Properties

Label 175.2.x.a.117.14
Level $175$
Weight $2$
Character 175.117
Analytic conductor $1.397$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(3,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([21, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.x (of order \(60\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 117.14
Character \(\chi\) \(=\) 175.117
Dual form 175.2.x.a.3.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.882496 + 1.35892i) q^{2} +(-0.978941 - 2.55023i) q^{3} +(-0.254403 + 0.571398i) q^{4} +(-1.48415 - 1.67252i) q^{5} +(2.60166 - 3.58087i) q^{6} +(-2.64114 - 0.156130i) q^{7} +(2.19977 - 0.348409i) q^{8} +(-3.31591 + 2.98566i) q^{9} +O(q^{10})\) \(q+(0.882496 + 1.35892i) q^{2} +(-0.978941 - 2.55023i) q^{3} +(-0.254403 + 0.571398i) q^{4} +(-1.48415 - 1.67252i) q^{5} +(2.60166 - 3.58087i) q^{6} +(-2.64114 - 0.156130i) q^{7} +(2.19977 - 0.348409i) q^{8} +(-3.31591 + 2.98566i) q^{9} +(0.963067 - 3.49283i) q^{10} +(2.62811 - 2.91881i) q^{11} +(1.70624 + 0.0894203i) q^{12} +(0.0865535 - 0.0441012i) q^{13} +(-2.11863 - 3.72689i) q^{14} +(-2.81240 + 5.42221i) q^{15} +(3.25179 + 3.61148i) q^{16} +(2.10918 + 2.60462i) q^{17} +(-6.98356 - 1.87124i) q^{18} +(5.56832 - 2.47917i) q^{19} +(1.33324 - 0.422546i) q^{20} +(2.18736 + 6.88836i) q^{21} +(6.28573 + 0.995562i) q^{22} +(-4.39848 + 2.85640i) q^{23} +(-3.04197 - 5.26884i) q^{24} +(-0.594613 + 4.96452i) q^{25} +(0.136313 + 0.0787005i) q^{26} +(3.55840 + 1.81310i) q^{27} +(0.761125 - 1.46942i) q^{28} +(2.51245 + 3.45809i) q^{29} +(-9.85031 + 0.963234i) q^{30} +(-0.701840 - 0.0737664i) q^{31} +(-0.885159 + 3.30346i) q^{32} +(-10.0164 - 3.84493i) q^{33} +(-1.67814 + 5.16477i) q^{34} +(3.65871 + 4.64907i) q^{35} +(-0.862422 - 2.65426i) q^{36} +(0.403914 - 7.70713i) q^{37} +(8.28302 + 5.37906i) q^{38} +(-0.197199 - 0.177559i) q^{39} +(-3.84750 - 3.16206i) q^{40} +(-0.124652 - 0.0405019i) q^{41} +(-7.43042 + 9.05139i) q^{42} +(8.25770 - 8.25770i) q^{43} +(0.999203 + 2.24425i) q^{44} +(9.91486 + 1.11475i) q^{45} +(-7.76327 - 3.45643i) q^{46} +(2.10528 + 1.70482i) q^{47} +(6.02679 - 11.8282i) q^{48} +(6.95125 + 0.824720i) q^{49} +(-7.27115 + 3.57313i) q^{50} +(4.57761 - 7.92865i) q^{51} +(0.00317989 + 0.0606759i) q^{52} +(-10.9795 + 4.21462i) q^{53} +(0.676413 + 6.43564i) q^{54} +(-8.78225 - 0.0636062i) q^{55} +(-5.86430 + 0.576749i) q^{56} +(-11.7735 - 11.7735i) q^{57} +(-2.48206 + 6.46598i) q^{58} +(-5.04772 + 1.07293i) q^{59} +(-2.38276 - 2.98643i) q^{60} +(-1.48307 + 6.97731i) q^{61} +(-0.519128 - 1.01885i) q^{62} +(9.22393 - 7.36783i) q^{63} +(3.97346 - 1.29105i) q^{64} +(-0.202218 - 0.0793093i) q^{65} +(-3.61445 - 17.0046i) q^{66} +(0.433773 - 0.351262i) q^{67} +(-2.02485 + 0.542557i) q^{68} +(11.5903 + 8.42087i) q^{69} +(-3.08893 + 9.07469i) q^{70} +(0.818370 - 0.594581i) q^{71} +(-6.25400 + 7.72305i) q^{72} +(-2.13084 + 0.111673i) q^{73} +(10.8299 - 6.25262i) q^{74} +(13.2428 - 3.34357i) q^{75} +3.81243i q^{76} +(-7.39691 + 7.29866i) q^{77} +(0.0672616 - 0.424673i) q^{78} +(15.3675 - 1.61519i) q^{79} +(1.21412 - 10.7986i) q^{80} +(-0.258873 + 2.46301i) q^{81} +(-0.0549659 - 0.205136i) q^{82} +(1.69214 + 10.6837i) q^{83} +(-4.49246 - 0.502566i) q^{84} +(1.22593 - 7.39326i) q^{85} +(18.5090 + 3.93420i) q^{86} +(6.35939 - 9.79260i) q^{87} +(4.76429 - 7.33636i) q^{88} +(-0.981714 - 0.208670i) q^{89} +(7.23495 + 14.4573i) q^{90} +(-0.235485 + 0.102964i) q^{91} +(-0.513159 - 3.23996i) q^{92} +(0.498939 + 1.86207i) q^{93} +(-0.458824 + 4.36542i) q^{94} +(-12.4107 - 5.63363i) q^{95} +(9.29110 - 0.976534i) q^{96} +(-1.77133 + 11.1837i) q^{97} +(5.01371 + 10.1740i) q^{98} +17.5251i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9} - 36 q^{10} - 6 q^{11} - 36 q^{12} - 20 q^{14} - 28 q^{15} - 30 q^{16} - 42 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} + 32 q^{22} - 40 q^{23} + 2 q^{25} - 48 q^{26} + 22 q^{28} - 58 q^{30} - 18 q^{31} + 8 q^{32} - 30 q^{33} - 2 q^{35} + 40 q^{36} - 10 q^{37} + 72 q^{38} + 30 q^{39} - 48 q^{40} + 6 q^{42} - 108 q^{43} - 10 q^{44} + 186 q^{45} - 6 q^{46} - 54 q^{47} - 248 q^{50} - 16 q^{51} + 216 q^{52} + 50 q^{53} - 30 q^{54} + 4 q^{56} - 216 q^{57} - 4 q^{58} + 90 q^{59} + 96 q^{60} - 18 q^{61} - 66 q^{63} - 100 q^{64} + 14 q^{65} - 90 q^{66} + 4 q^{67} + 342 q^{68} - 60 q^{70} - 24 q^{71} + 58 q^{72} - 6 q^{73} + 216 q^{75} - 80 q^{77} - 132 q^{78} - 10 q^{79} - 6 q^{80} - 10 q^{81} + 216 q^{82} + 20 q^{84} - 48 q^{85} - 6 q^{86} - 48 q^{87} - 122 q^{88} + 120 q^{89} - 12 q^{91} - 4 q^{92} + 106 q^{93} - 30 q^{94} - 98 q^{95} - 90 q^{96} + 222 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.882496 + 1.35892i 0.624019 + 0.960904i 0.999420 + 0.0340422i \(0.0108381\pi\)
−0.375402 + 0.926862i \(0.622495\pi\)
\(3\) −0.978941 2.55023i −0.565192 1.47238i −0.856704 0.515808i \(-0.827492\pi\)
0.291512 0.956567i \(-0.405842\pi\)
\(4\) −0.254403 + 0.571398i −0.127201 + 0.285699i
\(5\) −1.48415 1.67252i −0.663731 0.747971i
\(6\) 2.60166 3.58087i 1.06212 1.46189i
\(7\) −2.64114 0.156130i −0.998257 0.0590114i
\(8\) 2.19977 0.348409i 0.777736 0.123181i
\(9\) −3.31591 + 2.98566i −1.10530 + 0.995219i
\(10\) 0.963067 3.49283i 0.304549 1.10453i
\(11\) 2.62811 2.91881i 0.792404 0.880054i −0.202664 0.979248i \(-0.564960\pi\)
0.995068 + 0.0991947i \(0.0316267\pi\)
\(12\) 1.70624 + 0.0894203i 0.492549 + 0.0258134i
\(13\) 0.0865535 0.0441012i 0.0240056 0.0122315i −0.441946 0.897041i \(-0.645712\pi\)
0.465952 + 0.884810i \(0.345712\pi\)
\(14\) −2.11863 3.72689i −0.566227 0.996054i
\(15\) −2.81240 + 5.42221i −0.726160 + 1.40001i
\(16\) 3.25179 + 3.61148i 0.812948 + 0.902871i
\(17\) 2.10918 + 2.60462i 0.511550 + 0.631712i 0.965839 0.259142i \(-0.0834399\pi\)
−0.454289 + 0.890854i \(0.650107\pi\)
\(18\) −6.98356 1.87124i −1.64604 0.441055i
\(19\) 5.56832 2.47917i 1.27746 0.568762i 0.347934 0.937519i \(-0.386883\pi\)
0.929526 + 0.368757i \(0.120217\pi\)
\(20\) 1.33324 0.422546i 0.298122 0.0944842i
\(21\) 2.18736 + 6.88836i 0.477320 + 1.50316i
\(22\) 6.28573 + 0.995562i 1.34012 + 0.212254i
\(23\) −4.39848 + 2.85640i −0.917146 + 0.595601i −0.914584 0.404395i \(-0.867482\pi\)
−0.00256149 + 0.999997i \(0.500815\pi\)
\(24\) −3.04197 5.26884i −0.620939 1.07550i
\(25\) −0.594613 + 4.96452i −0.118923 + 0.992904i
\(26\) 0.136313 + 0.0787005i 0.0267332 + 0.0154344i
\(27\) 3.55840 + 1.81310i 0.684814 + 0.348930i
