Properties

Label 175.2.x.a.17.3
Level $175$
Weight $2$
Character 175.17
Analytic conductor $1.397$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(3,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([21, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.x (of order \(60\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 17.3
Character \(\chi\) \(=\) 175.17
Dual form 175.2.x.a.103.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.08800 + 0.109427i) q^{2} +(-0.522748 + 0.645540i) q^{3} +(2.35872 - 0.247911i) q^{4} +(1.15075 + 1.91723i) q^{5} +(1.02086 - 1.40509i) q^{6} +(-1.53148 - 2.15744i) q^{7} +(-0.767632 + 0.121581i) q^{8} +(0.480279 + 2.25953i) q^{9} +O(q^{10})\) \(q+(-2.08800 + 0.109427i) q^{2} +(-0.522748 + 0.645540i) q^{3} +(2.35872 - 0.247911i) q^{4} +(1.15075 + 1.91723i) q^{5} +(1.02086 - 1.40509i) q^{6} +(-1.53148 - 2.15744i) q^{7} +(-0.767632 + 0.121581i) q^{8} +(0.480279 + 2.25953i) q^{9} +(-2.61256 - 3.87725i) q^{10} +(1.02734 + 0.218367i) q^{11} +(-1.07298 + 1.65224i) q^{12} +(-4.08239 + 2.08008i) q^{13} +(3.43382 + 4.33715i) q^{14} +(-1.83920 - 0.259375i) q^{15} +(-3.05026 + 0.648353i) q^{16} +(-0.808289 + 2.10566i) q^{17} +(-1.25008 - 4.66535i) q^{18} +(-0.520869 + 4.95574i) q^{19} +(3.18960 + 4.23693i) q^{20} +(2.19329 + 0.139164i) q^{21} +(-2.16897 - 0.343531i) q^{22} +(0.325733 + 6.21536i) q^{23} +(0.322792 - 0.559093i) q^{24} +(-2.35156 + 4.41250i) q^{25} +(8.29642 - 4.78994i) q^{26} +(-3.93004 - 2.00245i) q^{27} +(-4.14720 - 4.70913i) q^{28} +(-0.743348 - 1.02313i) q^{29} +(3.86863 + 0.340316i) q^{30} +(-4.14336 - 9.30613i) q^{31} +(7.79943 - 2.08985i) q^{32} +(-0.678002 + 0.549035i) q^{33} +(1.45729 - 4.48507i) q^{34} +(2.37396 - 5.41888i) q^{35} +(1.69301 + 5.21054i) q^{36} +(5.27200 + 3.42368i) q^{37} +(0.545281 - 10.4046i) q^{38} +(0.791286 - 3.72271i) q^{39} +(-1.11645 - 1.33182i) q^{40} +(5.32280 + 1.72948i) q^{41} +(-4.59482 - 0.0505673i) q^{42} +(4.80861 - 4.80861i) q^{43} +(2.47733 + 0.260378i) q^{44} +(-3.77937 + 3.52096i) q^{45} +(-1.36026 - 12.9420i) q^{46} +(0.292218 - 0.112172i) q^{47} +(1.17598 - 2.30799i) q^{48} +(-2.30911 + 6.60818i) q^{49} +(4.42720 - 9.47062i) q^{50} +(-0.936759 - 1.62251i) q^{51} +(-9.11355 + 5.91841i) q^{52} +(-0.217690 - 0.176281i) q^{53} +(8.42504 + 3.75107i) q^{54} +(0.763545 + 2.22093i) q^{55} +(1.43792 + 1.46992i) q^{56} +(-2.92684 - 2.92684i) q^{57} +(1.66407 + 2.05495i) q^{58} +(4.60084 + 5.10975i) q^{59} +(-4.40246 - 0.155834i) q^{60} +(-3.94111 - 3.54859i) q^{61} +(9.66967 + 18.9778i) q^{62} +(4.13927 - 4.49661i) q^{63} +(-10.1249 + 3.28979i) q^{64} +(-8.68581 - 5.43324i) q^{65} +(1.35559 - 1.22058i) q^{66} +(11.4671 + 4.40181i) q^{67} +(-1.38451 + 5.16706i) q^{68} +(-4.18254 - 3.03879i) q^{69} +(-4.36386 + 11.5744i) q^{70} +(-1.66579 + 1.21027i) q^{71} +(-0.643393 - 1.67610i) q^{72} +(-0.705919 - 1.08702i) q^{73} +(-11.3826 - 6.57173i) q^{74} +(-1.61917 - 3.82465i) q^{75} +11.8183i q^{76} +(-1.10223 - 2.55084i) q^{77} +(-1.24484 + 7.85959i) q^{78} +(4.40735 - 9.89907i) q^{79} +(-4.75312 - 5.10197i) q^{80} +(-2.98382 + 1.32848i) q^{81} +(-11.3033 - 3.02870i) q^{82} +(0.579789 + 3.66064i) q^{83} +(5.20787 - 0.215495i) q^{84} +(-4.96718 + 0.873412i) q^{85} +(-9.51417 + 10.5666i) q^{86} +(1.04906 + 0.0549787i) q^{87} +(-0.815165 - 0.0427210i) q^{88} +(-7.09604 + 7.88095i) q^{89} +(7.50603 - 7.76533i) q^{90} +(10.7398 + 5.62191i) q^{91} +(2.30917 + 14.5795i) q^{92} +(8.17341 + 2.19006i) q^{93} +(-0.597877 + 0.266192i) q^{94} +(-10.1007 + 4.70418i) q^{95} +(-2.72805 + 6.12730i) q^{96} +(0.775456 - 4.89604i) q^{97} +(4.09830 - 14.0505i) q^{98} +2.42618i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9} - 36 q^{10} - 6 q^{11} - 36 q^{12} - 20 q^{14} - 28 q^{15} - 30 q^{16} - 42 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} + 32 q^{22} - 40 q^{23} + 2 q^{25} - 48 q^{26} + 22 q^{28} - 58 q^{30} - 18 q^{31} + 8 q^{32} - 30 q^{33} - 2 q^{35} + 40 q^{36} - 10 q^{37} + 72 q^{38} + 30 q^{39} - 48 q^{40} + 6 q^{42} - 108 q^{43} - 10 q^{44} + 186 q^{45} - 6 q^{46} - 54 q^{47} - 248 q^{50} - 16 q^{51} + 216 q^{52} + 50 q^{53} - 30 q^{54} + 4 q^{56} - 216 q^{57} - 4 q^{58} + 90 q^{59} + 96 q^{60} - 18 q^{61} - 66 q^{63} - 100 q^{64} + 14 q^{65} - 90 q^{66} + 4 q^{67} + 342 q^{68} - 60 q^{70} - 24 q^{71} + 58 q^{72} - 6 q^{73} + 216 q^{75} - 80 q^{77} - 132 q^{78} - 10 q^{79} - 6 q^{80} - 10 q^{81} + 216 q^{82} + 20 q^{84} - 48 q^{85} - 6 q^{86} - 48 q^{87} - 122 q^{88} + 120 q^{89} - 12 q^{91} - 4 q^{92} + 106 q^{93} - 30 q^{94} - 98 q^{95} - 90 q^{96} + 222 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.08800 + 0.109427i −1.47644 + 0.0773768i −0.773465 0.633839i \(-0.781478\pi\)
−0.702973 + 0.711216i \(0.748145\pi\)
\(3\) −0.522748 + 0.645540i −0.301809 + 0.372703i −0.905377 0.424609i \(-0.860412\pi\)
0.603568 + 0.797311i \(0.293745\pi\)
\(4\) 2.35872 0.247911i 1.17936 0.123956i
\(5\) 1.15075 + 1.91723i 0.514630 + 0.857412i
\(6\) 1.02086 1.40509i 0.416763 0.573625i
\(7\) −1.53148 2.15744i −0.578847 0.815436i
\(8\) −0.767632 + 0.121581i −0.271399 + 0.0429853i
\(9\) 0.480279 + 2.25953i 0.160093 + 0.753178i
\(10\) −2.61256 3.87725i −0.826163 1.22610i
\(11\) 1.02734 + 0.218367i 0.309753 + 0.0658401i 0.360166 0.932888i \(-0.382720\pi\)
−0.0504122 + 0.998728i \(0.516054\pi\)
\(12\) −1.07298 + 1.65224i −0.309742 + 0.476961i
\(13\) −4.08239 + 2.08008i −1.13225 + 0.576911i −0.916698 0.399580i \(-0.869156\pi\)
−0.215554 + 0.976492i \(0.569156\pi\)
\(14\) 3.43382 + 4.33715i 0.917727 + 1.15915i
\(15\) −1.83920 0.259375i −0.474879 0.0669703i
\(16\) −3.05026 + 0.648353i −0.762565 + 0.162088i
\(17\) −0.808289 + 2.10566i −0.196039 + 0.510699i −0.996000 0.0893531i \(-0.971520\pi\)
0.799961 + 0.600052i \(0.204853\pi\)
\(18\) −1.25008 4.66535i −0.294646 1.09963i
\(19\) −0.520869 + 4.95574i −0.119496 + 1.13692i 0.756294 + 0.654232i \(0.227008\pi\)
−0.875790 + 0.482693i \(0.839659\pi\)
\(20\) 3.18960 + 4.23693i 0.713215 + 0.947406i
\(21\) 2.19329 + 0.139164i 0.478616 + 0.0303680i
\(22\) −2.16897 0.343531i −0.462426 0.0732411i
\(23\) 0.325733 + 6.21536i 0.0679201 + 1.29599i 0.793804 + 0.608174i \(0.208098\pi\)
−0.725884 + 0.687818i \(0.758569\pi\)
\(24\) 0.322792 0.559093i 0.0658897 0.114124i
\(25\) −2.35156 + 4.41250i −0.470311 + 0.882501i
\(26\) 8.29642 4.78994i 1.62706 0.939384i
