1.16160 0.183979i
\(343\) −5.91323 + 17.5509i −0.319284 + 0.947659i
\(344\) 10.7616 14.8121i 0.580228 0.798615i
\(345\) 0.613965 + 0.792214i 0.0330548 + 0.0426514i
\(346\) 15.2837 1.60638i 0.821658 0.0863597i
\(347\) −7.99465 + 9.87257i −0.429175 + 0.529987i −0.945159 0.326611i \(-0.894093\pi\)
0.515983 + 0.856599i \(0.327427\pi\)
\(348\) −0.250919 + 0.0131501i −0.0134507 + 0.000704920i
\(349\) 18.9164 1.01257 0.506287 0.862365i \(-0.331018\pi\)
0.506287 + 0.862365i \(0.331018\pi\)
\(350\) −6.69437 14.7956i −0.357829 0.790858i
\(351\) −5.18013 −0.276495
\(352\) −17.2662 + 0.904881i −0.920290 + 0.0482303i
\(353\) 18.0348 22.2711i 0.959893 1.18537i −0.0227268 0.999742i \(-0.507235\pi\)
0.982620 0.185628i \(-0.0594319\pi\)
\(354\) 3.96953 0.417214i 0.210978 0.0221747i
\(355\) −2.98469 + 1.07312i −0.158411 + 0.0569552i
\(356\) −3.74034 + 5.14814i −0.198238 + 0.272851i
\(357\) 0.278478 2.56070i 0.0147386 0.135527i
\(358\) 19.4577 3.08179i 1.02837 0.162878i
\(359\) −6.59062 31.0064i −0.347839 1.63646i −0.709901 0.704302i \(-0.751260\pi\)
0.362061 0.932154i \(-0.382073\pi\)
\(360\) −1.67309 20.0265i −0.0881796 1.05549i
\(361\) −17.0183 3.61735i −0.895700 0.190387i
\(362\) −9.12745 + 14.0550i −0.479728 + 0.738717i
\(363\) 6.60045 3.36310i 0.346434 0.176517i
\(364\) 4.51447 + 0.252916i 0.236622 + 0.0132564i
\(365\) −8.57729 28.4531i −0.448956 1.48930i
\(366\) 0.0259995 0.00552636i 0.00135901 0.000288867i
\(367\) −4.76320 + 12.4085i −0.248637 + 0.647721i −0.999925 0.0122534i \(-0.996100\pi\)
0.751288 + 0.659974i \(0.229433\pi\)
\(368\) 1.27706 + 4.76607i 0.0665716 + 0.248448i
\(369\) −0.790631 + 7.52235i −0.0411586 + 0.391598i
\(370\) −14.6411 15.2806i −0.761153 0.794399i
\(371\) 2.06100 + 7.80419i 0.107002 + 0.405173i
\(372\) −0.184823 0.0292731i −0.00958263 0.00151774i
\(373\) −1.19300 22.7639i −0.0617714 1.17867i −0.837078 0.547084i \(-0.815738\pi\)
0.775307 0.631585i \(-0.217595\pi\)
\(374\) −15.0947 + 26.1448i −0.780529 + 1.35192i
\(375\) −2.81196 + 0.114261i −0.145209 + 0.00590043i
\(376\) −6.96240 + 4.01974i −0.359058 + 0.207302i
\(377\) −6.25366 3.18640i −0.322080 0.164108i
\(378\) −2.41160 4.21201i −0.124039 0.216642i
\(379\) 8.90518 + 12.2569i 0.457428 + 0.629596i 0.973973 0.226664i \(-0.0727820\pi\)
−0.516545 + 0.856260i \(0.672782\pi\)
\(380\) −1.85825 + 6.38598i −0.0953260 + 0.327594i
\(381\) −0.784032 1.76096i −0.0401672 0.0902169i
\(382\) 1.31889 0.353395i 0.0674802 0.0180813i
\(383\) −2.72652 + 2.20789i −0.139318 + 0.112818i −0.696446 0.717609i \(-0.745237\pi\)
0.557128 + 0.830427i \(0.311903\pi\)
\(384\) −0.424909 + 1.30773i −0.0216835 + 0.0667350i
\(385\) −16.2354 33.9328i −0.827432 1.72938i
\(386\) 4.00163 + 12.3158i 0.203678 + 0.626855i
\(387\) 14.7340 + 9.56840i 0.748973 + 0.486389i
\(388\) −0.00923272 + 0.176171i −0.000468720 + 0.00894372i
\(389\) 0.825989 3.88598i 0.0418793 0.197027i −0.952234 0.305368i \(-0.901221\pi\)
0.994114 + 0.108341i \(0.0345539\pi\)
\(390\) −1.02075 + 2.16681i −0.0516876 + 0.109720i
\(391\) −6.55008 2.12825i −0.331252 0.107630i
\(392\) 9.58789 + 19.1575i 0.484262 + 0.967601i
\(393\) −1.51293 + 1.51293i −0.0763174 + 0.0763174i