\(28\) 0.761125 1.46942i 0.143839 0.277695i
\(29\) 2.51245 + 3.45809i 0.466550 + 0.642152i 0.975851 0.218437i \(-0.0700959\pi\)
−0.509301 + 0.860589i \(0.670096\pi\)
\(30\) −9.85031 + 0.963234i −1.79841 + 0.175862i
\(31\) −0.701840 0.0737664i −0.126054 0.0132488i 0.0412913 0.999147i \(-0.486853\pi\)
−0.167345 + 0.985898i \(0.553520\pi\)
\(32\) −0.885159 + 3.30346i −0.156475 + 0.583975i
\(33\) −10.0164 3.84493i −1.74363 0.669317i
\(34\) −1.67814 + 5.16477i −0.287798 + 0.885751i
\(35\) 3.65871 + 4.64907i 0.618435 + 0.785836i
\(36\) −0.862422 2.65426i −0.143737 0.442377i
\(37\) 0.403914 7.70713i 0.0664030 1.26704i −0.738751 0.673978i \(-0.764584\pi\)
0.805154 0.593066i \(-0.202083\pi\)
\(38\) 8.28302 + 5.37906i 1.34368 + 0.872599i
\(39\) −0.197199 0.177559i −0.0315771 0.0284322i
\(40\) −3.84750 3.16206i −0.608343 0.499965i
\(41\) −0.124652 0.0405019i −0.0194674 0.00632534i 0.299267 0.954169i \(-0.403258\pi\)
−0.318735 + 0.947844i \(0.603258\pi\)
\(42\) −7.43042 + 9.05139i −1.14654 + 1.39666i
\(43\) 8.25770 8.25770i 1.25929 1.25929i 0.307854 0.951434i \(-0.400389\pi\)
0.951434 0.307854i \(-0.0996108\pi\)
\(44\) 0.999203 + 2.24425i 0.150636 + 0.338333i
\(45\) 9.91486 + 1.11475i 1.47802 + 0.166177i
\(46\) −7.76327 3.45643i −1.14463 0.509623i
\(47\) 2.10528 + 1.70482i 0.307087 + 0.248674i 0.770459 0.637490i \(-0.220027\pi\)
−0.463372 + 0.886164i \(0.653361\pi\)
\(48\) 6.02679 11.8282i 0.869893 1.70726i
\(49\) 6.95125 + 0.824720i 0.993035 + 0.117817i
\(50\) −7.27115 + 3.57313i −1.02830 + 0.505317i
\(51\) 4.57761 7.92865i 0.640993 1.11023i
\(52\) 0.00317989 + 0.0606759i 0.000440972 + 0.00841424i
\(53\) −10.9795 + 4.21462i −1.50814 + 0.578922i −0.965354 0.260945i \(-0.915966\pi\)
−0.542791 + 0.839868i \(0.682632\pi\)
\(54\) 0.676413 + 6.43564i 0.0920482 + 0.875780i
\(55\) −8.78225 0.0636062i −1.18420 0.00857666i
\(56\) −5.86430 + 0.576749i −0.783649 + 0.0770713i
\(57\) −11.7735 11.7735i −1.55944 1.55944i
\(58\) −2.48206 + 6.46598i −0.325910 + 0.849025i
\(59\) −5.04772 + 1.07293i −0.657157 + 0.139683i −0.524409 0.851467i \(-0.675714\pi\)
−0.132748 + 0.991150i \(0.542380\pi\)
\(60\) −2.38276 2.98643i −0.307612 0.385546i
\(61\) −1.48307 + 6.97731i −0.189888 + 0.893354i 0.775259 + 0.631644i \(0.217620\pi\)
−0.965147 + 0.261709i \(0.915714\pi\)
\(62\) −0.519128 1.01885i −0.0659293 0.129394i
\(63\) 9.22393 7.36783i 1.16211 0.928260i
\(64\) 3.97346 1.29105i 0.496682 0.161382i
\(65\) −0.202218 0.0793093i −0.0250821 0.00983711i
\(66\) −3.61445 17.0046i −0.444908 2.09313i
\(67\) 0.433773 0.351262i 0.0529938 0.0429135i −0.602458 0.798151i \(-0.705812\pi\)
0.655451 + 0.755237i \(0.272478\pi\)
\(68\) −2.02485 + 0.542557i −0.245549 + 0.0657947i
\(69\) 11.5903 + 8.42087i 1.39531 + 1.01375i
\(70\) −3.08893 + 9.07469i −0.369198 + 1.08463i
\(71\) 0.818370 0.594581i 0.0971227 0.0705637i −0.538164 0.842840i \(-0.680882\pi\)
0.635287 + 0.772276i \(0.280882\pi\)
\(72\) −6.25400 + 7.72305i −0.737041 + 0.910170i
\(73\) −2.13084 + 0.111673i −0.249396 + 0.0130703i −0.176624 0.984278i \(-0.556518\pi\)
−0.0727716 + 0.997349i \(0.523184\pi\)
\(74\) 10.8299 6.25262i 1.25894 0.726852i
\(75\) 13.2428 3.34357i 1.52914 0.386082i
\(76\) 3.81243i 0.437316i
\(77\) −7.39691 + 7.29866i −0.842956 + 0.831759i
\(78\) 0.0672616 0.424673i 0.00761588 0.0480848i
\(79\) 15.3675 1.61519i 1.72898 0.181723i 0.812816 0.582521i \(-0.197933\pi\)
0.916167 + 0.400797i \(0.131267\pi\)
\(80\) 1.21412 10.7986i 0.135743 1.20733i
\(81\) −0.258873 + 2.46301i −0.0287636 + 0.273668i
\(82\) −0.0549659 0.205136i −0.00606997 0.0226534i
\(83\) 1.69214 + 10.6837i 0.185736 + 1.17269i 0.887680 + 0.460461i \(0.152316\pi\)
−0.701944 + 0.712232i \(0.747684\pi\)
\(84\) −4.49246 0.502566i −0.490168 0.0548345i
\(85\) 1.22593 7.39326i 0.132971 0.801912i
\(86\) 18.5090 + 3.93420i 1.99587 + 0.424236i
\(87\) 6.35939 9.79260i 0.681798 1.04988i
\(88\) 4.76429 7.33636i 0.507875 0.782058i
\(89\) −0.981714 0.208670i −0.104061 0.0221190i 0.155587 0.987822i \(-0.450273\pi\)
−0.259648 + 0.965703i \(0.583607\pi\)
\(90\) 7.23495 + 14.4573i 0.762631 + 1.52393i
\(91\) −0.235485 + 0.102964i −0.0246856 + 0.0107936i
\(92\) −0.513159 3.23996i −0.0535005 0.337789i
\(93\) 0.498939 + 1.86207i 0.0517376 + 0.193087i
\(94\) −0.458824 + 4.36542i −0.0473241 + 0.450259i
\(95\) −12.4107 5.63363i −1.27331 0.577999i
\(96\) 9.29110 0.976534i 0.948269 0.0996670i
\(97\) −1.77133 + 11.1837i −0.179851 + 1.13554i 0.718262 + 0.695773i \(0.244938\pi\)
−0.898113 + 0.439764i \(0.855062\pi\)
\(98\) 5.01371 + 10.1740i 0.506461 + 1.02773i
\(99\) 17.5251i 1.76134i
\(100\) −2.68544 1.60275i −0.268544 0.160275i
\(101\) −10.1623 + 5.86718i −1.01118 + 0.583807i −0.911538 0.411216i \(-0.865104\pi\)
−0.0996449 + 0.995023i \(0.531771\pi\)
\(102\) 14.8141 0.776377i 1.46682 0.0768727i
\(103\) 6.33822 7.82705i 0.624523 0.771222i −0.362468 0.931996i \(-0.618066\pi\)
0.986991 + 0.160774i \(0.0513991\pi\)
\(104\) 0.175032 0.127168i 0.0171633 0.0124699i
\(105\) 8.27452 13.8817i 0.807511 1.35472i
\(106\) −15.4167 11.2009i −1.49740 1.08792i
\(107\) 1.09349 0.292999i 0.105711 0.0283253i −0.205576 0.978641i \(-0.565907\pi\)
0.311287 + 0.950316i \(0.399240\pi\)
\(108\) −1.94126 + 1.57201i −0.186798 + 0.151266i
\(109\) −0.608654 2.86349i −0.0582985 0.274273i 0.939337 0.342995i \(-0.111441\pi\)
−0.997636 + 0.0687217i \(0.978108\pi\)
\(110\) −7.66386 11.9905i −0.730720 1.14325i
\(111\) −20.0504 + 6.51476i −1.90310 + 0.618353i
\(112\) −8.02458 10.0461i −0.758252 0.949271i
\(113\) −2.12100 4.16270i −0.199527 0.391594i 0.769464 0.638690i \(-0.220523\pi\)
−0.968991 + 0.247097i \(0.920523\pi\)
\(114\) 5.60924 26.3894i 0.525353 2.47159i
\(115\) 11.3054 + 3.11719i 1.05423 + 0.290680i
\(116\) −2.61512 + 0.555861i −0.242808 + 0.0516104i
\(117\) −0.155332 + 0.404655i −0.0143605 + 0.0374103i
\(118\) −5.91261 5.91261i −0.544300 0.544300i
\(119\) −5.16397 7.20846i −0.473381 0.660798i
\(120\) −4.29749 + 12.9075i −0.392305 + 1.17829i
\(121\) −0.462683 4.40213i −0.0420621 0.400194i
\(122\) −10.7904 + 4.14206i −0.976921 + 0.375005i
\(123\) 0.0187379 + 0.357541i 0.00168954 + 0.0322383i
\(124\) 0.220700 0.382263i 0.0198194 0.0343283i
\(125\) 9.18572 6.37358i 0.821596 0.570070i
\(126\) 18.1524 + 6.03254i 1.61714 + 0.537422i
\(127\) −7.51832 + 14.7555i −0.667143 + 1.30934i 0.270829 + 0.962628i \(0.412702\pi\)
−0.937971 + 0.346713i \(0.887298\pi\)
