Properties

Label 175.2.x.a.17.12
Level $175$
Weight $2$
Character 175.17
Analytic conductor $1.397$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(3,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([21, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.x (of order \(60\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 17.12
Character \(\chi\) \(=\) 175.17
Dual form 175.2.x.a.103.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.776182 - 0.0406780i) q^{2} +(-0.706831 + 0.872864i) q^{3} +(-1.38824 + 0.145910i) q^{4} +(2.15686 + 0.589873i) q^{5} +(-0.513123 + 0.706254i) q^{6} +(2.33503 + 1.24404i) q^{7} +(-2.60695 + 0.412900i) q^{8} +(0.361454 + 1.70051i) q^{9} +O(q^{10})\) \(q+(0.776182 - 0.0406780i) q^{2} +(-0.706831 + 0.872864i) q^{3} +(-1.38824 + 0.145910i) q^{4} +(2.15686 + 0.589873i) q^{5} +(-0.513123 + 0.706254i) q^{6} +(2.33503 + 1.24404i) q^{7} +(-2.60695 + 0.412900i) q^{8} +(0.361454 + 1.70051i) q^{9} +(1.69811 + 0.370112i) q^{10} +(1.29854 + 0.276014i) q^{11} +(0.853891 - 1.31488i) q^{12} +(-1.79077 + 0.912442i) q^{13} +(1.86302 + 0.870614i) q^{14} +(-2.03941 + 1.46571i) q^{15} +(0.724094 - 0.153911i) q^{16} +(0.333224 - 0.868077i) q^{17} +(0.349728 + 1.30520i) q^{18} +(0.550884 - 5.24131i) q^{19} +(-3.08031 - 0.504177i) q^{20} +(-2.73635 + 1.15884i) q^{21} +(1.01913 + 0.161415i) q^{22} +(-0.0599482 - 1.14388i) q^{23} +(1.48227 - 2.56736i) q^{24} +(4.30410 + 2.54455i) q^{25} +(-1.35285 + 0.781066i) q^{26} +(-4.74204 - 2.41619i) q^{27} +(-3.42310 - 1.38631i) q^{28} +(-4.04060 - 5.56140i) q^{29} +(-1.52334 + 1.22061i) q^{30} +(-3.98545 - 8.95147i) q^{31} +(5.65478 - 1.51519i) q^{32} +(-1.15877 + 0.938356i) q^{33} +(0.223331 - 0.687341i) q^{34} +(4.30252 + 4.06058i) q^{35} +(-0.749906 - 2.30797i) q^{36} +(6.42719 + 4.17386i) q^{37} +(0.214381 - 4.09062i) q^{38} +(0.469333 - 2.20804i) q^{39} +(-5.86638 - 0.647200i) q^{40} +(-0.0622653 - 0.0202312i) q^{41} +(-2.07676 + 1.01078i) q^{42} +(-3.34331 + 3.34331i) q^{43} +(-1.84296 - 0.193703i) q^{44} +(-0.223477 + 3.88097i) q^{45} +(-0.0930614 - 0.885420i) q^{46} +(-0.174263 + 0.0668935i) q^{47} +(-0.377469 + 0.740824i) q^{48} +(3.90475 + 5.80972i) q^{49} +(3.44427 + 1.79995i) q^{50} +(0.522180 + 0.904443i) q^{51} +(2.35288 - 1.52798i) q^{52} +(8.68044 + 7.02928i) q^{53} +(-3.77898 - 1.68251i) q^{54} +(2.63796 + 1.36130i) q^{55} +(-6.60097 - 2.27900i) q^{56} +(4.18557 + 4.18557i) q^{57} +(-3.36247 - 4.15230i) q^{58} +(-3.22860 - 3.58572i) q^{59} +(2.61734 - 2.33232i) q^{60} +(-3.39928 - 3.06073i) q^{61} +(-3.45756 - 6.78585i) q^{62} +(-1.27148 + 4.42040i) q^{63} +(2.91943 - 0.948580i) q^{64} +(-4.40066 + 0.911685i) q^{65} +(-0.861248 + 0.775472i) q^{66} +(-7.93020 - 3.04412i) q^{67} +(-0.335933 + 1.25372i) q^{68} +(1.04082 + 0.756203i) q^{69} +(3.50472 + 2.97673i) q^{70} +(8.72491 - 6.33902i) q^{71} +(-1.64443 - 4.28389i) q^{72} +(0.896926 + 1.38114i) q^{73} +(5.15845 + 2.97823i) q^{74} +(-5.26331 + 1.95833i) q^{75} +7.35658i q^{76} +(2.68877 + 2.25993i) q^{77} +(0.274469 - 1.73293i) q^{78} +(-4.24463 + 9.53360i) q^{79} +(1.65256 + 0.0951587i) q^{80} +(0.696236 - 0.309984i) q^{81} +(-0.0491522 - 0.0131703i) q^{82} +(-0.978599 - 6.17863i) q^{83} +(3.62962 - 2.00801i) q^{84} +(1.23077 - 1.67576i) q^{85} +(-2.45902 + 2.73102i) q^{86} +(7.71037 + 0.404083i) q^{87} +(-3.49920 - 0.183385i) q^{88} +(10.5019 - 11.6635i) q^{89} +(-0.0155886 + 3.02143i) q^{90} +(-5.31661 - 0.0971966i) q^{91} +(0.250126 + 1.57923i) q^{92} +(10.6304 + 2.84842i) q^{93} +(-0.132539 + 0.0590102i) q^{94} +(4.27989 - 10.9798i) q^{95} +(-2.67442 + 6.00684i) q^{96} +(-2.72136 + 17.1820i) q^{97} +(3.26713 + 4.35057i) q^{98} +2.30795i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9} - 36 q^{10} - 6 q^{11} - 36 q^{12} - 20 q^{14} - 28 q^{15} - 30 q^{16} - 42 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} + 32 q^{22} - 40 q^{23} + 2 q^{25} - 48 q^{26} + 22 q^{28} - 58 q^{30} - 18 q^{31} + 8 q^{32} - 30 q^{33} - 2 q^{35} + 40 q^{36} - 10 q^{37} + 72 q^{38} + 30 q^{39} - 48 q^{40} + 6 q^{42} - 108 q^{43} - 10 q^{44} + 186 q^{45} - 6 q^{46} - 54 q^{47} - 248 q^{50} - 16 q^{51} + 216 q^{52} + 50 q^{53} - 30 q^{54} + 4 q^{56} - 216 q^{57} - 4 q^{58} + 90 q^{59} + 96 q^{60} - 18 q^{61} - 66 q^{63} - 100 q^{64} + 14 q^{65} - 90 q^{66} + 4 q^{67} + 342 q^{68} - 60 q^{70} - 24 q^{71} + 58 q^{72} - 6 q^{73} + 216 q^{75} - 80 q^{77} - 132 q^{78} - 10 q^{79} - 6 q^{80} - 10 q^{81} + 216 q^{82} + 20 q^{84} - 48 q^{85} - 6 q^{86} - 48 q^{87} - 122 q^{88} + 120 q^{89} - 12 q^{91} - 4 q^{92} + 106 q^{93} - 30 q^{94} - 98 q^{95} - 90 q^{96} + 222 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.776182 0.0406780i 0.548844 0.0287637i 0.224101 0.974566i \(-0.428056\pi\)
0.324743 + 0.945802i \(0.394722\pi\)
\(3\) −0.706831 + 0.872864i −0.408089 + 0.503948i −0.939208 0.343349i \(-0.888439\pi\)
0.531119 + 0.847297i \(0.321772\pi\)
\(4\) −1.38824 + 0.145910i −0.694120 + 0.0729549i
\(5\) 2.15686 + 0.589873i 0.964578 + 0.263799i
\(6\) −0.513123 + 0.706254i −0.209482 + 0.288327i
\(7\) 2.33503 + 1.24404i 0.882559 + 0.470201i
\(8\) −2.60695 + 0.412900i −0.921695 + 0.145982i
\(9\) 0.361454 + 1.70051i 0.120485 + 0.566836i
\(10\) 1.69811 + 0.370112i 0.536990 + 0.117040i
\(11\) 1.29854 + 0.276014i 0.391525 + 0.0832213i 0.399468 0.916747i \(-0.369195\pi\)
−0.00794259 + 0.999968i \(0.502528\pi\)
\(12\) 0.853891 1.31488i 0.246497 0.379572i
\(13\) −1.79077 + 0.912442i −0.496670 + 0.253066i −0.684336 0.729167i \(-0.739908\pi\)
0.187666 + 0.982233i \(0.439908\pi\)
\(14\) 1.86302 + 0.870614i 0.497912 + 0.232681i
\(15\) −2.03941 + 1.46571i −0.526575 + 0.378444i
\(16\) 0.724094 0.153911i 0.181023 0.0384777i
\(17\) 0.333224 0.868077i 0.0808186 0.210540i −0.887217 0.461352i \(-0.847364\pi\)
0.968036 + 0.250813i \(0.0806978\pi\)
\(18\) 0.349728 + 1.30520i 0.0824316 + 0.307639i
\(19\) 0.550884 5.24131i 0.126382 1.20244i −0.729027 0.684485i \(-0.760027\pi\)
0.855408 0.517954i \(-0.173306\pi\)
\(20\) −3.08031 0.504177i −0.688778 0.112737i
\(21\) −2.73635 + 1.15884i −0.597120 + 0.252880i
\(22\) 1.01913 + 0.161415i 0.217280 + 0.0344138i
\(23\) −0.0599482 1.14388i −0.0125001 0.238515i −0.997733 0.0672962i \(-0.978563\pi\)
0.985233 0.171219i \(-0.0547706\pi\)
\(24\) 1.48227 2.56736i 0.302566 0.524060i
\(25\) 4.30410 + 2.54455i 0.860820 + 0.508909i
\(26\) −1.35285 + 0.781066i −0.265315 + 0.153180i