\(27\) −3.93004 2.00245i −0.756336 0.385373i
\(28\) −4.14720 4.70913i −0.783747 0.889942i
\(29\) −0.743348 1.02313i −0.138036 0.189991i 0.734402 0.678714i \(-0.237463\pi\)
−0.872439 + 0.488724i \(0.837463\pi\)
\(30\) 3.86863 + 0.340316i 0.706312 + 0.0621329i
\(31\) −4.14336 9.30613i −0.744169 1.67143i −0.741063 0.671435i \(-0.765678\pi\)
−0.00310567 0.999995i \(-0.500989\pi\)
\(32\) 7.79943 2.08985i 1.37876 0.369437i
\(33\) −0.678002 + 0.549035i −0.118025 + 0.0955748i
\(34\) 1.45729 4.48507i 0.249923 0.769184i
\(35\) 2.37396 5.41888i 0.401273 0.915958i
\(36\) 1.69301 + 5.21054i 0.282168 + 0.868424i
\(37\) 5.27200 + 3.42368i 0.866712 + 0.562849i 0.899652 0.436608i \(-0.143820\pi\)
−0.0329402 + 0.999457i \(0.510487\pi\)
\(38\) 0.545281 10.4046i 0.0884562 1.68785i
\(39\) 0.791286 3.72271i 0.126707 0.596110i
\(40\) −1.11645 1.33182i −0.176526 0.210579i
\(41\) 5.32280 + 1.72948i 0.831282 + 0.270100i 0.693585 0.720374i \(-0.256030\pi\)
0.137697 + 0.990474i \(0.456030\pi\)
\(42\) −4.59482 0.0505673i −0.708997 0.00780270i
\(43\) 4.80861 4.80861i 0.733306 0.733306i −0.237968 0.971273i \(-0.576481\pi\)
0.971273 + 0.237968i \(0.0764812\pi\)
\(44\) 2.47733 + 0.260378i 0.373472 + 0.0392535i
\(45\) −3.77937 + 3.52096i −0.563395 + 0.524874i
\(46\) −1.36026 12.9420i −0.200559 1.90820i
\(47\) 0.292218 0.112172i 0.0426244 0.0163620i −0.336962 0.941518i \(-0.609400\pi\)
0.379587 + 0.925156i \(0.376066\pi\)
\(48\) 1.17598 2.30799i 0.169738 0.333130i
\(49\) −2.30911 + 6.60818i −0.329873 + 0.944025i
\(50\) 4.42720 9.47062i 0.626101 1.33935i
\(51\) −0.936759 1.62251i −0.131172 0.227197i
\(52\) −9.11355 + 5.91841i −1.26382 + 0.820736i
\(53\) −0.217690 0.176281i −0.0299020 0.0242141i 0.614253 0.789109i \(-0.289457\pi\)
−0.644155 + 0.764895i \(0.722791\pi\)
\(54\) 8.42504 + 3.75107i 1.14650 + 0.510456i
\(55\) 0.763545 + 2.22093i 0.102956 + 0.299470i
\(56\) 1.43792 + 1.46992i 0.192150 + 0.196426i
\(57\) −2.92684 2.92684i −0.387670 0.387670i
\(58\) 1.66407 + 2.05495i 0.218503 + 0.269829i
\(59\) 4.60084 + 5.10975i 0.598978 + 0.665232i 0.964042 0.265750i \(-0.0856196\pi\)
−0.365064 + 0.930982i \(0.618953\pi\)
\(60\) −4.40246 0.155834i −0.568355 0.0201181i
\(61\) −3.94111 3.54859i −0.504607 0.454350i 0.377083 0.926180i \(-0.376927\pi\)
−0.881690 + 0.471829i \(0.843594\pi\)
\(62\) 9.66967 + 18.9778i 1.22805 + 2.41018i
\(63\) 4.13927 4.49661i 0.521499 0.566520i
\(64\) −10.1249 + 3.28979i −1.26562 + 0.411224i
\(65\) −8.68581 5.43324i −1.07734 0.673911i
\(66\) 1.35559 1.22058i 0.166861 0.150243i
\(67\) 11.4671 + 4.40181i 1.40093 + 0.537767i 0.937382 0.348304i \(-0.113242\pi\)
0.463550 + 0.886071i \(0.346575\pi\)
\(68\) −1.38451 + 5.16706i −0.167896 + 0.626598i
\(69\) −4.18254 3.03879i −0.503518 0.365827i
\(70\) −4.36386 + 11.5744i −0.521581 + 1.38341i
\(71\) −1.66579 + 1.21027i −0.197693 + 0.143632i −0.682228 0.731140i \(-0.738989\pi\)
0.484535 + 0.874772i \(0.338989\pi\)
\(72\) −0.643393 1.67610i −0.0758246 0.197530i
\(73\) −0.705919 1.08702i −0.0826215 0.127226i 0.794944 0.606683i \(-0.207500\pi\)
−0.877565 + 0.479457i \(0.840834\pi\)
\(74\) −11.3826 6.57173i −1.32320 0.763948i
\(75\) −1.61917 3.82465i −0.186966 0.441632i
\(76\) 11.8183i 1.35566i
\(77\) −1.10223 2.55084i −0.125611 0.290696i
\(78\) −1.24484 + 7.85959i −0.140950 + 0.889924i
\(79\) 4.40735 9.89907i 0.495865 1.11373i −0.476267 0.879301i \(-0.658011\pi\)
0.972133 0.234431i \(-0.0753228\pi\)
\(80\) −4.75312 5.10197i −0.531415 0.570417i
\(81\) −2.98382 + 1.32848i −0.331536 + 0.147609i
\(82\) −11.3033 3.02870i −1.24824 0.334464i
\(83\) 0.579789 + 3.66064i 0.0636401 + 0.401808i 0.998860 + 0.0477399i \(0.0152019\pi\)
−0.935220 + 0.354068i \(0.884798\pi\)
\(84\) 5.20787 0.215495i 0.568225 0.0235124i
\(85\) −4.96718 + 0.873412i −0.538767 + 0.0947349i
\(86\) −9.51417 + 10.5666i −1.02594 + 1.13942i
\(87\) 1.04906 + 0.0549787i 0.112471 + 0.00589433i
\(88\) −0.815165 0.0427210i −0.0868968 0.00455407i
\(89\) −7.09604 + 7.88095i −0.752179 + 0.835379i −0.990743 0.135747i \(-0.956656\pi\)
0.238565 + 0.971127i \(0.423323\pi\)
\(90\) 7.50603 7.76533i 0.791205 0.818537i
\(91\) 10.7398 + 5.62191i 1.12584 + 0.589337i
\(92\) 2.30917 + 14.5795i 0.240748 + 1.52002i
\(93\) 8.17341 + 2.19006i 0.847543 + 0.227098i
\(94\) −0.597877 + 0.266192i −0.0616663 + 0.0274556i
\(95\) −10.1007 + 4.70418i −1.03631 + 0.482639i
\(96\) −2.72805 + 6.12730i −0.278431 + 0.625365i
\(97\) 0.775456 4.89604i 0.0787356 0.497117i −0.916533 0.399958i \(-0.869025\pi\)
0.995269 0.0971587i \(-0.0309754\pi\)
\(98\) 4.09830 14.0505i 0.413991 1.41932i
\(99\) 2.42618i 0.243840i
\(100\) −4.45275 + 10.9908i −0.445275 + 1.09908i
\(101\) 13.1637 + 7.60006i 1.30984 + 0.756234i 0.982069 0.188524i \(-0.0603704\pi\)
0.327767 + 0.944758i \(0.393704\pi\)
\(102\) 2.13350 + 3.28530i 0.211248 + 0.325293i
\(103\) 2.43305 + 6.33830i 0.239735 + 0.624532i 0.999676 0.0254609i \(-0.00810533\pi\)
−0.759941 + 0.649993i \(0.774772\pi\)
\(104\) 2.88088 2.09308i 0.282493 0.205243i
\(105\) 2.25712 + 4.36520i 0.220272 + 0.426000i
\(106\) 0.473825 + 0.344254i 0.0460220 + 0.0334369i
\(107\) 5.09063 18.9985i 0.492130 1.83665i −0.0534166 0.998572i \(-0.517011\pi\)
0.545546 0.838081i \(-0.316322\pi\)
\(108\) −9.76629 3.74893i −0.939762 0.360741i
\(109\) 14.2080 12.7930i 1.36088 1.22535i 0.411428 0.911442i \(-0.365030\pi\)
0.949455 0.313903i \(-0.101637\pi\)
\(110\) −1.83731 4.55374i −0.175181 0.434182i
\(111\) −4.96605 + 1.61357i −0.471356 + 0.153153i
\(112\) 6.07021 + 5.58782i 0.573581 + 0.527999i
\(113\) 3.96233 + 7.77652i 0.372745 + 0.731553i 0.998838 0.0481952i \(-0.0153470\pi\)
−0.626093 + 0.779748i \(0.715347\pi\)
\(114\) 6.43152 + 5.79097i 0.602367 + 0.542374i
\(115\) −11.5414 + 7.77682i −1.07625 + 0.725192i
\(116\) −2.00700 2.22900i −0.186345 0.206957i
\(117\) −6.66071 8.22529i −0.615783 0.760428i
\(118\) −10.1657 10.1657i −0.935827 0.935827i
\(119\) 5.78073 1.48096i 0.529919 0.135759i
\(120\) 1.44336 0.0245072i 0.131760 0.00223719i
\(121\) −9.04127 4.02543i −0.821933 0.365948i
\(122\) 8.61734 + 6.97819i 0.780177 + 0.631775i
\(123\) −3.89893 + 2.53200i −0.351555 + 0.228303i
\(124\) −12.0801 20.9234i −1.08483 1.87897i
\(125\) −11.1658 + 0.569199i −0.998703 + 0.0509107i
\(126\) −8.15074 + 9.84188i −0.726126 + 0.876784i
\(127\) 5.89827 11.5760i 0.523386 1.02720i −0.466390 0.884579i \(-0.654446\pi\)
0.989777 0.142625i \(-0.0455542\pi\)