\(394\) −0.135604 0.0142525i −0.00683161 0.000718031i
\(395\) −6.37848 + 7.54140i −0.320936 + 0.379449i
\(396\) −0.962241 9.15511i −0.0483544 0.460062i
\(397\) −30.1058 + 11.5565i −1.51097 + 0.580006i −0.966021 0.258465i \(-0.916783\pi\)
−0.544946 + 0.838471i \(0.683450\pi\)
\(398\) −10.6645 + 20.9303i −0.534565 + 1.04914i
\(399\) 0.614234 + 3.97071i 0.0307502 + 0.198784i
\(400\) −12.9816 4.84041i −0.649082 0.242020i
\(401\) 7.36782 + 12.7614i 0.367932 + 0.637276i 0.989242 0.146288i \(-0.0467327\pi\)
−0.621310 + 0.783565i \(0.713399\pi\)
\(402\) 0.343578 0.223122i 0.0171361 0.0111283i
\(403\) −4.06222 3.28952i −0.202353 0.163863i
\(404\) 1.93947 + 0.863508i 0.0964923 + 0.0429611i
\(405\) 18.6851 2.55144i 0.928469 0.126782i
\(406\) −0.320492 6.56833i −0.0159058 0.325981i
\(407\) −34.6627 34.6627i −1.71816 1.71816i
\(408\) −1.87506 2.31550i −0.0928291 0.114634i
\(409\) 10.9932 + 12.2091i 0.543577 + 0.603703i 0.950869 0.309595i \(-0.100193\pi\)
−0.407292 + 0.913298i \(0.633527\pi\)
\(410\) 6.04601 + 3.66511i 0.298591 + 0.181007i
\(411\) −3.19692 2.87852i −0.157693 0.141987i
\(412\) 2.42652 + 4.76230i 0.119546 + 0.234622i
\(413\) −3.44968 34.0002i −0.169748 1.67304i
\(414\) −6.10523 + 1.98371i −0.300056 + 0.0974941i
\(415\) 0.0644405 0.508359i 0.00316326 0.0249544i
\(416\) 7.00494 6.30728i 0.343445 0.309240i
\(417\) −3.79365 1.45624i −0.185776 0.0713126i
\(418\) 12.1883 45.4873i 0.596148 2.22485i
\(419\) −7.57258 5.50180i −0.369945 0.268781i 0.387243 0.921978i \(-0.373427\pi\)
−0.757188 + 0.653197i \(0.773427\pi\)
\(420\) 0.731838 0.0584847i 0.0357100 0.00285376i
\(421\) −9.78581 + 7.10980i −0.476931 + 0.346511i −0.800136 0.599818i \(-0.795240\pi\)
0.323205 + 0.946329i \(0.395240\pi\)
\(422\) 7.83089 + 20.4002i 0.381202 + 0.993064i
\(423\) −4.20154 6.46981i −0.204286 0.314573i
\(424\) 8.08590 + 4.66840i 0.392686 + 0.226717i
\(425\) 15.5350 11.5168i 0.753559 0.558648i
\(426\) 0.438310i 0.0212362i
\(427\) −0.0465144 0.222779i −0.00225099 0.0107810i
\(428\) 0.768125 4.84975i 0.0371287 0.234422i
\(429\) −2.25664 + 5.06849i −0.108951 + 0.244709i
\(430\) 13.9605 8.64763i 0.673233 0.417026i
\(431\) 24.8448 11.0616i 1.19673 0.532820i 0.291023 0.956716i \(-0.406004\pi\)
0.905711 + 0.423896i \(0.139338\pi\)
\(432\) −3.99967 1.07171i −0.192434 0.0515626i
\(433\) 4.60452 + 29.0718i 0.221279 + 1.39710i 0.808891 + 0.587959i \(0.200068\pi\)
−0.587612 + 0.809143i \(0.699932\pi\)
\(434\) 0.783577 4.83445i 0.0376129 0.232061i
\(435\) −1.07608 0.375244i −0.0515941 0.0179916i
\(436\) 0.944257 1.04870i 0.0452217 0.0502238i
\(437\) 10.7284 + 0.562253i 0.513210 + 0.0268962i
\(438\) −4.10114 0.214932i −0.195960 0.0102698i
\(439\) 1.51578 1.68345i 0.0723443 0.0803465i −0.705886 0.708325i \(-0.749451\pi\)
0.778230 + 0.627979i \(0.216118\pi\)
\(440\) −41.0859 14.3272i −1.95869 0.683024i
\(441\) −17.8761 + 10.1496i −0.851241 + 0.483315i
\(442\) −2.57470 16.2560i −0.122466 0.773220i
\(443\) 14.5039 + 3.88631i 0.689102 + 0.184644i 0.586344 0.810062i \(-0.300567\pi\)
0.102758 + 0.994706i \(0.467233\pi\)
\(444\) 0.874021 0.389139i 0.0414792 0.0184677i
\(445\) −24.5361 + 15.1986i −1.16312 + 0.720482i
\(446\) 3.43079 7.70568i 0.162453 0.364875i