\(27\) −4.74204 2.41619i −0.912607 0.464996i
\(28\) −3.42310 1.38631i −0.646905 0.261989i
\(29\) −4.04060 5.56140i −0.750320 1.03273i −0.997958 0.0638742i \(-0.979654\pi\)
0.247638 0.968853i \(-0.420346\pi\)
\(30\) −1.52334 + 1.22061i −0.278122 + 0.222853i
\(31\) −3.98545 8.95147i −0.715808 1.60773i −0.791915 0.610631i \(-0.790916\pi\)
0.0761073 0.997100i \(-0.475751\pi\)
\(32\) 5.65478 1.51519i 0.999634 0.267851i
\(33\) −1.15877 + 0.938356i −0.201716 + 0.163347i
\(34\) 0.223331 0.687341i 0.0383009 0.117878i
\(35\) 4.30252 + 4.06058i 0.727258 + 0.686364i
\(36\) −0.749906 2.30797i −0.124984 0.384662i
\(37\) 6.42719 + 4.17386i 1.05662 + 0.686179i 0.951302 0.308259i \(-0.0997464\pi\)
0.105321 + 0.994438i \(0.466413\pi\)
\(38\) 0.214381 4.09062i 0.0347771 0.663587i
\(39\) 0.469333 2.20804i 0.0751534 0.353569i
\(40\) −5.86638 0.647200i −0.927557 0.102331i
\(41\) −0.0622653 0.0202312i −0.00972421 0.00315959i 0.304151 0.952624i \(-0.401627\pi\)
−0.313875 + 0.949464i \(0.601627\pi\)
\(42\) −2.07676 + 1.01078i −0.320452 + 0.155967i
\(43\) −3.34331 + 3.34331i −0.509850 + 0.509850i −0.914480 0.404630i \(-0.867400\pi\)
0.404630 + 0.914480i \(0.367400\pi\)
\(44\) −1.84296 0.193703i −0.277837 0.0292018i
\(45\) −0.223477 + 3.88097i −0.0333140 + 0.578541i
\(46\) −0.0930614 0.885420i −0.0137212 0.130548i
\(47\) −0.174263 + 0.0668935i −0.0254189 + 0.00975741i −0.371044 0.928615i \(-0.621000\pi\)
0.345625 + 0.938373i \(0.387667\pi\)
\(48\) −0.377469 + 0.740824i −0.0544829 + 0.106929i
\(49\) 3.90475 + 5.80972i 0.557822 + 0.829961i
\(50\) 3.44427 + 1.79995i 0.487094 + 0.254551i
\(51\) 0.522180 + 0.904443i 0.0731199 + 0.126647i
\(52\) 2.35288 1.52798i 0.326286 0.211892i
\(53\) 8.68044 + 7.02928i 1.19235 + 0.965546i 0.999876 0.0157564i \(-0.00501564\pi\)
0.192474 + 0.981302i \(0.438349\pi\)
\(54\) −3.77898 1.68251i −0.514254 0.228960i
\(55\) 2.63796 + 1.36130i 0.355703 + 0.183557i
\(56\) −6.60097 2.27900i −0.882092 0.304544i
\(57\) 4.18557 + 4.18557i 0.554392 + 0.554392i
\(58\) −3.36247 4.15230i −0.441514 0.545224i
\(59\) −3.22860 3.58572i −0.420327 0.466821i 0.495374 0.868680i \(-0.335031\pi\)
−0.915702 + 0.401859i \(0.868364\pi\)
\(60\) 2.61734 2.33232i 0.337897 0.301101i
\(61\) −3.39928 3.06073i −0.435233 0.391886i 0.422182 0.906511i \(-0.361264\pi\)
−0.857415 + 0.514625i \(0.827931\pi\)
\(62\) −3.45756 6.78585i −0.439111 0.861804i
\(63\) −1.27148 + 4.42040i −0.160192 + 0.556919i
\(64\) 2.91943 0.948580i 0.364929 0.118573i
\(65\) −4.40066 + 0.911685i −0.545835 + 0.113081i
\(66\) −0.861248 + 0.775472i −0.106012 + 0.0954540i
\(67\) −7.93020 3.04412i −0.968829 0.371899i −0.178064 0.984019i \(-0.556983\pi\)
−0.790765 + 0.612120i \(0.790317\pi\)
\(68\) −0.335933 + 1.25372i −0.0407379 + 0.152036i
\(69\) 1.04082 + 0.756203i 0.125300 + 0.0910361i
\(70\) 3.50472 + 2.97673i 0.418894 + 0.355788i
\(71\) 8.72491 6.33902i 1.03546 0.752303i 0.0660625 0.997815i \(-0.478956\pi\)
0.969393 + 0.245513i \(0.0789563\pi\)
\(72\) −1.64443 4.28389i −0.193798 0.504862i
\(73\) 0.896926 + 1.38114i 0.104977 + 0.161651i 0.887255 0.461279i \(-0.152609\pi\)
−0.782278 + 0.622929i \(0.785942\pi\)
\(74\) 5.15845 + 2.97823i 0.599658 + 0.346213i
\(75\) −5.26331 + 1.95833i −0.607755 + 0.226128i
\(76\) 7.35658i 0.843857i
\(77\) 2.68877 + 2.25993i 0.306414 + 0.257543i
\(78\) 0.274469 1.73293i 0.0310775 0.196216i
\(79\) −4.24463 + 9.53360i −0.477558 + 1.07261i 0.500775 + 0.865577i \(0.333048\pi\)
−0.978333 + 0.207036i \(0.933618\pi\)
\(80\) 1.65256 + 0.0951587i 0.184762 + 0.0106391i
\(81\) 0.696236 0.309984i 0.0773596 0.0344427i
\(82\) −0.0491522 0.0131703i −0.00542796 0.00145442i
\(83\) −0.978599 6.17863i −0.107415 0.678193i −0.981362 0.192170i \(-0.938447\pi\)
0.873946 0.486022i \(-0.161553\pi\)
\(84\) 3.62962 2.00801i 0.396024 0.219092i
\(85\) 1.23077 1.67576i 0.133496 0.181762i
\(86\) −2.45902 + 2.73102i −0.265163 + 0.294493i
\(87\) 7.71037 + 0.404083i 0.826638 + 0.0433223i
\(88\) −3.49920 0.183385i −0.373016 0.0195489i
\(89\) 10.5019 11.6635i 1.11320 1.23633i 0.144125 0.989559i \(-0.453963\pi\)
0.969073 0.246773i \(-0.0793701\pi\)
\(90\) −0.0155886 + 3.02143i −0.00164319 + 0.318487i
\(91\) −5.31661 0.0971966i −0.557332 0.0101890i
\(92\) 0.250126 + 1.57923i 0.0260774 + 0.164646i
\(93\) 10.6304 + 2.84842i 1.10233 + 0.295367i
\(94\) −0.132539 + 0.0590102i −0.0136704 + 0.00608644i
\(95\) 4.27989 10.9798i 0.439107 1.12651i
\(96\) −2.67442 + 6.00684i −0.272957 + 0.613071i
\(97\) −2.72136 + 17.1820i −0.276312 + 1.74457i 0.325149 + 0.945663i \(0.394586\pi\)
−0.601461 + 0.798902i \(0.705414\pi\)
\(98\) 3.26713 + 4.35057i 0.330030 + 0.439474i
\(99\) 2.30795i 0.231958i
\(100\) −6.34640 2.90443i −0.634640 0.290443i
\(101\) −3.07011 1.77253i −0.305487 0.176373i 0.339418 0.940636i \(-0.389770\pi\)
−0.644905 + 0.764262i \(0.723103\pi\)
\(102\) 0.442098 + 0.680771i 0.0437742 + 0.0674064i
\(103\) 2.28092 + 5.94199i 0.224745 + 0.585482i 0.998869 0.0475531i \(-0.0151423\pi\)
−0.774123 + 0.633035i \(0.781809\pi\)
\(104\) 4.29169 3.11810i 0.420835 0.305755i
\(105\) −6.58549 + 0.885366i −0.642678 + 0.0864029i
\(106\) 7.02354 + 5.10290i 0.682186 + 0.495637i
\(107\) 2.55108 9.52075i 0.246622 0.920406i −0.725939 0.687759i \(-0.758595\pi\)
0.972561 0.232647i \(-0.0747386\pi\)
\(108\) 6.93564 + 2.66234i 0.667382 + 0.256184i
\(109\) −8.04882 + 7.24719i −0.770937 + 0.694155i −0.957546 0.288279i \(-0.906917\pi\)
0.186609 + 0.982434i \(0.440250\pi\)
\(110\) 2.10292 + 0.949309i 0.200505 + 0.0905130i
\(111\) −8.18615 + 2.65984i −0.776995 + 0.252461i
\(112\) 1.88225 + 0.541411i 0.177856 + 0.0511586i
\(113\) −3.00115 5.89008i −0.282324 0.554092i 0.705678 0.708533i \(-0.250643\pi\)
−0.988002 + 0.154440i \(0.950643\pi\)
\(114\) 3.41903 + 3.07851i 0.320221 + 0.288328i
\(115\) 0.545443 2.50255i 0.0508628 0.233364i
\(116\) 6.42078 + 7.13100i 0.596154 + 0.662096i
\(117\) −2.19890 2.71541i −0.203288 0.251040i
\(118\) −2.65184 2.65184i −0.244122 0.244122i
\(119\) 1.85801 1.61245i 0.170323 0.147813i
\(120\) 4.71146 4.66309i 0.430095 0.425680i
\(121\) −8.43897 3.75727i −0.767179 0.341570i
\(122\) −2.76297 2.23741i −0.250147 0.202565i
\(123\) 0.0616702 0.0400491i 0.00556061 0.00361110i
\(124\) 6.83886 + 11.8453i 0.614148 + 1.06374i
\(125\) 7.78239 + 8.02711i 0.696078 + 0.717966i
\(126\) −0.807091 + 3.48276i −0.0719014 + 0.310269i
\(127\) −8.39463 + 16.4754i −0.744903 + 1.46195i 0.137023 + 0.990568i \(0.456246\pi\)