\(128\) 5.70438 2.18971i 0.504201 0.193544i
\(129\) 0.590458 + 5.61783i 0.0519869 + 0.494623i
\(130\) 18.7305 + 10.3941i 1.64277 + 0.911627i
\(131\) 3.52330 + 0.370314i 0.307832 + 0.0323545i 0.257185 0.966362i \(-0.417205\pi\)
0.0506472 + 0.998717i \(0.483872\pi\)
\(132\) −1.46310 + 1.46310i −0.127347 + 0.127347i
\(133\) 11.4894 6.46590i 0.996260 0.560664i
\(134\) −24.4250 7.93617i −2.11000 0.685580i
\(135\) −0.683315 9.83912i −0.0588104 0.846816i
\(136\) 0.364459 1.71465i 0.0312521 0.147030i
\(137\) 0.396425 7.56424i 0.0338689 0.646257i −0.927972 0.372649i \(-0.878450\pi\)
0.961841 0.273608i \(-0.0882171\pi\)
\(138\) 9.06566 + 5.88731i 0.771720 + 0.501161i
\(139\) −2.73221 8.40888i −0.231743 0.713232i −0.997537 0.0701455i \(-0.977654\pi\)
0.765794 0.643086i \(-0.222346\pi\)
\(140\) 4.25611 13.3702i 0.359707 1.12998i
\(141\) −0.0803449 + 0.247276i −0.00676626 + 0.0208244i
\(142\) 3.34573 2.70932i 0.280767 0.227361i
\(143\) −4.64821 + 1.24548i −0.388703 + 0.104153i
\(144\) −2.92995 6.58078i −0.244163 0.548398i
\(145\) 1.10617 2.60254i 0.0918627 0.216129i
\(146\) 1.59291 + 2.19245i 0.131830 + 0.181448i
\(147\) −3.05876 4.94503i −0.252282 0.407859i
\(148\) 13.2839 + 6.76851i 1.09193 + 0.556368i
\(149\) −1.52475 + 0.880317i −0.124913 + 0.0721183i −0.561154 0.827711i \(-0.689643\pi\)
0.436242 + 0.899830i \(0.356309\pi\)
\(150\) 3.79936 + 7.80868i 0.310216 + 0.637576i
\(151\) −3.13479 + 5.42962i −0.255106 + 0.441856i −0.964924 0.262529i \(-0.915444\pi\)
0.709819 + 0.704385i \(0.248777\pi\)
\(152\) −0.202688 3.86751i −0.0164401 0.313697i
\(153\) −5.14602 0.815050i −0.416031 0.0658929i
\(154\) 2.58060 + 5.20554i 0.207950 + 0.419474i
\(155\) 13.0741 18.6528i 1.05013 1.49823i
\(156\) 0.943520 8.97699i 0.0755420 0.718735i
\(157\) 2.79709 + 10.4389i 0.223232 + 0.833115i 0.983105 + 0.183043i \(0.0585947\pi\)
−0.759872 + 0.650072i \(0.774739\pi\)
\(158\) −8.11931 + 21.1515i −0.645937 + 1.68272i
\(159\) 0.227593 0.0483765i 0.0180493 0.00383650i
\(160\) 12.9819 + 12.5484i 1.02631 + 0.992040i
\(161\) 12.9104 10.2215i 1.01748 0.805565i
\(162\) 6.08485 3.10038i 0.478071 0.243589i
\(163\) −3.03858 + 4.67900i −0.238000 + 0.366488i −0.937407 0.348236i \(-0.886781\pi\)
0.699407 + 0.714724i \(0.253448\pi\)
\(164\) 12.9838 + 2.75978i 1.01386 + 0.215503i
\(165\) −1.83284 0.668086i −0.142686 0.0520104i
\(166\) −1.61117 7.57998i −0.125051 0.588320i
\(167\) −10.3561 + 1.64024i −0.801379 + 0.126926i −0.543673 0.839297i \(-0.682967\pi\)
−0.257706 + 0.966223i \(0.582967\pi\)
\(168\) −1.70056 + 0.159836i −0.131201 + 0.0123316i
\(169\) 4.69799 6.46623i 0.361384 0.497402i
\(170\) 10.2759 2.36723i 0.788125 0.181558i
\(171\) −11.4478 + 1.20322i −0.875437 + 0.0920122i
\(172\) 10.1500 12.5343i 0.773934 0.955729i
\(173\) −13.7091 + 0.718462i −1.04228 + 0.0546236i −0.565785 0.824553i \(-0.691427\pi\)
−0.476496 + 0.879177i \(0.658093\pi\)
\(174\) −2.19644 −0.166512
\(175\) 13.1211 1.68433i 0.991861 0.127324i
\(176\) −3.27522 −0.246879
\(177\) −5.70362 + 0.298914i −0.428710 + 0.0224678i
\(178\) 13.9541 17.2319i 1.04591 1.29159i
\(179\) 1.60078 0.168248i 0.119648 0.0125755i −0.0445154 0.999009i \(-0.514174\pi\)
0.164163 + 0.986433i \(0.447508\pi\)
\(180\) −8.04159 + 9.24191i −0.599385 + 0.688851i
\(181\) −2.04450 + 2.81402i −0.151967 + 0.209164i −0.878212 0.478271i \(-0.841264\pi\)
0.726245 + 0.687436i \(0.241264\pi\)
\(182\) −23.0398 10.5633i −1.70783 0.783005i
\(183\) 4.35096 0.689125i 0.321632 0.0509416i
\(184\) −1.00571 4.73150i −0.0741421 0.348811i
\(185\) −0.497238 + 14.0474i −0.0365577 + 1.03279i
\(186\) −17.3057 3.67844i −1.26892 0.269717i
\(187\) −1.29019 + 1.98672i −0.0943481 + 0.145283i
\(188\) 0.661452 0.337027i 0.0482414 0.0245802i
\(189\) 1.69861 + 11.5456i 0.123556 + 0.839816i
\(190\) 20.5755 10.9276i 1.49270 0.792773i
\(191\) 2.89987 0.616386i 0.209827 0.0446001i −0.101799 0.994805i \(-0.532460\pi\)
0.311626 + 0.950205i \(0.399126\pi\)
\(192\) 3.16910 8.25579i 0.228710 0.595810i
\(193\) 4.41207 + 16.4661i 0.317588 + 1.18525i 0.921556 + 0.388246i \(0.126919\pi\)
−0.603968 + 0.797009i \(0.706414\pi\)
\(194\) −1.08339 + 10.3078i −0.0777829 + 0.740055i
\(195\) 8.04786 2.76682i 0.576319 0.198136i
\(196\) −3.80830 + 16.1593i −0.272022 + 1.15424i
\(197\) 19.1171 + 3.02785i 1.36204 + 0.215725i 0.794320 0.607499i \(-0.207827\pi\)
0.567716 + 0.823225i \(0.307827\pi\)
\(198\) −0.265490 5.06585i −0.0188676 0.360015i
\(199\) −0.0959424 + 0.166177i −0.00680118 + 0.0117800i −0.869406 0.494098i \(-0.835498\pi\)
0.862605 + 0.505878i \(0.168832\pi\)
\(200\) 1.26865 3.67308i 0.0897073 0.259726i
\(201\) −8.83596 + 5.10144i −0.623240 + 0.359828i
\(202\) −28.3174 14.4284i −1.99241 1.01518i
\(203\) −1.06892 + 3.17064i −0.0750234 + 0.222535i
\(204\) −2.61179 3.59482i −0.182862 0.251688i
\(205\) 2.80939 + 12.1953i 0.196216 + 0.851753i
\(206\) −5.77378 12.9681i −0.402278 0.903532i
\(207\) −13.8874 + 3.72111i −0.965239 + 0.258635i
\(208\) 11.1037 8.99163i 0.769906 0.623457i
\(209\) −1.61728 + 4.97747i −0.111869 + 0.344299i
\(210\) −5.19054 8.86753i −0.358181 0.611918i
\(211\) 1.96658 + 6.05250i 0.135385 + 0.416671i 0.995650 0.0931759i \(-0.0297019\pi\)
−0.860265 + 0.509847i \(0.829702\pi\)
\(212\) −0.557171 0.361831i −0.0382666 0.0248507i
\(213\) 0.0895123 1.70800i 0.00613328 0.117030i
\(214\) −8.55027 + 40.2259i −0.584485 + 2.74978i
\(215\) 14.7527 + 3.68572i 1.00613 + 0.251364i
\(216\) 3.26028 + 1.05933i 0.221834 + 0.0720783i
\(217\) −13.7319 + 23.1912i −0.932185 + 1.57432i
\(218\) −28.2665 + 28.2665i −1.91445 + 1.91445i
\(219\) 1.07073 + 0.112538i 0.0723533 + 0.00760464i
\(220\) 2.35158 + 5.04925i 0.158544 + 0.340420i
\(221\) −1.08020 10.2775i −0.0726624 0.691337i
\(222\) 10.1925 3.91254i 0.684078 0.262593i
\(223\) −6.05349 + 11.8807i −0.405372 + 0.795587i −0.999964 0.00843996i \(-0.997313\pi\)
0.594592 + 0.804027i \(0.297313\pi\)
\(224\) −16.4534 13.6262i −1.09934 0.910441i
\(225\) −11.0996 3.19419i −0.739974 0.212946i
\(226\) −9.12431 15.8038i −0.606940 1.05125i
\(227\) −4.06947 + 2.64274i −0.270100 + 0.175405i −0.672581 0.740023i \(-0.734815\pi\)
0.402481 + 0.915428i \(0.368148\pi\)
\(228\) −7.62920 6.17801i −0.505256 0.409149i
\(229\) −6.10856 2.71971i −0.403665 0.179723i 0.194853 0.980832i \(-0.437577\pi\)
−0.598518 + 0.801109i \(0.704244\pi\)
\(230\) 23.2475 17.5009i 1.53290 1.15398i
