Properties

Label 175.2.x.a.117.7
Level $175$
Weight $2$
Character 175.117
Analytic conductor $1.397$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(3,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([21, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.x (of order \(60\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 117.7
Character \(\chi\) \(=\) 175.117
Dual form 175.2.x.a.3.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.423319 - 0.651855i) q^{2} +(0.402507 + 1.04857i) q^{3} +(0.567758 - 1.27521i) q^{4} +(0.567586 + 2.16283i) q^{5} +(0.513123 - 0.706254i) q^{6} +(1.24404 + 2.33503i) q^{7} +(-2.60695 + 0.412900i) q^{8} +(1.29196 - 1.16328i) q^{9} +O(q^{10})\) \(q+(-0.423319 - 0.651855i) q^{2} +(0.402507 + 1.04857i) q^{3} +(0.567758 - 1.27521i) q^{4} +(0.567586 + 2.16283i) q^{5} +(0.513123 - 0.706254i) q^{6} +(1.24404 + 2.33503i) q^{7} +(-2.60695 + 0.412900i) q^{8} +(1.29196 - 1.16328i) q^{9} +(1.16958 - 1.28555i) q^{10} +(-0.888306 + 0.986564i) q^{11} +(1.56566 + 0.0820529i) q^{12} +(1.79077 - 0.912442i) q^{13} +(0.995478 - 1.79939i) q^{14} +(-2.03941 + 1.46571i) q^{15} +(-0.495338 - 0.550128i) q^{16} +(-0.585165 - 0.722619i) q^{17} +(-1.30520 - 0.349728i) q^{18} +(4.81455 - 2.14358i) q^{19} +(3.08031 + 0.504177i) q^{20} +(-1.94770 + 2.24432i) q^{21} +(1.01913 + 0.161415i) q^{22} +(-0.960654 + 0.623856i) q^{23} +(-1.48227 - 2.56736i) q^{24} +(-4.35569 + 2.45519i) q^{25} +(-1.35285 - 0.781066i) q^{26} +(4.74204 + 2.41619i) q^{27} +(3.68396 - 0.260667i) q^{28} +(-4.04060 - 5.56140i) q^{29} +(1.81875 + 0.708941i) q^{30} +(-9.74492 - 1.02423i) q^{31} +(-1.51519 + 5.65478i) q^{32} +(-1.39203 - 0.534349i) q^{33} +(-0.223331 + 0.687341i) q^{34} +(-4.34419 + 4.01597i) q^{35} +(-0.749906 - 2.30797i) q^{36} +(0.401079 - 7.65304i) q^{37} +(-3.43539 - 2.23097i) q^{38} +(1.67755 + 1.51047i) q^{39} +(-2.37270 - 5.40404i) q^{40} +(0.0622653 + 0.0202312i) q^{41} +(2.28747 + 0.319555i) q^{42} +(-3.34331 + 3.34331i) q^{43} +(0.753729 + 1.69290i) q^{44} +(3.24928 + 2.13402i) q^{45} +(0.813327 + 0.362116i) q^{46} +(-0.145063 - 0.117470i) q^{47} +(0.377469 - 0.740824i) q^{48} +(-3.90475 + 5.80972i) q^{49} +(3.44427 + 1.79995i) q^{50} +(0.522180 - 0.904443i) q^{51} +(-0.146828 - 2.80164i) q^{52} +(-10.4278 + 4.00284i) q^{53} +(-0.432393 - 4.11394i) q^{54} +(-2.63796 - 1.36130i) q^{55} +(-4.20727 - 5.57365i) q^{56} +(4.18557 + 4.18557i) q^{57} +(-1.91476 + 4.98813i) q^{58} +(-4.71962 + 1.00319i) q^{59} +(0.711181 + 3.43284i) q^{60} +(0.951026 - 4.47423i) q^{61} +(3.45756 + 6.78585i) q^{62} +(4.32354 + 1.56960i) q^{63} +(2.91943 - 0.948580i) q^{64} +(2.98987 + 3.35524i) q^{65} +(0.240954 + 1.13360i) q^{66} +(6.60139 - 5.34570i) q^{67} +(-1.25372 + 0.335933i) q^{68} +(-1.04082 - 0.756203i) q^{69} +(4.45681 + 1.13174i) q^{70} +(8.72491 - 6.33902i) q^{71} +(-2.88774 + 3.56607i) q^{72} +(1.64457 - 0.0861882i) q^{73} +(-5.15845 + 2.97823i) q^{74} +(-4.32762 - 3.57900i) q^{75} -7.35658i q^{76} +(-3.40874 - 0.846904i) q^{77} +(0.274469 - 1.73293i) q^{78} +(10.3787 - 1.09084i) q^{79} +(0.908689 - 1.38358i) q^{80} +(-0.0796638 + 0.757950i) q^{81} +(-0.0131703 - 0.0491522i) q^{82} +(0.978599 + 6.17863i) q^{83} +(1.75614 + 3.75795i) q^{84} +(1.23077 - 1.67576i) q^{85} +(3.59464 + 0.764065i) q^{86} +(4.20513 - 6.47533i) q^{87} +(1.90842 - 2.93870i) q^{88} +(15.3519 + 3.26314i) q^{89} +(0.0155886 - 3.02143i) q^{90} +(4.35836 + 3.04639i) q^{91} +(0.250126 + 1.57923i) q^{92} +(-2.84842 - 10.6304i) q^{93} +(-0.0151652 + 0.144287i) q^{94} +(7.36887 + 9.19641i) q^{95} +(-6.53929 + 0.687307i) q^{96} +(2.72136 - 17.1820i) q^{97} +(5.44005 + 0.0859631i) q^{98} +2.30795i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9} - 36 q^{10} - 6 q^{11} - 36 q^{12} - 20 q^{14} - 28 q^{15} - 30 q^{16} - 42 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} + 32 q^{22} - 40 q^{23} + 2 q^{25} - 48 q^{26} + 22 q^{28} - 58 q^{30} - 18 q^{31} + 8 q^{32} - 30 q^{33} - 2 q^{35} + 40 q^{36} - 10 q^{37} + 72 q^{38} + 30 q^{39} - 48 q^{40} + 6 q^{42} - 108 q^{43} - 10 q^{44} + 186 q^{45} - 6 q^{46} - 54 q^{47} - 248 q^{50} - 16 q^{51} + 216 q^{52} + 50 q^{53} - 30 q^{54} + 4 q^{56} - 216 q^{57} - 4 q^{58} + 90 q^{59} + 96 q^{60} - 18 q^{61} - 66 q^{63} - 100 q^{64} + 14 q^{65} - 90 q^{66} + 4 q^{67} + 342 q^{68} - 60 q^{70} - 24 q^{71} + 58 q^{72} - 6 q^{73} + 216 q^{75} - 80 q^{77} - 132 q^{78} - 10 q^{79} - 6 q^{80} - 10 q^{81} + 216 q^{82} + 20 q^{84} - 48 q^{85} - 6 q^{86} - 48 q^{87} - 122 q^{88} + 120 q^{89} - 12 q^{91} - 4 q^{92} + 106 q^{93} - 30 q^{94} - 98 q^{95} - 90 q^{96} + 222 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.423319 0.651855i −0.299332 0.460931i 0.656717 0.754137i \(-0.271944\pi\)
−0.956049 + 0.293206i \(0.905278\pi\)
\(3\) 0.402507 + 1.04857i 0.232387 + 0.605390i 0.999340 0.0363135i \(-0.0115615\pi\)
−0.766953 + 0.641703i \(0.778228\pi\)
\(4\) 0.567758 1.27521i 0.283879 0.637603i
\(5\) 0.567586 + 2.16283i 0.253832 + 0.967248i
\(6\) 0.513123 0.706254i 0.209482 0.288327i
\(7\) 1.24404 + 2.33503i 0.470201 + 0.882559i
\(8\) −2.60695 + 0.412900i −0.921695 + 0.145982i
\(9\) 1.29196 1.16328i 0.430652 0.387761i
\(10\) 1.16958 1.28555i 0.369855 0.406527i
\(11\) −0.888306 + 0.986564i −0.267834 + 0.297460i −0.862027 0.506863i \(-0.830805\pi\)
0.594192 + 0.804323i \(0.297472\pi\)
\(12\) 1.56566 + 0.0820529i 0.451968 + 0.0236866i
\(13\) 1.79077 0.912442i 0.496670 0.253066i −0.187666 0.982233i \(-0.560092\pi\)
0.684336 + 0.729167i \(0.260092\pi\)
\(14\) 0.995478 1.79939i 0.266053 0.480908i
\(15\) −2.03941 + 1.46571i −0.526575 + 0.378444i
\(16\) −0.495338 0.550128i −0.123834 0.137532i
\(17\) −0.585165 0.722619i −0.141923 0.175261i 0.701228 0.712937i \(-0.252636\pi\)
−0.843151 + 0.537676i \(0.819302\pi\)
\(18\) −1.30520 0.349728i −0.307639 0.0824316i
\(19\) 4.81455 2.14358i 1.10453 0.491770i 0.228268 0.973598i \(-0.426694\pi\)
0.876266 + 0.481828i \(0.160027\pi\)
\(20\) 3.08031 + 0.504177i 0.688778 + 0.112737i
\(21\) −1.94770 + 2.24432i −0.425023 + 0.489750i
\(22\) 1.01913 + 0.161415i 0.217280 + 0.0344138i
\(23\) −0.960654 + 0.623856i −0.200310 + 0.130083i −0.640897 0.767627i \(-0.721437\pi\)
0.440586 + 0.897710i \(0.354771\pi\)
\(24\) −1.48227 2.56736i −0.302566 0.524060i
\(25\) −4.35569 + 2.45519i −0.871139 + 0.491037i
\(26\) −1.35285 0.781066i −0.265315 0.153180i
\(27\) 4.74204 + 2.41619i 0.912607 + 0.464996i