−0.881927 + 0.471387i \(0.843754\pi\)
\(128\) −8.70343 + 3.34093i −0.769281 + 0.295299i
\(129\) −0.555099 5.28141i −0.0488737 0.465003i
\(130\) −3.37863 + 0.886644i −0.296325 + 0.0777638i
\(131\) 16.6657 + 1.75164i 1.45609 + 0.153041i 0.799255 0.600992i \(-0.205228\pi\)
0.656836 + 0.754033i \(0.271894\pi\)
\(132\) 1.47174 1.47174i 0.128098 0.128098i
\(133\) 7.80671 11.5533i 0.676928 1.00180i
\(134\) −6.27911 2.04021i −0.542433 0.176247i
\(135\) −8.80268 8.00859i −0.757614 0.689270i
\(136\) −0.510268 + 2.40062i −0.0437551 + 0.205852i
\(137\) −0.172842 + 3.29801i −0.0147669 + 0.281768i 0.981258 + 0.192697i \(0.0617234\pi\)
−0.996025 + 0.0890717i \(0.971610\pi\)
\(138\) 0.838630 + 0.544613i 0.0713889 + 0.0463605i
\(139\) −2.66592 8.20486i −0.226120 0.695927i −0.998176 0.0603721i \(-0.980771\pi\)
0.772055 0.635555i \(-0.219229\pi\)
\(140\) −6.56540 5.00928i −0.554878 0.423362i
\(141\) 0.0647859 0.199391i 0.00545596 0.0167917i
\(142\) 6.51426 5.27514i 0.546665 0.442680i
\(143\) −2.57723 + 0.690568i −0.215519 + 0.0577482i
\(144\) 0.523454 + 1.17570i 0.0436211 + 0.0979747i
\(145\) −5.43449 14.3786i −0.451309 1.19408i
\(146\) 0.752360 + 1.03553i 0.0622658 + 0.0857015i
\(147\) −7.83110 0.698176i −0.645898 0.0575846i
\(148\) −9.53148 4.85653i −0.783483 0.399205i
\(149\) −0.0342344 + 0.0197652i −0.00280459 + 0.00161923i −0.501402 0.865215i \(-0.667182\pi\)
0.498597 + 0.866834i \(0.333849\pi\)
\(150\) −4.00563 + 1.73412i −0.327058 + 0.141590i
\(151\) 4.89690 8.48169i 0.398504 0.690230i −0.595037 0.803698i \(-0.702863\pi\)
0.993542 + 0.113468i \(0.0361960\pi\)
\(152\) 0.728012 + 13.8913i 0.0590496 + 1.12673i
\(153\) 1.59662 + 0.252879i 0.129079 + 0.0204441i
\(154\) 2.17890 + 1.64475i 0.175581 + 0.132537i
\(155\) −3.31584 21.6580i −0.266334 1.73961i
\(156\) −0.329372 + 3.13377i −0.0263709 + 0.250902i
\(157\) −3.40702 12.7152i −0.271910 1.01478i −0.957884 0.287156i \(-0.907290\pi\)
0.685974 0.727626i \(-0.259376\pi\)
\(158\) −2.90680 + 7.57247i −0.231253 + 0.602434i
\(159\) −12.2712 + 2.60832i −0.973170 + 0.206854i
\(160\) 13.0904 + 0.0675377i 1.03488 + 0.00533933i
\(161\) 1.28304 2.74557i 0.101118 0.216381i
\(162\) 0.527797 0.268926i 0.0414676 0.0211288i
\(163\) 1.90187 2.92862i 0.148966 0.229387i −0.756308 0.654216i \(-0.772999\pi\)
0.905274 + 0.424828i \(0.139666\pi\)
\(164\) 0.0893911 + 0.0190007i 0.00698027 + 0.00148370i
\(165\) −3.05282 + 1.34037i −0.237662 + 0.104348i
\(166\) −1.01091 4.75594i −0.0784615 0.369132i
\(167\) −18.9176 + 2.99626i −1.46389 + 0.231857i −0.836979 0.547235i \(-0.815681\pi\)
−0.626910 + 0.779092i \(0.715681\pi\)
\(168\) 6.65503 4.15088i 0.513447 0.320247i
\(169\) −5.26691 + 7.24928i −0.405147 + 0.557637i
\(170\) 0.887137 1.35076i 0.0680403 0.103599i
\(171\) 9.11202 0.957712i 0.696813 0.0732380i
\(172\) 4.15350 5.12914i 0.316701 0.391093i
\(173\) −4.95159 + 0.259502i −0.376462 + 0.0197296i −0.239629 0.970865i \(-0.577026\pi\)
−0.136833 + 0.990594i \(0.543692\pi\)
\(174\) 6.00109 0.454941
\(175\) 6.88471 + 11.2961i 0.520435 + 0.853901i
\(176\) 0.982748 0.0740774
\(177\) 5.41192 0.283626i 0.406785 0.0213187i
\(178\) 7.67694 9.48023i 0.575411 0.710573i
\(179\) −20.1419 + 2.11700i −1.50548 + 0.158232i −0.821052 0.570853i \(-0.806613\pi\)
−0.684424 + 0.729085i \(0.739946\pi\)
\(180\) −0.256033 5.42033i −0.0190835 0.404007i
\(181\) 2.67679 3.68429i 0.198965 0.273851i −0.697863 0.716231i \(-0.745866\pi\)
0.896828 + 0.442380i \(0.145866\pi\)
\(182\) −4.13061 + 0.140827i −0.306181 + 0.0104388i
\(183\) 5.07431 0.803693i 0.375104 0.0594107i
\(184\) 0.628589 + 2.95728i 0.0463402 + 0.218014i
\(185\) 11.4005 + 12.7937i 0.838182 + 0.940609i
\(186\) 8.36704 + 1.77847i 0.613501 + 0.130404i
\(187\) 0.672306 1.03526i 0.0491639 0.0757058i
\(188\) 0.232159 0.118291i 0.0169319 0.00862725i
\(189\) −8.06700 11.5412i −0.586788 0.839495i
\(190\) 2.87534 8.69645i 0.208599 0.630907i
\(191\) 15.1405 3.21821i 1.09553 0.232861i 0.375510 0.926818i \(-0.377468\pi\)
0.720016 + 0.693957i \(0.244134\pi\)
\(192\) −1.23556 + 3.21875i −0.0891690 + 0.232293i
\(193\) −2.02940 7.57383i −0.146080 0.545176i −0.999705 0.0242890i \(-0.992268\pi\)
0.853625 0.520887i \(-0.174399\pi\)
\(194\) −1.41334 + 13.4470i −0.101472 + 0.965442i
\(195\) 2.31475 4.48558i 0.165763 0.321219i
\(196\) −6.26843 7.49555i −0.447745 0.535396i
\(197\) −16.1577 2.55912i −1.15119 0.182330i −0.448469 0.893799i \(-0.648030\pi\)
−0.702718 + 0.711469i \(0.748030\pi\)
\(198\) 0.0938827 + 1.79139i 0.00667196 + 0.127308i
\(199\) −13.6561 + 23.6530i −0.968053 + 1.67672i −0.266874 + 0.963731i \(0.585991\pi\)
−0.701179 + 0.712985i \(0.747343\pi\)
\(200\) −12.2712 4.85634i −0.867706 0.343395i
\(201\) 8.26242 4.77031i 0.582786 0.336472i
\(202\) −2.45507 1.25092i −0.172738 0.0880144i
\(203\) −2.51634 18.0127i −0.176613 1.26424i
\(204\) −0.856878 1.17939i −0.0599935 0.0825739i
\(205\) −0.122364 0.0803646i −0.00854626 0.00561291i
\(206\) 2.01212 + 4.51928i 0.140191 + 0.314873i
\(207\) 1.92351 0.515402i 0.133693 0.0358229i
\(208\) −1.15625 + 0.936312i −0.0801715 + 0.0649216i
\(209\) 2.16202 6.65402i 0.149550 0.460268i
\(210\) −5.07553 + 0.955090i −0.350245 + 0.0659075i
\(211\) 4.53761 + 13.9653i 0.312382 + 0.961413i 0.976819 + 0.214068i \(0.0686715\pi\)
−0.664437 + 0.747345i \(0.731328\pi\)
\(212\) −13.0762 8.49176i −0.898075 0.583216i
\(213\) −0.633938 + 12.0963i −0.0434367 + 0.828823i
\(214\) 1.59282 7.49361i 0.108883 0.512253i
\(215\) −9.18319 + 5.23893i −0.626288 + 0.357292i
\(216\) 13.3599 + 4.34090i 0.909027 + 0.295361i
\(217\) 1.82978 25.8600i 0.124214 1.75549i
\(218\) −5.95255 + 5.95255i −0.403158 + 0.403158i
\(219\) −1.83953 0.193342i −0.124304 0.0130648i
\(220\) −3.86075 1.50490i −0.260292 0.101461i
\(221\) 0.195344 + 1.85857i 0.0131402 + 0.125021i
\(222\) −6.24575 + 2.39752i −0.419187 + 0.160911i
\(223\) 9.81559 19.2642i 0.657301 1.29003i −0.286046 0.958216i \(-0.592341\pi\)
0.943346 0.331809i \(-0.107659\pi\)
\(224\) 15.0891 + 3.49672i 1.00818 + 0.233634i
\(225\) −2.77129 + 8.23890i −0.184753 + 0.549260i
\(226\) −2.56903 4.44970i −0.170890 0.295989i
\(227\) −7.88440 + 5.12019i −0.523306 + 0.339839i −0.779107 0.626891i \(-0.784327\pi\)
0.255801 + 0.966729i \(0.417661\pi\)
\(228\) −6.42129 5.19986i −0.425260 0.344369i
\(229\) −2.84380 1.26614i −0.187923 0.0836689i 0.310618 0.950535i \(-0.399464\pi\)
−0.498541 + 0.866866i \(0.666131\pi\)
\(230\) 0.321565 1.96462i 0.0212033 0.129543i