\(231\) 2.22286 + 0.621911i 0.146254 + 0.0409187i
\(232\) 0.695011 + 0.695011i 0.0456297 + 0.0456297i
\(233\) −5.43374 6.71012i −0.355976 0.439594i 0.567428 0.823423i \(-0.307939\pi\)
−0.923404 + 0.383829i \(0.874605\pi\)
\(234\) 14.8076 + 16.4455i 0.968004 + 1.07508i
\(235\) 0.551330 + 0.431168i 0.0359648 + 0.0281263i
\(236\) 12.1189 + 10.9119i 0.788870 + 0.710302i
\(237\) 4.08631 + 8.01983i 0.265434 + 0.520944i
\(238\) −11.9081 + 3.72480i −0.771887 + 0.241443i
\(239\) −18.2461 + 5.92852i −1.18024 + 0.383484i −0.832457 0.554090i \(-0.813066\pi\)
−0.347785 + 0.937574i \(0.613066\pi\)
\(240\) 5.77821 0.401289i 0.372982 0.0259031i
\(241\) 19.2863 17.3654i 1.24234 1.11861i 0.253861 0.967241i \(-0.418300\pi\)
0.988478 0.151366i \(-0.0483671\pi\)
\(242\) 19.3186 + 7.41573i 1.24185 + 0.476701i
\(243\) 4.12698 15.4021i 0.264746 0.988046i
\(244\) −10.1757 7.39308i −0.651433 0.473294i
\(245\) −15.3266 + 3.17725i −0.979181 + 0.202987i
\(246\) 7.86390 5.71346i 0.501384 0.364277i
\(247\) −8.18196 21.3147i −0.520606 1.35622i
\(248\) 4.31202 + 6.63993i 0.273814 + 0.421636i
\(249\) −2.66617 1.53932i −0.168962 0.0975502i
\(250\) 23.2520 2.41034i 1.47058 0.152443i
\(251\) 15.4133i 0.972880i −0.873714 0.486440i \(-0.838295\pi\)
0.873714 0.486440i \(-0.161705\pi\)
\(252\) 8.64862 11.6324i 0.544812 0.732774i
\(253\) −1.02259 + 6.45639i −0.0642898 + 0.405910i
\(254\) −11.0488 + 24.8161i −0.693266 + 1.55710i
\(255\) 2.03276 3.66309i 0.127296 0.229392i
\(256\) 7.78009 3.46392i 0.486256 0.216495i
\(257\) 29.5275 + 7.91188i 1.84188 + 0.493529i 0.999006 0.0445856i \(-0.0141967\pi\)
0.842871 + 0.538115i \(0.180863\pi\)
\(258\) −1.84762 11.6654i −0.115028 0.726257i
\(259\) −0.687603 16.6173i −0.0427256 1.03255i
\(260\) −21.8344 10.6622i −1.35411 0.661241i
\(261\) 1.95479 2.17101i 0.120998 0.134382i
\(262\) −7.39718 0.387670i −0.456999 0.0239503i
\(263\) −0.407151 0.0213379i −0.0251060 0.00131575i 0.0397788 0.999209i \(-0.487335\pi\)
−0.0648848 + 0.997893i \(0.520668\pi\)
\(264\) 0.453704 0.503889i 0.0279235 0.0310122i
\(265\) 0.0874667 0.620217i 0.00537304 0.0380996i
\(266\) −23.2824 + 14.7580i −1.42753 + 0.904873i
\(267\) −1.37803 8.70053i −0.0843340 0.532464i
\(268\) 28.1390 + 7.53982i 1.71886 + 0.460568i
\(269\) 17.4978 7.79051i 1.06686 0.474996i 0.203233 0.979130i \(-0.434855\pi\)
0.863625 + 0.504134i \(0.168188\pi\)
\(270\) 2.50343 + 20.4693i 0.152354 + 1.24572i
\(271\) −7.85265 + 17.6373i −0.477015 + 1.07139i 0.501489 + 0.865164i \(0.332786\pi\)
−0.978504 + 0.206228i \(0.933881\pi\)
\(272\) 1.10028 6.94688i 0.0667141 0.421216i
\(273\) −9.24337 + 3.99411i −0.559434 + 0.241735i
\(274\) 15.8375i 0.956779i
\(275\) −3.37938 + 4.01962i −0.203784 + 0.242392i
\(276\) −10.6188 6.13076i −0.639176 0.369028i
\(277\) −4.16515 6.41377i −0.250260 0.385366i 0.691106 0.722753i \(-0.257124\pi\)
−0.941366 + 0.337387i \(0.890457\pi\)
\(278\) 6.62501 + 17.2587i 0.397342 + 1.03511i
\(279\) 19.0376 13.8316i 1.13975 0.828076i
\(280\) −1.16350 + 4.44834i −0.0695322 + 0.265839i
\(281\) 15.1432 + 11.0022i 0.903367 + 0.656334i 0.939329 0.343019i \(-0.111449\pi\)
−0.0359618 + 0.999353i \(0.511449\pi\)
\(282\) 0.140701 0.525104i 0.00837864 0.0312695i
\(283\) 2.66042 + 1.02124i 0.158145 + 0.0607063i 0.436153 0.899873i \(-0.356341\pi\)
−0.278008 + 0.960579i \(0.589674\pi\)
\(284\) −3.62909 + 3.26765i −0.215347 + 0.193899i
\(285\) 2.24338 8.97950i 0.132886 0.531900i
\(286\) 9.56917 3.10921i 0.565837 0.183852i
\(287\) −4.42053 14.1323i −0.260936 0.834204i
\(288\) 8.46799 + 16.6194i 0.498981 + 0.979305i
\(289\) 8.85297 + 7.97125i 0.520763 + 0.468897i
\(290\) −2.02490 + 5.55514i −0.118906 + 0.326209i
\(291\) 2.75522 + 3.05998i 0.161514 + 0.179379i
\(292\) −1.93455 2.38897i −0.113211 0.139804i
\(293\) 0.584948 + 0.584948i 0.0341730 + 0.0341730i 0.723987 0.689814i \(-0.242308\pi\)
−0.689814 + 0.723987i \(0.742308\pi\)
\(294\) 6.92781 + 9.99051i 0.404038 + 0.582658i
\(295\) −4.50217 + 14.7009i −0.262126 + 0.855920i
\(296\) −4.46321 1.98715i −0.259419 0.115501i
\(297\) −3.60020 2.91538i −0.208905 0.169168i
\(298\) 3.08735 2.00495i 0.178845 0.116144i
\(299\) −14.2582 24.6960i −0.824575 1.42821i
\(300\) −4.76735 8.61986i −0.275243 0.497668i
\(301\) −17.7386 3.00998i −1.02244 0.173492i
\(302\) 5.95129 11.6801i 0.342458 0.672112i
\(303\) −11.7874 + 4.52477i −0.677170 + 0.259941i
\(304\) −1.62428 15.4540i −0.0931589 0.886348i
\(305\) 2.26825 11.6396i 0.129879 0.666479i
\(306\) 10.8341 + 1.13871i 0.619343 + 0.0650956i
\(307\) −10.4006 + 10.4006i −0.593593 + 0.593593i −0.938600 0.345007i \(-0.887877\pi\)
0.345007 + 0.938600i \(0.387877\pi\)
\(308\) −3.23225 5.74347i −0.184174 0.327264i
\(309\) −5.36350 1.74271i −0.305119 0.0991391i
\(310\) −25.2575 + 40.3777i −1.43453 + 2.29330i
\(311\) −2.47049 + 11.6228i −0.140089 + 0.659066i 0.850923 + 0.525291i \(0.176043\pi\)
−0.991012 + 0.133776i \(0.957290\pi\)
\(312\) −0.154806 + 2.95387i −0.00876416 + 0.167230i
\(313\) −8.44819 5.48632i −0.477520 0.310105i 0.283342 0.959019i \(-0.408557\pi\)
−0.760862 + 0.648914i \(0.775223\pi\)
\(314\) −6.98263 21.4903i −0.394053 1.21277i
\(315\) 13.3843 + 2.76148i 0.754121 + 0.155592i
\(316\) 7.94161 24.4418i 0.446750 1.37496i
\(317\) 14.6927 11.8979i 0.825223 0.668252i −0.120684 0.992691i \(-0.538509\pi\)
0.945907 + 0.324439i \(0.105175\pi\)
\(318\) −0.469921 + 0.125915i −0.0263519 + 0.00706096i
\(319\) −0.540250 1.21342i −0.0302482 0.0679386i
\(320\) −17.9586 15.6261i −1.00391 0.873528i
\(321\) 9.60316 + 13.2176i 0.535996 + 0.737736i
\(322\) −25.8384 + 22.7552i −1.43992 + 1.26810i
\(323\) −10.0141 5.10245i −0.557200 0.283908i
\(324\) −6.70866 + 3.87325i −0.372703 + 0.215180i
\(325\) 0.421608 22.9050i 0.0233866 1.27054i
\(326\) 5.83254 10.1023i 0.323035 0.559512i
\(327\) 0.831154 + 15.8594i 0.0459629 + 0.877024i
\(328\) −4.29622 0.680455i −0.237219 0.0375719i
\(329\) −0.689532 0.458654i −0.0380152 0.0252864i
\(330\) 3.90007 + 1.19440i 0.214692 + 0.0657495i
\(331\) −3.25235 + 30.9441i −0.178766 + 1.70084i 0.426232 + 0.904614i \(0.359841\pi\)
−0.604998 + 0.796227i \(0.706826\pi\)
\(332\) 2.27508 + 8.49070i 0.124861 + 0.465988i
\(333\) −5.20388 + 13.5566i −0.285171 + 0.742896i
\(334\) 21.4440 4.55807i 1.17336 0.249406i
\(335\) 4.75647 + 27.0505i 0.259874 + 1.47793i
\(336\) −6.78035 + 0.997543i −0.369898 + 0.0544204i
\(337\) −31.0198 + 15.8054i −1.68976 + 0.860974i −0.700696 + 0.713460i \(0.747127\pi\)