\(28\) 3.68396 0.260667i 0.696202 0.0492614i
\(29\) −4.04060 5.56140i −0.750320 1.03273i −0.997958 0.0638742i \(-0.979654\pi\)
0.247638 0.968853i \(-0.420346\pi\)
\(30\) 1.81875 + 0.708941i 0.332057 + 0.129434i
\(31\) −9.74492 1.02423i −1.75024 0.183958i −0.825460 0.564461i \(-0.809084\pi\)
−0.924780 + 0.380503i \(0.875751\pi\)
\(32\) −1.51519 + 5.65478i −0.267851 + 0.999634i
\(33\) −1.39203 0.534349i −0.242321 0.0930182i
\(34\) −0.223331 + 0.687341i −0.0383009 + 0.117878i
\(35\) −4.34419 + 4.01597i −0.734302 + 0.678823i
\(36\) −0.749906 2.30797i −0.124984 0.384662i
\(37\) 0.401079 7.65304i 0.0659369 1.25815i −0.742612 0.669722i \(-0.766413\pi\)
0.808549 0.588430i \(-0.200254\pi\)
\(38\) −3.43539 2.23097i −0.557295 0.361911i
\(39\) 1.67755 + 1.51047i 0.268623 + 0.241869i
\(40\) −2.37270 5.40404i −0.375157 0.854453i
\(41\) 0.0622653 + 0.0202312i 0.00972421 + 0.00315959i 0.313875 0.949464i \(-0.398373\pi\)
−0.304151 + 0.952624i \(0.598373\pi\)
\(42\) 2.28747 + 0.319555i 0.352964 + 0.0493085i
\(43\) −3.34331 + 3.34331i −0.509850 + 0.509850i −0.914480 0.404630i \(-0.867400\pi\)
0.404630 + 0.914480i \(0.367400\pi\)
\(44\) 0.753729 + 1.69290i 0.113629 + 0.255215i
\(45\) 3.24928 + 2.13402i 0.484374 + 0.318121i
\(46\) 0.813327 + 0.362116i 0.119919 + 0.0533912i
\(47\) −0.145063 0.117470i −0.0211596 0.0171347i 0.618682 0.785641i \(-0.287667\pi\)
−0.639842 + 0.768507i \(0.721000\pi\)
\(48\) 0.377469 0.740824i 0.0544829 0.106929i
\(49\) −3.90475 + 5.80972i −0.557822 + 0.829961i
\(50\) 3.44427 + 1.79995i 0.487094 + 0.254551i
\(51\) 0.522180 0.904443i 0.0731199 0.126647i
\(52\) −0.146828 2.80164i −0.0203614 0.388518i
\(53\) −10.4278 + 4.00284i −1.43236 + 0.549832i −0.946069 0.323964i \(-0.894984\pi\)
−0.486292 + 0.873796i \(0.661651\pi\)
\(54\) −0.432393 4.11394i −0.0588412 0.559837i
\(55\) −2.63796 1.36130i −0.355703 0.183557i
\(56\) −4.20727 5.57365i −0.562220 0.744810i
\(57\) 4.18557 + 4.18557i 0.554392 + 0.554392i
\(58\) −1.91476 + 4.98813i −0.251421 + 0.654974i
\(59\) −4.71962 + 1.00319i −0.614442 + 0.130604i −0.504612 0.863347i \(-0.668364\pi\)
−0.109831 + 0.993950i \(0.535031\pi\)
\(60\) 0.711181 + 3.43284i 0.0918131 + 0.443178i
\(61\) 0.951026 4.47423i 0.121766 0.572866i −0.874386 0.485231i \(-0.838736\pi\)
0.996153 0.0876354i \(-0.0279310\pi\)
\(62\) 3.45756 + 6.78585i 0.439111 + 0.861804i
\(63\) 4.32354 + 1.56960i 0.544715 + 0.197750i
\(64\) 2.91943 0.948580i 0.364929 0.118573i
\(65\) 2.98987 + 3.35524i 0.370848 + 0.416167i
\(66\) 0.240954 + 1.13360i 0.0296594 + 0.139536i
\(67\) 6.60139 5.34570i 0.806488 0.653081i −0.134730 0.990882i \(-0.543017\pi\)
0.941217 + 0.337801i \(0.109683\pi\)
\(68\) −1.25372 + 0.335933i −0.152036 + 0.0407379i
\(69\) −1.04082 0.756203i −0.125300 0.0910361i
\(70\) 4.45681 + 1.13174i 0.532691 + 0.135269i
\(71\) 8.72491 6.33902i 1.03546 0.752303i 0.0660625 0.997815i \(-0.478956\pi\)
0.969393 + 0.245513i \(0.0789563\pi\)
\(72\) −2.88774 + 3.56607i −0.340324 + 0.420265i
\(73\) 1.64457 0.0861882i 0.192482 0.0100876i 0.0441488 0.999025i \(-0.485942\pi\)
0.148333 + 0.988937i \(0.452609\pi\)
\(74\) −5.15845 + 2.97823i −0.599658 + 0.346213i
\(75\) −4.32762 3.57900i −0.499710 0.413267i
\(76\) 7.35658i 0.843857i
\(77\) −3.40874 0.846904i −0.388462 0.0965136i
\(78\) 0.274469 1.73293i 0.0310775 0.196216i
\(79\) 10.3787 1.09084i 1.16769 0.122729i 0.499224 0.866473i \(-0.333618\pi\)
0.668465 + 0.743744i \(0.266952\pi\)
\(80\) 0.908689 1.38358i 0.101595 0.154689i
\(81\) −0.0796638 + 0.757950i −0.00885153 + 0.0842167i
\(82\) −0.0131703 0.0491522i −0.00145442 0.00542796i
\(83\) 0.978599 + 6.17863i 0.107415 + 0.678193i 0.981362 + 0.192170i \(0.0615526\pi\)
−0.873946 + 0.486022i \(0.838447\pi\)
\(84\) 1.75614 + 3.75795i 0.191611 + 0.410026i
\(85\) 1.23077 1.67576i 0.133496 0.181762i
\(86\) 3.59464 + 0.764065i 0.387620 + 0.0823912i
\(87\) 4.20513 6.47533i 0.450837 0.694228i
\(88\) 1.90842 2.93870i 0.203438 0.313267i
\(89\) 15.3519 + 3.26314i 1.62729 + 0.345892i 0.929046 0.369964i \(-0.120630\pi\)
0.698248 + 0.715856i \(0.253963\pi\)
\(90\) 0.0155886 3.02143i 0.00164319 0.318487i
\(91\) 4.35836 + 3.04639i 0.456880 + 0.319349i
\(92\) 0.250126 + 1.57923i 0.0260774 + 0.164646i
\(93\) −2.84842 10.6304i −0.295367 1.10233i
\(94\) −0.0151652 + 0.144287i −0.00156417 + 0.0148821i
\(95\) 7.36887 + 9.19641i 0.756030 + 0.943532i
\(96\) −6.53929 + 0.687307i −0.667413 + 0.0701479i
\(97\) 2.72136 17.1820i 0.276312 1.74457i −0.325149 0.945663i \(-0.605414\pi\)
0.601461 0.798902i \(-0.294586\pi\)
\(98\) 5.44005 + 0.0859631i 0.549528 + 0.00868358i
\(99\) 2.30795i 0.231958i
\(100\) 0.657888 + 6.94836i 0.0657888 + 0.694836i
\(101\) −3.07011 + 1.77253i −0.305487 + 0.176373i −0.644905 0.764262i \(-0.723103\pi\)
0.339418 + 0.940636i \(0.389770\pi\)
\(102\) −0.810614 + 0.0424825i −0.0802628 + 0.00420639i
\(103\) −4.00546 + 4.94633i −0.394669 + 0.487376i −0.935286 0.353893i \(-0.884858\pi\)
0.540617 + 0.841269i \(0.318191\pi\)
\(104\) −4.29169 + 3.11810i −0.420835 + 0.305755i
\(105\) −5.95957 2.93871i −0.581595 0.286789i
\(106\) 7.02354 + 5.10290i 0.682186 + 0.495637i
\(107\) −9.52075 + 2.55108i −0.920406 + 0.246622i −0.687759 0.725939i \(-0.741405\pi\)
−0.232647 + 0.972561i \(0.574739\pi\)
\(108\) 5.77347 4.67527i 0.555553 0.449878i
\(109\) −2.25184 10.5941i −0.215687 1.01473i −0.944118 0.329609i \(-0.893083\pi\)
0.728430 0.685120i \(-0.240250\pi\)
\(110\) 0.229332 + 2.29583i 0.0218660 + 0.218899i
\(111\) 8.18615 2.65984i 0.776995 0.252461i
\(112\) 0.668350 1.84101i 0.0631531 0.173959i
\(113\) −3.00115 5.89008i −0.282324 0.554092i 0.705678 0.708533i \(-0.250643\pi\)
−0.988002 + 0.154440i \(0.950643\pi\)
\(114\) 0.956551 4.50022i 0.0895892 0.421484i
\(115\) −1.89455 1.72364i −0.176668 0.160730i
\(116\) −9.38601 + 1.99506i −0.871470 + 0.185237i
\(117\) 1.25217 3.26200i 0.115763 0.301572i
\(118\) 2.65184 + 2.65184i 0.244122 + 0.244122i
\(119\) 0.959372 2.26534i 0.0879455 0.207664i
\(120\) 4.71146 4.66309i 0.430095 0.425680i
\(121\) 0.965593 + 9.18700i 0.0877811 + 0.835182i
\(122\) −3.31913 + 1.27410i −0.300500 + 0.115351i
\(123\) 0.00384843 + 0.0734325i 0.000347002 + 0.00662118i
\(124\) −6.83886 + 11.8453i −0.614148 + 1.06374i
\(125\) −7.78239 8.02711i −0.696078 0.717966i
\(126\) −0.807091 3.48276i −0.0719014 0.310269i
\(127\) −8.39463 + 16.4754i −0.744903 + 1.46195i 0.137023 + 0.990568i \(0.456246\pi\)
−0.881927 + 0.471387i \(0.843754\pi\)
\(128\) 7.24505 + 5.86692i 0.640378 + 0.518568i