\(447\) 0.598018 3.77574i 0.0282853 0.178586i
\(448\) 22.3180 + 7.34061i 1.05443 + 0.346811i
\(449\) 16.3116i 0.769793i 0.922960 + 0.384897i \(0.125763\pi\)
−0.922960 + 0.384897i \(0.874237\pi\)
\(450\) 5.40486 17.1956i 0.254787 0.810610i
\(451\) 14.1830 + 8.18855i 0.667851 + 0.385584i
\(452\) 2.60429 + 4.01026i 0.122496 + 0.188627i
\(453\) 1.27591 + 3.32387i 0.0599477 + 0.156169i
\(454\) 8.48871 6.16741i 0.398395 0.289451i
\(455\) 18.5208 + 8.80656i 0.868267 + 0.412858i
\(456\) 3.76003 + 2.73182i 0.176079 + 0.127929i
\(457\) −0.344436 + 1.28545i −0.0161121 + 0.0601310i −0.973514 0.228628i \(-0.926576\pi\)
0.957402 + 0.288759i \(0.0932427\pi\)
\(458\) −10.2451 3.93274i −0.478724 0.183765i
\(459\) 4.29514 3.86736i 0.200480 0.180513i
\(460\) 0.246860 1.94744i 0.0115099 0.0907997i
\(461\) −24.7473 + 8.04087i −1.15259 + 0.374501i −0.822120 0.569314i \(-0.807209\pi\)
−0.330474 + 0.943815i \(0.607209\pi\)
\(462\) −5.17180 + 0.524735i −0.240614 + 0.0244129i
\(463\) 14.0944 + 27.6618i 0.655023 + 1.28555i 0.944545 + 0.328383i \(0.106504\pi\)
−0.289522 + 0.957171i \(0.593496\pi\)
\(464\) −4.16933 3.75408i −0.193556 0.174279i
\(465\) −0.725788 0.439975i −0.0336576 0.0204034i
\(466\) 5.14381 + 5.71278i 0.238282 + 0.264639i
\(467\) −4.55740 5.62793i −0.210892 0.260429i 0.660713 0.750638i \(-0.270254\pi\)
−0.871605 + 0.490209i \(0.836921\pi\)
\(468\) 3.54874 + 3.54874i 0.164040 + 0.164040i
\(469\) −1.89978 2.94862i −0.0877236 0.136155i
\(470\) −7.14461 + 0.975594i −0.329556 + 0.0450008i
\(471\) 1.05731 + 0.470743i 0.0487181 + 0.0216907i
\(472\) −30.7212 24.8775i −1.41406 1.14508i
\(473\) 31.9021 20.7175i 1.46686 0.952591i
\(474\) 0.682472 + 1.18208i 0.0313470 + 0.0542946i
\(475\) −18.7574 + 23.6246i −0.860648 + 1.08397i
\(476\) −3.93202 + 3.16069i −0.180224 + 0.144870i
\(477\) −4.06739 + 7.98270i −0.186233 + 0.365503i
\(478\) −26.6518 + 10.2307i −1.21903 + 0.467941i
\(479\) −1.88857 17.9685i −0.0862908 0.821002i −0.948995 0.315292i \(-0.897897\pi\)
0.862704 0.505710i \(-0.168769\pi\)
\(480\) 0.988388 1.16859i 0.0451135 0.0533386i
\(481\) 26.5785 + 2.79351i 1.21188 + 0.127373i
\(482\) −3.24467 + 3.24467i −0.147791 + 0.147791i
\(483\) −0.362398 1.12918i −0.0164897 0.0513795i
\(484\) −13.7987 4.48346i −0.627212 0.203793i
\(485\) −0.340990 + 0.723840i −0.0154835 + 0.0328679i
\(486\) 1.68606 7.93228i 0.0764811 0.359815i
\(487\) −1.14928 + 21.9295i −0.0520786 + 0.993720i 0.840212 + 0.542258i \(0.182431\pi\)
−0.892291 + 0.451462i \(0.850903\pi\)
\(488\) −0.220781 0.143377i −0.00999429 0.00649037i
\(489\) 0.757837 + 2.33238i 0.0342706 + 0.105474i
\(490\) 1.46162 + 19.1593i 0.0660293 + 0.865528i
\(491\) 0.143207 0.440744i 0.00646282 0.0198905i −0.947773 0.318945i \(-0.896671\pi\)
0.954236 + 0.299055i \(0.0966714\pi\)
\(492\) −0.248402 + 0.201152i −0.0111988 + 0.00906863i
\(493\) 7.56416 2.02681i 0.340673 0.0912829i
\(494\) 10.4424 + 23.4539i 0.469824 + 1.05524i
\(495\) 11.6657 40.0898i 0.524333 1.80190i
\(496\) −2.45594 3.38032i −0.110275 0.151781i
\(497\) 3.75283 + 0.0135289i 0.168337 + 0.000606856i
\(498\) −0.0630953 0.0321487i −0.00282737 0.00144062i