\(128\) 10.5767 + 8.56482i 0.934854 + 0.757030i
\(129\) −29.1428 12.9752i −2.56588 1.14240i
\(130\) −0.0706812 0.344789i −0.00619915 0.0302400i
\(131\) −0.163724 0.367729i −0.0143046 0.0321287i 0.906252 0.422738i \(-0.138931\pi\)
−0.920557 + 0.390609i \(0.872264\pi\)
\(132\) 4.74518 4.74518i 0.413015 0.413015i
\(133\) −15.0938 + 5.67847i −1.30880 + 0.492386i
\(134\) 0.860142 + 0.279477i 0.0743049 + 0.0241431i
\(135\) −2.24876 8.64238i −0.193543 0.743817i
\(136\) 5.54717 + 4.99470i 0.475666 + 0.428292i
\(137\) 10.6234 + 6.89895i 0.907623 + 0.589417i 0.911827 0.410574i \(-0.134672\pi\)
−0.00420463 + 0.999991i \(0.501338\pi\)
\(138\) −1.21491 + 23.1818i −0.103420 + 1.97336i
\(139\) −4.44619 13.6840i −0.377121 1.16066i −0.942036 0.335511i \(-0.891091\pi\)
0.564915 0.825149i \(-0.308909\pi\)
\(140\) −3.58725 + 0.907845i −0.303178 + 0.0767269i
\(141\) 2.28674 7.03788i 0.192579 0.592696i
\(142\) 1.53020 + 0.587388i 0.128411 + 0.0492925i
\(143\) 0.0987488 0.368536i 0.00825779 0.0308185i
\(144\) −21.5653 2.26661i −1.79711 0.188884i
\(145\) 2.05486 9.33443i 0.170647 0.775182i
\(146\) −2.03221 2.79710i −0.168187 0.231489i
\(147\) −4.70164 18.5346i −0.387785 1.52871i
\(148\) 4.30108 + 2.19151i 0.353547 + 0.180141i
\(149\) −9.24670 5.33859i −0.757519 0.437354i 0.0708851 0.997484i \(-0.477418\pi\)
−0.828404 + 0.560131i \(0.810751\pi\)
\(150\) 16.2303 + 15.0452i 1.32520 + 1.22844i
\(151\) −10.4396 18.0820i −0.849565 1.47149i −0.881597 0.472003i \(-0.843531\pi\)
0.0320315 0.999487i \(-0.489802\pi\)
\(152\) 11.3852 7.39366i 0.923465 0.599705i
\(153\) −14.7703 2.33939i −1.19411 0.189128i
\(154\) −16.4461 3.61081i −1.32526 0.290967i
\(155\) 0.918259 + 1.28332i 0.0737563 + 0.103079i
\(156\) 0.151625 0.0675076i 0.0121397 0.00540494i
\(157\) 11.5468 + 3.09395i 0.921533 + 0.246924i 0.688241 0.725483i \(-0.258383\pi\)
0.233293 + 0.972407i \(0.425050\pi\)
\(158\) 15.7567 + 19.4579i 1.25354 + 1.54799i
\(159\) 21.4965 + 23.8743i 1.70478 + 1.89335i
\(160\) 6.83879 3.42238i 0.540654 0.270563i
\(161\) 12.0630 6.85743i 0.950695 0.540441i
\(162\) −3.57550 + 1.82181i −0.280918 + 0.143135i
\(163\) −14.4820 0.758967i −1.13431 0.0594469i −0.524081 0.851668i \(-0.675591\pi\)
−0.610234 + 0.792222i \(0.708924\pi\)
\(164\) 0.0548546 0.0609222i 0.00428342 0.00475722i
\(165\) 8.43509 + 22.4590i 0.656671 + 1.74843i
\(166\) −13.0251 + 11.7278i −1.01094 + 0.910257i
\(167\) −1.65219 + 0.261681i −0.127850 + 0.0202495i −0.220032 0.975493i \(-0.570616\pi\)
0.0921813 + 0.995742i \(0.470616\pi\)
\(168\) 7.21164 + 14.3907i 0.556390 + 1.11027i
\(169\) −7.63566 + 10.5096i −0.587359 + 0.808430i
\(170\) 11.1288 4.85857i 0.853537 0.372636i
\(171\) −11.0621 + 24.8458i −0.845937 + 1.90001i
\(172\) 2.61765 + 6.81921i 0.199594 + 0.519960i
\(173\) −0.153180 0.235876i −0.0116460 0.0179333i 0.832800 0.553575i \(-0.186737\pi\)
−0.844446 + 0.535641i \(0.820070\pi\)
\(174\) 18.9195 1.43429
\(175\) 2.34556 13.0192i 0.177308 0.984155i
\(176\) 19.0873 1.43876
\(177\) 7.67763 + 11.8225i 0.577086 + 0.888634i
\(178\) −0.582792 1.51822i −0.0436821 0.113796i
\(179\) −5.33375 + 11.9798i −0.398663 + 0.895412i 0.596988 + 0.802250i \(0.296364\pi\)
−0.995651 + 0.0931620i \(0.970303\pi\)
\(180\) −3.15933 + 5.38173i −0.235483 + 0.401131i
\(181\) −13.5383 + 18.6338i −1.00629 + 1.38504i −0.0849076 + 0.996389i \(0.527060\pi\)
−0.921384 + 0.388653i \(0.872940\pi\)
\(182\) −0.347735 0.229142i −0.0257758 0.0169851i
\(183\) 19.2456 3.04820i 1.42268 0.225330i
\(184\) −8.68043 + 7.81590i −0.639930 + 0.576196i
\(185\) −13.4898 + 10.7630i −0.991787 + 0.791309i
\(186\) −2.09009 + 2.32129i −0.153253 + 0.170205i
\(187\) 13.1455 + 0.688927i 0.961295 + 0.0503793i
\(188\) −1.50972 + 0.769242i −0.110108 + 0.0561027i
\(189\) −9.11516 5.34421i −0.663030 0.388734i
\(190\) −3.29667 21.8368i −0.239166 1.58421i
\(191\) 2.70749 + 3.00698i 0.195907 + 0.217577i 0.833093 0.553133i \(-0.186568\pi\)
−0.637185 + 0.770711i \(0.719901\pi\)
\(192\) −7.18227 8.86936i −0.518335 0.640091i
\(193\) −2.96976 0.795745i −0.213768 0.0572790i 0.150346 0.988634i \(-0.451961\pi\)
−0.364114 + 0.931355i \(0.618628\pi\)
\(194\) −16.7611 + 7.46250i −1.20337 + 0.535776i
\(195\) −0.00429733 + 0.593342i −0.000307738 + 0.0424901i
\(196\) −2.23966 + 3.76212i −0.159976 + 0.268723i
\(197\) 12.4561 + 1.97286i 0.887464 + 0.140560i 0.583490 0.812120i \(-0.301687\pi\)
0.303973 + 0.952681i \(0.401687\pi\)
\(198\) −23.8153 + 15.4658i −1.69248 + 1.09911i
\(199\) 2.17496 + 3.76715i 0.154179 + 0.267046i 0.932760 0.360498i \(-0.117393\pi\)
−0.778581 + 0.627545i \(0.784060\pi\)
\(200\) 0.421673 + 11.1280i 0.0298168 + 0.786866i
\(201\) −1.32044 0.762355i −0.0931365 0.0537724i
\(202\) −16.9412 8.63198i −1.19198 0.607344i
\(203\) −6.09583 9.52558i −0.427843 0.668564i
\(204\) 3.36586 + 4.63270i 0.235657 + 0.324354i
\(205\) 0.117262 + 0.268593i 0.00818994 + 0.0187594i
\(206\) 16.2298 + 1.70582i 1.13078 + 0.118850i
\(207\) 6.05670 22.6039i 0.420970 1.57108i
\(208\) 0.440725 + 0.169178i 0.0305588 + 0.0117304i
\(209\) 7.39789 22.7684i 0.511723 1.57492i
\(210\) 26.1664 1.00611i 1.80566 0.0694283i
\(211\) 2.05986 + 6.33961i 0.141807 + 0.436437i 0.996587 0.0825543i \(-0.0263078\pi\)
−0.854780 + 0.518991i \(0.826308\pi\)
\(212\) 0.384980 7.34585i 0.0264405 0.504515i
\(213\) −2.31745 1.50497i −0.158789 0.103119i
\(214\) 1.36316 + 1.22740i 0.0931838 + 0.0839031i
\(215\) −26.0668 1.55548i −1.77774 0.106083i
\(216\) 8.45936 + 2.74861i 0.575586 + 0.187019i
\(217\) 1.84214 + 0.304405i 0.125053 + 0.0206644i
\(218\) 3.35413 3.35413i 0.227171 0.227171i
\(219\) 2.37076 + 5.32481i 0.160201 + 0.359817i
\(220\) 2.27057 5.00197i 0.153082 0.337233i
\(221\) 0.297423 + 0.132421i 0.0200069 + 0.00890762i
\(222\) −26.5474 21.4977i −1.78175 1.44283i
\(223\) 6.99626 13.7309i 0.468504 0.919491i −0.528982 0.848633i \(-0.677426\pi\)
0.997486 0.0708583i \(-0.0225738\pi\)
\(224\) 2.85360 8.58670i 0.190664 0.573723i
\(225\) −12.8507 18.2372i −0.856711 1.21581i
\(226\) 3.78502 6.55584i 0.251776 0.436088i
\(227\) 0.693452 + 13.2319i 0.0460260 + 0.878229i 0.919918 + 0.392110i \(0.128255\pi\)
−0.873892 + 0.486119i \(0.838412\pi\)
\(228\) 9.72258 3.73215i 0.643893 0.247168i
\(229\) −0.433550 4.12495i −0.0286498 0.272584i −0.999464 0.0327499i \(-0.989574\pi\)
0.970814 0.239834i \(-0.0770932\pi\)
\(230\) 5.74091 + 18.1140i 0.378544 + 1.19440i
\(231\) 25.8544 + 11.7189i 1.70109 + 0.771044i