\(231\) −3.87312 + 0.749537i −0.254833 + 0.0493159i
\(232\) 12.8299 + 12.8299i 0.842326 + 0.842326i
\(233\) 18.3487 + 22.6587i 1.20206 + 1.48442i 0.831420 + 0.555644i \(0.187528\pi\)
0.370640 + 0.928777i \(0.379138\pi\)
\(234\) −1.81720 2.01821i −0.118794 0.131934i
\(235\) −0.415321 + 0.0414867i −0.0270925 + 0.00270629i
\(236\) 5.00526 + 4.50675i 0.325814 + 0.293365i
\(237\) −5.32129 10.4436i −0.345655 0.678386i
\(238\) 1.37656 1.32713i 0.0892292 0.0860252i
\(239\) 3.05660 0.993150i 0.197715 0.0642416i −0.208485 0.978025i \(-0.566853\pi\)
0.406201 + 0.913784i \(0.366853\pi\)
\(240\) −1.25114 + 1.37520i −0.0807607 + 0.0887686i
\(241\) −19.9300 + 17.9451i −1.28381 + 1.15594i −0.304733 + 0.952438i \(0.598567\pi\)
−0.979074 + 0.203506i \(0.934766\pi\)
\(242\) −6.70302 2.57305i −0.430886 0.165402i
\(243\) 3.91085 14.5955i 0.250881 0.936301i
\(244\) 5.16561 + 3.75303i 0.330694 + 0.240263i
\(245\) 4.99501 + 14.8341i 0.319120 + 0.947714i
\(246\) 0.0462382 0.0335940i 0.00294804 0.00214188i
\(247\) 3.79589 + 9.88862i 0.241527 + 0.629198i
\(248\) 14.0859 + 21.6904i 0.894457 + 1.37734i
\(249\) 6.08480 + 3.51306i 0.385609 + 0.222631i
\(250\) 6.36708 + 5.91393i 0.402689 + 0.374030i
\(251\) 13.7541i 0.868150i 0.900877 + 0.434075i \(0.142925\pi\)
−0.900877 + 0.434075i \(0.857075\pi\)
\(252\) 1.12014 6.32210i 0.0705625 0.398255i
\(253\) 0.237881 1.50192i 0.0149555 0.0944250i
\(254\) −5.84558 + 13.1294i −0.366784 + 0.823811i
\(255\) 0.592764 + 2.25878i 0.0371203 + 0.141450i
\(256\) −12.2281 + 5.44431i −0.764257 + 0.340269i
\(257\) 8.92621 + 2.39177i 0.556802 + 0.149195i 0.526237 0.850338i \(-0.323603\pi\)
0.0305651 + 0.999533i \(0.490269\pi\)
\(258\) −0.645695 4.07676i −0.0401992 0.253808i
\(259\) 9.81526 + 17.7418i 0.609890 + 1.10242i
\(260\) 5.97615 1.90774i 0.370625 0.118313i
\(261\) 7.99672 8.88126i 0.494985 0.549736i
\(262\) 13.0069 + 0.681663i 0.803569 + 0.0421133i
\(263\) 8.38032 + 0.439194i 0.516752 + 0.0270819i 0.308930 0.951085i \(-0.400029\pi\)
0.207822 + 0.978167i \(0.433362\pi\)
\(264\) 2.63341 2.92470i 0.162075 0.180003i
\(265\) 14.5761 + 20.2815i 0.895404 + 1.24588i
\(266\) 5.58947 9.28504i 0.342712 0.569303i
\(267\) 2.75761 + 17.4109i 0.168763 + 1.06553i
\(268\) 11.4532 + 3.06887i 0.699615 + 0.187461i
\(269\) 4.02317 1.79123i 0.245297 0.109213i −0.280406 0.959882i \(-0.590469\pi\)
0.525703 + 0.850668i \(0.323802\pi\)
\(270\) −7.15826 5.85805i −0.435638 0.356510i
\(271\) −1.39604 + 3.13556i −0.0848035 + 0.190472i −0.950970 0.309285i \(-0.899910\pi\)
0.866166 + 0.499756i \(0.166577\pi\)
\(272\) 0.107679 0.679856i 0.00652898 0.0412223i
\(273\) 3.84278 4.57197i 0.232576 0.276708i
\(274\) 2.56689i 0.155072i
\(275\) 4.88673 + 4.49219i 0.294681 + 0.270889i
\(276\) −1.55525 0.897924i −0.0936150 0.0540487i
\(277\) 4.19321 + 6.45697i 0.251945 + 0.387962i 0.941901 0.335889i \(-0.109037\pi\)
−0.689956 + 0.723851i \(0.742370\pi\)
\(278\) −2.40300 6.26003i −0.144122 0.375451i
\(279\) 13.7815 10.0128i 0.825076 0.599453i
\(280\) −12.8931 8.80922i −0.770508 0.526452i
\(281\) 19.6291 + 14.2614i 1.17097 + 0.850761i 0.991125 0.132934i \(-0.0424398\pi\)
0.179847 + 0.983695i \(0.442440\pi\)
\(282\) 0.0421749 0.157399i 0.00251148 0.00937296i
\(283\) −6.76781 2.59792i −0.402304 0.154430i 0.148798 0.988868i \(-0.452459\pi\)
−0.551103 + 0.834437i \(0.685793\pi\)
\(284\) −11.1873 + 10.0731i −0.663846 + 0.597730i
\(285\) 6.55874 + 11.4966i 0.388506 + 0.681003i
\(286\) −1.97231 + 0.640843i −0.116625 + 0.0378939i
\(287\) −0.120223 0.124701i −0.00709655 0.00736086i
\(288\) 4.62055 + 9.06833i 0.272268 + 0.534357i
\(289\) 11.9909 + 10.7967i 0.705350 + 0.635100i
\(290\) −4.80305 10.9394i −0.282045 0.642382i
\(291\) −13.0740 14.5201i −0.766410 0.851185i
\(292\) −1.44667 1.78649i −0.0846599 0.104546i
\(293\) −22.0206 22.0206i −1.28645 1.28645i −0.936925 0.349529i \(-0.886342\pi\)
−0.349529 0.936925i \(-0.613658\pi\)
\(294\) −6.10676 0.223359i −0.356154 0.0130265i
\(295\) −4.84852 9.63836i −0.282291 0.561167i
\(296\) −18.4787 8.22726i −1.07405 0.478200i
\(297\) −5.49084 4.44640i −0.318611 0.258006i
\(298\) −0.0257681 + 0.0167340i −0.00149271 + 0.000969375i
\(299\) 1.15108 + 1.99372i 0.0665684 + 0.115300i
\(300\) 7.02100 3.48660i 0.405358 0.201299i
\(301\) −11.9659 + 3.64755i −0.689705 + 0.210241i
\(302\) 3.45587 6.78253i 0.198863 0.390291i
\(303\) 3.71722 1.42691i 0.213549 0.0819738i
\(304\) −0.407803 3.87999i −0.0233891 0.222533i
\(305\) −5.52634 8.60671i −0.316437 0.492819i
\(306\) 1.24955 + 0.131333i 0.0714322 + 0.00750783i
\(307\) −2.33566 + 2.33566i −0.133303 + 0.133303i −0.770610 0.637307i \(-0.780048\pi\)
0.637307 + 0.770610i \(0.280048\pi\)
\(308\) −4.06240 2.74501i −0.231477 0.156412i
\(309\) −6.79877 2.20905i −0.386768 0.125669i
\(310\) −3.45470 16.6757i −0.196214 0.947114i
\(311\) 1.28441 6.04267i 0.0728321 0.342648i −0.926611 0.376022i \(-0.877292\pi\)
0.999443 + 0.0333736i \(0.0106251\pi\)
\(312\) −0.311828 + 5.95003i −0.0176538 + 0.336854i
\(313\) 9.39345 + 6.10018i 0.530949 + 0.344802i 0.782107 0.623144i \(-0.214145\pi\)
−0.251158 + 0.967946i \(0.580811\pi\)
\(314\) −3.16170 9.73071i −0.178425 0.549136i
\(315\) −5.34989 + 8.78418i −0.301432 + 0.494933i
\(316\) 4.50152 13.8542i 0.253230 0.779362i
\(317\) 6.98886 5.65947i 0.392534 0.317867i −0.412654 0.910888i \(-0.635398\pi\)
0.805187 + 0.593021i \(0.202065\pi\)
\(318\) −9.41859 + 2.52370i −0.528168 + 0.141522i
\(319\) −3.71186 8.33698i −0.207824 0.466781i
\(320\) 6.85635 0.323864i 0.383281 0.0181045i
\(321\) 6.50714 + 8.95630i 0.363193 + 0.499892i
\(322\) 0.884192 2.18326i 0.0492741 0.121668i
\(323\) −4.36630 2.22474i −0.242947 0.123788i
\(324\) −0.921313 + 0.531920i −0.0511840 + 0.0295511i
\(325\) −10.0294 0.629452i −0.556331 0.0349157i
\(326\) 1.35707 2.35051i 0.0751610 0.130183i
\(327\) −0.636653 12.1481i −0.0352070 0.671790i
\(328\) 0.170676 + 0.0270324i 0.00942401 + 0.00149262i
\(329\) −0.490129 0.0605914i −0.0270217 0.00334051i
\(330\) −2.31502 + 1.16456i −0.127438 + 0.0641068i
\(331\) 0.755353 7.18671i 0.0415180 0.395017i −0.953953 0.299955i \(-0.903028\pi\)
0.995471 0.0950622i \(-0.0303050\pi\)
\(332\) 2.26005 + 8.43463i 0.124036 + 0.462910i
\(333\) −4.77456 + 12.4381i −0.261644 + 0.681606i
\(334\) −14.5616 + 3.09517i −0.796777 + 0.169360i
\(335\) −15.3087 11.2436i −0.836404 0.614301i
\(336\) −1.80301 + 1.26026i −0.0983624 + 0.0687531i
\(337\) 9.03950 4.60585i 0.492413 0.250897i −0.190108 0.981763i \(-0.560884\pi\)