−0.989060 + 0.147514i \(0.952873\pi\)
\(338\) −9.10181 + 14.0156i −0.495073 + 0.762346i
\(339\) −7.09135 1.50731i −0.385149 0.0818660i
\(340\) −11.4997 + 3.29156i −0.623657 + 0.178510i
\(341\) −2.22447 10.4653i −0.120462 0.566727i
\(342\) 23.7714 3.76502i 1.28541 0.203589i
\(343\) 17.7931 5.13855i 0.960738 0.277456i
\(344\) −3.10660 + 4.27587i −0.167497 + 0.230540i
\(345\) 1.01302 11.5158i 0.0545392 0.619989i
\(346\) 28.5459 3.00029i 1.53464 0.161297i
\(347\) −16.9534 + 20.9357i −0.910107 + 1.12389i 0.0817651 + 0.996652i \(0.473944\pi\)
−0.991872 + 0.127237i \(0.959389\pi\)
\(348\) 2.48806 0.130394i 0.133374 0.00698983i
\(349\) 28.9278 1.54847 0.774236 0.632897i \(-0.218134\pi\)
0.774236 + 0.632897i \(0.218134\pi\)
\(350\) −27.2125 + 4.95269i −1.45457 + 0.264732i
\(351\) 20.2092 1.07869
\(352\) 8.46898 0.443841i 0.451398 0.0236568i
\(353\) −7.34270 + 9.06748i −0.390813 + 0.482613i −0.934140 0.356908i \(-0.883831\pi\)
0.543327 + 0.839521i \(0.317164\pi\)
\(354\) 11.8764 1.24826i 0.631226 0.0663445i
\(355\) −4.23727 1.80099i −0.224891 0.0955867i
\(356\) −14.7838 + 20.3482i −0.783540 + 1.07845i
\(357\) −2.06585 + 4.50586i −0.109336 + 0.238475i
\(358\) −3.32401 + 0.526471i −0.175679 + 0.0278248i
\(359\) 0.925593 + 4.35457i 0.0488509 + 0.229826i 0.995800 0.0915592i \(-0.0291851\pi\)
−0.946949 + 0.321385i \(0.895852\pi\)
\(360\) 2.47308 3.16230i 0.130343 0.166668i
\(361\) −5.70326 1.21227i −0.300172 0.0638034i
\(362\) 3.96099 6.09939i 0.208185 0.320577i
\(363\) 7.32488 3.73221i 0.384456 0.195890i
\(364\) 26.7259 + 10.5980i 1.40082 + 0.555486i
\(365\) 1.27173 2.60430i 0.0665656 0.136315i
\(366\) −9.00939 + 1.91501i −0.470928 + 0.100099i
\(367\) 9.20390 23.9770i 0.480440 1.25159i −0.452567 0.891730i \(-0.649492\pi\)
0.933007 0.359858i \(-0.117175\pi\)
\(368\) −5.02332 18.7473i −0.261858 0.977269i
\(369\) −1.35140 + 12.8577i −0.0703510 + 0.669345i
\(370\) −0.498942 29.3854i −0.0259387 1.52768i
\(371\) −0.0469289 + 0.739625i −0.00243643 + 0.0383994i
\(372\) 19.8217 + 3.13945i 1.02771 + 0.162773i
\(373\) −1.87432 35.7641i −0.0970485 1.85180i −0.422655 0.906291i \(-0.638902\pi\)
0.325606 0.945506i \(-0.394432\pi\)
\(374\) 2.47652 4.28945i 0.128058 0.221802i
\(375\) 5.46948 7.50554i 0.282443 0.387584i
\(376\) −0.210678 + 0.121635i −0.0108649 + 0.00627285i
\(377\) 5.16284 + 2.63060i 0.265900 + 0.135483i
\(378\) −4.81010 23.9212i −0.247405 1.23038i
\(379\) −13.3436 18.3659i −0.685416 0.943394i 0.314567 0.949235i \(-0.398141\pi\)
−0.999983 + 0.00584095i \(0.998141\pi\)
\(380\) −22.6585 + 13.5999i −1.16236 + 0.697662i
\(381\) 4.38946 + 9.85889i 0.224879 + 0.505086i
\(382\) −5.98747 + 1.60434i −0.306346 + 0.0820850i
\(383\) 16.9050 13.6894i 0.863806 0.699496i −0.0912802 0.995825i \(-0.529096\pi\)
0.955086 + 0.296329i \(0.0957626\pi\)
\(384\) −1.56841 + 4.82707i −0.0800375 + 0.246330i
\(385\) 3.62216 5.04862i 0.184602 0.257301i
\(386\) −11.0142 33.8984i −0.560610 1.72538i
\(387\) 13.1747 + 8.55574i 0.669707 + 0.434913i
\(388\) 0.615300 11.7406i 0.0312371 0.596040i
\(389\) 2.70252 12.7143i 0.137023 0.644643i −0.855004 0.518621i \(-0.826446\pi\)
0.992027 0.126022i \(-0.0402210\pi\)
\(390\) −16.5012 + 6.65777i −0.835569 + 0.337129i
\(391\) −13.3507 4.33792i −0.675176 0.219378i
\(392\) 0.969118 5.35339i 0.0489478 0.270387i
\(393\) −2.08085 + 2.08085i −0.104965 + 0.104965i
\(394\) −40.2478 4.23021i −2.02765 0.213115i
\(395\) 24.0506 2.94142i 1.21011 0.147999i
\(396\) 0.601477 + 5.72267i 0.0302254 + 0.287575i
\(397\) −4.46102 + 1.71242i −0.223892 + 0.0859441i −0.467728 0.883872i \(-0.654927\pi\)
0.243836 + 0.969816i \(0.421594\pi\)
\(398\) 0.182143 0.357476i 0.00913002 0.0179187i
\(399\) −1.83208 + 10.7969i −0.0917187 + 0.540522i
\(400\) 4.31200 14.9839i 0.215600 0.749196i
\(401\) 7.58351 + 13.1350i 0.378702 + 0.655932i 0.990874 0.134793i \(-0.0430370\pi\)
−0.612171 + 0.790725i \(0.709704\pi\)
\(402\) 17.8912 11.6187i 0.892333 0.579488i
\(403\) 36.2724 + 29.3728i 1.80685 + 1.46316i
\(404\) 32.9336 + 14.6630i 1.63851 + 0.729511i
\(405\) −5.98064 4.19193i −0.297180 0.208299i
\(406\) 1.88495 6.73726i 0.0935484 0.334365i
\(407\) 4.66850 + 4.66850i 0.231409 + 0.231409i
\(408\) 0.916352 + 1.13160i 0.0453662 + 0.0560226i
\(409\) 6.87712 + 7.63781i 0.340052 + 0.377666i 0.888779 0.458336i \(-0.151554\pi\)
−0.548728 + 0.836001i \(0.684888\pi\)
\(410\) −7.20049 25.1562i −0.355607 1.24238i
\(411\) 4.67579 + 4.21010i 0.230640 + 0.207669i
\(412\) 7.31021 + 14.3471i 0.360148 + 0.706831i
\(413\) 3.97787 17.7515i 0.195738 0.873496i
\(414\) 28.5896 9.28933i 1.40510 0.456546i
\(415\) −6.35111 + 5.32407i −0.311764 + 0.261348i
\(416\) −27.4933 + 24.7551i −1.34797 + 1.21372i
\(417\) 6.85652 + 2.63197i 0.335765 + 0.128888i
\(418\) 2.83220 10.5699i 0.138528 0.516992i
\(419\) −14.4852 10.5241i −0.707648 0.514137i 0.174766 0.984610i \(-0.444083\pi\)
−0.882414 + 0.470473i \(0.844083\pi\)
\(420\) 6.40610 + 9.73671i 0.312586 + 0.475103i
\(421\) 13.5865 9.87120i 0.662168 0.481093i −0.205227 0.978714i \(-0.565793\pi\)
0.867394 + 0.497621i \(0.165793\pi\)
\(422\) −4.76852 12.4224i −0.232128 0.604714i
\(423\) 0.393803 + 0.606403i 0.0191473 + 0.0294843i
\(424\) 0.188538 + 0.108852i 0.00915621 + 0.00528634i
\(425\) −7.39051 8.51817i −0.358492 0.413192i
\(426\) 3.57609i 0.173262i
\(427\) −1.62013 + 13.9373i −0.0784036 + 0.674474i
\(428\) 7.29743 46.0741i 0.352734 2.22708i
\(429\) 1.62583 3.65168i 0.0784959 0.176305i
\(430\) −31.2070 6.08142i −1.50493 0.293272i
\(431\) −8.17166 + 3.63826i −0.393615 + 0.175249i −0.593993 0.804470i \(-0.702449\pi\)
0.200378 + 0.979719i \(0.435783\pi\)
\(432\) 13.2859 + 3.55996i 0.639220 + 0.171278i
\(433\) −2.75652 17.4040i −0.132470 0.836382i −0.961022 0.276471i \(-0.910835\pi\)
0.828552 0.559912i \(-0.189165\pi\)
\(434\) 26.1345 49.9259i 1.25450 2.39652i
\(435\) 1.10179 + 2.07455i 0.0528269 + 0.0994670i
\(436\) 30.3413 33.6974i 1.45308 1.61381i
\(437\) −30.9714 1.62314i −1.48156 0.0776454i
\(438\) −2.24800 0.117813i −0.107414 0.00562931i
\(439\) −18.3365 + 20.3647i −0.875151 + 0.971954i −0.999795 0.0202474i \(-0.993555\pi\)
0.124644 + 0.992202i \(0.460221\pi\)
\(440\) −0.856143 1.61202i −0.0408150 0.0768501i
\(441\) −16.0404 2.04375i −0.763829 0.0973212i
\(442\) 3.38010 + 21.3411i 0.160775 + 1.01509i
\(443\) −10.7062 2.86872i −0.508667 0.136297i −0.00464732 0.999989i \(-0.501479\pi\)