\(499\) 7.05051 4.07061i 0.315624 0.182226i −0.333816 0.942638i \(-0.608337\pi\)
0.649440 + 0.760412i \(0.275003\pi\)
\(500\) 4.05257 + 3.73608i 0.181236 + 0.167083i
\(501\) 2.28338 3.95492i 0.102014 0.176693i
\(502\) 0.464564 + 8.86441i 0.0207345 + 0.395638i
\(503\) −20.1887 3.19758i −0.900171 0.142573i −0.310838 0.950463i \(-0.600610\pi\)
−0.589334 + 0.807890i \(0.700610\pi\)
\(504\) −6.23700 + 22.9456i −0.277818 + 1.02208i
\(505\) 6.66179 + 6.95277i 0.296446 + 0.309394i
\(506\) −1.45287 + 13.8232i −0.0645882 + 0.614515i
\(507\) 0.0640793 + 0.239147i 0.00284586 + 0.0106209i
\(508\) −1.35297 + 3.52460i −0.0600282 + 0.156379i
\(509\) 39.8393 8.46811i 1.76585 0.375342i 0.793442 0.608646i \(-0.208287\pi\)
0.972404 + 0.233304i \(0.0749536\pi\)
\(510\) −0.771326 2.55869i −0.0341549 0.113301i
\(511\) −1.96684 + 35.1075i −0.0870080 + 1.55307i
\(512\) 21.8254 11.1206i 0.964554 0.491465i
\(513\) −4.91025 + 7.56113i −0.216793 + 0.333832i
\(514\) −25.6895 5.46046i −1.13311 0.240851i
\(515\) 2.01825 + 24.1580i 0.0889348 + 1.06453i
\(516\) 0.154356 + 0.726186i 0.00679512 + 0.0319685i
\(517\) −16.4975 + 2.61294i −0.725558 + 0.114917i
\(518\) 10.1021 + 22.9117i 0.443863 + 1.00668i
\(519\) −1.85221 + 2.54935i −0.0813030 + 0.111904i
\(520\) 22.3230 8.02605i 0.978929 0.351966i
\(521\) 14.1070 1.48270i 0.618039 0.0649585i 0.209665 0.977773i \(-0.432763\pi\)
0.408374 + 0.912815i \(0.366096\pi\)
\(522\) 4.59351 5.67251i 0.201052 0.248279i
\(523\) −20.5799 + 1.07854i −0.899894 + 0.0471615i −0.496670 0.867940i \(-0.665444\pi\)
−0.403225 + 0.915101i \(0.632111\pi\)
\(524\) 4.19057 0.183066
\(525\) 3.17306 + 1.00993i 0.138484 + 0.0440768i
\(526\) 20.0329 0.873475
\(527\) 5.82409 0.305228i 0.253701 0.0132959i
\(528\) −2.79100 + 3.44660i −0.121463 + 0.149994i
\(529\) 19.7205 2.07271i 0.857413 0.0901177i
\(530\) 5.12998 + 6.61935i 0.222832 + 0.287526i
\(531\) 22.2959 30.6877i 0.967560 1.33173i
\(532\) 4.64843 6.34976i 0.201535 0.275297i
\(533\) −8.81854 + 1.39672i −0.381973 + 0.0604986i
\(534\) 0.829258 + 3.90135i 0.0358855 + 0.168828i
\(535\) 11.5449 19.0447i 0.499131 0.823372i
\(536\) −3.96871 0.843575i −0.171422 0.0364369i
\(537\) −2.20007 + 3.38781i −0.0949401 + 0.146195i
\(538\) 16.4921 8.40314i 0.711025 0.362285i
\(539\) 4.33317 + 44.2974i 0.186643 + 1.90802i
\(540\) 1.31175 + 0.996551i 0.0564487 + 0.0428847i
\(541\) 17.8436 3.79278i 0.767158 0.163065i 0.192321 0.981332i \(-0.438399\pi\)
0.574838 + 0.818268i \(0.305065\pi\)
\(542\) −2.25606 + 5.87723i −0.0969060 + 0.252449i
\(543\) −0.889393 3.31926i −0.0381675 0.142443i
\(544\) −1.09933 + 10.4594i −0.0471335 + 0.448445i
\(545\) 5.76367 2.78324i 0.246889 0.119221i
\(546\) 2.01118 1.99673i 0.0860704 0.0854521i
\(547\) 29.6025 + 4.68857i 1.26571 + 0.200469i 0.752959 0.658068i \(-0.228626\pi\)
0.512752 + 0.858537i \(0.328626\pi\)
\(548\) 0.440957 + 8.41397i 0.0188368 + 0.359427i
\(549\) 0.126302 0.218762i 0.00539046 0.00933655i
\(550\) −29.2532 25.8345i −1.24736 1.10158i
\(551\) −10.5788 + 6.10770i −0.450674 + 0.260197i
\(552\) −1.22226 0.622770i −0.0520227 0.0265069i
\(553\) 10.1421 5.80687i 0.431284 0.246933i
\(554\) 0.206231 + 0.283852i 0.00876190 + 0.0120597i