\(129\) −4.85139 2.15998i −0.427141 0.190175i
\(130\) 0.921459 3.36930i 0.0808173 0.295507i
\(131\) 6.81590 + 15.3088i 0.595508 + 1.33753i 0.920102 + 0.391679i \(0.128106\pi\)
−0.324594 + 0.945853i \(0.605228\pi\)
\(132\) −1.47174 + 1.47174i −0.128098 + 0.128098i
\(133\) 10.9948 + 8.57545i 0.953370 + 0.743586i
\(134\) −6.27911 2.04021i −0.542433 0.176247i
\(135\) −2.53430 + 11.6276i −0.218118 + 1.00075i
\(136\) 1.82386 + 1.64221i 0.156395 + 0.140819i
\(137\) −2.76974 1.79869i −0.236635 0.153673i 0.420874 0.907119i \(-0.361723\pi\)
−0.657509 + 0.753446i \(0.728390\pi\)
\(138\) −0.0523334 + 0.998581i −0.00445492 + 0.0850048i
\(139\) 2.66592 + 8.20486i 0.226120 + 0.695927i 0.998176 + 0.0603721i \(0.0192287\pi\)
−0.772055 + 0.635555i \(0.780771\pi\)
\(140\) 2.65474 + 7.81983i 0.224367 + 0.660897i
\(141\) 0.0647859 0.199391i 0.00545596 0.0167917i
\(142\) −7.82554 3.00394i −0.656705 0.252085i
\(143\) −0.690568 + 2.57723i −0.0577482 + 0.215519i
\(144\) −1.27991 0.134524i −0.106659 0.0112103i
\(145\) 9.73500 11.8957i 0.808448 0.987885i
\(146\) −0.752360 1.03553i −0.0622658 0.0857015i
\(147\) −7.66357 1.75594i −0.632080 0.144827i
\(148\) −9.53148 4.85653i −0.783483 0.399205i
\(149\) 0.0342344 + 0.0197652i 0.00280459 + 0.00161923i 0.501402 0.865215i \(-0.332818\pi\)
−0.498597 + 0.866834i \(0.666151\pi\)
\(150\) −0.501023 + 4.33604i −0.0409083 + 0.354036i
\(151\) 4.89690 + 8.48169i 0.398504 + 0.690230i 0.993542 0.113468i \(-0.0361960\pi\)
−0.595037 + 0.803698i \(0.702863\pi\)
\(152\) −11.6662 + 7.57612i −0.946254 + 0.614505i
\(153\) −1.59662 0.252879i −0.129079 0.0204441i
\(154\) 0.890929 + 2.58052i 0.0717931 + 0.207944i
\(155\) −3.31584 21.6580i −0.266334 1.73961i
\(156\) 2.87861 1.28164i 0.230473 0.102613i
\(157\) −12.7152 3.40702i −1.01478 0.271910i −0.287156 0.957884i \(-0.592710\pi\)
−0.727626 + 0.685974i \(0.759376\pi\)
\(158\) −5.10455 6.30360i −0.406096 0.501487i
\(159\) −8.39448 9.32301i −0.665725 0.739363i
\(160\) −13.0904 0.0675377i −1.03488 0.00533933i
\(161\) −2.65181 1.46706i −0.208992 0.115621i
\(162\) 0.527797 0.268926i 0.0414676 0.0211288i
\(163\) −3.48720 0.182756i −0.273138 0.0143146i −0.0847249 0.996404i \(-0.527001\pi\)
−0.188413 + 0.982090i \(0.560334\pi\)
\(164\) 0.0611506 0.0679147i 0.00477506 0.00530324i
\(165\) 0.365613 3.31401i 0.0284629 0.257995i
\(166\) 3.61331 3.25344i 0.280447 0.252516i
\(167\) 18.9176 2.99626i 1.46389 0.231857i 0.626910 0.779092i \(-0.284319\pi\)
0.836979 + 0.547235i \(0.184319\pi\)
\(168\) 4.15088 6.65503i 0.320247 0.513447i
\(169\) −5.26691 + 7.24928i −0.405147 + 0.557637i
\(170\) −1.61336 0.0929018i −0.123739 0.00712524i
\(171\) 3.72661 8.37009i 0.284981 0.640077i
\(172\) 2.36522 + 6.16160i 0.180346 + 0.469818i
\(173\) −2.70053 4.15845i −0.205317 0.316161i 0.720979 0.692957i \(-0.243692\pi\)
−0.926296 + 0.376796i \(0.877026\pi\)
\(174\) −6.00109 −0.454941
\(175\) −11.1516 7.11635i −0.842980 0.537945i
\(176\) 0.982748 0.0740774
\(177\) −2.95159 4.54504i −0.221855 0.341626i
\(178\) −4.37165 11.3885i −0.327669 0.853607i
\(179\) 8.23757 18.5019i 0.615705 1.38290i −0.289194 0.957270i \(-0.593387\pi\)
0.904899 0.425626i \(-0.139946\pi\)
\(180\) 4.56612 2.93189i 0.340339 0.218530i
\(181\) −2.67679 + 3.68429i −0.198965 + 0.273851i −0.896828 0.442380i \(-0.854134\pi\)
0.697863 + 0.716231i \(0.254134\pi\)
\(182\) 0.140827 4.13061i 0.0104388 0.306181i
\(183\) 5.07431 0.803693i 0.375104 0.0594107i
\(184\) 2.24679 2.02301i 0.165635 0.149139i
\(185\) 16.7799 3.47629i 1.23368 0.255582i
\(186\) −5.72372 + 6.35683i −0.419683 + 0.466105i
\(187\) 1.23272 + 0.0646039i 0.0901451 + 0.00472430i
\(188\) −0.232159 + 0.118291i −0.0169319 + 0.00862725i
\(189\) 0.257382 + 14.0787i 0.0187218 + 1.02407i
\(190\) 2.87534 8.69645i 0.208599 0.630907i
\(191\) −10.3573 11.5029i −0.749427 0.832323i 0.240976 0.970531i \(-0.422532\pi\)
−0.990403 + 0.138208i \(0.955866\pi\)
\(192\) 2.16974 + 2.67940i 0.156587 + 0.193369i
\(193\) 7.57383 + 2.02940i 0.545176 + 0.146080i 0.520887 0.853625i \(-0.325601\pi\)
0.0242890 + 0.999705i \(0.492268\pi\)
\(194\) −12.3522 + 5.49953i −0.886833 + 0.394843i
\(195\) −2.31475 + 4.48558i −0.165763 + 0.321219i
\(196\) 5.19164 + 8.27788i 0.370831 + 0.591277i
\(197\) −16.1577 2.55912i −1.15119 0.182330i −0.448469 0.893799i \(-0.648030\pi\)
−0.702718 + 0.711469i \(0.748030\pi\)
\(198\) 1.50445 0.976999i 0.106916 0.0694323i
\(199\) 13.6561 + 23.6530i 0.968053 + 1.67672i 0.701179 + 0.712985i \(0.252657\pi\)
0.266874 + 0.963731i \(0.414009\pi\)
\(200\) 10.3413 8.19901i 0.731242 0.579758i
\(201\) 8.26242 + 4.77031i 0.582786 + 0.336472i
\(202\) 2.45507 + 1.25092i 0.172738 + 0.0880144i
\(203\) 7.95942 16.3535i 0.558641 1.14779i
\(204\) −0.856878 1.17939i −0.0599935 0.0825739i
\(205\) −0.00841585 + 0.146152i −0.000587789 + 0.0102077i
\(206\) 4.91987 + 0.517100i 0.342784 + 0.0360280i
\(207\) −0.515402 + 1.92351i −0.0358229 + 0.133693i
\(208\) −1.38899 0.533185i −0.0963095 0.0369697i
\(209\) −2.16202 + 6.65402i −0.149550 + 0.460268i
\(210\) 0.607190 + 5.12879i 0.0419001 + 0.353920i
\(211\) 4.53761 + 13.9653i 0.312382 + 0.961413i 0.976819 + 0.214068i \(0.0686715\pi\)
−0.664437 + 0.747345i \(0.731328\pi\)
\(212\) −0.815998 + 15.5702i −0.0560430 + 1.06936i
\(213\) 10.1587 + 6.59714i 0.696063 + 0.452029i
\(214\) 5.69325 + 5.12622i 0.389182 + 0.350421i
\(215\) −9.12864 5.33341i −0.622568 0.363736i
\(216\) −13.3599 4.34090i −0.909027 0.295361i
\(217\) −9.73141 24.0289i −0.660611 1.63119i
\(218\) −5.95255 + 5.95255i −0.403158 + 0.403158i
\(219\) 0.752324 + 1.68975i 0.0508373 + 0.114183i
\(220\) −3.23366 + 2.59106i −0.218013 + 0.174689i
\(221\) −1.70724 0.760113i −0.114842 0.0511307i
\(222\) −5.19919 4.21022i −0.348947 0.282571i
\(223\) −9.81559 + 19.2642i −0.657301 + 1.29003i 0.286046 + 0.958216i \(0.407659\pi\)
−0.943346 + 0.331809i \(0.892341\pi\)
\(224\) −15.0891 + 3.49672i −1.00818 + 0.233634i
\(225\) −2.77129 + 8.23890i −0.184753 + 0.549260i
\(226\) −2.56903 + 4.44970i −0.170890 + 0.295989i
\(227\) 0.492014 + 9.38818i 0.0326561 + 0.623116i 0.965113 + 0.261834i \(0.0843273\pi\)
−0.932457 + 0.361281i \(0.882339\pi\)
\(228\) 7.71385 2.96107i 0.510862 0.196102i
\(229\) −0.325389 3.09587i −0.0215023 0.204581i 0.978496 0.206265i \(-0.0661307\pi\)
−0.999999 + 0.00168368i \(0.999464\pi\)
\(230\) −0.321565 + 1.96462i −0.0212033 + 0.129543i
\(231\) −0.484007 3.91517i −0.0318454 0.257600i