\(232\) 6.73164 + 6.73164i 0.441954 + 0.441954i
\(233\) 9.23458 24.0569i 0.604977 1.57602i −0.198124 0.980177i \(-0.563485\pi\)
0.803101 0.595843i \(-0.203182\pi\)
\(234\) −0.686975 + 0.146021i −0.0449090 + 0.00954570i
\(235\) −0.273206 6.05133i −0.0178220 0.394745i
\(236\) 0.671086 3.15721i 0.0436840 0.205517i
\(237\) −19.1630 37.6096i −1.24477 2.44300i
\(238\) 5.23857 13.3789i 0.339566 0.867224i
\(239\) −0.618920 + 0.201099i −0.0400346 + 0.0130080i −0.328966 0.944342i \(-0.606700\pi\)
0.288931 + 0.957350i \(0.406700\pi\)
\(240\) −28.7276 + 7.47496i −1.85436 + 0.482507i
\(241\) 0.238703 + 1.12301i 0.0153762 + 0.0723393i 0.985167 0.171600i \(-0.0548936\pi\)
−0.969791 + 0.243939i \(0.921560\pi\)
\(242\) 5.57385 4.51361i 0.358300 0.290146i
\(243\) 18.1075 4.85188i 1.16159 0.311248i
\(244\) −3.60952 2.62247i −0.231076 0.167887i
\(245\) −8.93732 12.8501i −0.570984 0.820961i
\(246\) −0.469334 + 0.340991i −0.0299237 + 0.0217408i
\(247\) 0.372623 0.460151i 0.0237094 0.0292787i
\(248\) −1.56959 + 0.0822585i −0.0996688 + 0.00522342i
\(249\) 25.5895 14.7741i 1.62167 0.936270i
\(250\) 16.7676 + 6.85805i 1.06047 + 0.433741i
\(251\) 13.8492i 0.874153i 0.899424 + 0.437076i \(0.143986\pi\)
−0.899424 + 0.437076i \(0.856014\pi\)
\(252\) 1.86337 + 7.14493i 0.117381 + 0.450088i
\(253\) −3.22237 + 20.3452i −0.202589 + 1.27909i
\(254\) −26.6865 + 2.80487i −1.67446 + 0.175993i
\(255\) −20.0546 + 4.11117i −1.25587 + 0.257451i
\(256\) −1.43165 + 13.6212i −0.0894778 + 0.851325i
\(257\) −0.0943752 0.352213i −0.00588696 0.0219704i 0.962920 0.269788i \(-0.0869535\pi\)
−0.968807 + 0.247817i \(0.920287\pi\)
\(258\) −8.08608 51.0535i −0.503417 3.17845i
\(259\) −2.27010 + 20.2925i −0.141057 + 1.26092i
\(260\) 0.0967620 0.0953705i 0.00600092 0.00591462i
\(261\) −18.6557 3.96540i −1.15476 0.245452i
\(262\) 0.355231 0.547007i 0.0219462 0.0337942i
\(263\) −16.2018 + 24.9486i −0.999045 + 1.53839i −0.165301 + 0.986243i \(0.552859\pi\)
−0.833744 + 0.552151i \(0.813807\pi\)
\(264\) −23.3734 4.96816i −1.43853 0.305769i
\(265\) 23.3441 + 12.1082i 1.43402 + 0.743800i
\(266\) −21.0368 15.5001i −1.28985 0.950371i
\(267\) 0.428885 + 2.70787i 0.0262473 + 0.165719i
\(268\) 0.0903576 + 0.337219i 0.00551947 + 0.0205989i
\(269\) 2.16638 20.6117i 0.132087 1.25672i −0.704825 0.709381i \(-0.748974\pi\)
0.836911 0.547338i \(-0.184359\pi\)
\(270\) 9.75981 10.6828i 0.593963 0.650132i
\(271\) −5.57572 + 0.586032i −0.338701 + 0.0355989i −0.272352 0.962198i \(-0.587802\pi\)
−0.0663487 + 0.997796i \(0.521135\pi\)
\(272\) −2.54792 + 16.0869i −0.154490 + 0.975413i
\(273\) 0.493108 + 0.499746i 0.0298443 + 0.0302460i
\(274\) 20.5248i 1.23995i
\(275\) 12.9278 + 14.7828i 0.779574 + 0.891439i
\(276\) −7.76028 + 4.48040i −0.467114 + 0.269688i
\(277\) 5.90329 0.309378i 0.354694 0.0185887i 0.125843 0.992050i \(-0.459836\pi\)
0.228851 + 0.973461i \(0.426503\pi\)
\(278\) 14.6717 18.1181i 0.879953 1.08665i
\(279\) 2.54748 1.85085i 0.152514 0.110808i
\(280\) 9.66810 + 8.95214i 0.577779 + 0.534993i
\(281\) −6.92124 5.02858i −0.412887 0.299980i 0.361883 0.932224i \(-0.382134\pi\)
−0.774769 + 0.632244i \(0.782134\pi\)
\(282\) 11.5820 3.10338i 0.689697 0.184804i
\(283\) 11.7275 9.49677i 0.697130 0.564525i −0.213905 0.976855i \(-0.568618\pi\)
0.911035 + 0.412330i \(0.135285\pi\)
\(284\) 0.131547 + 0.618878i 0.00780585 + 0.0367236i
\(285\) −2.21775 + 37.1650i −0.131368 + 2.20147i
\(286\) 0.587957 0.191039i 0.0347666 0.0112964i
\(287\) 0.322900 + 0.126433i 0.0190602 + 0.00746312i
\(288\) −6.92789 13.5968i −0.408230 0.801196i
\(289\) 1.19910 5.64132i 0.0705353 0.331843i
\(290\) 14.4982 5.44519i 0.851363 0.319753i
\(291\) 30.2551 6.43093i 1.77359 0.376988i
\(292\) 0.478282 1.24597i 0.0279893 0.0729147i
\(293\) 7.80680 + 7.80680i 0.456078 + 0.456078i 0.897366 0.441288i \(-0.145478\pi\)
−0.441288 + 0.897366i \(0.645478\pi\)
\(294\) 21.0380 22.7459i 1.22696 1.32657i
\(295\) 9.28604 + 6.85000i 0.540654 + 0.398823i
\(296\) −1.79672 17.0946i −0.104432 0.993605i
\(297\) 14.6439 5.62128i 0.849727 0.326180i
\(298\) −0.905441 17.2768i −0.0524508 1.00082i
\(299\) −0.254733 + 0.441210i −0.0147316 + 0.0255158i
\(300\) −1.45848 + 8.41749i −0.0842055 + 0.485984i
\(301\) −23.0990 + 20.5205i −1.33141 + 1.18278i
\(302\) 15.3591 30.1439i 0.883817 1.73459i
\(303\) 24.9109 + 20.1725i 1.43109 + 1.15888i
\(304\) 27.0605 + 12.0481i 1.55203 + 0.691007i
\(305\) 13.8708 7.87490i 0.794238 0.450915i
\(306\) −9.85570 22.1363i −0.563413 1.26545i
\(307\) 8.14095 8.14095i 0.464628 0.464628i −0.435541 0.900169i \(-0.643443\pi\)
0.900169 + 0.435541i \(0.143443\pi\)
\(308\) −2.28864 6.08338i −0.130407 0.346632i
\(309\) −26.1655 8.50169i −1.48850 0.483644i
\(310\) −0.933573 + 2.38037i −0.0530234 + 0.135196i
\(311\) −21.3562 19.2292i −1.21100 1.09039i −0.993442 0.114339i \(-0.963525\pi\)
−0.217556 0.976048i \(-0.569808\pi\)
\(312\) −0.495655 0.321882i −0.0280610 0.0182230i
\(313\) 0.498133 9.50493i 0.0281561 0.537251i −0.947744 0.319032i \(-0.896642\pi\)
0.975900 0.218218i \(-0.0700245\pi\)
\(314\) 5.98554 + 18.4216i 0.337783 + 1.03959i
\(315\) −26.0125 4.49222i −1.46564 0.253108i
\(316\) −2.98662 + 9.19189i −0.168011 + 0.517084i
\(317\) 7.28729 + 2.79733i 0.409295 + 0.157114i 0.554299 0.832317i \(-0.312986\pi\)
−0.145004 + 0.989431i \(0.546320\pi\)
\(318\) −13.4728 + 50.2810i −0.755515 + 2.81962i
\(319\) 16.6965 + 1.75487i 0.934824 + 0.0982540i
\(320\) −8.05650 4.72955i −0.450372 0.264390i
\(321\) −1.81768 2.50182i −0.101453 0.139638i
\(322\) 19.9642 + 10.3410i 1.11256 + 0.576281i
\(323\) 18.2019 + 9.27431i 1.01278 + 0.516036i
\(324\) −1.34150 0.774516i −0.0745278 0.0430287i
\(325\) 0.167475 + 0.455920i 0.00928986 + 0.0252899i
\(326\) −11.7489 20.3497i −0.650711 1.12706i
\(327\) −6.70673 + 4.35540i −0.370883 + 0.240854i
\(328\) −0.288317 0.0456650i −0.0159197 0.00252143i
\(329\) −5.29417 4.83138i −0.291877 0.266362i
\(330\) −23.0762 + 31.2826i −1.27030 + 1.72205i
\(331\) 0.945325 0.420886i 0.0519597 0.0231340i −0.380592 0.924743i \(-0.624280\pi\)
0.432552 + 0.901609i \(0.357613\pi\)
\(332\) −6.53515 1.75109i −0.358663 0.0961035i
\(333\) 21.6715 + 26.7621i 1.18759 + 1.46655i
\(334\) −1.81366 2.01427i −0.0992388 0.110216i
\(335\) −1.23127 0.204167i −0.0672717 0.0111548i
\(336\) −17.7644 + 30.2991i −0.969125 + 1.65295i
\(337\) −1.66773 + 0.849753i −0.0908472 + 0.0462890i −0.498824 0.866703i \(-0.666235\pi\)