\(555\) 4.33728 0.134458i 0.184107 0.00570741i
\(556\) 3.23710 + 7.27065i 0.137284 + 0.308344i
\(557\) 23.0513 6.17658i 0.976716 0.261710i 0.265055 0.964233i \(-0.414610\pi\)
0.711661 + 0.702523i \(0.247943\pi\)
\(558\) 4.22457 3.42099i 0.178840 0.144822i
\(559\) −6.40840 + 19.7230i −0.271047 + 0.834196i
\(560\) 12.4782 + 10.6314i 0.527302 + 0.449260i
\(561\) −1.91291 5.88733i −0.0807630 0.248563i
\(562\) 1.16481 + 0.756437i 0.0491346 + 0.0319084i
\(563\) −0.192031 + 3.66418i −0.00809316 + 0.154427i 0.991593 + 0.129393i \(0.0413027\pi\)
−0.999687 + 0.0250340i \(0.992031\pi\)
\(564\) 0.0677784 0.318872i 0.00285399 0.0134270i
\(565\) 4.05483 + 21.3054i 0.170588 + 0.896324i
\(566\) −3.66456 1.19069i −0.154033 0.0500483i
\(567\) −21.8092 4.71792i −0.915899 0.198134i
\(568\) 3.06956 3.06956i 0.128796 0.128796i
\(569\) −40.5200 4.25882i −1.69869 0.178539i −0.794963 0.606658i \(-0.792510\pi\)
−0.903722 + 0.428119i \(0.859176\pi\)
\(570\) 2.19519 + 3.54384i 0.0919463 + 0.148435i
\(571\) −1.11155 10.5756i −0.0465167 0.442577i −0.992849 0.119381i \(-0.961909\pi\)
0.946332 0.323197i \(-0.104758\pi\)
\(572\) 10.1447 3.89417i 0.424170 0.162824i
\(573\) −0.127107 + 0.249461i −0.00530995 + 0.0104214i
\(574\) −5.24113 6.52018i −0.218761 0.272147i
\(575\) 4.37735 7.75311i 0.182548 0.323327i
\(576\) 13.0386 + 22.5836i 0.543277 + 0.940983i
\(577\) −27.5115 + 17.8662i −1.14532 + 0.743779i −0.970567 0.240833i \(-0.922579\pi\)
−0.174753 + 0.984612i \(0.555913\pi\)
\(578\) −1.94719 1.57680i −0.0809925 0.0655864i
\(579\) −2.42572 1.08000i −0.100810 0.0448834i
\(580\) 0.970597 + 2.00996i 0.0403019 + 0.0834590i
\(581\) −0.277206 + 0.539232i −0.0115004 + 0.0223711i
\(582\) 0.0781867 + 0.0781867i 0.00324094 + 0.00324094i
\(583\) 12.2078 + 15.0754i 0.505597 + 0.624360i
\(584\) 27.2158 + 30.2263i 1.12620 + 1.25077i
\(585\) 8.81196 + 20.9878i 0.364330 + 0.867739i
\(586\) 2.55455 + 2.30013i 0.105528 + 0.0950174i
\(587\) 14.7169 + 28.8836i 0.607433 + 1.19215i 0.965974 + 0.258640i \(0.0832742\pi\)
−0.358541 + 0.933514i \(0.616726\pi\)
\(588\) −0.837440 0.230876i −0.0345355 0.00952115i
\(589\) −8.65209 + 2.81124i −0.356503 + 0.115835i
\(590\) −17.0681 31.0781i −0.702683 1.27947i
\(591\) 0.0207772 0.0187079i 0.000854660 0.000769539i
\(592\) 19.9438 + 7.65570i 0.819684 + 0.314647i
\(593\) 10.1549 37.8985i 0.417011 1.55631i −0.363762 0.931492i \(-0.618508\pi\)
0.780773 0.624815i \(-0.214826\pi\)
\(594\) −9.43659 6.85609i −0.387188 0.281309i
\(595\) −21.9314 + 6.52515i −0.899100 + 0.267505i
\(596\) −6.05727 + 4.40087i −0.248116 + 0.180267i
\(597\) −1.72616 4.49680i −0.0706470 0.184042i
\(598\) −4.12707 6.35513i −0.168768 0.259881i
\(599\) −24.9966 14.4318i −1.02133 0.589668i −0.106845 0.994276i \(-0.534075\pi\)
−0.914490 + 0.404608i \(0.867408\pi\)
\(600\) 3.41498 1.78161i 0.139416 0.0727340i
\(601\) 4.29834i 0.175333i −0.996150 0.0876666i \(-0.972059\pi\)
0.996150 0.0876666i \(-0.0279410\pi\)
\(602\) −19.0204 + 3.97130i −0.775213 + 0.161858i
\(603\) 0.609044 3.84535i 0.0248022 0.156595i
\(604\) 2.83624 6.37031i 0.115405 0.259204i
\(605\) −50.2442 42.4963i −2.04272 1.72772i
\(606\) 1.21563 0.541233i 0.0493816 0.0219861i