0.682521 + 0.730866i \(0.260884\pi\)
\(338\) −3.79320 + 5.84101i −0.206323 + 0.317709i
\(339\) 7.26254 + 1.54370i 0.394447 + 0.0838423i
\(340\) −1.46410 + 2.50594i −0.0794018 + 0.135904i
\(341\) −2.70455 12.7239i −0.146459 0.689038i
\(342\) 7.03363 1.11402i 0.380335 0.0602392i
\(343\) 1.89023 + 18.4235i 0.102063 + 0.994778i
\(344\) 7.33539 10.0963i 0.395498 0.544356i
\(345\) 1.79885 + 2.24498i 0.0968468 + 0.120866i
\(346\) −3.83278 + 0.402841i −0.206051 + 0.0216569i
\(347\) −5.04462 + 6.22958i −0.270809 + 0.334422i −0.894349 0.447370i \(-0.852361\pi\)
0.623540 + 0.781792i \(0.285694\pi\)
\(348\) −10.7628 + 0.564054i −0.576946 + 0.0302365i
\(349\) 8.82065 0.472158 0.236079 0.971734i \(-0.424138\pi\)
0.236079 + 0.971734i \(0.424138\pi\)
\(350\) 5.80329 + 8.48774i 0.310199 + 0.453689i
\(351\) 10.6965 0.570939
\(352\) 7.76119 0.406747i 0.413673 0.0216797i
\(353\) −10.5951 + 13.0839i −0.563923 + 0.696387i −0.976740 0.214427i \(-0.931211\pi\)
0.412817 + 0.910814i \(0.364545\pi\)
\(354\) 4.18910 0.440292i 0.222648 0.0234012i
\(355\) 22.5576 8.52579i 1.19723 0.452502i
\(356\) −12.8773 + 17.7241i −0.682497 + 0.939376i
\(357\) 0.0941494 + 2.76151i 0.00498292 + 0.146155i
\(358\) −15.5477 + 2.46251i −0.821720 + 0.130148i
\(359\) −2.87394 13.5208i −0.151681 0.713602i −0.986590 0.163215i \(-0.947813\pi\)
0.834910 0.550387i \(-0.185520\pi\)
\(360\) −1.01986 10.2098i −0.0537514 0.538102i
\(361\) −8.58309 1.82439i −0.451742 0.0960206i
\(362\) 1.92781 2.96857i 0.101323 0.156024i
\(363\) 9.24451 4.71031i 0.485211 0.247227i
\(364\) 7.39491 0.640814i 0.387599 0.0335878i
\(365\) 1.11984 + 3.50801i 0.0586153 + 0.183618i
\(366\) 3.90590 0.830225i 0.204165 0.0433966i
\(367\) −0.372403 + 0.970143i −0.0194393 + 0.0506410i −0.942957 0.332916i \(-0.891968\pi\)
0.923517 + 0.383557i \(0.125301\pi\)
\(368\) −0.219464 0.819049i −0.0114403 0.0426959i
\(369\) 0.0118973 0.113195i 0.000619350 0.00589272i
\(370\) 9.36929 + 9.46647i 0.487086 + 0.492138i
\(371\) 11.5244 + 27.2124i 0.598319 + 1.41280i
\(372\) −15.1732 2.40320i −0.786695 0.124600i
\(373\) −1.15167 21.9752i −0.0596314 1.13783i −0.850544 0.525904i \(-0.823727\pi\)
0.790912 0.611930i \(-0.209606\pi\)
\(374\) 0.479720 0.830899i 0.0248057 0.0429648i
\(375\) −12.5074 + 1.11916i −0.645880 + 0.0577930i
\(376\) 0.426675 0.246341i 0.0220041 0.0127041i
\(377\) 12.3102 + 6.27237i 0.634009 + 0.323044i
\(378\) −6.73093 8.62989i −0.346202 0.443874i
\(379\) −17.8299 24.5408i −0.915862 1.26058i −0.965125 0.261790i \(-0.915687\pi\)
0.0492625 0.998786i \(-0.484313\pi\)
\(380\) −4.33944 + 15.8671i −0.222609 + 0.813966i
\(381\) −8.44719 18.9727i −0.432762 0.972000i
\(382\) 11.6209 3.11380i 0.594575 0.159316i
\(383\) −16.6188 + 13.4576i −0.849179 + 0.687652i −0.951683 0.307081i \(-0.900648\pi\)
0.102504 + 0.994733i \(0.467315\pi\)
\(384\) 3.23567 9.95838i 0.165120 0.508186i
\(385\) 4.46623 + 6.46039i 0.227620 + 0.329252i
\(386\) −1.88327 5.79612i −0.0958562 0.295015i
\(387\) −6.89379 4.47688i −0.350431 0.227572i
\(388\) 1.27088 24.2498i 0.0645190 1.23110i
\(389\) 4.37542 20.5847i 0.221842 1.04369i −0.716395 0.697695i \(-0.754209\pi\)
0.938238 0.345992i \(-0.112457\pi\)
\(390\) 1.61420 3.57579i 0.0817383 0.181067i
\(391\) −1.01295 0.329128i −0.0512271 0.0166447i
\(392\) −12.5783 13.5334i −0.635301 0.683539i
\(393\) −13.3088 + 13.3088i −0.671340 + 0.671340i
\(394\) −12.6454 1.32909i −0.637066 0.0669583i
\(395\) −14.7787 + 18.0589i −0.743596 + 0.908639i
\(396\) −0.336752 3.20399i −0.0169224 0.161006i
\(397\) 4.78454 1.83661i 0.240129 0.0921770i −0.235327 0.971916i \(-0.575616\pi\)
0.475457 + 0.879739i \(0.342283\pi\)
\(398\) −9.63744 + 18.9145i −0.483081 + 0.948100i
\(399\) 4.56645 + 14.9804i 0.228608 + 0.749960i
\(400\) 3.50821 + 1.18004i 0.175410 + 0.0590022i
\(401\) −17.1661 29.7326i −0.857235 1.48477i −0.874556 0.484924i \(-0.838847\pi\)
0.0173216 0.999850i \(-0.494486\pi\)
\(402\) 6.21910 4.03873i 0.310180 0.201433i
\(403\) 15.3047 + 12.3935i 0.762382 + 0.617364i
\(404\) 4.52068 + 2.01273i 0.224912 + 0.100137i
\(405\) 1.68454 0.257902i 0.0837053 0.0128153i
\(406\) −2.68586 13.8788i −0.133297 0.688792i
\(407\) 7.19393 + 7.19393i 0.356590 + 0.356590i
\(408\) −1.73474 2.14223i −0.0858825 0.106056i
\(409\) 17.5576 + 19.4997i 0.868168 + 0.964198i 0.999632 0.0271225i \(-0.00863443\pi\)
−0.131464 + 0.991321i \(0.541968\pi\)
\(410\) −0.0982457 0.0574001i −0.00485201 0.00283479i
\(411\) −2.75655 2.48201i −0.135970 0.122428i
\(412\) −4.03345 7.91610i −0.198714 0.389998i
\(413\) −3.07812 12.3893i −0.151464 0.609635i
\(414\) 1.47203 0.478291i 0.0723462 0.0235067i
\(415\) 1.53390 13.9037i 0.0752963 0.682505i
\(416\) −8.74388 + 7.87302i −0.428704 + 0.386007i
\(417\) 9.04608 + 3.47247i 0.442989 + 0.170047i
\(418\) 1.40745 5.25268i 0.0688407 0.256917i
\(419\) 20.8379 + 15.1396i 1.01800 + 0.739617i 0.965871 0.259023i \(-0.0834006\pi\)
0.0521248 + 0.998641i \(0.483401\pi\)
\(420\) 9.01305 2.18999i 0.439792 0.106860i
\(421\) −9.53283 + 6.92601i −0.464602 + 0.337553i −0.795334 0.606172i \(-0.792704\pi\)
0.330732 + 0.943725i \(0.392704\pi\)
\(422\) 4.09009 + 10.6551i 0.199103 + 0.518680i
\(423\) −0.176741 0.272158i −0.00859345 0.0132328i
\(424\) −25.5318 14.7408i −1.23994 0.715877i
\(425\) 3.64309 2.88839i 0.176716 0.140107i
\(426\) 9.41470i 0.456144i
\(427\) −4.12978 11.3757i −0.199854 0.550510i
\(428\) −2.15233 + 13.5893i −0.104037 + 0.656864i
\(429\) 1.21890 2.73769i 0.0588489 0.132177i
\(430\) −6.91472 + 4.43992i −0.333457 + 0.214112i
\(431\) −14.2385 + 6.33937i −0.685842 + 0.305357i −0.719914 0.694063i \(-0.755819\pi\)
0.0340723 + 0.999419i \(0.489152\pi\)
\(432\) −3.80556 1.01970i −0.183095 0.0490602i
\(433\) 0.121416 + 0.766591i 0.00583489 + 0.0368400i 0.990434 0.137987i \(-0.0440633\pi\)
−0.984599 + 0.174827i \(0.944063\pi\)
\(434\) 0.368312 20.1465i 0.0176796 0.967063i
\(435\) 16.3918 + 5.41969i 0.785928 + 0.259854i
\(436\) 10.1163 11.2352i 0.484481 0.538070i
\(437\) −6.02845 0.315938i −0.288380 0.0151134i
\(438\) −1.43567 0.0752404i −0.0685991 0.00359512i
\(439\) 7.06803 7.84984i 0.337339 0.374653i −0.550478 0.834850i \(-0.685555\pi\)
0.887817 + 0.460197i \(0.152221\pi\)
\(440\) −7.43911 2.45962i −0.354646 0.117258i
\(441\) −8.46810 + 8.74002i −0.403243 + 0.416191i
\(442\) 0.227225 + 1.43464i 0.0108080 + 0.0682391i
\(443\) 26.2546 + 7.03490i 1.24739 + 0.334238i 0.821329 0.570455i \(-0.193233\pi\)