\(232\) 12.8299 + 12.8299i 0.842326 + 0.842326i
\(233\) 10.4487 27.2198i 0.684516 1.78323i 0.0654920 0.997853i \(-0.479138\pi\)
0.619024 0.785372i \(-0.287528\pi\)
\(234\) −2.65642 + 0.564639i −0.173656 + 0.0369116i
\(235\) 0.171732 0.380422i 0.0112025 0.0248160i
\(236\) −1.40033 + 6.58805i −0.0911540 + 0.428846i
\(237\) 5.32129 + 10.4436i 0.345655 + 0.678386i
\(238\) −1.88279 + 0.333592i −0.122043 + 0.0216236i
\(239\) 3.05660 0.993150i 0.197715 0.0642416i −0.208485 0.978025i \(-0.566853\pi\)
0.406201 + 0.913784i \(0.366853\pi\)
\(240\) 1.81653 + 0.395921i 0.117256 + 0.0255566i
\(241\) 5.57588 + 26.2325i 0.359174 + 1.68978i 0.672469 + 0.740125i \(0.265234\pi\)
−0.313295 + 0.949656i \(0.601433\pi\)
\(242\) 5.57983 4.51846i 0.358685 0.290458i
\(243\) 14.5955 3.91085i 0.936301 0.250881i
\(244\) −5.16561 3.75303i −0.330694 0.240263i
\(245\) −14.7817 5.14781i −0.944371 0.328882i
\(246\) 0.0462382 0.0335940i 0.00294804 0.00214188i
\(247\) 6.66586 8.23165i 0.424138 0.523767i
\(248\) 25.8274 1.35356i 1.64004 0.0859510i
\(249\) −6.08480 + 3.51306i −0.385609 + 0.222631i
\(250\) −1.93807 + 8.47102i −0.122574 + 0.535754i
\(251\) 13.7541i 0.868150i −0.900877 0.434075i \(-0.857075\pi\)
0.900877 0.434075i \(-0.142925\pi\)
\(252\) 4.45628 4.62225i 0.280719 0.291175i
\(253\) 0.237881 1.50192i 0.0149555 0.0944250i
\(254\) 14.2932 1.50227i 0.896833 0.0942610i
\(255\) 2.25254 + 0.616040i 0.141060 + 0.0385779i
\(256\) 1.39915 13.3120i 0.0874468 0.832000i
\(257\) 2.39177 + 8.92621i 0.149195 + 0.556802i 0.999533 + 0.0305651i \(0.00973070\pi\)
−0.850338 + 0.526237i \(0.823603\pi\)
\(258\) 0.645695 + 4.07676i 0.0401992 + 0.253808i
\(259\) 18.3691 8.58412i 1.14140 0.533391i
\(260\) 5.97615 1.90774i 0.370625 0.118313i
\(261\) −11.6898 2.48474i −0.723578 0.153801i
\(262\) 7.09379 10.9235i 0.438256 0.674854i
\(263\) −4.57051 + 7.03797i −0.281830 + 0.433980i −0.951028 0.309104i \(-0.899971\pi\)
0.669198 + 0.743084i \(0.266638\pi\)
\(264\) 3.84957 + 0.818252i 0.236925 + 0.0503599i
\(265\) −14.5761 20.2815i −0.895404 1.24588i
\(266\) 0.935639 10.7972i 0.0573677 0.662017i
\(267\) 2.75761 + 17.4109i 0.168763 + 1.06553i
\(268\) −3.06887 11.4532i −0.187461 0.699615i
\(269\) 0.460334 4.37978i 0.0280670 0.267040i −0.971485 0.237102i \(-0.923802\pi\)
0.999552 0.0299378i \(-0.00953093\pi\)
\(270\) 8.65235 3.27021i 0.526565 0.199019i
\(271\) −3.41350 + 0.358773i −0.207355 + 0.0217939i −0.207636 0.978206i \(-0.566577\pi\)
0.000281350 1.00000i \(0.499910\pi\)
\(272\) −0.107679 + 0.679856i −0.00652898 + 0.0412223i
\(273\) −1.44007 + 5.79622i −0.0871572 + 0.350803i
\(274\) 2.56689i 0.155072i
\(275\) 1.44699 6.47813i 0.0872568 0.390646i
\(276\) −1.55525 + 0.897924i −0.0936150 + 0.0540487i
\(277\) −7.68850 + 0.402937i −0.461957 + 0.0242102i −0.281895 0.959445i \(-0.590963\pi\)
−0.180062 + 0.983655i \(0.557630\pi\)
\(278\) 4.21984 5.21107i 0.253089 0.312539i
\(279\) −13.7815 + 10.0128i −0.825076 + 0.599453i
\(280\) 9.66688 12.2631i 0.577707 0.732863i
\(281\) 19.6291 + 14.2614i 1.17097 + 0.850761i 0.991125 0.132934i \(-0.0424398\pi\)
0.179847 + 0.983695i \(0.442440\pi\)
\(282\) −0.157399 + 0.0421749i −0.00937296 + 0.00251148i
\(283\) −5.63377 + 4.56213i −0.334893 + 0.271191i −0.781985 0.623297i \(-0.785793\pi\)
0.447093 + 0.894488i \(0.352459\pi\)
\(284\) −3.12991 14.7251i −0.185726 0.873772i
\(285\) −6.67702 + 11.4284i −0.395512 + 0.676958i
\(286\) 1.97231 0.640843i 0.116625 0.0378939i
\(287\) 0.0302197 + 0.170560i 0.00178381 + 0.0100678i
\(288\) 4.62055 + 9.06833i 0.272268 + 0.534357i
\(289\) 3.35474 15.7828i 0.197338 0.928400i
\(290\) −11.8753 1.31012i −0.697341 0.0769330i
\(291\) 19.1118 4.06234i 1.12035 0.238138i
\(292\) 0.823809 2.14610i 0.0482098 0.125591i
\(293\) 22.0206 + 22.0206i 1.28645 + 1.28645i 0.936925 + 0.349529i \(0.113658\pi\)
0.349529 + 0.936925i \(0.386342\pi\)
\(294\) 2.09952 + 5.73885i 0.122446 + 0.334697i
\(295\) −4.84852 9.63836i −0.282291 0.561167i
\(296\) 2.11435 + 20.1167i 0.122894 + 1.16926i
\(297\) −6.59611 + 2.53201i −0.382745 + 0.146922i
\(298\) −0.00160802 0.0306828i −9.31501e−5 0.00177741i
\(299\) −1.15108 + 1.99372i −0.0665684 + 0.115300i
\(300\) −7.02100 + 3.48660i −0.405358 + 0.201299i
\(301\) −11.9659 3.64755i −0.689705 0.210241i
\(302\) 3.45587 6.78253i 0.198863 0.390291i
\(303\) −3.09435 2.50576i −0.177766 0.143952i
\(304\) −3.56407 1.58683i −0.204414 0.0910108i
\(305\) 10.2168 0.482597i 0.585012 0.0276334i
\(306\) 0.511039 + 1.14781i 0.0292141 + 0.0656160i
\(307\) 2.33566 2.33566i 0.133303 0.133303i −0.637307 0.770610i \(-0.719952\pi\)
0.770610 + 0.637307i \(0.219952\pi\)
\(308\) −3.01532 + 3.86601i −0.171814 + 0.220286i
\(309\) −6.79877 2.20905i −0.386768 0.125669i
\(310\) −12.7142 + 11.3297i −0.722118 + 0.643483i
\(311\) −4.59090 4.13366i −0.260326 0.234399i 0.528624 0.848856i \(-0.322708\pi\)
−0.788950 + 0.614458i \(0.789375\pi\)
\(312\) −4.99696 3.24507i −0.282897 0.183716i
\(313\) −0.586184 + 11.1851i −0.0331331 + 0.632216i 0.930712 + 0.365753i \(0.119189\pi\)
−0.963845 + 0.266463i \(0.914145\pi\)
\(314\) 3.16170 + 9.73071i 0.178425 + 0.549136i
\(315\) −0.940792 + 10.2420i −0.0530076 + 0.577070i
\(316\) 4.50152 13.8542i 0.253230 0.779362i
\(317\) −8.39567 3.22280i −0.471548 0.181010i 0.110977 0.993823i \(-0.464602\pi\)
−0.582525 + 0.812813i \(0.697935\pi\)
\(318\) −2.52370 + 9.41859i −0.141522 + 0.528168i
\(319\) 9.07597 + 0.953923i 0.508157 + 0.0534094i
\(320\) 3.70865 + 5.77584i 0.207320 + 0.322879i
\(321\) −6.50714 8.95630i −0.363193 0.499892i
\(322\) 0.166253 + 2.34963i 0.00926494 + 0.130940i
\(323\) −4.36630 2.22474i −0.242947 0.123788i
\(324\) 0.921313 + 0.531920i 0.0511840 + 0.0295511i
\(325\) −5.55982 + 8.37098i −0.308403 + 0.464339i
\(326\) 1.35707 + 2.35051i 0.0751610 + 0.130183i
\(327\) 10.2022 6.62539i 0.564183 0.366385i
\(328\) −0.170676 0.0270324i −0.00942401 0.00149262i
\(329\) 0.0938322 0.484864i 0.00517314 0.0267314i
\(330\) −2.31502 + 1.16456i −0.127438 + 0.0641068i
\(331\) −6.60155 + 2.93920i −0.362854 + 0.161553i −0.580062 0.814572i \(-0.696972\pi\)
0.217208 + 0.976125i \(0.430305\pi\)
\(332\) 8.43463 + 2.26005i 0.462910 + 0.124036i
\(333\) −8.38447 10.3540i −0.459466 0.567394i
\(334\) −9.96132 11.0632i −0.545059 0.605349i
\(335\) 15.3087 + 11.2436i 0.836404 + 0.614301i
\(336\) 2.19943 0.0402094i 0.119989 0.00219360i
\(337\) 9.03950 4.60585i 0.492413 0.250897i −0.190108 0.981763i \(-0.560884\pi\)
0.682521 + 0.730866i \(0.260884\pi\)