\(607\) −6.68738 1.79188i −0.271432 0.0727301i 0.120535 0.992709i \(-0.461539\pi\)
−0.391968 + 0.919979i \(0.628206\pi\)
\(608\) −2.56636 16.2034i −0.104080 0.657133i
\(609\) 1.04486 + 0.852365i 0.0423398 + 0.0345396i
\(610\) −0.134674 0.193947i −0.00545280 0.00785268i
\(611\) 6.09323 6.76722i 0.246506 0.273772i
\(612\) −5.59186 0.293057i −0.226038 0.0118461i
\(613\) −9.69734 0.508216i −0.391672 0.0205266i −0.144516 0.989502i \(-0.546163\pi\)
−0.247156 + 0.968976i \(0.579496\pi\)
\(614\) −21.7733 + 24.1817i −0.878699 + 0.975894i
\(615\) −1.38803 + 0.418427i −0.0559708 + 0.0168726i
\(616\) 39.8939 + 32.5443i 1.60737 + 1.31125i
\(617\) −0.775761 4.89796i −0.0312310 0.197184i 0.967140 0.254245i \(-0.0818271\pi\)
−0.998371 + 0.0570609i \(0.981827\pi\)
\(618\) 3.23592 + 0.867063i 0.130168 + 0.0348784i
\(619\) 31.6155 14.0761i 1.27073 0.565767i 0.343113 0.939294i \(-0.388518\pi\)
0.927619 + 0.373527i \(0.121852\pi\)
\(620\) 0.395827 + 1.61448i 0.0158968 + 0.0648391i
\(621\) 1.08232 2.43093i 0.0434320 0.0975500i
\(622\) 5.81017 36.6840i 0.232967 1.47089i
\(623\) 33.4292 6.97973i 1.33931 0.279637i
\(624\) 2.41784i 0.0967910i
\(625\) 10.6060 + 22.6388i 0.424239 + 0.905550i
\(626\) −21.2050 12.2427i −0.847523 0.489318i
\(627\) 5.25910 + 8.09830i 0.210028 + 0.323415i
\(628\) −0.812339 2.11622i −0.0324159 0.0844462i
\(629\) −24.1233 + 17.5266i −0.961860 + 0.698832i
\(630\) −12.9630 + 16.9359i −0.516457 + 0.674743i
\(631\) −31.6801 23.0169i −1.26116 0.916289i −0.262349 0.964973i \(-0.584497\pi\)
−0.998814 + 0.0486840i \(0.984497\pi\)
\(632\) 3.49882 13.0578i 0.139175 0.519410i
\(633\) −4.18302 1.60571i −0.166260 0.0638213i
\(634\) 15.8178 14.2424i 0.628205 0.565639i
\(635\) −11.7272 + 12.4775i −0.465378 + 0.495155i
\(636\) −0.360071 + 0.116994i −0.0142777 + 0.00463912i
\(637\) −17.0340 17.2814i −0.674912 0.684715i
\(638\) −7.17492 14.0816i −0.284058 0.557495i
\(639\) 3.09554 + 2.78724i 0.122458 + 0.110261i
\(640\) 12.1724 1.01693i 0.481155 0.0401976i
\(641\) −13.7378 15.2574i −0.542612 0.602632i 0.408012 0.912977i \(-0.366222\pi\)
−0.950624 + 0.310345i \(0.899555\pi\)
\(642\) −1.93682 2.39177i −0.0764402 0.0943958i
\(643\) −33.0301 33.0301i −1.30258 1.30258i −0.926646 0.375934i \(-0.877322\pi\)
−0.375934 0.926646i \(-0.622678\pi\)
\(644\) −1.06193 + 2.06571i −0.0418458 + 0.0814002i
\(645\) −0.597702 + 3.31380i −0.0235345 + 0.130481i
\(646\) −26.1685 11.6510i −1.02959 0.458401i
\(647\) 3.69138 + 2.98922i 0.145123 + 0.117518i 0.699133 0.714992i \(-0.253570\pi\)
−0.554010 + 0.832510i \(0.686903\pi\)
\(648\) −21.6467 + 14.0575i −0.850363 + 0.552232i
\(649\) −41.0652 71.1270i −1.61195 2.79198i
\(650\) 21.2577 + 0.909082i 0.833797 + 0.0356571i
\(651\) 0.629167 + 0.782709i 0.0246590 + 0.0306768i
\(652\) 2.18061 4.27969i 0.0853992 0.167605i
\(653\) −5.59675 + 2.14839i −0.219018 + 0.0840731i −0.465403 0.885099i \(-0.654091\pi\)
0.246385 + 0.969172i \(0.420757\pi\)
\(654\) −0.0924553 0.879654i −0.00361529 0.0343972i
\(655\) 17.5947 + 7.18900i 0.687482 + 0.280898i
\(656\) −7.09791 0.746020i −0.277127 0.0291272i
\(657\) −27.5973 + 27.5973i −1.07668 + 1.07668i
\(658\) 8.33917 + 1.80399i 0.325095 + 0.0703269i