0.407977 + 0.912992i \(0.366235\pi\)
\(338\) −21.0202 1.10162i −1.14335 0.0599202i
\(339\) −8.53950 + 9.48407i −0.463802 + 0.515104i
\(340\) 3.91261 + 2.58136i 0.212191 + 0.139994i
\(341\) −2.05982 + 1.85467i −0.111545 + 0.100436i
\(342\) −43.5258 + 6.89381i −2.35361 + 0.372774i
\(343\) −18.2305 3.26350i −0.984352 0.176212i
\(344\) 15.2880 21.0421i 0.824272 1.13451i
\(345\) −3.11773 31.8828i −0.167853 1.71651i
\(346\) 0.185357 0.416319i 0.00996486 0.0223814i
\(347\) 0.712508 + 1.85615i 0.0382494 + 0.0996431i 0.951375 0.308036i \(-0.0996716\pi\)
−0.913125 + 0.407679i \(0.866338\pi\)
\(348\) 3.97762 + 6.12500i 0.213223 + 0.328335i
\(349\) 4.37015 0.233929 0.116964 0.993136i \(-0.462684\pi\)
0.116964 + 0.993136i \(0.462684\pi\)
\(350\) 19.7620 8.30190i 1.05632 0.443755i
\(351\) 0.387952 0.0207073
\(352\) 7.31587 + 11.2654i 0.389937 + 0.600450i
\(353\) 6.69256 + 17.4347i 0.356209 + 0.927957i 0.988226 + 0.153002i \(0.0488940\pi\)
−0.632017 + 0.774955i \(0.717773\pi\)
\(354\) −9.29042 + 20.8666i −0.493780 + 1.10905i
\(355\) −2.20903 0.486291i −0.117243 0.0258096i
\(356\) 0.368984 0.507863i 0.0195561 0.0269167i
\(357\) −13.3280 + 20.2260i −0.705393 + 1.07047i
\(358\) −20.9867 + 3.32396i −1.10918 + 0.175677i
\(359\) −12.4207 + 11.1836i −0.655539 + 0.590250i −0.928300 0.371832i \(-0.878730\pi\)
0.272761 + 0.962082i \(0.412063\pi\)
\(360\) 22.1988 1.00223i 1.16998 0.0528223i
\(361\) 12.1464 13.4899i 0.639282 0.709995i
\(362\) −37.2694 1.95321i −1.95884 0.102658i
\(363\) −10.7735 + 5.48937i −0.565462 + 0.288117i
\(364\) 0.00107477 0.160750i 5.63332e−5 0.00842560i
\(365\) 3.34925 + 3.39812i 0.175308 + 0.177866i
\(366\) 21.1264 + 23.4633i 1.10430 + 1.22644i
\(367\) −6.07938 7.50742i −0.317341 0.391884i 0.593368 0.804931i \(-0.297798\pi\)
−0.910710 + 0.413047i \(0.864464\pi\)
\(368\) −24.6188 6.59659i −1.28334 0.343871i
\(369\) 0.534260 0.237868i 0.0278125 0.0123829i
\(370\) −26.5307 8.83328i −1.37927 0.459221i
\(371\) 29.6563 9.41718i 1.53968 0.488916i
\(372\) −1.19091 0.188622i −0.0617459 0.00977959i
\(373\) −4.12458 + 2.67853i −0.213563 + 0.138689i −0.646988 0.762500i \(-0.723972\pi\)
0.433425 + 0.901190i \(0.357305\pi\)
\(374\) 10.6647 + 18.4717i 0.551456 + 0.955150i
\(375\) −25.2464 17.1863i −1.30372 0.887499i
\(376\) 5.22511 + 3.01672i 0.269465 + 0.155575i
\(377\) 0.369967 + 0.188508i 0.0190543 + 0.00970865i
\(378\) −0.781708 17.1030i −0.0402067 0.879686i
\(379\) 7.39900 + 10.1839i 0.380061 + 0.523109i 0.955601 0.294665i \(-0.0952079\pi\)
−0.575540 + 0.817774i \(0.695208\pi\)
\(380\) 6.37635 5.65821i 0.327100 0.290260i
\(381\) 44.9900 + 4.72864i 2.30491 + 0.242255i
\(382\) −1.69690 + 6.33292i −0.0868210 + 0.324020i
\(383\) −16.7403 6.42601i −0.855391 0.328354i −0.109146 0.994026i \(-0.534812\pi\)
−0.746245 + 0.665672i \(0.768145\pi\)
\(384\) 11.4883 35.3574i 0.586260 1.80432i
\(385\) 23.1852 + 1.53916i 1.18163 + 0.0784429i
\(386\) −1.53944 4.73792i −0.0783556 0.241154i
\(387\) −2.72712 + 52.0365i −0.138627 + 2.64516i
\(388\) −5.93974 3.85731i −0.301544 0.195825i
\(389\) −8.86329 7.98055i −0.449387 0.404630i 0.413119 0.910677i \(-0.364439\pi\)
−0.862506 + 0.506047i \(0.831106\pi\)
\(390\) −0.810099 + 0.517782i −0.0410209 + 0.0262189i
\(391\) −16.7170 5.43168i −0.845415 0.274692i
\(392\) 15.5785 0.607684i 0.786832 0.0306927i
\(393\) −0.777518 + 0.777518i −0.0392206 + 0.0392206i
\(394\) 8.31153 + 18.6680i 0.418729 + 0.940480i
\(395\) −25.5091 23.3052i −1.28350 1.17261i
\(396\) −10.0138 4.45844i −0.503213 0.224045i
\(397\) 29.1590 + 23.6125i 1.46345 + 1.18508i 0.943719 + 0.330750i \(0.107302\pi\)
0.519732 + 0.854329i \(0.326032\pi\)
\(398\) −3.19987 + 6.28010i −0.160395 + 0.314793i
\(399\) 29.2573 + 32.9337i 1.46470 + 1.64875i
\(400\) −19.8628 + 13.9962i −0.993141 + 0.699808i
\(401\) 0.106730 0.184861i 0.00532982 0.00923152i −0.863348 0.504609i \(-0.831637\pi\)
0.868678 + 0.495377i \(0.164970\pi\)
\(402\) −0.129298 2.46715i −0.00644879 0.123050i
\(403\) −0.0639999 + 0.0245673i −0.00318806 + 0.00122378i
\(404\) −0.767189 7.29932i −0.0381691 0.363155i
\(405\) 4.50363 3.22250i 0.223787 0.160127i
\(406\) 7.56499 16.6900i 0.375444 0.828313i
\(407\) −21.4341 21.4341i −1.06245 1.06245i
\(408\) 7.30726 19.0361i 0.361763 0.942426i
\(409\) 31.2443 6.64117i 1.54493 0.328385i 0.644918 0.764252i \(-0.276891\pi\)
0.900011 + 0.435867i \(0.143558\pi\)
\(410\) −0.261515 + 0.396383i −0.0129153 + 0.0195759i
\(411\) 7.19417 33.8459i 0.354862 1.66950i
\(412\) 2.85990 + 5.61287i 0.140897 + 0.276526i
\(413\) 13.4992 2.04565i 0.664255 0.100660i
\(414\) 36.0620 11.7173i 1.77235 0.575872i
\(415\) 15.3573 18.6864i 0.753862 0.917278i
\(416\) 0.0690729 + 0.324962i 0.00338658 + 0.0159326i
\(417\) −30.5447 + 24.7346i −1.49578 + 1.21126i
\(418\) 37.4691 10.0398i 1.83267 0.491063i
\(419\) −8.57555 6.23050i −0.418943 0.304380i 0.358269 0.933618i \(-0.383367\pi\)
−0.777212 + 0.629238i \(0.783367\pi\)
\(420\) 5.82692 + 8.25959i 0.284325 + 0.403027i
\(421\) 7.12732 5.17830i 0.347364 0.252375i −0.400398 0.916341i \(-0.631128\pi\)
0.747762 + 0.663966i \(0.231128\pi\)
\(422\) −6.79723 + 8.39388i −0.330884 + 0.408608i
\(423\) −12.0710 + 0.632612i −0.586910 + 0.0307586i
\(424\) −22.6839 + 13.0965i −1.10163 + 0.636024i
\(425\) −14.1848 + 8.92230i −0.688064 + 0.432795i
\(426\) 4.47737i 0.216929i
\(427\) 5.00637 18.1965i 0.242275 0.880591i
\(428\) −0.110767 + 0.699356i −0.00535413 + 0.0338047i
\(429\) −1.03652 + 0.108943i −0.0500436 + 0.00525980i
\(430\) −20.8900 36.7955i −1.00741 1.77444i
\(431\) −0.640581 + 6.09472i −0.0308557 + 0.293572i 0.968202 + 0.250170i \(0.0804864\pi\)
−0.999058 + 0.0434025i \(0.986180\pi\)
\(432\) 5.02322 + 18.7469i 0.241680 + 0.901961i
\(433\) 5.58866 + 35.2854i 0.268574 + 1.69571i 0.640913 + 0.767613i \(0.278556\pi\)
−0.372339 + 0.928097i \(0.621444\pi\)
\(434\) 1.21202 + 2.77197i 0.0581787 + 0.133059i
\(435\) −25.8165 + 3.89749i −1.23781 + 0.186870i
\(436\) 1.79104 + 0.380697i 0.0857751 + 0.0182321i
\(437\) −17.4106 + 26.8100i −0.832861 + 1.28249i
\(438\) −5.14383 + 7.92080i −0.245782 + 0.378470i
\(439\) −25.5065 5.42157i −1.21736 0.258757i −0.445926 0.895070i \(-0.647126\pi\)
−0.771431 + 0.636312i \(0.780459\pi\)
\(440\) −19.3411 + 2.91990i −0.922049 + 0.139201i
\(441\) −25.5120 + 18.0194i −1.21486 + 0.858064i
\(442\) 0.0825241 + 0.521037i 0.00392527 + 0.0247832i
\(443\) −8.76626 32.7161i −0.416498 1.55439i −0.781817 0.623508i \(-0.785707\pi\)