0.426064 + 0.904693i \(0.359900\pi\)
\(444\) 10.9762 4.88694i 0.520909 0.231924i
\(445\) 29.5311 18.9618i 1.39991 0.898878i
\(446\) 6.83506 15.3518i 0.323650 0.726929i
\(447\) 0.00694557 0.0438526i 0.000328514 0.00207416i
\(448\) 7.99703 + 1.41691i 0.377824 + 0.0669426i
\(449\) 39.0168i 1.84131i −0.390372 0.920657i \(-0.627654\pi\)
0.390372 0.920657i \(-0.372346\pi\)
\(450\) −1.81588 + 6.50762i −0.0856016 + 0.306772i
\(451\) −0.0752701 0.0434572i −0.00354433 0.00204632i
\(452\) 5.02573 + 7.73894i 0.236390 + 0.364009i
\(453\) 3.94207 + 10.2694i 0.185215 + 0.482501i
\(454\) −5.91145 + 4.29492i −0.277438 + 0.201571i
\(455\) −11.4099 3.34576i −0.534902 0.156852i
\(456\) −12.6398 9.18334i −0.591912 0.430049i
\(457\) −5.95677 + 22.2310i −0.278646 + 1.03992i 0.674713 + 0.738080i \(0.264268\pi\)
−0.953359 + 0.301840i \(0.902399\pi\)
\(458\) −2.25881 0.867075i −0.105547 0.0405158i
\(459\) −3.67760 + 3.31133i −0.171656 + 0.154560i
\(460\) −0.392059 + 3.55372i −0.0182798 + 0.165693i
\(461\) −23.0880 + 7.50175i −1.07532 + 0.349391i −0.792556 0.609799i \(-0.791250\pi\)
−0.282760 + 0.959191i \(0.591250\pi\)
\(462\) −2.97576 + 0.739328i −0.138445 + 0.0343967i
\(463\) 2.79874 + 5.49284i 0.130069 + 0.255274i 0.946851 0.321671i \(-0.104245\pi\)
−0.816783 + 0.576945i \(0.804245\pi\)
\(464\) −3.78173 3.40509i −0.175563 0.158077i
\(465\) 21.2482 + 12.4143i 0.985362 + 0.575697i
\(466\) 15.1636 + 16.8409i 0.702441 + 0.780140i
\(467\) 18.4601 + 22.7963i 0.854231 + 1.05489i 0.997868 + 0.0652571i \(0.0207868\pi\)
−0.143637 + 0.989630i \(0.545880\pi\)
\(468\) 3.44880 + 3.44880i 0.159421 + 0.159421i
\(469\) −14.7303 16.9736i −0.680182 0.783767i
\(470\) −0.320677 + 0.0490956i −0.0147917 + 0.00226461i
\(471\) 13.5068 + 6.01362i 0.622361 + 0.277093i
\(472\) 9.89733 + 8.01470i 0.455561 + 0.368906i
\(473\) −5.26423 + 3.41863i −0.242050 + 0.157189i
\(474\) −4.55512 7.88970i −0.209224 0.362386i
\(475\) 15.7078 21.1574i 0.720725 0.970768i
\(476\) −2.34409 + 2.50956i −0.107441 + 0.115026i
\(477\) −8.81577 + 17.3019i −0.403646 + 0.792200i
\(478\) 2.33208 0.895202i 0.106667 0.0409456i
\(479\) 0.950688 + 9.04519i 0.0434380 + 0.413285i 0.994536 + 0.104395i \(0.0332908\pi\)
−0.951098 + 0.308890i \(0.900043\pi\)
\(480\) −9.31162 + 11.3784i −0.425015 + 0.519349i
\(481\) −15.3180 1.60999i −0.698441 0.0734091i
\(482\) −14.7394 + 14.7394i −0.671360 + 0.671360i
\(483\) 1.48961 + 3.06058i 0.0677798 + 0.139261i
\(484\) 12.2635 + 3.98466i 0.557433 + 0.181121i
\(485\) −16.0048 + 35.4539i −0.726739 + 1.60988i
\(486\) 2.44182 11.4878i 0.110763 0.521099i
\(487\) −0.0277991 + 0.530438i −0.00125970 + 0.0240364i −0.999187 0.0403139i \(-0.987164\pi\)
0.997927 + 0.0643504i \(0.0204975\pi\)
\(488\) 10.1255 + 6.57559i 0.458361 + 0.297663i
\(489\) 1.21199 + 3.73011i 0.0548080 + 0.168682i
\(490\) 4.48046 + 11.3108i 0.202407 + 0.510968i
\(491\) 1.98288 6.10267i 0.0894861 0.275410i −0.896291 0.443466i \(-0.853749\pi\)
0.985777 + 0.168056i \(0.0537489\pi\)
\(492\) −0.0797694 + 0.0645960i −0.00359628 + 0.00291221i
\(493\) −6.17415 + 1.65436i −0.278070 + 0.0745086i
\(494\) 3.34855 + 7.52097i 0.150658 + 0.338384i
\(495\) −1.36140 + 4.97793i −0.0611902 + 0.223741i
\(496\) −4.26357 5.86830i −0.191440 0.263494i
\(497\) 28.2589 3.94772i 1.26758 0.177079i
\(498\) 4.86582 + 2.47926i 0.218043 + 0.111098i
\(499\) 5.43364 3.13711i 0.243243 0.140437i −0.373423 0.927661i \(-0.621816\pi\)
0.616666 + 0.787225i \(0.288483\pi\)
\(500\) −11.9751 10.0080i −0.535541 0.447572i
\(501\) 10.7562 18.6303i 0.480553 0.832343i
\(502\) 0.559489 + 10.6757i 0.0249712 + 0.476479i
\(503\) −4.92568 0.780151i −0.219625 0.0347852i 0.0456521 0.998957i \(-0.485463\pi\)
−0.265277 + 0.964172i \(0.585463\pi\)
\(504\) 1.48951 12.0488i 0.0663480 0.536695i
\(505\) −5.57623 5.63407i −0.248139 0.250713i
\(506\) 0.123544 1.17544i 0.00549220 0.0522548i
\(507\) −2.60482 9.72131i −0.115684 0.431739i
\(508\) 9.24984 24.0966i 0.410395 1.06912i
\(509\) −22.1320 + 4.70429i −0.980982 + 0.208514i −0.670374 0.742024i \(-0.733866\pi\)
−0.310609 + 0.950538i \(0.600533\pi\)
\(510\) 0.551976 + 1.72911i 0.0244419 + 0.0765663i
\(511\) 0.376159 + 4.34082i 0.0166403 + 0.192027i
\(512\) 7.34327 3.74158i 0.324530 0.165356i
\(513\) −15.2763 + 23.5235i −0.674467 + 1.03859i
\(514\) 7.02566 + 1.49335i 0.309889 + 0.0658688i
\(515\) 1.41460 + 14.1615i 0.0623348 + 0.624030i
\(516\) 1.54122 + 7.25087i 0.0678484 + 0.319202i
\(517\) −0.244752 + 0.0387649i −0.0107642 + 0.00170488i
\(518\) 8.34013 + 13.3716i 0.366444 + 0.587513i
\(519\) 3.27343 4.50548i 0.143687 0.197769i
\(520\) 11.0959 4.19375i 0.486586 0.183908i
\(521\) 30.6917 3.22582i 1.34463 0.141326i 0.595287 0.803513i \(-0.297038\pi\)
0.749339 + 0.662187i \(0.230372\pi\)
\(522\) 5.84564 7.21877i 0.255857 0.315957i
\(523\) −30.5923 + 1.60327i −1.33771 + 0.0701062i −0.707716 0.706497i \(-0.750274\pi\)
−0.629990 + 0.776603i \(0.716941\pi\)
\(524\) −23.3916 −1.02187
\(525\) −14.7262 1.97499i −0.642706 0.0861955i
\(526\) 6.52252 0.284395
\(527\) −9.09861 + 0.476838i −0.396342 + 0.0207714i
\(528\) −0.694637 + 0.857805i −0.0302302 + 0.0373312i
\(529\) 21.5691 2.26701i 0.937789 0.0985656i
\(530\) 12.1387 + 15.1492i 0.527273 + 0.658041i
\(531\) 4.93056 6.78633i 0.213968 0.294502i
\(532\) −9.15184 + 17.1778i −0.396783 + 0.744754i
\(533\) 0.129963 0.0205840i 0.00562930 0.000891594i
\(534\) 2.84865 + 13.4018i 0.123273 + 0.579954i
\(535\) 11.1183 19.0301i 0.480688 0.822744i
\(536\) 21.9306 + 4.66148i 0.947256 + 0.201345i
\(537\) 12.3891 19.0775i 0.534628 0.823254i
\(538\) 3.04985 1.55398i 0.131488 0.0669966i
\(539\) 3.46693 + 8.62194i 0.149331 + 0.371373i
\(540\) 13.3888 + 9.83344i 0.576161 + 0.423164i
\(541\) −38.7310 + 8.23253i −1.66518 + 0.353944i −0.941712 0.336419i \(-0.890784\pi\)
−0.723463 + 0.690363i \(0.757451\pi\)
\(542\) −0.956035 + 2.49056i −0.0410652 + 0.106979i
\(543\) 1.32384 + 4.94065i 0.0568115 + 0.212023i
\(544\) 0.569001 5.41369i 0.0243957 0.232110i
\(545\) −21.6351 + 10.8834i −0.926747 + 0.466194i
\(546\) 2.79672 3.70500i 0.119689 0.158559i
\(547\) 37.0235 + 5.86395i 1.58301 + 0.250724i 0.885079 0.465440i \(-0.154104\pi\)
0.697932 + 0.716164i \(0.254104\pi\)
\(548\) −0.241267 4.60365i −0.0103064 0.196658i
\(549\) 3.97611 6.88682i 0.169696 0.293922i
\(550\) 3.97573 + 3.28798i 0.169525 + 0.140200i
\(551\) −31.3750 + 18.1143i −1.33662 + 0.771697i
\(552\) −3.02561 1.54162i −0.128778 0.0656159i