\(659\) −27.7363 9.01207i −1.08045 0.351060i −0.285903 0.958259i \(-0.592293\pi\)
−0.794550 + 0.607198i \(0.792293\pi\)
\(660\) 1.54651 0.849347i 0.0601980 0.0330608i
\(661\) 4.20939 19.8036i 0.163726 0.770271i −0.817272 0.576252i \(-0.804515\pi\)
0.980998 0.194018i \(-0.0621521\pi\)
\(662\) −0.403659 + 7.70227i −0.0156886 + 0.299357i
\(663\) 2.83037 + 1.83806i 0.109922 + 0.0713844i
\(664\) 0.216725 + 0.667011i 0.00841056 + 0.0258850i
\(665\) 30.4103 18.6859i 1.17926 0.724608i
\(666\) −8.58850 + 26.4327i −0.332798 + 1.02425i
\(667\) 2.80193 2.26896i 0.108491 0.0878546i
\(668\) −8.63951 + 2.31495i −0.334273 + 0.0895681i
\(669\) 0.703478 + 1.58004i 0.0271980 + 0.0610878i
\(670\) −3.00905 2.04682i −0.116250 0.0790754i
\(671\) −0.321483 0.442484i −0.0124107 0.0170819i
\(672\) −1.57158 + 0.899813i −0.0606249 + 0.0347110i
\(673\) −3.57412 1.82110i −0.137772 0.0701984i 0.383746 0.923439i \(-0.374634\pi\)
−0.521518 + 0.853240i \(0.674634\pi\)
\(674\) 33.5808 19.3879i 1.29348 0.746792i
\(675\) 3.79797 + 6.43450i 0.146184 + 0.247664i
\(676\) 0.242454 0.419943i 0.00932516 0.0161517i
\(677\) −2.59575 49.5298i −0.0997627 1.90359i −0.352124 0.935953i \(-0.614540\pi\)
0.252361 0.967633i \(-0.418793\pi\)
\(678\) 2.96019 + 0.468848i 0.113685 + 0.0180060i
\(679\) 0.671851 0.667025i 0.0257833 0.0255981i
\(680\) −12.5172 + 23.3207i −0.480013 + 0.894307i
\(681\) −0.224893 + 2.13971i −0.00861790 + 0.0819939i
\(682\) −3.04631 11.3690i −0.116649 0.435340i
\(683\) 5.20036 13.5474i 0.198986 0.518377i −0.797387 0.603468i \(-0.793785\pi\)
0.996373 + 0.0850917i \(0.0271183\pi\)
\(684\) 8.54372 1.81602i 0.326677 0.0694374i
\(685\) −12.5829 + 36.0837i −0.480768 + 1.37869i
\(686\) 6.12152 21.8958i 0.233721 0.835986i
\(687\) 2.00495 1.02157i 0.0764936 0.0389754i
\(688\) −9.02850 + 13.9027i −0.344208 + 0.530034i
\(689\) −10.3445 2.19880i −0.394095 0.0837675i
\(690\) −0.803567 0.931742i −0.0305913 0.0354708i
\(691\) 0.631401 + 2.97051i 0.0240196 + 0.113003i 0.988524 0.151063i \(-0.0482696\pi\)
−0.964505 + 0.264066i \(0.914936\pi\)
\(692\) 6.09578 0.965477i 0.231727 0.0367019i
\(693\) −29.1819 + 39.8624i −1.10853 + 1.51425i
\(694\) 9.16648 12.6166i 0.347955 0.478919i
\(695\) 1.11850 + 36.0802i 0.0424272 + 1.36860i
\(696\) 1.55122 0.163039i 0.0587987 0.00617999i
\(697\) 6.26919 7.74181i 0.237463 0.293242i
\(698\) −23.1900 + 1.21533i −0.877753 + 0.0460011i
\(699\) −1.57627 −0.0596200
\(700\) −2.99576 5.79308i −0.113229 0.218958i
\(701\) −14.2658 −0.538811 −0.269405 0.963027i \(-0.586827\pi\)
−0.269405 + 0.963027i \(0.586827\pi\)
\(702\) 6.35040 0.332811i 0.239681 0.0125611i
\(703\) 29.2713 36.1471i 1.10399 1.36331i
\(704\) 56.1532 5.90194i 2.11635 0.222438i
\(705\) 0.831610 1.22256i 0.0313202 0.0460442i
\(706\) −20.6782 + 28.4611i −0.778235 + 1.07115i
\(707\) −4.59654 10.4250i −0.172871 0.392072i
\(708\) 1.58321 0.250756i 0.0595008 0.00942399i
\(709\) 1.30679 + 6.14796i 0.0490775 + 0.230891i 0.995850 0.0910129i \(-0.0290104\pi\)
−0.946772 + 0.321904i \(0.895677\pi\)
\(710\) 3.59003 1.50731i 0.134731 0.0565684i
\(711\) 12.6882 + 2.69697i 0.475846 + 0.101144i
\(712\) 21.5144 33.1293i 0.806288 1.24157i