\(338\) 6.95506 + 0.364499i 0.378305 + 0.0198261i
\(339\) 4.96815 5.51769i 0.269833 0.299680i
\(340\) −1.43816 2.52091i −0.0779952 0.136716i
\(341\) 9.66695 8.70416i 0.523494 0.471356i
\(342\) −7.03363 + 1.11402i −0.380335 + 0.0602392i
\(343\) −18.4235 1.89023i −0.994778 0.102063i
\(344\) 7.33539 10.0963i 0.395498 0.544356i
\(345\) 1.04478 2.68034i 0.0562492 0.144305i
\(346\) −1.56752 + 3.52070i −0.0842703 + 0.189274i
\(347\) −2.87267 7.48356i −0.154213 0.401738i 0.834608 0.550844i \(-0.185694\pi\)
−0.988821 + 0.149105i \(0.952361\pi\)
\(348\) −5.86988 9.03883i −0.314659 0.484532i
\(349\) −8.82065 −0.472158 −0.236079 0.971734i \(-0.575862\pi\)
−0.236079 + 0.971734i \(0.575862\pi\)
\(350\) 0.0818548 + 10.2817i 0.00437532 + 0.549580i
\(351\) 10.6965 0.570939
\(352\) −4.23285 6.51801i −0.225612 0.347411i
\(353\) 6.03343 + 15.7176i 0.321127 + 0.836565i 0.995197 + 0.0978967i \(0.0312115\pi\)
−0.674070 + 0.738668i \(0.735455\pi\)
\(354\) −1.71324 + 3.84801i −0.0910579 + 0.204519i
\(355\) 18.6624 + 15.2726i 0.990495 + 0.810584i
\(356\) 12.8773 17.7241i 0.682497 0.939376i
\(357\) 2.76151 + 0.0941494i 0.146155 + 0.00498292i
\(358\) −15.5477 + 2.46251i −0.821720 + 0.130148i
\(359\) −10.2724 + 9.24932i −0.542157 + 0.488161i −0.894104 0.447859i \(-0.852187\pi\)
0.351947 + 0.936020i \(0.385520\pi\)
\(360\) −9.35185 4.22166i −0.492886 0.222501i
\(361\) 5.87151 6.52098i 0.309027 0.343209i
\(362\) 3.53476 + 0.185249i 0.185783 + 0.00973647i
\(363\) −9.24451 + 4.71031i −0.485211 + 0.247227i
\(364\) 6.35927 3.82819i 0.333316 0.200652i
\(365\) 1.11984 + 3.50801i 0.0586153 + 0.183618i
\(366\) −2.67195 2.96750i −0.139665 0.155114i
\(367\) 0.653967 + 0.807582i 0.0341368 + 0.0421554i 0.793928 0.608011i \(-0.208032\pi\)
−0.759792 + 0.650167i \(0.774699\pi\)
\(368\) 0.819049 + 0.219464i 0.0426959 + 0.0114403i
\(369\) 0.103979 0.0462943i 0.00541292 0.00240999i
\(370\) −9.36929 9.46647i −0.487086 0.492138i
\(371\) −22.3192 19.3695i −1.15876 1.00561i
\(372\) −15.1732 2.40320i −0.786695 0.124600i
\(373\) −18.4553 + 11.9850i −0.955577 + 0.620559i −0.925403 0.378985i \(-0.876273\pi\)
−0.0301748 + 0.999545i \(0.509606\pi\)
\(374\) −0.479720 0.830899i −0.0248057 0.0429648i
\(375\) 5.28448 11.3913i 0.272890 0.588245i
\(376\) 0.426675 + 0.246341i 0.0220041 + 0.0127041i
\(377\) −12.3102 6.27237i −0.634009 0.323044i
\(378\) 9.06828 6.12754i 0.466422 0.315167i
\(379\) −17.8299 24.5408i −0.915862 1.26058i −0.965125 0.261790i \(-0.915687\pi\)
0.0492625 0.998786i \(-0.484313\pi\)
\(380\) 15.9110 4.17549i 0.816220 0.214198i
\(381\) −20.6544 2.17087i −1.05816 0.111217i
\(382\) −3.11380 + 11.6209i −0.159316 + 0.594575i
\(383\) −19.9640 7.66347i −1.02011 0.391585i −0.209902 0.977722i \(-0.567315\pi\)
−0.810212 + 0.586137i \(0.800648\pi\)
\(384\) −3.23567 + 9.95838i −0.165120 + 0.508186i
\(385\) −0.103043 7.85323i −0.00525156 0.400238i
\(386\) −1.88327 5.79612i −0.0958562 0.295015i
\(387\) −0.430196 + 8.20863i −0.0218681 + 0.417268i
\(388\) −20.3655 13.2255i −1.03390 0.671423i
\(389\) 15.6392 + 14.0816i 0.792938 + 0.713964i 0.962419 0.271569i \(-0.0875426\pi\)
−0.169481 + 0.985533i \(0.554209\pi\)
\(390\) 3.90383 0.389956i 0.197678 0.0197462i
\(391\) 1.01295 + 0.329128i 0.0512271 + 0.0166447i
\(392\) 7.78066 16.7579i 0.392982 0.846403i
\(393\) −13.3088 + 13.3088i −0.671340 + 0.671340i
\(394\) 5.17168 + 11.6158i 0.260545 + 0.585195i
\(395\) 8.25008 + 21.8281i 0.415107 + 1.09829i
\(396\) 2.94311 + 1.31036i 0.147897 + 0.0658479i
\(397\) 3.98282 + 3.22523i 0.199892 + 0.161869i 0.724040 0.689758i \(-0.242283\pi\)
−0.524148 + 0.851627i \(0.675616\pi\)
\(398\) 9.63744 18.9145i 0.483081 0.948100i
\(399\) −4.56645 + 14.9804i −0.228608 + 0.749960i
\(400\) 3.50821 + 1.18004i 0.175410 + 0.0590022i
\(401\) −17.1661 + 29.7326i −0.857235 + 1.48477i 0.0173216 + 0.999850i \(0.494486\pi\)
−0.874556 + 0.484924i \(0.838847\pi\)
\(402\) −0.388093 7.40526i −0.0193563 0.369341i
\(403\) −18.3854 + 7.05751i −0.915844 + 0.351560i
\(404\) 0.517259 + 4.92139i 0.0257346 + 0.244848i
\(405\) −1.68454 + 0.257902i −0.0837053 + 0.0128153i
\(406\) −14.0295 + 1.73437i −0.696272 + 0.0860755i
\(407\) 7.19393 + 7.19393i 0.356590 + 0.356590i
\(408\) −0.987852 + 2.57344i −0.0489060 + 0.127404i
\(409\) 25.6660 5.45549i 1.26910 0.269756i 0.476327 0.879268i \(-0.341968\pi\)
0.792777 + 0.609512i \(0.208634\pi\)
\(410\) 0.0988328 0.0563833i 0.00488100 0.00278457i
\(411\) 0.771207 3.62824i 0.0380408 0.178968i
\(412\) 4.03345 + 7.91610i 0.198714 + 0.389998i
\(413\) −8.21385 9.77247i −0.404177 0.480872i
\(414\) 1.47203 0.478291i 0.0723462 0.0235067i
\(415\) −12.8079 + 5.62345i −0.628715 + 0.276044i
\(416\) 2.44630 + 11.5089i 0.119940 + 0.564272i
\(417\) −7.53028 + 6.09790i −0.368760 + 0.298616i
\(418\) 5.25268 1.40745i 0.256917 0.0688407i
\(419\) −20.8379 15.1396i −1.01800 0.739617i −0.0521248 0.998641i \(-0.516599\pi\)
−0.965871 + 0.259023i \(0.916599\pi\)
\(420\) −7.13106 + 5.93120i −0.347960 + 0.289413i
\(421\) −9.53283 + 6.92601i −0.464602 + 0.337553i −0.795334 0.606172i \(-0.792704\pi\)
0.330732 + 0.943725i \(0.392704\pi\)
\(422\) 7.18251 8.86966i 0.349639 0.431768i
\(423\) −0.324066 + 0.0169836i −0.0157566 + 0.000825770i
\(424\) 25.5318 14.7408i 1.23994 0.715877i
\(425\) 4.32296 + 1.71082i 0.209695 + 0.0829867i
\(426\) 9.41470i 0.456144i
\(427\) 11.6306 3.34542i 0.562843 0.161896i
\(428\) −2.15233 + 13.5893i −0.104037 + 0.656864i
\(429\) −2.98036 + 0.313248i −0.143893 + 0.0151238i
\(430\) 0.387724 + 8.20828i 0.0186977 + 0.395839i
\(431\) 1.62917 15.5005i 0.0784745 0.746635i −0.882559 0.470202i \(-0.844181\pi\)
0.961033 0.276433i \(-0.0891523\pi\)
\(432\) −1.01970 3.80556i −0.0490602 0.183095i
\(433\) −0.121416 0.766591i −0.00583489 0.0368400i 0.984599 0.174827i \(-0.0559367\pi\)
−0.990434 + 0.137987i \(0.955937\pi\)
\(434\) −11.5439 + 16.5154i −0.554123 + 0.792763i
\(435\) 16.3918 + 5.41969i 0.785928 + 0.259854i
\(436\) −14.7881 3.14331i −0.708223 0.150537i
\(437\) −3.28784 + 5.06282i −0.157279 + 0.242188i
\(438\) 0.782996 1.20571i 0.0374130 0.0576110i
\(439\) 10.3322 + 2.19617i 0.493128 + 0.104818i 0.447762 0.894153i \(-0.352221\pi\)
0.0453661 + 0.998970i \(0.485555\pi\)
\(440\) 7.43911 + 2.45962i 0.354646 + 0.117258i
\(441\) 1.71358 + 12.0482i 0.0815991 + 0.573726i
\(442\) 0.227225 + 1.43464i 0.0108080 + 0.0682391i
\(443\) −7.03490 26.2546i −0.334238 1.24739i −0.904693 0.426064i \(-0.859900\pi\)