\(553\) −21.7715 + 16.9808i −0.925817 + 0.722097i
\(554\) 3.51735 + 4.84122i 0.149438 + 0.205684i
\(555\) −19.2254 + 0.908122i −0.816071 + 0.0385476i
\(556\) 4.89811 + 11.0013i 0.207726 + 0.466560i
\(557\) 5.81572 1.55832i 0.246420 0.0660280i −0.133495 0.991050i \(-0.542620\pi\)
0.379915 + 0.925021i \(0.375953\pi\)
\(558\) 10.2896 8.33239i 0.435595 0.352738i
\(559\) 2.93652 9.03767i 0.124201 0.382253i
\(560\) 3.74040 + 2.27804i 0.158061 + 0.0962647i
\(561\) 0.428435 + 1.31859i 0.0180885 + 0.0556708i
\(562\) 15.8159 + 10.2709i 0.667152 + 0.433253i
\(563\) 1.58169 30.1805i 0.0666604 1.27196i −0.736600 0.676329i \(-0.763570\pi\)
0.803260 0.595628i \(-0.203097\pi\)
\(564\) −0.0608453 + 0.286255i −0.00256205 + 0.0120535i
\(565\) −2.99866 14.4744i −0.126154 0.608942i
\(566\) −5.35873 1.74116i −0.225244 0.0731863i
\(567\) 2.01137 + 0.142319i 0.0844694 + 0.00597682i
\(568\) −20.1280 + 20.1280i −0.844552 + 0.844552i
\(569\) −4.95634 0.520932i −0.207781 0.0218386i 6.62580e−5 1.00000i \(-0.499979\pi\)
−0.207847 + 0.978161i \(0.566646\pi\)
\(570\) 5.55844 + 8.65670i 0.232817 + 0.362589i
\(571\) 0.255295 + 2.42897i 0.0106837 + 0.101649i 0.998564 0.0535674i \(-0.0170592\pi\)
−0.987880 + 0.155216i \(0.950393\pi\)
\(572\) 3.47706 1.33472i 0.145383 0.0558073i
\(573\) −7.89270 + 15.4903i −0.329722 + 0.647117i
\(574\) −0.0983877 0.0919002i −0.00410662 0.00383584i
\(575\) 2.65263 5.07591i 0.110622 0.211680i
\(576\) 2.66831 + 4.62165i 0.111180 + 0.192569i
\(577\) 20.3829 13.2368i 0.848553 0.551057i −0.0455274 0.998963i \(-0.514497\pi\)
0.894081 + 0.447906i \(0.147830\pi\)
\(578\) 9.74635 + 7.89244i 0.405395 + 0.328282i
\(579\) 8.04537 + 3.58203i 0.334354 + 0.148864i
\(580\) 9.64235 + 19.1680i 0.400377 + 0.795908i
\(581\) 5.40137 15.6447i 0.224087 0.649052i
\(582\) −10.7384 10.7384i −0.445123 0.445123i
\(583\) 9.33174 + 11.5237i 0.386481 + 0.477264i
\(584\) −2.90851 3.23023i −0.120355 0.133668i
\(585\) −3.14097 7.15383i −0.129863 0.295774i
\(586\) −17.9877 16.1962i −0.743066 0.669060i
\(587\) −4.09368 8.03430i −0.168964 0.331611i 0.790961 0.611866i \(-0.209581\pi\)
−0.959926 + 0.280255i \(0.909581\pi\)
\(588\) 10.9733 0.173399i 0.452532 0.00715085i
\(589\) −49.1130 + 15.9578i −2.02366 + 0.657528i
\(590\) −4.15540 7.28390i −0.171075 0.299873i
\(591\) 13.6545 12.2946i 0.561671 0.505731i
\(592\) 5.29629 + 2.03306i 0.217676 + 0.0835581i
\(593\) 6.63849 24.7752i 0.272610 1.01740i −0.684816 0.728716i \(-0.740117\pi\)
0.957426 0.288679i \(-0.0932160\pi\)
\(594\) −4.44277 3.22786i −0.182289 0.132441i
\(595\) 4.95860 2.38184i 0.203283 0.0976458i
\(596\) 0.0446416 0.0324340i 0.00182859 0.00132855i
\(597\) −10.9933 28.6386i −0.449926 1.17210i
\(598\) 0.974545 + 1.50067i 0.0398521 + 0.0613669i
\(599\) 23.1803 + 13.3832i 0.947123 + 0.546822i 0.892186 0.451668i \(-0.149171\pi\)
0.0549370 + 0.998490i \(0.482504\pi\)
\(600\) 12.9126 7.27848i 0.527155 0.297143i
\(601\) 3.83116i 0.156276i −0.996943 0.0781382i \(-0.975102\pi\)
0.996943 0.0781382i \(-0.0248975\pi\)
\(602\) −9.13938 + 3.31791i −0.372493 + 0.135228i
\(603\) 2.31015 14.5857i 0.0940764 0.593975i
\(604\) −5.56051 + 12.4891i −0.226254 + 0.508175i
\(605\) −15.9854 13.0818i −0.649898 0.531852i
\(606\) 2.82720 1.25875i 0.114847 0.0511332i
\(607\) −32.5210 8.71399i −1.31999 0.353690i −0.471015 0.882125i \(-0.656112\pi\)
−0.848974 + 0.528435i \(0.822779\pi\)
\(608\) −4.82648 30.4732i −0.195740 1.23585i
\(609\) 17.5013 + 10.5355i 0.709187 + 0.426921i
\(610\) −4.63955 6.45557i −0.187850 0.261379i
\(611\) 0.251029 0.278796i 0.0101555 0.0112789i
\(612\) −2.25339 0.118095i −0.0910877 0.00477370i
\(613\) −44.3520 2.32439i −1.79136 0.0938813i −0.872537 0.488547i \(-0.837527\pi\)
−0.918825 + 0.394666i \(0.870860\pi\)
\(614\) −1.71789 + 1.90791i −0.0693284 + 0.0769970i
\(615\) 0.156638 0.0500028i 0.00631625 0.00201631i
\(616\) −7.94261 4.78134i −0.320017 0.192646i
\(617\) −5.46815 34.5246i −0.220140 1.38991i −0.811902 0.583794i \(-0.801568\pi\)
0.591762 0.806112i \(-0.298432\pi\)
\(618\) −5.36695 1.43807i −0.215890 0.0578476i
\(619\) 12.2138 5.43792i 0.490913 0.218568i −0.146324 0.989237i \(-0.546744\pi\)
0.637237 + 0.770668i \(0.280077\pi\)
\(620\) 7.76329 + 29.5826i 0.311781 + 1.18807i
\(621\) −2.47955 + 5.56917i −0.0995011 + 0.223483i
\(622\) 0.751132 4.74246i 0.0301176 0.190155i
\(623\) 39.0321 14.1700i 1.56379 0.567709i
\(624\) 1.67106i 0.0668960i
\(625\) 12.0506 + 21.9040i 0.482022 + 0.876159i
\(626\) 7.53917 + 4.35274i 0.301326 + 0.173971i
\(627\) 4.27987 + 6.59042i 0.170921 + 0.263196i
\(628\) 6.58503 + 17.1546i 0.262771 + 0.684543i
\(629\) 5.76493 4.18846i 0.229863 0.167005i
\(630\) −3.79517 + 7.03575i −0.151203 + 0.280311i
\(631\) 11.1996 + 8.13699i 0.445849 + 0.323928i 0.787955 0.615733i \(-0.211140\pi\)
−0.342106 + 0.939662i \(0.611140\pi\)
\(632\) 7.12911 26.6062i 0.283581 1.05834i
\(633\) −15.3972 5.91041i −0.611982 0.234918i
\(634\) 5.19442 4.67707i 0.206297 0.185750i
\(635\) −27.8244 + 30.5834i −1.10418 + 1.21366i
\(636\) 16.6548 5.41147i 0.660405 0.214579i
\(637\) −12.2935 6.84101i −0.487088 0.271051i
\(638\) −3.22021 6.32003i −0.127489 0.250212i
\(639\) 13.9332 + 12.5455i 0.551189 + 0.496293i
\(640\) −20.7428 + 2.07201i −0.819931 + 0.0819035i
\(641\) −1.56927 1.74285i −0.0619824 0.0688384i 0.711356 0.702832i \(-0.248081\pi\)
−0.773339 + 0.633993i \(0.781415\pi\)
\(642\) 5.41505 + 6.68703i 0.213715 + 0.263916i
\(643\) −16.5284 16.5284i −0.651816 0.651816i 0.301614 0.953430i \(-0.402475\pi\)
−0.953430 + 0.301614i \(0.902475\pi\)
\(644\) −1.38057 + 3.99872i −0.0544020 + 0.157572i
\(645\) 1.91809 11.7187i 0.0755247 0.461424i
\(646\) −3.47954 1.54919i −0.136901 0.0609521i
\(647\) −9.11290 7.37948i −0.358265 0.290117i 0.433242 0.901278i \(-0.357370\pi\)
−0.791507 + 0.611161i \(0.790703\pi\)
\(648\) −1.68706 + 1.09559i −0.0662739 + 0.0430388i
\(649\) −3.20276 5.54735i −0.125719 0.217752i
\(650\) −7.81024 0.0805937i −0.306343 0.00316115i
\(651\) 21.2789 + 19.8758i 0.833986 + 0.778994i
\(652\) −2.21293 + 4.34313i −0.0866652 + 0.170090i
\(653\) −19.4319 + 7.45920i −0.760429 + 0.291901i −0.707515 0.706698i \(-0.750184\pi\)
−0.0529133 + 0.998599i \(0.516851\pi\)
\(654\) −0.988318 9.40322i −0.0386463 0.367695i
\(655\) 34.9124 + 13.6087i 1.36414 + 0.531736i
\(656\) −0.0481998 0.00506600i −0.00188188 0.000197794i
\(657\) −2.02445 + 2.02445i −0.0789813 + 0.0789813i
\(658\) −0.382894 0.0270925i −0.0149268 0.00105618i