0.365319 0.930882i \(-0.380960\pi\)
\(444\) 1.37835 13.1141i 0.0654135 0.622368i
\(445\) 1.10801 + 1.95163i 0.0525245 + 0.0925160i
\(446\) 24.8335 2.61010i 1.17590 0.123592i
\(447\) −4.56264 + 28.8074i −0.215805 + 1.36254i
\(448\) −10.6960 + 2.78948i −0.505340 + 0.131791i
\(449\) 17.8247i 0.841199i 0.907246 + 0.420600i \(0.138180\pi\)
−0.907246 + 0.420600i \(0.861820\pi\)
\(450\) 13.4423 33.5573i 0.633677 1.58191i
\(451\) −0.445816 + 0.257392i −0.0209927 + 0.0121201i
\(452\) 2.91814 0.152933i 0.137258 0.00719338i
\(453\) −35.8934 + 44.3247i −1.68642 + 2.08255i
\(454\) −17.3691 + 12.6194i −0.815173 + 0.592258i
\(455\) 0.521704 + 0.241039i 0.0244579 + 0.0113001i
\(456\) −30.0010 21.7970i −1.40493 1.02074i
\(457\) 8.24133 2.20826i 0.385513 0.103298i −0.0608568 0.998147i \(-0.519383\pi\)
0.446370 + 0.894849i \(0.352717\pi\)
\(458\) 5.22289 4.22941i 0.244050 0.197627i
\(459\) 2.78288 + 13.0924i 0.129893 + 0.611101i
\(460\) −4.65727 + 5.66684i −0.217146 + 0.264218i
\(461\) 25.2246 8.19596i 1.17483 0.381724i 0.344384 0.938829i \(-0.388088\pi\)
0.830442 + 0.557105i \(0.188088\pi\)
\(462\) 6.89134 + 45.4760i 0.320614 + 2.11573i
\(463\) −10.3899 20.3912i −0.482857 0.947661i −0.996000 0.0893575i \(-0.971519\pi\)
0.513142 0.858304i \(-0.328481\pi\)
\(464\) −4.31887 + 20.3187i −0.200498 + 0.943271i
\(465\) 2.37383 3.59806i 0.110084 0.166856i
\(466\) 40.8410 8.68102i 1.89192 0.402140i
\(467\) 3.19548 8.32450i 0.147869 0.385212i −0.839562 0.543264i \(-0.817188\pi\)
0.987431 + 0.158052i \(0.0505215\pi\)
\(468\) −0.191702 0.191702i −0.00886142 0.00886142i
\(469\) −1.20050 + 0.860009i −0.0554338 + 0.0397115i
\(470\) 7.98219 5.71154i 0.368191 0.263453i
\(471\) −3.41334 32.4757i −0.157278 1.49640i
\(472\) −10.7300 + 4.11886i −0.493888 + 0.189586i
\(473\) −2.40053 45.8047i −0.110376 2.10610i
\(474\) 34.1972 59.2314i 1.57073 2.72059i
\(475\) 8.99691 + 29.1182i 0.412807 + 1.33603i
\(476\) 5.43263 1.11683i 0.249004 0.0511899i
\(477\) 23.8235 46.7562i 1.09080 2.14082i
\(478\) −0.819472 0.663596i −0.0374818 0.0303522i
\(479\) −2.18656 0.973518i −0.0999064 0.0444812i 0.356175 0.934419i \(-0.384081\pi\)
−0.456081 + 0.889938i \(0.650747\pi\)
\(480\) −15.4226 14.0902i −0.703943 0.643126i
\(481\) −0.304934 0.684892i −0.0139038 0.0312284i
\(482\) −1.31543 + 1.31543i −0.0599161 + 0.0599161i
\(483\) −29.2970 24.0503i −1.33306 1.09433i
\(484\) 2.63308 + 0.855538i 0.119685 + 0.0388881i
\(485\) 21.3339 13.6357i 0.968722 0.619167i
\(486\) 22.5731 + 20.3249i 1.02394 + 0.921957i
\(487\) −4.06415 2.63929i −0.184164 0.119598i 0.449264 0.893399i \(-0.351686\pi\)
−0.633428 + 0.773801i \(0.718353\pi\)
\(488\) −0.831460 + 15.8652i −0.0376384 + 0.718184i
\(489\) 12.2414 + 37.6753i 0.553577 + 1.70374i
\(490\) 9.57513 23.4853i 0.432560 1.06096i
\(491\) −9.20020 + 28.3153i −0.415199 + 1.27785i 0.496874 + 0.867823i \(0.334481\pi\)
−0.912073 + 0.410029i \(0.865519\pi\)
\(492\) −0.209065 0.0802525i −0.00942537 0.00361806i
\(493\) −3.70780 + 13.8377i −0.166991 + 0.623218i
\(494\) 0.954148 + 0.100285i 0.0429291 + 0.00451203i
\(495\) 29.3110 26.0099i 1.31743 1.16906i
\(496\) −2.01583 2.77456i −0.0905136 0.124581i
\(497\) −2.25426 + 1.44260i −0.101117 + 0.0647094i
\(498\) 42.6595 + 21.7361i 1.91162 + 0.974018i
\(499\) −33.6862 19.4488i −1.50800 0.870646i −0.999957 0.00931623i \(-0.997035\pi\)
−0.508046 0.861330i \(-0.669632\pi\)
\(500\) 1.30498 + 6.87016i 0.0583603 + 0.307243i
\(501\) 2.28474 + 3.95729i 0.102075 + 0.176799i
\(502\) −18.8200 + 12.2218i −0.839977 + 0.545488i
\(503\) 37.4880 + 5.93752i 1.67151 + 0.264741i 0.919120 0.393979i \(-0.128902\pi\)
0.752389 + 0.658719i \(0.228902\pi\)
\(504\) 17.7235 19.4212i 0.789467 0.865090i
\(505\) 24.8952 + 8.28877i 1.10782 + 0.368845i
\(506\) −30.4914 + 13.5756i −1.35551 + 0.603510i
\(507\) 34.2767 + 9.18442i 1.52228 + 0.407894i
\(508\) −6.51859 8.04979i −0.289216 0.357152i
\(509\) −6.94597 7.71429i −0.307875 0.341930i 0.569274 0.822148i \(-0.307224\pi\)
−0.877149 + 0.480218i \(0.840558\pi\)
\(510\) −23.2849 23.6246i −1.03107 1.04612i
\(511\) 5.64528 + 0.0377441i 0.249733 + 0.00166970i
\(512\) 4.47894 2.28214i 0.197943 0.100857i
\(513\) 24.3093 + 1.27400i 1.07328 + 0.0562483i
\(514\) 0.395345 0.439075i 0.0174379 0.0193668i
\(515\) −22.4977 + 1.01573i −0.991368 + 0.0447583i
\(516\) 14.8280 13.3512i 0.652768 0.587755i
\(517\) 10.5090 1.66446i 0.462184 0.0732027i
\(518\) −29.5794 + 14.8232i −1.29964 + 0.651293i
\(519\) −0.451584 + 0.621552i −0.0198223 + 0.0272831i
\(520\) −0.472465 0.104008i −0.0207190 0.00456103i
\(521\) −4.89041 + 10.9840i −0.214253 + 0.481219i −0.988416 0.151766i \(-0.951504\pi\)
0.774164 + 0.632985i \(0.218171\pi\)
\(522\) −11.0749 28.8512i −0.484737 1.26278i
\(523\) −13.0588 20.1088i −0.571023 0.879298i 0.428685 0.903454i \(-0.358977\pi\)
−0.999708 + 0.0241556i \(0.992310\pi\)
\(524\) 0.251771 0.0109987
\(525\) −35.4980 + 6.76326i −1.54926 + 0.295173i
\(526\) −48.2012 −2.10167
\(527\) −1.28817 1.98361i −0.0561136 0.0864074i
\(528\) −18.6853 48.6769i −0.813175 2.11839i
\(529\) 1.83261 4.11611i 0.0796787 0.178961i
\(530\) 4.14699 + 42.4083i 0.180134 + 1.84210i
\(531\) 13.5344 18.6285i 0.587342 0.808407i
\(532\) 0.595233 10.0692i 0.0258066 0.436554i
\(533\) −0.0125753 + 0.00199173i −0.000544695 + 8.62712e-5i
\(534\) −3.30130 + 2.97251i −0.142861 + 0.128633i
\(535\) −2.11294 1.39402i −0.0913505 0.0602688i
\(536\) 0.831817 0.923827i 0.0359290 0.0399032i
\(537\) 35.7727 + 1.87477i 1.54370 + 0.0809021i
\(538\) 29.9216 15.2458i 1.29001 0.657294i
\(539\) 20.6758 18.1219i 0.890570 0.780565i
\(540\) 5.51033 + 0.913707i 0.237127 + 0.0393197i
\(541\) −12.8091 14.2259i −0.550705 0.611620i 0.401954 0.915660i \(-0.368331\pi\)
−0.952659 + 0.304040i \(0.901664\pi\)
\(542\) −5.71693 7.05982i −0.245563 0.303245i
\(543\) 60.7737 + 16.2843i 2.60805 + 0.698825i
\(544\) −10.4712 + 4.66208i −0.448949 + 0.199885i
\(545\) −3.88590 + 5.26783i −0.166454 + 0.225649i
\(546\) −0.243952 + 1.11112i −0.0104402 + 0.0475516i
\(547\) −12.3236 1.95187i −0.526919 0.0834558i −0.112693 0.993630i \(-0.535948\pi\)
−0.414226 + 0.910174i \(0.635948\pi\)
\(548\) −6.64468 + 4.31510i −0.283847 + 0.184332i
\(549\) −15.9141 27.5641i −0.679199 1.17641i
\(550\) −8.68006 + 30.6136i −0.370119 + 1.30537i
\(551\) 22.5633 + 13.0269i 0.961230 + 0.554967i
\(552\) 28.4300 + 14.4858i 1.21006 + 0.616556i
\(553\) −40.8400 + 1.86663i −1.73669 + 0.0793770i