−0.504019 + 0.863692i \(0.668146\pi\)
\(444\) −11.3135 + 5.03709i −0.536914 + 0.239050i
\(445\) −23.2754 4.53577i −1.10336 0.215016i
\(446\) 11.3396 25.4692i 0.536947 1.20600i
\(447\) 0.228782 1.44447i 0.0108210 0.0683212i
\(448\) 22.6037 + 16.8057i 1.06793 + 0.793995i
\(449\) 40.1154i 1.89316i 0.322465 + 0.946581i \(0.395489\pi\)
−0.322465 + 0.946581i \(0.604511\pi\)
\(450\) 23.5255 + 5.45487i 1.10900 + 0.257145i
\(451\) 5.09064 + 2.93909i 0.239709 + 0.138396i
\(452\) 11.2739 + 17.3603i 0.530281 + 0.816561i
\(453\) −1.86633 4.86195i −0.0876878 0.228434i
\(454\) 8.20786 5.96336i 0.385214 0.279874i
\(455\) 1.58028 + 27.0601i 0.0740846 + 1.26860i
\(456\) 2.60259 + 1.89089i 0.121877 + 0.0885490i
\(457\) −8.79489 + 32.8230i −0.411408 + 1.53539i 0.380516 + 0.924774i \(0.375746\pi\)
−0.791924 + 0.610620i \(0.790920\pi\)
\(458\) 13.0523 + 5.01030i 0.609893 + 0.234116i
\(459\) 7.39310 6.65678i 0.345081 0.310712i
\(460\) −25.2951 + 21.2046i −1.17939 + 0.988669i
\(461\) 30.0506 9.76402i 1.39959 0.454756i 0.490535 0.871422i \(-0.336802\pi\)
0.909060 + 0.416666i \(0.136802\pi\)
\(462\) −4.70938 1.05531i −0.219100 0.0490973i
\(463\) −8.64582 16.9684i −0.401805 0.788587i 0.598113 0.801412i \(-0.295918\pi\)
−0.999918 + 0.0128250i \(0.995918\pi\)
\(464\) 2.93076 + 2.63886i 0.136057 + 0.122506i
\(465\) 5.20668 + 18.1905i 0.241454 + 0.843565i
\(466\) 12.0799 + 13.4161i 0.559592 + 0.621489i
\(467\) 3.74989 + 4.63073i 0.173524 + 0.214285i 0.856487 0.516169i \(-0.172642\pi\)
−0.682963 + 0.730453i \(0.739309\pi\)
\(468\) −17.7499 17.7499i −0.820489 0.820489i
\(469\) −8.06506 31.4810i −0.372410 1.45366i
\(470\) −1.19836 0.839948i −0.0552761 0.0387439i
\(471\) −8.20090 3.65128i −0.377877 0.168242i
\(472\) −4.15300 3.36303i −0.191157 0.154796i
\(473\) 5.99009 3.89001i 0.275425 0.178863i
\(474\) −9.40980 16.2982i −0.432206 0.748603i
\(475\) −20.6424 13.9520i −0.947137 0.640164i
\(476\) 13.2680 4.92627i 0.608137 0.225795i
\(477\) 0.293762 0.576541i 0.0134505 0.0263980i
\(478\) 37.4491 14.3754i 1.71288 0.657513i
\(479\) 2.17952 + 20.7367i 0.0995846 + 0.947484i 0.924231 + 0.381835i \(0.124708\pi\)
−0.824646 + 0.565649i \(0.808626\pi\)
\(480\) −14.8868 + 1.82068i −0.679485 + 0.0831021i
\(481\) −28.6439 3.01060i −1.30605 0.137271i
\(482\) −38.3695 + 38.3695i −1.74768 + 1.74768i
\(483\) −0.150524 + 13.6774i −0.00684907 + 0.622345i
\(484\) −22.3238 7.25343i −1.01472 0.329701i
\(485\) 10.2792 4.14738i 0.466754 0.188323i
\(486\) −6.93172 + 32.6112i −0.314429 + 1.47927i
\(487\) 1.53608 29.3101i 0.0696064 1.32817i −0.711021 0.703171i \(-0.751767\pi\)
0.780627 0.624997i \(-0.214900\pi\)
\(488\) 3.45676 + 2.24485i 0.156480 + 0.101619i
\(489\) −1.43207 4.40746i −0.0647605 0.199312i
\(490\) 31.6543 8.31124i 1.42999 0.375464i
\(491\) −5.56395 + 17.1241i −0.251097 + 0.772798i 0.743476 + 0.668762i \(0.233176\pi\)
−0.994574 + 0.104036i \(0.966824\pi\)
\(492\) −8.56878 + 6.93886i −0.386311 + 0.312828i
\(493\) 2.75521 0.738256i 0.124088 0.0332494i
\(494\) 19.4163 + 43.6098i 0.873583 + 1.96210i
\(495\) −4.65154 + 2.79192i −0.209071 + 0.125487i
\(496\) 18.6720 + 25.6998i 0.838396 + 1.15395i
\(497\) 5.16221 + 1.74034i 0.231557 + 0.0780648i
\(498\) 5.73541 + 2.92234i 0.257010 + 0.130953i
\(499\) 4.60639 2.65950i 0.206210 0.119056i −0.393339 0.919394i \(-0.628680\pi\)
0.599549 + 0.800338i \(0.295347\pi\)
\(500\) −26.1960 + 4.11072i −1.17152 + 0.183837i
\(501\) 4.35478 7.54270i 0.194557 0.336983i
\(502\) 1.68664 + 32.1830i 0.0752784 + 1.43640i
\(503\) −26.0759 4.13001i −1.16267 0.184148i −0.454865 0.890560i \(-0.650313\pi\)
−0.707801 + 0.706412i \(0.750313\pi\)
\(504\) −2.63073 + 3.95500i −0.117182 + 0.176170i
\(505\) 0.577015 + 33.9836i 0.0256768 + 1.51225i
\(506\) 1.42866 13.5928i 0.0635119 0.604275i
\(507\) 1.71834 + 6.41294i 0.0763143 + 0.284809i
\(508\) 11.0425 28.7668i 0.489933 1.27632i
\(509\) 4.37813 0.930600i 0.194057 0.0412481i −0.109858 0.993947i \(-0.535040\pi\)
0.303915 + 0.952699i \(0.401706\pi\)
\(510\) −3.84356 + 7.87096i −0.170196 + 0.348532i
\(511\) −1.26408 + 3.18773i −0.0559195 + 0.141017i
\(512\) −26.7543 + 13.6320i −1.18238 + 0.602454i
\(513\) 11.9707 18.4332i 0.528519 0.813847i
\(514\) −62.5192 13.2889i −2.75760 0.586147i
\(515\) −9.35217 + 11.9585i −0.412106 + 0.526955i
\(516\) 2.78545 + 13.1045i 0.122623 + 0.576894i
\(517\) 0.324701 0.0514276i 0.0142803 0.00226178i
\(518\) 3.25411 + 34.6217i 0.142977 + 1.52119i
\(519\) 6.70259 9.22532i 0.294211 0.404947i
\(520\) 7.32808 + 3.11470i 0.321358 + 0.136589i
\(521\) −25.5618 + 2.68665i −1.11988 + 0.117704i −0.646327 0.763060i \(-0.723696\pi\)
−0.473554 + 0.880765i \(0.657029\pi\)
\(522\) −3.84402 + 4.74697i −0.168248 + 0.207769i
\(523\) −21.9690 + 1.15135i −0.960639 + 0.0503450i −0.526204 0.850358i \(-0.676385\pi\)
−0.434435 + 0.900703i \(0.643052\pi\)
\(524\) 8.40229 0.367056
\(525\) −5.77172 + 9.35067i −0.251898 + 0.408097i
\(526\) 0.852467 0.0371693
\(527\) 22.9446 1.20248i 0.999483 0.0523807i
\(528\) 1.71211 2.11428i 0.0745102 0.0920124i
\(529\) −15.6506 + 1.64494i −0.680460 + 0.0715192i
\(530\) −0.114762 + 1.30458i −0.00498493 + 0.0566675i
\(531\) −9.33596 + 12.8499i −0.405146 + 0.557636i
\(532\) 25.4974 18.0996i 1.10545 0.784717i
\(533\) −25.3273 + 4.01144i −1.09705 + 0.173755i
\(534\) 3.82940 + 18.0159i 0.165714 + 0.779624i
\(535\) 42.2825 12.1026i 1.82803 0.523239i
\(536\) −9.33770 1.98479i −0.403327 0.0857299i
\(537\) −0.728191 + 1.12132i −0.0314238 + 0.0483883i
\(538\) −35.6828 + 18.1813i −1.53840 + 0.783852i
\(539\) −3.81524 + 6.28458i −0.164334 + 0.270696i
\(540\) −4.05098 23.0383i −0.174326 0.991412i
\(541\) −7.92633 + 1.68479i −0.340780 + 0.0724349i −0.375123 0.926975i \(-0.622399\pi\)
0.0343432 + 0.999410i \(0.489066\pi\)
\(542\) 14.4663 37.6860i 0.621381 1.61875i
\(543\) −0.747801 2.79083i −0.0320912 0.119766i
\(544\) −1.90367 + 18.1122i −0.0816190 + 0.776553i
\(545\) 40.8770 + 12.5186i 1.75098 + 0.536239i
\(546\) 18.8631 9.35118i 0.807265 0.400194i
\(547\) 19.0836 + 3.02255i 0.815958 + 0.129235i 0.550444 0.834872i \(-0.314458\pi\)
0.265514 + 0.964107i \(0.414458\pi\)
\(548\) −0.940206 17.9402i −0.0401636 0.766368i
\(549\) 6.12533 10.6094i 0.261423 0.452797i
\(550\) 6.61629 8.76276i 0.282120 0.373645i
\(551\) 5.45756 3.15092i 0.232500 0.134234i
\(552\) 3.58011 + 1.82416i 0.152379 + 0.0776412i
\(553\) −28.1064 + 5.65167i −1.19521 + 0.240333i