0.570455 0.821329i \(-0.306767\pi\)
\(444\) 1.25591 11.9492i 0.0596028 0.567083i
\(445\) 1.65588 + 35.0556i 0.0784960 + 1.66180i
\(446\) 16.7126 1.75656i 0.791364 0.0831757i
\(447\) −0.00694557 + 0.0438526i −0.000328514 + 0.00207416i
\(448\) 5.84684 + 5.63690i 0.276237 + 0.266318i
\(449\) 39.0168i 1.84131i −0.390372 0.920657i \(-0.627654\pi\)
0.390372 0.920657i \(-0.372346\pi\)
\(450\) 6.54370 1.68121i 0.308473 0.0792529i
\(451\) −0.0752701 + 0.0434572i −0.00354433 + 0.00204632i
\(452\) −9.21499 + 0.482937i −0.433437 + 0.0227154i
\(453\) −6.92257 + 8.54866i −0.325251 + 0.401651i
\(454\) 5.91145 4.29492i 0.277438 0.201571i
\(455\) −4.11509 + 11.1555i −0.192919 + 0.522977i
\(456\) −12.6398 9.18334i −0.591912 0.430049i
\(457\) 22.2310 5.95677i 1.03992 0.278646i 0.301840 0.953359i \(-0.402399\pi\)
0.738080 + 0.674713i \(0.235732\pi\)
\(458\) −1.88031 + 1.52265i −0.0878613 + 0.0711487i
\(459\) −1.02889 4.84056i −0.0480246 0.225938i
\(460\) −3.27364 + 1.43733i −0.152634 + 0.0670158i
\(461\) 23.0880 7.50175i 1.07532 0.349391i 0.282760 0.959191i \(-0.408750\pi\)
0.792556 + 0.609799i \(0.208750\pi\)
\(462\) −2.34724 + 1.97287i −0.109203 + 0.0917863i
\(463\) 2.79874 + 5.49284i 0.130069 + 0.255274i 0.946851 0.321671i \(-0.104245\pi\)
−0.816783 + 0.576945i \(0.804245\pi\)
\(464\) −1.05803 + 4.97762i −0.0491176 + 0.231080i
\(465\) 21.3752 12.1944i 0.991249 0.565499i
\(466\) −22.1665 + 4.71162i −1.02684 + 0.218262i
\(467\) −10.5121 + 27.3851i −0.486444 + 1.26723i 0.442420 + 0.896808i \(0.354120\pi\)
−0.928864 + 0.370422i \(0.879213\pi\)
\(468\) −3.44880 3.44880i −0.159421 0.159421i
\(469\) 20.6947 + 8.76422i 0.955594 + 0.404694i
\(470\) −0.320677 + 0.0490956i −0.0147917 + 0.00226461i
\(471\) −1.54546 14.7041i −0.0712109 0.677527i
\(472\) 11.8896 4.56399i 0.547263 0.210075i
\(473\) −0.328506 6.26828i −0.0151047 0.288216i
\(474\) 4.55512 7.88970i 0.209224 0.362386i
\(475\) −15.7078 + 21.1574i −0.720725 + 0.970768i
\(476\) −2.34409 2.50956i −0.107441 0.115026i
\(477\) −8.81577 + 17.3019i −0.403646 + 0.792200i
\(478\) −1.94131 1.57204i −0.0887934 0.0719035i
\(479\) 8.30871 + 3.69927i 0.379635 + 0.169024i 0.587677 0.809096i \(-0.300043\pi\)
−0.208043 + 0.978120i \(0.566709\pi\)
\(480\) −5.19814 13.7533i −0.237261 0.627748i
\(481\) −6.26471 14.0708i −0.285646 0.641572i
\(482\) 14.7394 14.7394i 0.671360 0.671360i
\(483\) 0.470937 3.37110i 0.0214284 0.153390i
\(484\) 12.2635 + 3.98466i 0.557433 + 0.181121i
\(485\) 38.7063 3.86640i 1.75756 0.175564i
\(486\) −8.72786 7.85860i −0.395904 0.356473i
\(487\) −0.445473 0.289294i −0.0201863 0.0131091i 0.534506 0.845164i \(-0.320498\pi\)
−0.554693 + 0.832055i \(0.687164\pi\)
\(488\) −0.631868 + 12.0568i −0.0286033 + 0.545784i
\(489\) −1.21199 3.73011i −0.0548080 0.168682i
\(490\) 2.90177 + 11.8147i 0.131089 + 0.533735i
\(491\) 1.98288 6.10267i 0.0894861 0.275410i −0.896291 0.443466i \(-0.853749\pi\)
0.985777 + 0.168056i \(0.0537489\pi\)
\(492\) 0.0958265 + 0.0367843i 0.00432019 + 0.00165837i
\(493\) −1.65436 + 6.17415i −0.0745086 + 0.278070i
\(494\) −8.18762 0.860554i −0.368379 0.0387181i
\(495\) −4.99171 + 1.30996i −0.224361 + 0.0588783i
\(496\) 4.26357 + 5.86830i 0.191440 + 0.263494i
\(497\) 25.6559 + 12.4870i 1.15082 + 0.560118i
\(498\) 4.86582 + 2.47926i 0.218043 + 0.111098i
\(499\) −5.43364 3.13711i −0.243243 0.140437i 0.373423 0.927661i \(-0.378184\pi\)
−0.616666 + 0.787225i \(0.711517\pi\)
\(500\) −14.6547 + 5.36669i −0.655379 + 0.240006i
\(501\) 10.7562 + 18.6303i 0.480553 + 0.832343i
\(502\) −8.96567 + 5.82237i −0.400157 + 0.259865i
\(503\) 4.92568 + 0.780151i 0.219625 + 0.0347852i 0.265277 0.964172i \(-0.414537\pi\)
−0.0456521 + 0.998957i \(0.514537\pi\)
\(504\) −11.9193 2.30666i −0.530929 0.102747i
\(505\) −5.57623 5.63407i −0.248139 0.250713i
\(506\) −1.07973 + 0.480729i −0.0480001 + 0.0213710i
\(507\) −9.72131 2.60482i −0.431739 0.115684i
\(508\) 16.2434 + 20.0589i 0.720684 + 0.889971i
\(509\) −15.1400 16.8147i −0.671070 0.745298i 0.307425 0.951572i \(-0.400533\pi\)
−0.978494 + 0.206274i \(0.933866\pi\)
\(510\) −0.551976 1.72911i −0.0244419 0.0765663i
\(511\) 2.24715 + 3.73290i 0.0994082 + 0.165134i
\(512\) 7.34327 3.74158i 0.324530 0.165356i
\(513\) 28.0101 + 1.46795i 1.23668 + 0.0648115i
\(514\) 4.80611 5.33772i 0.211988 0.235437i
\(515\) −12.9715 5.85567i −0.571593 0.258032i
\(516\) −5.50883 + 4.96017i −0.242513 + 0.218359i
\(517\) 0.244752 0.0387649i 0.0107642 0.00170488i
\(518\) −13.3716 8.34013i −0.587513 0.366444i
\(519\) 3.27343 4.50548i 0.143687 0.197769i
\(520\) −9.17982 7.51242i −0.402562 0.329442i
\(521\) 12.5522 28.1927i 0.549921 1.23514i −0.398219 0.917290i \(-0.630372\pi\)
0.948140 0.317853i \(-0.102962\pi\)
\(522\) 3.32882 + 8.67186i 0.145698 + 0.379557i
\(523\) −16.6846 25.6920i −0.729567 1.12343i −0.987553 0.157286i \(-0.949726\pi\)
0.257987 0.966149i \(-0.416941\pi\)
\(524\) 23.3916 1.02187
\(525\) 2.97337 14.5575i 0.129769 0.635343i
\(526\) 6.52252 0.284395
\(527\) 4.96226 + 7.64121i 0.216159 + 0.332856i
\(528\) 0.395563 + 1.03048i 0.0172147 + 0.0448457i
\(529\) −8.82128 + 19.8129i −0.383534 + 0.861432i
\(530\) −7.05026 + 18.0871i −0.306244 + 0.785652i
\(531\) −4.93056 + 6.78633i −0.213968 + 0.294502i
\(532\) 17.1778 9.15184i 0.744754 0.396783i
\(533\) 0.129963 0.0205840i 0.00562930 0.000891594i
\(534\) 10.1820 9.16792i 0.440619 0.396735i
\(535\) −10.9214 19.1438i −0.472173 0.827660i
\(536\) −15.0022 + 16.6617i −0.647998 + 0.719675i
\(537\) 22.7161 + 1.19050i 0.980273 + 0.0513739i
\(538\) −3.04985 + 1.55398i −0.131488 + 0.0669966i
\(539\) −2.26305 9.01310i −0.0974764 0.388222i
\(540\) 13.3888 + 9.83344i 0.576161 + 0.423164i
\(541\) 26.4951 + 29.4258i 1.13911 + 1.26511i 0.959603 + 0.281356i \(0.0907841\pi\)
0.179509 + 0.983756i \(0.442549\pi\)
\(542\) 1.67887 + 2.07323i 0.0721135 + 0.0890528i
\(543\) −4.94065 1.32384i −0.212023 0.0568115i
\(544\) 4.97289 2.21407i 0.213211 0.0949276i
\(545\) 21.6351 10.8834i 0.926747 0.466194i
\(546\) 4.38790 1.51493i 0.187785 0.0648331i
\(547\) 37.0235 + 5.86395i 1.58301 + 0.250724i 0.885079 0.465440i \(-0.154104\pi\)
0.697932 + 0.716164i \(0.254104\pi\)
\(548\) −3.86625 + 2.51077i −0.165158 + 0.107255i
\(549\) −3.97611 6.88682i −0.169696 0.293922i
\(550\) −4.83534 + 1.79909i −0.206179 + 0.0767134i
\(551\) −31.3750 18.1143i −1.33662 0.771697i
\(552\) 3.02561 + 1.54162i 0.128778 + 0.0656159i
\(553\) 15.4586 + 22.8774i 0.657365 + 0.972848i