\(554\) 5.63005 + 7.74910i 0.239198 + 0.329228i
\(555\) 40.6537 + 23.8657i 1.72565 + 1.01304i
\(556\) 8.95012 + 0.940695i 0.379570 + 0.0398944i
\(557\) −5.89390 + 21.9963i −0.249732 + 0.932014i 0.721213 + 0.692713i \(0.243585\pi\)
−0.970946 + 0.239301i \(0.923082\pi\)
\(558\) 4.76331 + 1.82846i 0.201647 + 0.0774050i
\(559\) 0.350558 1.07891i 0.0148270 0.0456329i
\(560\) −4.89264 + 28.3312i −0.206752 + 1.19721i
\(561\) −11.1118 34.1985i −0.469139 1.44386i
\(562\) 0.725488 13.8431i 0.0306029 0.583937i
\(563\) −24.4754 15.8945i −1.03152 0.669874i −0.0862825 0.996271i \(-0.527499\pi\)
−0.945233 + 0.326397i \(0.894165\pi\)
\(564\) 3.43967 + 3.09710i 0.144836 + 0.130411i
\(565\) −3.81430 + 9.72546i −0.160469 + 0.409153i
\(566\) 23.2549 + 7.55597i 0.977476 + 0.317601i
\(567\) 1.06827 6.46474i 0.0448631 0.271494i
\(568\) 1.59307 1.59307i 0.0668436 0.0668436i
\(569\) 0.645950 + 1.45083i 0.0270796 + 0.0608218i 0.926579 0.376100i \(-0.122735\pi\)
−0.899499 + 0.436922i \(0.856069\pi\)
\(570\) −52.4616 + 29.7842i −2.19737 + 1.24752i
\(571\) 3.28341 + 1.46187i 0.137406 + 0.0611773i 0.474288 0.880370i \(-0.342706\pi\)
−0.336882 + 0.941547i \(0.609372\pi\)
\(572\) 0.185458 + 0.150181i 0.00775441 + 0.00627940i
\(573\) 5.01800 9.84838i 0.209630 0.411422i
\(574\) 0.113145 + 0.550374i 0.00472258 + 0.0229722i
\(575\) −11.5653 23.5348i −0.482305 0.981468i
\(576\) −9.32098 + 16.1444i −0.388374 + 0.672683i
\(577\) −1.16904 22.3066i −0.0486677 0.928634i −0.908455 0.417982i \(-0.862737\pi\)
0.859788 0.510652i \(-0.170596\pi\)
\(578\) 8.72433 3.34896i 0.362884 0.139298i
\(579\) 0.877889 + 8.35256i 0.0364838 + 0.347121i
\(580\) 4.81091 + 3.54885i 0.199762 + 0.147358i
\(581\) −2.80113 28.4815i −0.116210 1.18161i
\(582\) 35.4392 + 35.4392i 1.46900 + 1.46900i
\(583\) −16.5535 + 43.1234i −0.685577 + 1.78599i
\(584\) −4.64845 + 0.988058i −0.192354 + 0.0408861i
\(585\) 0.907327 0.340772i 0.0375134 0.0140892i
\(586\) −3.71938 + 17.4983i −0.153646 + 0.722848i
\(587\) −19.7026 38.6684i −0.813211 1.59602i −0.802933 0.596070i \(-0.796728\pi\)
−0.0102788 0.999947i \(-0.503272\pi\)
\(588\) 11.7868 + 2.02875i 0.486078 + 0.0836644i
\(589\) −4.09095 + 1.32923i −0.168565 + 0.0547699i
\(590\) −1.11374 + 18.6641i −0.0458521 + 0.768390i
\(591\) −7.16259 33.6973i −0.294630 1.38612i
\(592\) 29.1476 23.6033i 1.19796 0.970088i
\(593\) −12.4912 + 3.34701i −0.512953 + 0.137445i −0.506005 0.862531i \(-0.668878\pi\)
−0.00694789 + 0.999976i \(0.502212\pi\)
\(594\) 20.5621 + 14.9392i 0.843673 + 0.612964i
\(595\) −4.39216 + 19.3352i −0.180061 + 0.792668i
\(596\) 5.40284 3.92539i 0.221309 0.160790i
\(597\) 7.47793 9.23448i 0.306051 0.377942i
\(598\) −0.824371 + 0.0432035i −0.0337110 + 0.00176672i
\(599\) 19.9444 11.5149i 0.814905 0.470485i −0.0337516 0.999430i \(-0.510745\pi\)
0.848656 + 0.528945i \(0.177412\pi\)
\(600\) 27.9661 11.9690i 1.14171 0.488632i
\(601\) 14.0409i 0.572740i −0.958119 0.286370i \(-0.907551\pi\)
0.958119 0.286370i \(-0.0924486\pi\)
\(602\) −48.2705 13.2806i −1.96736 0.541276i
\(603\) −0.389602 + 2.45985i −0.0158658 + 0.100173i
\(604\) 12.9879 1.36508i 0.528469 0.0555443i
\(605\) −6.67594 + 7.30725i −0.271416 + 0.297082i
\(606\) −5.42907 + 51.6542i −0.220541 + 2.09831i
\(607\) 10.2468 + 38.2415i 0.415904 + 1.55218i 0.783017 + 0.622000i \(0.213680\pi\)
−0.367113 + 0.930176i \(0.619654\pi\)
\(608\) 3.26100 + 20.5892i 0.132251 + 0.835001i
\(609\) −18.3249 + 24.8707i −0.742564 + 1.00781i
\(610\) 22.9423 + 11.8997i 0.928906 + 0.481807i
\(611\) 0.257404 + 0.0547130i 0.0104135 + 0.00221345i
\(612\) 5.09433 7.84459i 0.205926 0.317099i
\(613\) 2.11361 3.25467i 0.0853679 0.131455i −0.793407 0.608691i \(-0.791695\pi\)
0.878775 + 0.477236i \(0.158361\pi\)
\(614\) 18.2473 + 3.87858i 0.736400 + 0.156527i
\(615\) 0.570182 0.561982i 0.0229920 0.0226613i
\(616\) −13.7286 + 18.6325i −0.553140 + 0.750725i
\(617\) −4.36290 27.5463i −0.175644 1.10897i −0.905180 0.425029i \(-0.860264\pi\)
0.729536 0.683943i \(-0.239736\pi\)
\(618\) −11.5378 43.0597i −0.464118 1.73211i
\(619\) −2.82187 + 26.8483i −0.113421 + 1.07913i 0.778721 + 0.627370i \(0.215869\pi\)
−0.892142 + 0.451755i \(0.850798\pi\)
\(620\) −0.966893 + 0.198211i −0.0388313 + 0.00796036i
\(621\) −20.8305 + 2.18937i −0.835898 + 0.0878564i
\(622\) 7.28427 45.9911i 0.292073 1.84408i
\(623\) 2.56027 + 0.704401i 0.102575 + 0.0282212i
\(624\) 1.28957i 0.0516239i
\(625\) −24.2929 5.90393i −0.971715 0.236157i
\(626\) 13.3561 7.71114i 0.533816 0.308199i
\(627\) −65.3067 + 3.42258i −2.60810 + 0.136685i
\(628\) −4.70541 + 5.81069i −0.187766 + 0.231872i
\(629\) 20.9260 15.2037i 0.834376 0.606209i
\(630\) −16.8513 39.3134i −0.671373 1.56628i
\(631\) 8.70119 + 6.32178i 0.346389 + 0.251666i 0.747353 0.664428i \(-0.231325\pi\)
−0.400964 + 0.916094i \(0.631325\pi\)
\(632\) 33.2423 8.90724i 1.32231 0.354311i
\(633\) 14.1510 11.4592i 0.562451 0.455464i
\(634\) 2.62964 + 12.3715i 0.104436 + 0.491335i
\(635\) 35.8371 9.32488i 1.42215 0.370047i
\(636\) −19.1105 + 6.20937i −0.757780 + 0.246217i
\(637\) 0.638026 0.235176i 0.0252795 0.00931801i
\(638\) 12.3498 + 24.2379i 0.488935 + 0.959589i
\(639\) −0.938426 + 4.41495i −0.0371236 + 0.174653i
\(640\) −1.37255 30.4011i −0.0542548 1.20171i
\(641\) −29.4673 + 6.26346i −1.16389 + 0.247392i −0.749056 0.662506i \(-0.769493\pi\)
−0.414831 + 0.909898i \(0.636159\pi\)
\(642\) 1.79569 4.67792i 0.0708701 0.184623i
\(643\) −20.4056 20.4056i −0.804720 0.804720i 0.179110 0.983829i \(-0.442678\pi\)
−0.983829 + 0.179110i \(0.942678\pi\)
\(644\) 0.849471 + 8.63730i 0.0334739 + 0.340357i
\(645\) 21.5510 + 67.9990i 0.848570 + 2.67746i
\(646\) 3.45998 + 32.9195i 0.136131 + 1.29520i
\(647\) −17.8718 + 6.86034i −0.702613 + 0.269708i −0.683334 0.730106i \(-0.739471\pi\)
−0.0192794 + 0.999814i \(0.506137\pi\)
\(648\) 0.288675 + 5.50825i 0.0113402 + 0.216384i
\(649\) −10.1343 + 17.5531i −0.397805 + 0.689019i
\(650\) −0.471764 + 0.629933i −0.0185041 + 0.0247080i
\(651\) −1.02704 4.99588i −0.0402531 0.195804i
\(652\) 4.11792 8.08188i 0.161270 0.316511i
\(653\) 9.38043 + 7.59612i 0.367084 + 0.297259i 0.795060 0.606531i \(-0.207440\pi\)
−0.427975 + 0.903791i \(0.640773\pi\)
\(654\) −11.8373 5.27031i −0.462876 0.206086i
\(655\) −0.372043 + 0.819595i −0.0145369 + 0.0320242i
\(656\) −0.259071 0.581883i −0.0101150 0.0227187i
\(657\) 6.73225 6.73225i 0.262650 0.262650i