\(554\) 9.39867 + 12.9362i 0.399311 + 0.549605i
\(555\) −8.80825 7.66425i −0.373889 0.325329i
\(556\) −8.52918 19.1568i −0.361718 0.812431i
\(557\) −17.9964 + 4.82211i −0.762531 + 0.204320i −0.619069 0.785336i \(-0.712490\pi\)
−0.143462 + 0.989656i \(0.545823\pi\)
\(558\) −38.2368 + 30.9636i −1.61869 + 1.31079i
\(559\) −9.62832 + 29.6329i −0.407235 + 1.25334i
\(560\) −3.72786 + 18.0682i −0.157531 + 0.763520i
\(561\) −0.608062 1.87142i −0.0256724 0.0790116i
\(562\) −32.8229 21.3154i −1.38455 0.899137i
\(563\) −1.13153 + 21.5909i −0.0476883 + 0.909947i 0.865122 + 0.501562i \(0.167241\pi\)
−0.912810 + 0.408385i \(0.866092\pi\)
\(564\) −0.128209 + 0.603174i −0.00539855 + 0.0253982i
\(565\) −10.3497 + 16.5455i −0.435417 + 0.696076i
\(566\) −5.66670 1.84122i −0.238189 0.0773923i
\(567\) 7.43581 + 4.40287i 0.312275 + 0.184903i
\(568\) 1.13157 1.13157i 0.0474795 0.0474795i
\(569\) 39.9222 + 4.19599i 1.67362 + 0.175905i 0.893297 0.449466i \(-0.148386\pi\)
0.780327 + 0.625371i \(0.215053\pi\)
\(570\) −3.70157 + 18.9947i −0.155042 + 0.795599i
\(571\) −3.48054 33.1151i −0.145656 1.38582i −0.786233 0.617930i \(-0.787971\pi\)
0.640577 0.767894i \(-0.278695\pi\)
\(572\) −10.6551 + 4.09009i −0.445510 + 0.171015i
\(573\) −1.11800 + 2.19419i −0.0467050 + 0.0916638i
\(574\) 10.7765 + 29.0245i 0.449803 + 1.21146i
\(575\) −28.1913 13.1785i −1.17566 0.549580i
\(576\) −12.2962 21.2976i −0.512342 0.887402i
\(577\) 4.80800 3.12235i 0.200160 0.129985i −0.440667 0.897670i \(-0.645258\pi\)
0.640827 + 0.767685i \(0.278592\pi\)
\(578\) −19.3573 15.6752i −0.805156 0.652002i
\(579\) −12.9359 5.75944i −0.537598 0.239354i
\(580\) 1.96395 6.41289i 0.0815487 0.266281i
\(581\) 7.00969 6.85708i 0.290811 0.284480i
\(582\) −6.08774 6.08774i −0.252345 0.252345i
\(583\) −0.185146 0.228636i −0.00766797 0.00946915i
\(584\) 0.674046 + 0.748604i 0.0278922 + 0.0309775i
\(585\) 8.10499 22.2354i 0.335100 0.919319i
\(586\) −1.28538 1.15736i −0.0530985 0.0478101i
\(587\) 5.48135 + 10.7577i 0.226239 + 0.444020i 0.976024 0.217662i \(-0.0698430\pi\)
−0.749785 + 0.661682i \(0.769843\pi\)
\(588\) −8.44069 10.9056i −0.348088 0.449741i
\(589\) 48.2769 15.6861i 1.98922 0.646335i
\(590\) 7.79184 31.1881i 0.320785 1.28400i
\(591\) −11.9480 + 10.7580i −0.491475 + 0.442526i
\(592\) −18.3007 7.02499i −0.752155 0.288725i
\(593\) 11.2370 41.9372i 0.461449 1.72215i −0.206951 0.978351i \(-0.566354\pi\)
0.668401 0.743802i \(-0.266979\pi\)
\(594\) 7.83623 + 5.69336i 0.321525 + 0.233601i
\(595\) 9.49150 + 9.37879i 0.389114 + 0.384493i
\(596\) −3.37823 + 2.45442i −0.138377 + 0.100537i
\(597\) −0.0571202 0.148803i −0.00233778 0.00609011i
\(598\) 32.4736 + 50.0050i 1.32794 + 2.04485i
\(599\) −0.677665 0.391250i −0.0276887 0.0159860i 0.486092 0.873908i \(-0.338422\pi\)
−0.513780 + 0.857922i \(0.671755\pi\)
\(600\) 1.70793 + 2.73906i 0.0697261 + 0.111822i
\(601\) 7.23002i 0.294919i −0.989068 0.147459i \(-0.952890\pi\)
0.989068 0.147459i \(-0.0471095\pi\)
\(602\) 37.3675 + 4.34375i 1.52299 + 0.177038i
\(603\) −4.43864 + 28.0244i −0.180755 + 1.14124i
\(604\) −6.04803 + 13.5841i −0.246091 + 0.552729i
\(605\) −2.68654 21.9665i −0.109223 0.893064i
\(606\) 24.1170 10.7376i 0.979686 0.436184i
\(607\) −1.71540 0.459640i −0.0696260 0.0186562i 0.223838 0.974626i \(-0.428141\pi\)
−0.293464 + 0.955970i \(0.594808\pi\)
\(608\) 6.29427 + 39.7405i 0.255267 + 1.61169i
\(609\) −1.48800 2.34747i −0.0602968 0.0951245i
\(610\) −3.46241 + 24.5516i −0.140189 + 0.994064i
\(611\) −0.959623 + 1.06577i −0.0388222 + 0.0431164i
\(612\) −12.3401 0.646717i −0.498819 0.0261420i
\(613\) −1.09418 0.0573433i −0.0441934 0.00231608i 0.0302265 0.999543i \(-0.490377\pi\)
−0.0744198 + 0.997227i \(0.523710\pi\)
\(614\) 20.5783 22.8545i 0.830473 0.922334i
\(615\) −9.34112 4.56147i −0.376670 0.183936i
\(616\) 1.15624 + 1.82410i 0.0465864 + 0.0734950i
\(617\) 5.03752 + 31.8056i 0.202803 + 1.28045i 0.853494 + 0.521103i \(0.174479\pi\)
−0.650691 + 0.759343i \(0.725521\pi\)
\(618\) 11.3897 + 3.05185i 0.458160 + 0.122764i
\(619\) −16.9052 + 7.52667i −0.679476 + 0.302522i −0.717302 0.696762i \(-0.754623\pi\)
0.0378261 + 0.999284i \(0.487957\pi\)
\(620\) 26.2138 47.2379i 1.05277 1.89712i
\(621\) 11.1658 25.0789i 0.448069 1.00638i
\(622\) 3.88654 24.5386i 0.155836 0.983910i
\(623\) 27.8702 + 3.23974i 1.11660 + 0.129797i
\(624\) 11.8683i 0.475111i
\(625\) −13.9404 20.7525i −0.557614 0.830100i
\(626\) 18.2402 + 10.5310i 0.729023 + 0.420902i
\(627\) −2.36773 3.64598i −0.0945578 0.145606i
\(628\) 9.18549 + 23.9290i 0.366541 + 0.954871i
\(629\) −11.4704 + 8.33374i −0.457355 + 0.332288i
\(630\) −28.2486 4.30135i −1.12545 0.171370i
\(631\) 20.5730 + 14.9472i 0.818998 + 0.595037i 0.916425 0.400206i \(-0.131061\pi\)
−0.0974273 + 0.995243i \(0.531061\pi\)
\(632\) −2.17968 + 8.13469i −0.0867031 + 0.323580i
\(633\) −4.93515 1.89443i −0.196155 0.0752968i
\(634\) −29.3763 + 26.4506i −1.16668 + 1.05049i
\(635\) 28.9813 2.01272i 1.15009 0.0798722i
\(636\) 0.524836 0.170530i 0.0208111 0.00676194i
\(637\) −4.31887 31.7803i −0.171120 1.25918i
\(638\) 1.26082 + 2.47450i 0.0499165 + 0.0979666i
\(639\) −3.53468 3.18264i −0.139830 0.125903i
\(640\) 10.7625 + 8.41682i 0.425424 + 0.332704i
\(641\) 25.0351 + 27.8043i 0.988828 + 1.09820i 0.995164 + 0.0982243i \(0.0313163\pi\)
−0.00633676 + 0.999980i \(0.502017\pi\)
\(642\) −21.4978 26.5475i −0.848449 1.04775i
\(643\) 14.7951 + 14.7951i 0.583460 + 0.583460i 0.935852 0.352392i \(-0.114632\pi\)
−0.352392 + 0.935852i \(0.614632\pi\)
\(644\) 27.9180 27.3102i 1.10012 1.07617i
\(645\) −10.0912 + 7.59676i −0.397341 + 0.299122i
\(646\) 21.4678 + 9.55808i 0.844639 + 0.376058i
\(647\) −20.0874 16.2665i −0.789719 0.639502i 0.147177 0.989110i \(-0.452981\pi\)
−0.936896 + 0.349608i \(0.886315\pi\)
\(648\) 2.12896 1.38256i 0.0836334 0.0543122i
\(649\) 3.61080 + 6.25410i 0.141736 + 0.245495i
\(650\) 1.62612 + 47.8718i 0.0637816 + 1.87769i
\(651\) −7.79252 20.9877i −0.305413 0.822572i
\(652\) −6.00718 + 11.7898i −0.235259 + 0.461723i
\(653\) −24.5514 + 9.42440i −0.960770 + 0.368805i −0.787669 0.616099i \(-0.788712\pi\)
−0.173101 + 0.984904i \(0.555379\pi\)
\(654\) −3.47089 33.0234i −0.135723 1.29132i
\(655\) 3.34446 + 7.18113i 0.130679 + 0.280590i
\(656\) −17.3573 1.82432i −0.677687 0.0712278i
\(657\) 2.11712 2.11712i 0.0825967 0.0825967i