\(554\) 3.51735 + 4.84122i 0.149438 + 0.205684i
\(555\) 10.3991 + 16.1956i 0.441419 + 0.687464i
\(556\) 11.9765 + 1.25878i 0.507916 + 0.0533841i
\(557\) −1.55832 + 5.81572i −0.0660280 + 0.246420i −0.991050 0.133495i \(-0.957380\pi\)
0.925021 + 0.379915i \(0.124047\pi\)
\(558\) 12.3609 + 4.74490i 0.523278 + 0.200868i
\(559\) −2.93652 + 9.03767i −0.124201 + 0.382253i
\(560\) 4.36114 + 0.400599i 0.184292 + 0.0169284i
\(561\) 0.428435 + 1.31859i 0.0180885 + 0.0556708i
\(562\) 0.986964 18.8324i 0.0416326 0.794397i
\(563\) −25.3462 16.4600i −1.06822 0.693708i −0.114199 0.993458i \(-0.536430\pi\)
−0.954018 + 0.299750i \(0.903097\pi\)
\(564\) −0.217481 0.195821i −0.00915761 0.00824555i
\(565\) 11.0359 9.83410i 0.464282 0.413724i
\(566\) 5.35873 + 1.74116i 0.225244 + 0.0731863i
\(567\) −1.86894 + 0.756899i −0.0784882 + 0.0317868i
\(568\) −20.1280 + 20.1280i −0.844552 + 0.844552i
\(569\) 2.02703 + 4.55278i 0.0849775 + 0.190863i 0.951036 0.309080i \(-0.100021\pi\)
−0.866059 + 0.499943i \(0.833354\pi\)
\(570\) 10.2761 0.485400i 0.430420 0.0203312i
\(571\) −2.23119 0.993391i −0.0933725 0.0415721i 0.359519 0.933138i \(-0.382941\pi\)
−0.452891 + 0.891566i \(0.649607\pi\)
\(572\) 2.89443 + 2.34386i 0.121022 + 0.0980018i
\(573\) 7.89270 15.4903i 0.329722 0.647117i
\(574\) 0.0983877 0.0919002i 0.00410662 0.00383584i
\(575\) 2.65263 5.07591i 0.110622 0.211680i
\(576\) 2.66831 4.62165i 0.111180 0.192569i
\(577\) −1.27197 24.2706i −0.0529527 1.01040i −0.887891 0.460054i \(-0.847830\pi\)
0.834938 0.550343i \(-0.185503\pi\)
\(578\) −11.7082 + 4.49437i −0.486998 + 0.186941i
\(579\) 0.920556 + 8.75851i 0.0382570 + 0.363991i
\(580\) −9.64235 19.1680i −0.400377 0.795908i
\(581\) −13.2099 + 9.97149i −0.548038 + 0.413687i
\(582\) −10.7384 10.7384i −0.445123 0.445123i
\(583\) 5.31398 13.8434i 0.220083 0.573335i
\(584\) −4.25172 + 0.903731i −0.175937 + 0.0373966i
\(585\) 7.76588 + 0.856758i 0.321080 + 0.0354226i
\(586\) 5.03247 23.6759i 0.207890 0.978044i
\(587\) 4.09368 + 8.03430i 0.168964 + 0.331611i 0.959926 0.280255i \(-0.0904191\pi\)
−0.790961 + 0.611866i \(0.790419\pi\)
\(588\) −6.59023 + 8.77567i −0.271777 + 0.361903i
\(589\) −49.1130 + 15.9578i −2.02366 + 0.657528i
\(590\) −4.23034 + 7.24063i −0.174160 + 0.298092i
\(591\) −3.82016 17.9724i −0.157140 0.739287i
\(592\) −4.40882 + 3.57019i −0.181202 + 0.146734i
\(593\) 24.7752 6.63849i 1.01740 0.272610i 0.288679 0.957426i \(-0.406784\pi\)
0.728716 + 0.684816i \(0.240117\pi\)
\(594\) 4.44277 + 3.22786i 0.182289 + 0.132441i
\(595\) 5.44408 + 0.789186i 0.223186 + 0.0323535i
\(596\) 0.0446416 0.0324340i 0.00182859 0.00132855i
\(597\) −19.3051 + 23.8398i −0.790104 + 0.975697i
\(598\) 1.78689 0.0936469i 0.0730714 0.00382951i
\(599\) −23.1803 + 13.3832i −0.947123 + 0.546822i −0.892186 0.451668i \(-0.850829\pi\)
−0.0549370 + 0.998490i \(0.517496\pi\)
\(600\) 12.7596 + 7.54339i 0.520910 + 0.307958i
\(601\) 3.83116i 0.156276i 0.996943 + 0.0781382i \(0.0248975\pi\)
−0.996943 + 0.0781382i \(0.975102\pi\)
\(602\) 2.68775 + 9.34413i 0.109544 + 0.380838i
\(603\) 2.31015 14.5857i 0.0940764 0.593975i
\(604\) 13.5961 1.42901i 0.553219 0.0581457i
\(605\) −19.3219 + 7.30283i −0.785546 + 0.296902i
\(606\) −0.323490 + 3.07780i −0.0131409 + 0.125027i
\(607\) −8.71399 32.5210i −0.353690 1.31999i −0.882125 0.471015i \(-0.843888\pi\)
0.528435 0.848974i \(-0.322779\pi\)
\(608\) 4.82648 + 30.4732i 0.195740 + 1.23585i
\(609\) 20.3514 + 1.76358i 0.824682 + 0.0714637i
\(610\) −4.63955 6.45557i −0.187850 0.261379i
\(611\) −0.366959 0.0779995i −0.0148456 0.00315552i
\(612\) −1.22897 + 1.89244i −0.0496780 + 0.0764974i
\(613\) 24.1890 37.2478i 0.976985 1.50442i 0.117622 0.993058i \(-0.462473\pi\)
0.859363 0.511366i \(-0.170860\pi\)
\(614\) −2.51124 0.533781i −0.101346 0.0215417i
\(615\) −0.156638 + 0.0500028i −0.00631625 + 0.00201631i
\(616\) 9.23610 + 0.800364i 0.372133 + 0.0322476i
\(617\) −5.46815 34.5246i −0.220140 1.38991i −0.811902 0.583794i \(-0.801568\pi\)
0.591762 0.806112i \(-0.298432\pi\)
\(618\) 1.43807 + 5.36695i 0.0578476 + 0.215890i
\(619\) 1.39751 13.2964i 0.0561706 0.534427i −0.929866 0.367898i \(-0.880077\pi\)
0.986037 0.166529i \(-0.0532559\pi\)
\(620\) −29.5010 8.06812i −1.18479 0.324023i
\(621\) −6.06282 + 0.637228i −0.243293 + 0.0255711i
\(622\) −0.751132 + 4.74246i −0.0301176 + 0.190155i
\(623\) 11.4787 + 39.9066i 0.459885 + 1.59882i
\(624\) 1.67106i 0.0668960i
\(625\) 12.9441 21.3881i 0.517765 0.855523i
\(626\) 7.53917 4.35274i 0.301326 0.173971i
\(627\) −7.84740 + 0.411265i −0.313395 + 0.0164243i
\(628\) −11.5638 + 14.2801i −0.461446 + 0.569838i
\(629\) −5.76493 + 4.18846i −0.229863 + 0.167005i
\(630\) 7.07454 3.72237i 0.281856 0.148303i
\(631\) 11.1996 + 8.13699i 0.445849 + 0.323928i 0.787955 0.615733i \(-0.211140\pi\)
−0.342106 + 0.939662i \(0.611140\pi\)
\(632\) −26.6062 + 7.12911i −1.05834 + 0.283581i
\(633\) −12.8171 + 10.3791i −0.509436 + 0.412533i
\(634\) 1.45326 + 6.83703i 0.0577162 + 0.271533i
\(635\) −40.3982 8.80499i −1.60315 0.349415i
\(636\) −16.6548 + 5.41147i −0.660405 + 0.214579i
\(637\) −1.69147 + 13.9667i −0.0670186 + 0.553382i
\(638\) −3.22021 6.32003i −0.127489 0.250212i
\(639\) 3.89813 18.3393i 0.154208 0.725490i
\(640\) −8.57699 + 18.9998i −0.339035 + 0.751033i
\(641\) 2.29399 0.487602i 0.0906070 0.0192591i −0.162385 0.986727i \(-0.551919\pi\)
0.252992 + 0.967468i \(0.418585\pi\)
\(642\) −3.08361 + 8.03308i −0.121700 + 0.317041i
\(643\) 16.5284 + 16.5284i 0.651816 + 0.651816i 0.953430 0.301614i \(-0.0975254\pi\)
−0.301614 + 0.953430i \(0.597525\pi\)
\(644\) −3.37639 + 2.54867i −0.133048 + 0.100432i
\(645\) 1.91809 11.7187i 0.0755247 0.461424i
\(646\) 0.398131 + 3.78797i 0.0156643 + 0.149036i
\(647\) −10.9473 + 4.20226i −0.430381 + 0.165208i −0.563909 0.825837i \(-0.690703\pi\)
0.133527 + 0.991045i \(0.457370\pi\)
\(648\) −0.105278 2.00883i −0.00413572 0.0789143i
\(649\) 3.20276 5.54735i 0.125719 0.217752i
\(650\) 7.81024 + 0.0805937i 0.306343 + 0.00316115i
\(651\) 21.2789 19.8758i 0.833986 0.778994i
\(652\) −2.21293 + 4.34313i −0.0866652 + 0.170090i
\(653\) 16.1758 + 13.0989i 0.633008 + 0.512600i 0.891269 0.453475i \(-0.149816\pi\)
−0.258261 + 0.966075i \(0.583149\pi\)
\(654\) −8.63758 3.84570i −0.337756 0.150379i
\(655\) −29.2417 + 23.4307i −1.14257 + 0.915513i
\(656\) −0.0197126 0.0442752i −0.000769648 0.00172866i
\(657\) 2.02445 2.02445i 0.0789813 0.0789813i
\(658\) −0.355782 + 0.144087i −0.0138698 + 0.00561711i