\(658\) 1.89339 11.4580i 0.0738120 0.446681i
\(659\) 15.5052 + 5.03793i 0.603995 + 0.196250i 0.595022 0.803710i \(-0.297144\pi\)
0.00897383 + 0.999960i \(0.497144\pi\)
\(660\) −14.9789 0.893839i −0.583054 0.0347926i
\(661\) 10.4225 + 9.38450i 0.405390 + 0.365015i 0.846455 0.532460i \(-0.178732\pi\)
−0.441065 + 0.897475i \(0.645399\pi\)
\(662\) 1.40620 + 0.913195i 0.0546534 + 0.0354923i
\(663\) 0.0465449 0.888130i 0.00180766 0.0344921i
\(664\) 7.44463 + 22.9122i 0.288908 + 0.889166i
\(665\) 31.8987 + 16.8169i 1.23698 + 0.652131i
\(666\) −17.2426 + 53.0674i −0.668138 + 2.05632i
\(667\) −20.9287 8.03376i −0.810361 0.311069i
\(668\) 0.270798 1.01063i 0.0104775 0.0391025i
\(669\) −41.8660 4.40029i −1.61863 0.170125i
\(670\) −0.809148 1.85338i −0.0312601 0.0716025i
\(671\) 16.4678 + 22.6659i 0.635731 + 0.875008i
\(672\) −24.6916 + 1.12855i −0.952498 + 0.0435347i
\(673\) −0.252552 0.128682i −0.00973515 0.00496031i 0.449116 0.893473i \(-0.351739\pi\)
−0.458851 + 0.888513i \(0.651739\pi\)
\(674\) −2.62652 1.51642i −0.101170 0.0584103i
\(675\) −11.1170 + 16.5876i −0.427894 + 0.638459i
\(676\) −4.06262 7.03667i −0.156255 0.270641i
\(677\) −28.0912 + 18.2427i −1.07963 + 0.701123i −0.956637 0.291284i \(-0.905917\pi\)
−0.122998 + 0.992407i \(0.539251\pi\)
\(678\) −20.4242 3.23488i −0.784387 0.124235i
\(679\) 6.42445 29.2613i 0.246548 1.12295i
\(680\) 0.120883 16.6906i 0.00463566 0.640055i
\(681\) 33.0654 14.7217i 1.26707 0.564136i
\(682\) −4.33814 1.16240i −0.166116 0.0445106i
\(683\) −14.2385 17.5831i −0.544821 0.672798i 0.428155 0.903706i \(-0.359164\pi\)
−0.972976 + 0.230907i \(0.925831\pi\)
\(684\) −11.3826 12.6417i −0.435225 0.483367i
\(685\) −4.22817 28.0069i −0.161550 1.07009i
\(686\) −11.6535 27.6538i −0.444931 1.05583i
\(687\) −10.0951 + 5.14374i −0.385154 + 0.196246i
\(688\) 56.6749 + 2.97020i 2.16071 + 0.113238i
\(689\) −0.764441 + 0.848997i −0.0291229 + 0.0323442i
\(690\) 40.5750 32.3732i 1.54466 1.23243i
\(691\) 21.1493 19.0429i 0.804557 0.724427i −0.160338 0.987062i \(-0.551258\pi\)
0.964895 + 0.262636i \(0.0845917\pi\)
\(692\) 0.173748 0.0275190i 0.00660492 0.00104612i
\(693\) 2.73619 46.2863i 0.103939 1.75827i
\(694\) −1.89358 + 2.60628i −0.0718792 + 0.0989332i
\(695\) −16.2879 + 27.7454i −0.617833 + 1.05244i
\(696\) 10.5773 23.7571i 0.400933 0.900511i
\(697\) −0.157421 0.410097i −0.00596276 0.0155335i
\(698\) 3.85664 + 5.93870i 0.145976 + 0.224783i
\(699\) −70.3907 −2.66242
\(700\) 6.84240 + 4.65236i 0.258618 + 0.175843i
\(701\) 29.7376 1.12317 0.561587 0.827418i \(-0.310191\pi\)
0.561587 + 0.827418i \(0.310191\pi\)
\(702\) 0.342366 + 0.527197i 0.0129218 + 0.0198978i
\(703\) −16.8582 43.9171i −0.635819 1.65637i
\(704\) 6.67433 14.9908i 0.251548 0.564986i
\(705\) −15.1648 + 6.62063i −0.571140 + 0.249347i
\(706\) −17.7863 + 24.4807i −0.669396 + 0.921345i
\(707\) 27.7560 13.9094i 1.04387 0.523118i
\(708\) −8.70856 + 1.37930i −0.327288 + 0.0518373i
\(709\) −6.43362 + 5.79286i −0.241620 + 0.217555i −0.781039 0.624482i \(-0.785310\pi\)
0.539420 + 0.842037i \(0.318644\pi\)
\(710\) −1.28862 3.43105i −0.0483612 0.128765i
\(711\) −46.1349 + 51.2380i −1.73020 + 1.92158i
\(712\) −2.23225 0.116987i −0.0836570 0.00438428i
\(713\) 3.29773 1.68028i 0.123501 0.0629269i
\(714\) −39.2475 0.262407i −1.46880 0.00982033i
\(715\) −0.762939 + 0.381802i −0.0285323 + 0.0142786i
\(716\) −5.48831 6.09539i −0.205108 0.227795i
\(717\) 1.11873 + 1.38152i 0.0417799 + 0.0515939i
\(718\) −26.1589 7.00926i −0.976242 0.261583i
\(719\) −24.7026 + 10.9983i −0.921251 + 0.410167i −0.811874 0.583833i \(-0.801552\pi\)
−0.109377 + 0.994000i \(0.534886\pi\)
\(720\) 28.2152 + 39.4323i 1.05152 + 1.46955i
\(721\) −17.9622 + 19.6828i −0.668946 + 0.733024i
\(722\) 29.0509 + 4.60121i 1.08116 + 0.171239i
\(723\) 2.63025 1.70811i 0.0978201 0.0635251i
\(724\) −7.20316 12.4762i −0.267703 0.463676i
\(725\) −18.6617 + 10.4169i −0.693078 + 0.386873i
\(726\) −16.9672 9.79602i −0.629712 0.363565i
\(727\) 15.5218 + 7.90873i 0.575670 + 0.293318i 0.717484 0.696575i \(-0.245294\pi\)
−0.141814 + 0.989893i \(0.545294\pi\)
\(728\) −0.482140 + 0.308542i −0.0178693 + 0.0114353i
\(729\) −25.7325 35.4177i −0.953055 1.31177i
\(730\) −1.66209 + 7.55021i −0.0615166 + 0.279446i
\(731\) 38.9251 + 4.09119i 1.43970 + 0.151318i
\(732\) −3.15439 + 11.7724i −0.116590 + 0.435119i
\(733\) 42.8618 + 16.4531i 1.58314 + 0.607709i 0.981568 0.191113i \(-0.0612098\pi\)
0.601567 + 0.798822i \(0.294543\pi\)
\(734\) 4.83698 14.8867i 0.178536 0.549477i
\(735\) −24.0215 + 35.3717i −0.886047 + 1.30470i
\(736\) −5.54266 17.0586i −0.204305 0.628787i
\(737\) 0.114734 2.18925i 0.00422628 0.0806422i
\(738\) 0.794727 + 0.516102i 0.0292543 + 0.0189980i
\(739\) −18.2915 16.4697i −0.672864 0.605849i 0.260202 0.965554i \(-0.416211\pi\)
−0.933066 + 0.359705i \(0.882877\pi\)
\(740\) −2.71810 10.4461i −0.0999195 0.384008i
\(741\) −1.53827 0.499813i −0.0565096 0.0183611i
\(742\) 38.9688 + 31.9901i 1.43059 + 1.17439i
\(743\) −10.2323 + 10.2323i −0.375388 + 0.375388i −0.869435 0.494047i \(-0.835517\pi\)
0.494047 + 0.869435i \(0.335517\pi\)
\(744\) 1.74631 + 3.92228i 0.0640229 + 0.143798i
\(745\) 4.79460 + 23.3885i 0.175661 + 0.856888i
\(746\) −7.27985 3.24120i −0.266534 0.118669i
\(747\) −37.5090 30.3742i −1.37238 1.11133i
\(748\) −3.73790 + 7.33605i −0.136671 + 0.268233i
\(749\) −2.93380 + 0.603126i −0.107199 + 0.0220377i
\(750\) 1.07513 49.4748i 0.0392581 1.80656i
\(751\) 5.60583 9.70959i 0.204560 0.354308i −0.745433 0.666581i \(-0.767757\pi\)
0.949992 + 0.312273i \(0.101090\pi\)
\(752\) 0.689001 + 13.1469i 0.0251253 + 0.479419i
\(753\) 35.3186 13.5575i 1.28708 0.494064i
\(754\) 0.0703268 + 0.669115i 0.00256115 + 0.0243677i
\(755\) −14.7484 + 44.2968i −0.536750 + 1.61212i
\(756\) 5.37259 3.84880i 0.195399 0.139979i
\(757\) −34.2009 34.2009i −1.24305 1.24305i −0.958728 0.284326i \(-0.908230\pi\)
−0.284326 0.958728i \(-0.591770\pi\)
\(758\) −7.30949 + 19.0419i −0.265493 + 0.691632i
\(759\) 55.0395 11.6990i 1.99781 0.424647i
\(760\) −29.2634 8.06870i −1.06149 0.292683i
\(761\) −3.57175 + 16.8038i −0.129476 + 0.609135i 0.864784 + 0.502144i \(0.167455\pi\)
−0.994260 + 0.106992i \(0.965878\pi\)
\(762\) 33.2776 + 65.3109i 1.20552 + 2.36597i
\(763\) 1.16047 + 7.65792i 0.0420117 + 0.277235i
\(764\) −2.40697 + 0.782073i −0.0870812 + 0.0282944i
\(765\) 18.0087 + 28.1756i 0.651105 + 1.01869i
\(766\) −6.04081 28.4198i −0.218263