\(658\) 1.48993 + 0.882215i 0.0580836 + 0.0343923i
\(659\) −5.69893 1.85169i −0.221999 0.0721317i 0.195906 0.980623i \(-0.437235\pi\)
−0.417904 + 0.908491i \(0.637235\pi\)
\(660\) −4.48878 1.12145i −0.174725 0.0436522i
\(661\) 9.56586 45.0038i 0.372069 1.75045i −0.250723 0.968059i \(-0.580668\pi\)
0.622792 0.782387i \(-0.285998\pi\)
\(662\) 3.40478 64.9671i 0.132331 2.52502i
\(663\) 7.19918 + 4.67520i 0.279593 + 0.181570i
\(664\) −0.890129 2.73954i −0.0345437 0.106315i
\(665\) 25.6181 + 14.5873i 0.993426 + 0.565670i
\(666\) 9.38224 28.8756i 0.363555 1.11891i
\(667\) 6.11699 4.95344i 0.236851 0.191798i
\(668\) −24.0205 + 6.43627i −0.929381 + 0.249027i
\(669\) −4.50498 10.1184i −0.174173 0.391198i
\(670\) −12.8916 55.9609i −0.498045 2.16196i
\(671\) −3.27395 4.50620i −0.126389 0.173960i
\(672\) 17.3973 3.49826i 0.671114 0.134948i
\(673\) −15.5853 7.94108i −0.600767 0.306106i 0.127030 0.991899i \(-0.459456\pi\)
−0.727797 + 0.685793i \(0.759456\pi\)
\(674\) 63.0398 36.3960i 2.42820 1.40192i
\(675\) 18.0775 12.6324i 0.695805 0.486222i
\(676\) 9.47819 16.4167i 0.364546 0.631412i
\(677\) −1.82763 34.8733i −0.0702417 1.34029i −0.775503 0.631344i \(-0.782504\pi\)
0.705262 0.708947i \(-0.250830\pi\)
\(678\) 14.9717 + 2.37128i 0.574984 + 0.0910685i
\(679\) −11.7505 + 5.82520i −0.450943 + 0.223551i
\(680\) 3.70678 1.27437i 0.142148 0.0488700i
\(681\) 0.421309 4.00849i 0.0161446 0.153606i
\(682\) 5.78987 + 21.6081i 0.221706 + 0.827417i
\(683\) 14.5817 37.9867i 0.557954 1.45352i −0.307020 0.951703i \(-0.599332\pi\)
0.864974 0.501817i \(-0.167335\pi\)
\(684\) −26.7039 + 5.67610i −1.02105 + 0.217031i
\(685\) 14.9586 7.94450i 0.571538 0.303544i
\(686\) −36.5897 + 12.6763i −1.39700 + 0.483985i
\(687\) 4.94891 2.52160i 0.188813 0.0962049i
\(688\) −11.5498 + 17.7852i −0.440333 + 0.678053i
\(689\) 1.25537 + 0.266838i 0.0478260 + 0.0101657i
\(690\) −0.855044 + 24.1558i −0.0325510 + 0.919595i
\(691\) −3.69969 17.4057i −0.140743 0.662144i −0.990787 0.135432i \(-0.956758\pi\)
0.850044 0.526712i \(-0.176575\pi\)
\(692\) −32.1577 + 5.09328i −1.22245 + 0.193618i
\(693\) 5.23434 3.71565i 0.198836 0.141146i
\(694\) 33.1078 45.5689i 1.25675 1.72977i
\(695\) 12.9777 14.9148i 0.492272 0.565750i
\(696\) −0.811972 + 0.0853417i −0.0307777 + 0.00323487i
\(697\) −7.94408 + 9.81012i −0.300903 + 0.371585i
\(698\) −60.4013 + 3.16550i −2.28622 + 0.119816i
\(699\) 7.17212 0.271275
\(700\) 30.5314 7.22574i 1.15398 0.273107i
\(701\) −20.8675 −0.788156 −0.394078 0.919077i \(-0.628936\pi\)
−0.394078 + 0.919077i \(0.628936\pi\)
\(702\) −42.1969 + 2.21144i −1.59262 + 0.0834656i
\(703\) −19.7129 + 24.3434i −0.743485 + 0.918128i
\(704\) −11.1201 + 1.16877i −0.419105 + 0.0440497i
\(705\) −0.566543 + 0.130513i −0.0213372 + 0.00491540i
\(706\) 14.3393 19.7364i 0.539667 0.742788i
\(707\) −3.76330 40.0393i −0.141533 1.50583i
\(708\) −13.3791 + 2.11905i −0.502819 + 0.0796387i
\(709\) 0.161305 + 0.758882i 0.00605795 + 0.0285004i 0.981073 0.193639i \(-0.0620292\pi\)
−0.975015 + 0.222140i \(0.928696\pi\)
\(710\) 9.04448 + 3.29680i 0.339433 + 0.123727i
\(711\) 24.4840 + 5.20424i 0.918223 + 0.195174i
\(712\) 4.48897 6.91241i 0.168231 0.259054i
\(713\) 56.4913 28.7838i 2.11562 1.07796i
\(714\) 3.82042 9.63428i 0.142976 0.360554i
\(715\) −7.73680 7.47846i −0.289340 0.279679i
\(716\) 3.73407 0.793701i 0.139549 0.0296620i
\(717\) 5.71101 14.8777i 0.213282 0.555618i
\(718\) −2.40915 8.99106i −0.0899086 0.335543i
\(719\) −3.85474 + 36.6754i −0.143757 + 1.36776i 0.650189 + 0.759773i \(0.274690\pi\)
−0.793946 + 0.607988i \(0.791977\pi\)
\(720\) 9.24524 13.1902i 0.344550 0.491570i
\(721\) 9.94835 14.9562i 0.370496 0.556997i
\(722\) 12.0411 + 1.90712i 0.448122 + 0.0709755i
\(723\) 1.12822 + 21.5278i 0.0419591 + 0.800628i
\(724\) −4.12478 + 7.14434i −0.153296 + 0.265517i
\(725\) 6.26259 0.874075i 0.232587 0.0324623i
\(726\) −14.8859 + 8.59439i −0.552468 + 0.318968i
\(727\) 17.7421 + 9.04006i 0.658019 + 0.335277i 0.750915 0.660398i \(-0.229613\pi\)
−0.0928967 + 0.995676i \(0.529613\pi\)
\(728\) −8.92772 3.00980i −0.330883 0.111551i
\(729\) 2.02583 + 2.78831i 0.0750307 + 0.103271i
\(730\) −2.37040 + 5.57693i −0.0877323 + 0.206411i
\(731\) 6.23857 + 14.0121i 0.230742 + 0.518254i
\(732\) 10.0919 2.70410i 0.373006 0.0999466i
\(733\) −0.0311408 + 0.0252173i −0.00115021 + 0.000931422i −0.629895 0.776680i \(-0.716902\pi\)
0.628745 + 0.777611i \(0.283569\pi\)
\(734\) −16.5940 + 51.0711i −0.612496 + 1.88507i
\(735\) 5.96091 11.5548i 0.219872 0.426207i
\(736\) 15.5297 + 47.7955i 0.572432 + 1.76177i
\(737\) 10.8194 + 7.02618i 0.398537 + 0.258813i
\(738\) 1.41473 26.9947i 0.0520771 0.993689i
\(739\) −4.01685 + 18.8978i −0.147762 + 0.695167i 0.840427 + 0.541925i \(0.182304\pi\)
−0.988189 + 0.153241i \(0.951029\pi\)
\(740\) 2.30968 + 33.2572i 0.0849054 + 1.22256i
\(741\) 18.0366 + 5.86045i 0.662592 + 0.215289i
\(742\) 0.0170523 1.54947i 0.000626011 0.0568829i
\(743\) 16.7789 16.7789i 0.615557 0.615557i −0.328831 0.944389i \(-0.606655\pi\)
0.944389 + 0.328831i \(0.106655\pi\)
\(744\) −6.54044 0.687427i −0.239784 0.0252023i
\(745\) −3.44238 1.91028i −0.126119 0.0699873i
\(746\) 7.82715 + 74.4703i 0.286572 + 2.72655i
\(747\) −7.99289 + 3.06818i −0.292445 + 0.112259i
\(748\) −2.55067 + 5.00597i −0.0932617 + 0.183036i
\(749\) −48.7843 + 18.1132i −1.78254 + 0.661840i
\(750\) −10.5989 + 16.2701i −0.387019 + 0.594099i
\(751\) −6.63402 11.4905i −0.242079 0.419293i 0.719227 0.694775i \(-0.244496\pi\)
−0.961306 + 0.275482i \(0.911163\pi\)
\(752\) −0.818615 + 0.531615i −0.0298518 + 0.0193860i
\(753\) 9.94991 + 8.05728i 0.362595 + 0.293623i
\(754\) −11.0679 4.92773i −0.403068 0.179457i
\(755\) −14.0172 + 0.238001i −0.510138 + 0.00866174i
\(756\) 6.86883 + 26.8116i 0.249817 + 0.975130i
\(757\) 1.13591 + 1.13591i 0.0412853 + 0.0412853i 0.727448 0.686163i \(-0.240706\pi\)
−0.686163 + 0.727448i \(0.740706\pi\)
\(758\) 29.8712 + 36.8879i 1.08497 + 1.33983i
\(759\) −3.63330 4.03519i −0.131880 0.146468i
\(760\) 7.18167 4.83913i 0.260507 0.175534i
\(761\) −23.6079 21.2567i −0.855787 0.770554i 0.119187 0.992872i \(-0.461971\pi\)
−0.974974 + 0.222318i \(0.928638\pi\)
\(762\) −10.2440 20.1050i −0.371102 0.728328i
\(763\) −49.3595 11.0608i −1.78693 0.400427i
\(764\) 6.68717 2.17279i 0.241933 0.0786089i
\(765\) −4.35914 10.8040i −0.157605 0.390621i
\(766\) −33.7996 + 30.4333i −1.22123 + 1.09960i