\(659\) 30.5370 + 9.92209i 1.18955 + 0.386510i 0.835908 0.548870i \(-0.184942\pi\)
0.353646 + 0.935379i \(0.384942\pi\)
\(660\) −4.01846 2.34779i −0.156418 0.0913875i
\(661\) −7.51696 6.76830i −0.292376 0.263256i 0.509868 0.860252i \(-0.329694\pi\)
−0.802244 + 0.596996i \(0.796361\pi\)
\(662\) 4.71049 + 3.05903i 0.183079 + 0.118893i
\(663\) 0.109852 2.09611i 0.00426631 0.0814060i
\(664\) −5.10231 15.7033i −0.198008 0.609406i
\(665\) −12.3068 + 28.6472i −0.477236 + 1.11089i
\(666\) −3.19997 + 9.84849i −0.123996 + 0.381621i
\(667\) 7.35113 + 2.82183i 0.284637 + 0.109262i
\(668\) 6.91979 25.8250i 0.267735 0.999199i
\(669\) −24.1506 2.53833i −0.933716 0.0981375i
\(670\) 0.848692 14.7387i 0.0327878 0.569404i
\(671\) 3.56931 + 4.91273i 0.137792 + 0.189654i
\(672\) −9.73998 14.4144i −0.375728 0.556048i
\(673\) 10.0639 + 5.12781i 0.387935 + 0.197663i 0.637070 0.770806i \(-0.280146\pi\)
−0.249135 + 0.968469i \(0.580146\pi\)
\(674\) −6.82894 3.94269i −0.263041 0.151867i
\(675\) −26.5871 + 1.11841i −1.02334 + 0.0430478i
\(676\) 6.25399 + 10.8322i 0.240538 + 0.416624i
\(677\) 20.5086 13.3184i 0.788208 0.511868i −0.0866551 0.996238i \(-0.527618\pi\)
0.874863 + 0.484370i \(0.160951\pi\)
\(678\) −5.69985 0.902768i −0.218901 0.0346706i
\(679\) 43.5059 15.0205i 1.66960 0.576435i
\(680\) −2.51664 + 4.87681i −0.0965086 + 0.187017i
\(681\) −9.64609 + 4.29471i −0.369639 + 0.164574i
\(682\) −9.76605 2.61681i −0.373961 0.100203i
\(683\) −10.3756 12.8128i −0.397012 0.490269i 0.538966 0.842328i \(-0.318815\pi\)
−0.935978 + 0.352058i \(0.885482\pi\)
\(684\) −8.55778 9.50438i −0.327215 0.363409i
\(685\) 2.31820 7.01141i 0.0885740 0.267892i
\(686\) 6.56689 + 12.8096i 0.250725 + 0.489074i
\(687\) 3.11525 1.58730i 0.118854 0.0605593i
\(688\) 3.49532 + 0.183182i 0.133258 + 0.00698375i
\(689\) −15.0213 + 16.6829i −0.572267 + 0.635567i
\(690\) −2.18947 + 0.453592i −0.0833516 + 0.0172680i
\(691\) −20.8963 + 18.8151i −0.794932 + 0.715760i −0.962849 0.270041i \(-0.912963\pi\)
0.167917 + 0.985801i \(0.446296\pi\)
\(692\) −6.83613 + 1.08274i −0.259870 + 0.0411594i
\(693\) −5.38914 + 2.87117i −0.204716 + 0.109067i
\(694\) −3.66214 + 5.04050i −0.139013 + 0.191335i
\(695\) −16.2326 + 10.4229i −0.615738 + 0.395363i
\(696\) −8.28889 + 18.6172i −0.314190 + 0.705681i
\(697\) −0.0218160 0.0568327i −0.000826341 0.00215269i
\(698\) 3.73395 + 5.74978i 0.141332 + 0.217632i
\(699\) 32.7474 1.23862
\(700\) −15.4062 + 10.1802i −0.582300 + 0.384775i
\(701\) −35.1051 −1.32590 −0.662951 0.748663i \(-0.730696\pi\)
−0.662951 + 0.748663i \(0.730696\pi\)
\(702\) −4.52805 6.97258i −0.170900 0.263163i
\(703\) −14.4739 37.7057i −0.545892 1.42210i
\(704\) −1.65751 + 3.72283i −0.0624698 + 0.140310i
\(705\) 0.468020 + 0.0269499i 0.0176267 + 0.00101499i
\(706\) 7.69154 10.5865i 0.289475 0.398428i
\(707\) −7.95823 4.96372i −0.299300 0.186680i
\(708\) −7.47165 + 1.18339i −0.280802 + 0.0444746i
\(709\) −39.0403 + 35.1521i −1.46619 + 1.32016i −0.623423 + 0.781885i \(0.714258\pi\)
−0.842767 + 0.538278i \(0.819075\pi\)
\(710\) 2.05536 18.6303i 0.0771363 0.699184i
\(711\) 12.1398 13.4826i 0.455278 0.505638i
\(712\) −41.3689 2.16805i −1.55036 0.0812511i
\(713\) 10.0005 5.09550i 0.374521 0.190828i
\(714\) −1.10763 1.83996i −0.0414520 0.0688588i
\(715\) −5.96608 0.0307811i −0.223119 0.00115115i
\(716\) −18.9168 21.0092i −0.706953 0.785151i
\(717\) 2.27169 + 2.80530i 0.0848377 + 0.104766i
\(718\) 10.3777 + 2.78070i 0.387293 + 0.103775i
\(719\) −2.53041 + 1.12661i −0.0943685 + 0.0420156i −0.453378 0.891318i \(-0.649781\pi\)
0.359009 + 0.933334i \(0.383115\pi\)
\(720\) −0.435506 2.84458i −0.0162303 0.106011i
\(721\) −16.5328 3.19947i −0.615712 0.119154i
\(722\) −6.73625 1.06692i −0.250697 0.0397066i
\(723\) −25.2621 + 16.4054i −0.939508 + 0.610124i
\(724\) 3.17846 + 5.50525i 0.118126 + 0.204601i
\(725\) 31.2539 + 14.3033i 1.16074 + 0.531213i
\(726\) 6.98382 + 4.03211i 0.259194 + 0.149646i
\(727\) −5.31536 2.70831i −0.197136 0.100446i 0.352636 0.935761i \(-0.385285\pi\)
−0.549772 + 0.835315i \(0.685285\pi\)
\(728\) −12.6199 6.14222i −0.467724 0.227646i
\(729\) 11.3195 + 15.5799i 0.419239 + 0.577033i
\(730\) 1.81266 2.21498i 0.0670895 0.0819802i
\(731\) 4.37233 + 0.459550i 0.161716 + 0.0169971i
\(732\) 1.85611 6.92710i 0.0686038 0.256033i
\(733\) 28.1255 + 10.7964i 1.03884 + 0.398773i 0.817199 0.576355i \(-0.195525\pi\)
0.221641 + 0.975128i \(0.428859\pi\)
\(734\) 0.249589 0.768156i 0.00921250 0.0283532i
\(735\) −0.551932 17.5717i −0.0203583 0.648140i
\(736\) −2.07219 6.37755i −0.0763820 0.235080i
\(737\) −0.590180 + 11.2613i −0.0217396 + 0.414816i
\(738\) −0.0741934 0.0481817i −0.00273110 0.00177359i
\(739\) −33.5727 30.2290i −1.23499 1.11199i −0.989792 0.142517i \(-0.954480\pi\)
−0.245198 0.969473i \(-0.578853\pi\)
\(740\) 5.09393 23.3715i 0.187257 0.859154i
\(741\) 11.3145 + 3.67629i 0.415648 + 0.135052i
\(742\) −3.17791 + 22.7484i −0.116665 + 0.835119i
\(743\) 23.4363 23.4363i 0.859793 0.859793i −0.131520 0.991313i \(-0.541986\pi\)
0.991313 + 0.131520i \(0.0419858\pi\)
\(744\) 11.8150 + 26.5369i 0.433159 + 0.972891i
\(745\) −0.0233179 + 0.0852617i −0.000854303 + 0.00312375i
\(746\) 15.6249 + 6.95667i 0.572070 + 0.254702i
\(747\) 8.45180 + 6.84413i 0.309235 + 0.250414i
\(748\) 0.782267 1.53529i 0.0286025 0.0561356i
\(749\) −17.8010 19.0576i −0.650434 0.696351i
\(750\) −9.66250 + 1.37745i −0.352825 + 0.0502972i
\(751\) 19.3994 33.6008i 0.707894 1.22611i −0.257742 0.966214i \(-0.582979\pi\)
0.965637 0.259895i \(-0.0836881\pi\)
\(752\) 0.00723178 + 0.137991i 0.000263716 + 0.00503200i
\(753\) 14.4221 5.53611i 0.525569 0.201747i
\(754\) 1.12248 + 10.6797i 0.0408784 + 0.388932i
\(755\) −15.5651 + 15.4053i −0.566470 + 0.560655i
\(756\) 18.0993 + 7.66505i 0.658265 + 0.278775i
\(757\) 2.63808 + 2.63808i 0.0958825 + 0.0958825i 0.753421 0.657538i \(-0.228402\pi\)
−0.657538 + 0.753421i \(0.728402\pi\)
\(758\) −8.44928 + 22.0111i −0.306892 + 0.799480i
\(759\) 1.67061 0.355100i 0.0606394 0.0128893i
\(760\) −23.0075 20.9320i −0.834568 0.759282i
\(761\) −8.25480 + 38.8358i −0.299236 + 1.40780i 0.529573 + 0.848265i \(0.322352\pi\)
−0.828809 + 0.559532i \(0.810981\pi\)
\(762\) 7.32833 + 14.3827i 0.265477 + 0.521029i
\(763\) 21.9362 18.4375i 0.794142 0.667483i
\(764\) −20.5490 + 6.67679i −0.743438 + 0.241558i
\(765\) −0.359282 3.59675i −0.0129899 0.130041i
\(766\) 3.45569 + 16.2577i 0.124859 +