\(713\) 2.39245 1.21902i 0.0895981 0.0456525i
\(714\) −0.176871 + 3.15710i −0.00661924 + 0.118151i
\(715\) 49.2744 + 1.05312i 1.84276 + 0.0393846i
\(716\) 7.73874 1.64492i 0.289210 0.0614735i
\(717\) 2.09779 5.46492i 0.0783433 0.204091i
\(718\) 10.0716 + 37.5878i 0.375870 + 1.40276i
\(719\) −3.53563 + 33.6393i −0.131857 + 1.25453i 0.705830 + 0.708382i \(0.250574\pi\)
−0.837686 + 0.546152i \(0.816092\pi\)
\(720\) 2.46173 + 18.0281i 0.0917434 + 0.671869i
\(721\) 7.52371 27.6794i 0.280198 1.03083i
\(722\) 21.0954 + 3.34118i 0.785090 + 0.124346i
\(723\) −0.0492428 0.939609i −0.00183136 0.0349444i
\(724\) −3.36516 + 5.82862i −0.125065 + 0.216619i
\(725\) 0.627071 + 10.1042i 0.0232888 + 0.375260i
\(726\) −7.87552 + 4.54694i −0.292288 + 0.168753i
\(727\) 0.691104 + 0.352135i 0.0256316 + 0.0130600i 0.466759 0.884384i \(-0.345421\pi\)
−0.441128 + 0.897444i \(0.645421\pi\)
\(728\) −28.0681 0.101185i −1.04027 0.00375018i
\(729\) −13.8943 19.1239i −0.514605 0.708293i
\(730\) 12.3431 + 34.3300i 0.456838 + 1.27061i
\(731\) −9.41118 21.1379i −0.348085 0.781812i
\(732\) 0.0103109 0.00276281i 0.000381103 0.000102116i
\(733\) −34.3674 + 27.8302i −1.26939 + 1.02793i −0.271536 + 0.962428i \(0.587532\pi\)
−0.997852 + 0.0655020i \(0.979135\pi\)
\(734\) 5.04206 15.5179i 0.186106 0.572774i
\(735\) −3.12005 2.40601i −0.115085 0.0887470i
\(736\) 1.49629 + 4.60510i 0.0551539 + 0.169746i
\(737\) −7.06977 4.59116i −0.260418 0.169118i
\(738\) 0.485955 9.27257i 0.0178882 0.341328i
\(739\) 0.989564 4.65553i 0.0364017 0.171257i −0.956192 0.292742i \(-0.905432\pi\)
0.992593 + 0.121485i \(0.0387657\pi\)
\(740\) −6.19298 5.82055i −0.227658 0.213968i
\(741\) −5.00666 1.62676i −0.183924 0.0597607i
\(742\) −3.02801 9.43486i −0.111162 0.346365i
\(743\) −11.1811 + 11.1811i −0.410196 + 0.410196i −0.881807 0.471611i \(-0.843673\pi\)
0.471611 + 0.881807i \(0.343673\pi\)
\(744\) 1.15526 + 0.121423i 0.0423538 + 0.00445157i
\(745\) −32.9821 + 8.08631i −1.20837 + 0.296260i
\(746\) 2.92504 + 27.8299i 0.107093 + 1.01893i
\(747\) −0.628275 + 0.241172i −0.0229874 + 0.00882402i
\(748\) −5.50423 + 10.8027i −0.201254 + 0.394984i
\(749\) −20.5383 + 16.5093i −0.750452 + 0.603237i
\(750\) 3.43989 0.320736i 0.125607 0.0117116i
\(751\) −25.2501 43.7345i −0.921390 1.59589i −0.797266 0.603628i \(-0.793721\pi\)
−0.124124 0.992267i \(-0.539612\pi\)
\(752\) 6.10475 3.96447i 0.222617 0.144569i
\(753\) −1.41451 1.14544i −0.0515475 0.0417423i
\(754\) 7.87118 + 3.50447i 0.286651 + 0.127625i
\(755\) 22.8368 21.8810i 0.831115 0.796333i
\(756\) −1.05570 1.63854i −0.0383955 0.0595931i
\(757\) −6.78176 6.78176i −0.246487 0.246487i 0.573040 0.819527i \(-0.305764\pi\)
−0.819527 + 0.573040i \(0.805764\pi\)
\(758\) −11.7045 14.4538i −0.425126 0.524986i
\(759\) −1.90705 2.11799i −0.0692214 0.0768782i
\(760\) 9.44486 40.1914i 0.342601 1.45790i
\(761\) −2.48012 2.23311i −0.0899043 0.0809502i 0.622953 0.782259i \(-0.285933\pi\)
−0.712858 + 0.701309i \(0.752599\pi\)
\(762\) 1.07429 + 2.10842i 0.0389176 + 0.0763800i
\(763\) −7.53449 + 0.764455i −0.272767 + 0.0276751i
\(764\) 0.521513 0.169450i 0.0188677 0.00613048i
\(765\) −22.9755 10.8234i −0.830681 0.391320i
\(766\)