\(659\) 30.5370 + 9.92209i 1.18955 + 0.386510i 0.835908 0.548870i \(-0.184942\pi\)
0.353646 + 0.935379i \(0.384942\pi\)
\(660\) 4.04247 2.30620i 0.157353 0.0897686i
\(661\) 2.10304 9.89402i 0.0817988 0.384833i −0.918136 0.396266i \(-0.870306\pi\)
0.999935 + 0.0114328i \(0.00363925\pi\)
\(662\) 0.293951 5.60892i 0.0114247 0.217997i
\(663\) −1.76035 1.14319i −0.0683665 0.0443977i
\(664\) 5.10231 + 15.7033i 0.198008 + 0.609406i
\(665\) 23.6530 20.3139i 0.917223 0.787741i
\(666\) −3.19997 + 9.84849i −0.123996 + 0.381621i
\(667\) −6.11935 + 4.95535i −0.236942 + 0.191872i
\(668\) 25.8250 6.91979i 0.999199 0.267735i
\(669\) 9.87704 + 22.1842i 0.381868 + 0.857691i
\(670\) −12.3397 8.10432i −0.476725 0.313097i
\(671\) −3.56931 4.91273i −0.137792 0.189654i
\(672\) −13.7176 + 10.6991i −0.529167 + 0.412727i
\(673\) 10.0639 + 5.12781i 0.387935 + 0.197663i 0.637070 0.770806i \(-0.280146\pi\)
−0.249135 + 0.968469i \(0.580146\pi\)
\(674\) 6.82894 3.94269i 0.263041 0.151867i
\(675\) −14.2621 22.4659i −0.548949 0.864712i
\(676\) 6.25399 10.8322i 0.240538 0.416624i
\(677\) −1.27981 24.4201i −0.0491869 0.938542i −0.906095 0.423074i \(-0.860951\pi\)
0.856908 0.515469i \(-0.172382\pi\)
\(678\) 5.69985 + 0.902768i 0.218901 + 0.0346706i
\(679\) −27.7294 + 36.7350i −1.06416 + 1.40976i
\(680\) −2.51664 + 4.87681i −0.0965086 + 0.187017i
\(681\) 1.10371 10.5011i 0.0422943 0.402404i
\(682\) −2.61681 9.76605i −0.100203 0.373961i
\(683\) −5.90842 + 15.3920i −0.226079 + 0.588957i −0.998960 0.0455944i \(-0.985482\pi\)
0.772881 + 0.634552i \(0.218815\pi\)
\(684\) −12.5099 + 2.65907i −0.478329 + 0.101672i
\(685\) −2.31820 + 7.01141i −0.0885740 + 0.267892i
\(686\) 2.21659 + 14.2231i 0.0846299 + 0.543042i
\(687\) 3.11525 1.58730i 0.118854 0.0605593i
\(688\) −1.90630 + 2.93544i −0.0726770 + 0.111913i
\(689\) −21.9585 4.66741i −0.836550 0.177814i
\(690\) 1.48756 + 1.66934i 0.0566303 + 0.0635506i
\(691\) 5.84621 + 27.5043i 0.222400 + 1.04631i 0.937687 + 0.347480i \(0.112963\pi\)
−0.715287 + 0.698831i \(0.753704\pi\)
\(692\) 6.83613 1.08274i 0.259870 0.0411594i
\(693\) −2.87117 + 5.38914i −0.109067 + 0.204716i
\(694\) −3.66214 + 5.04050i −0.139013 + 0.191335i
\(695\) −0.910198 19.2693i −0.0345258 0.730926i
\(696\) −20.2674 + 2.13019i −0.768233 + 0.0807445i
\(697\) −0.0383106 + 0.0473096i −0.00145112 + 0.00179198i
\(698\) 6.84643 0.358806i 0.259141 0.0135810i
\(699\) −32.7474 −1.23862
\(700\) −11.2058 14.6771i −0.423541 0.554741i
\(701\) −35.1051 −1.32590 −0.662951 0.748663i \(-0.730696\pi\)
−0.662951 + 0.748663i \(0.730696\pi\)
\(702\) 8.30246 0.435113i 0.313356 0.0164223i
\(703\) 25.4172 31.3876i 0.958627 1.18381i
\(704\) 4.05282 0.425969i 0.152747 0.0160543i
\(705\) 0.257349 0.391842i 0.00969234 0.0147576i
\(706\) −7.69154 + 10.5865i −0.289475 + 0.398428i
\(707\) −4.96372 7.95823i −0.186680 0.299300i
\(708\) −7.47165 + 1.18339i −0.280802 + 0.0444746i
\(709\) −10.9224 51.3859i −0.410200 1.92984i −0.365421 0.930842i \(-0.619075\pi\)
−0.0447789 0.998997i \(-0.514258\pi\)
\(710\) 17.1620 7.53517i 0.644079 0.282790i
\(711\) −17.7462 3.77207i −0.665534 0.141464i
\(712\) −22.5620 + 34.7425i −0.845548 + 1.30203i
\(713\) −10.0005 + 5.09550i −0.374521 + 0.190828i
\(714\) 0.185410 + 2.13961i 0.00693879 + 0.0800728i
\(715\) −5.96608 0.0307811i −0.223119 0.00115115i
\(716\) 27.6529 5.87780i 1.03344 0.219664i
\(717\) −1.29362 + 3.36999i −0.0483110 + 0.125854i
\(718\) −2.78070 10.3777i −0.103775 0.387293i
\(719\) −0.289532 + 2.75471i −0.0107977 + 0.102733i −0.998593 0.0530223i \(-0.983115\pi\)
0.987796 + 0.155756i \(0.0497812\pi\)
\(720\) 0.435506 + 2.84458i 0.0162303 + 0.106011i
\(721\) −2.06603 + 16.7123i −0.0769430 + 0.622398i
\(722\) −6.73625 1.06692i −0.250697 0.0397066i
\(723\) −1.57644 30.0803i −0.0586286 1.11870i
\(724\) −3.17846 + 5.50525i −0.118126 + 0.204601i
\(725\) −3.23988 34.2183i −0.120326 1.27084i
\(726\) 6.98382 4.03211i 0.259194 0.149646i
\(727\) 5.31536 + 2.70831i 0.197136 + 0.100446i 0.549772 0.835315i \(-0.314715\pi\)
−0.352636 + 0.935761i \(0.614715\pi\)
\(728\) 13.9003 1.94184i 0.515178 0.0719695i
\(729\) 11.3195 + 15.5799i 0.419239 + 0.577033i
\(730\) 1.01190 + 2.67730i 0.0374522 + 0.0990914i
\(731\) 1.78818 + 4.01632i 0.0661383 + 0.148549i
\(732\) −6.92710 + 1.85611i −0.256033 + 0.0686038i
\(733\) 23.4127 18.9592i 0.864768 0.700275i −0.0905384 0.995893i \(-0.528859\pi\)
0.955306 + 0.295618i \(0.0955255\pi\)
\(734\) −0.249589 + 0.768156i −0.00921250 + 0.0283532i
\(735\) −16.4788 6.12522i −0.607828 0.225932i
\(736\) −2.07219 6.37755i −0.0763820 0.235080i
\(737\) −9.45749 6.14177i −0.348371 0.226235i
\(738\) 0.00462993 0.0883442i 0.000170430 0.00325200i
\(739\) −9.39272 + 44.1893i −0.345517 + 1.62553i 0.371472 + 0.928444i \(0.378853\pi\)
−0.716989 + 0.697084i \(0.754480\pi\)
\(740\) −17.6933 16.0972i −0.650420 0.591746i
\(741\) −11.3145 3.67629i −0.415648 0.135052i
\(742\) 10.0520 + 20.6530i 0.369021 + 0.758194i
\(743\) 23.4363 23.4363i 0.859793 0.859793i −0.131520 0.991313i \(-0.541986\pi\)
0.991313 + 0.131520i \(0.0419858\pi\)
\(744\) −28.8891 3.03637i −1.05913 0.111319i
\(745\) −0.0854978 + 0.0224369i −0.00313240 + 0.000822026i
\(746\) −1.78782 17.0099i −0.0654566 0.622778i
\(747\) 10.1531 3.89741i 0.371482 0.142599i
\(748\) −0.782267 + 1.53529i −0.0286025 + 0.0561356i
\(749\) 17.8010 19.0576i 0.650434 0.696351i
\(750\) −9.66250 + 1.37745i −0.352825 + 0.0502972i
\(751\) 19.3994 + 33.6008i 0.707894 + 1.22611i 0.965637 + 0.259895i \(0.0836881\pi\)
−0.257742 + 0.966214i \(0.582979\pi\)
\(752\) −0.115887 + 0.0752582i −0.00422598 + 0.00274438i
\(753\) −12.0054 9.72182i −0.437503 0.354283i
\(754\) 9.81013 + 4.36775i 0.357264 + 0.159064i
\(755\) 15.5651 15.4053i 0.566470 0.560655i
\(756\) 12.8829 + 14.8448i 0.468546 + 0.539901i
\(757\) 2.63808 + 2.63808i 0.0958825 + 0.0958825i 0.753421 0.657538i \(-0.228402\pi\)
−0.657538 + 0.753421i \(0.728402\pi\)
\(758\) −14.8376 18.3229i −0.538924 0.665516i
\(759\) 1.14283 + 1.26924i 0.0414821 + 0.0460706i
\(760\) −6.62387 + 30.3910i −0.240273 + 1.10240i
\(761\) 29.5054 + 26.5668i 1.06957 + 0.963044i 0.999405 0.0344912i \(-0.0109811\pi\)
0.0701640 + 0.997535i \(0.477648\pi\)
\(762\) −7.32833 14.3827i −0.265477 0.521029i
\(763\) −27.8100 + 6.90941i −1.00679 + 0.250138i
\(764\) −20.5490 + 6.67679i −0.743438 + 0.241558i
\(765\) 3.29452 + 1.48723i 0.119113 + 0.0537708i
\(766\) −12.3518 + 11.1216i