Properties

Label 175.2.x.a.108.6
Level $175$
Weight $2$
Character 175.108
Analytic conductor $1.397$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(3,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([21, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.x (of order \(60\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 108.6
Character \(\chi\) \(=\) 175.108
Dual form 175.2.x.a.47.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0729528 - 1.39202i) q^{2} +(2.18898 + 1.77260i) q^{3} +(0.0566371 - 0.00595280i) q^{4} +(-0.287895 - 2.21746i) q^{5} +(2.30781 - 3.17642i) q^{6} +(-2.62738 + 0.311259i) q^{7} +(-0.448537 - 2.83195i) q^{8} +(1.02578 + 4.82592i) q^{9} +O(q^{10})\) \(q+(-0.0729528 - 1.39202i) q^{2} +(2.18898 + 1.77260i) q^{3} +(0.0566371 - 0.00595280i) q^{4} +(-0.287895 - 2.21746i) q^{5} +(2.30781 - 3.17642i) q^{6} +(-2.62738 + 0.311259i) q^{7} +(-0.448537 - 2.83195i) q^{8} +(1.02578 + 4.82592i) q^{9} +(-3.06575 + 0.562526i) q^{10} +(1.26199 + 0.268244i) q^{11} +(0.134529 + 0.0873643i) q^{12} +(1.23533 + 2.42447i) q^{13} +(0.624954 + 3.63466i) q^{14} +(3.30047 - 5.36429i) q^{15} +(-3.79801 + 0.807292i) q^{16} +(1.66528 + 0.639239i) q^{17} +(6.64296 - 1.77998i) q^{18} +(-0.525199 + 4.99693i) q^{19} +(-0.0295056 - 0.123876i) q^{20} +(-6.30301 - 3.97595i) q^{21} +(0.281336 - 1.77628i) q^{22} +(-7.99926 + 0.419223i) q^{23} +(4.03808 - 6.99415i) q^{24} +(-4.83423 + 1.27679i) q^{25} +(3.28479 - 1.89648i) q^{26} +(-2.47276 + 4.85307i) q^{27} +(-0.146954 + 0.0332690i) q^{28} +(0.927279 + 1.27629i) q^{29} +(-7.70799 - 4.20299i) q^{30} +(-3.58774 - 8.05820i) q^{31} +(-0.0833536 - 0.311080i) q^{32} +(2.28697 + 2.82418i) q^{33} +(0.768350 - 2.36474i) q^{34} +(1.44661 + 5.73649i) q^{35} +(0.0868249 + 0.267220i) q^{36} +(-1.62445 + 2.50144i) q^{37} +(6.99416 + 0.366549i) q^{38} +(-1.59350 + 7.49685i) q^{39} +(-6.15060 + 1.80991i) q^{40} +(11.6529 + 3.78627i) q^{41} +(-5.07479 + 9.06399i) q^{42} +(-4.19548 - 4.19548i) q^{43} +(0.0730720 + 0.00768018i) q^{44} +(10.4060 - 3.66398i) q^{45} +(1.16714 + 11.1046i) q^{46} +(-2.18114 - 5.68207i) q^{47} +(-9.74476 - 4.96520i) q^{48} +(6.80624 - 1.63559i) q^{49} +(2.12999 + 6.63622i) q^{50} +(2.51214 + 4.35115i) q^{51} +(0.0843977 + 0.129961i) q^{52} +(-2.51335 + 3.10373i) q^{53} +(6.93598 + 3.08810i) q^{54} +(0.231499 - 2.87563i) q^{55} +(2.05995 + 7.30099i) q^{56} +(-10.0072 + 10.0072i) q^{57} +(1.70898 - 1.38390i) q^{58} +(-2.98267 - 3.31260i) q^{59} +(0.154996 - 0.323464i) q^{60} +(6.76054 + 6.08722i) q^{61} +(-10.9555 + 5.58209i) q^{62} +(-4.19722 - 12.3602i) q^{63} +(-7.81259 + 2.53846i) q^{64} +(5.02051 - 3.43728i) q^{65} +(3.76448 - 3.38955i) q^{66} +(1.57927 - 4.11413i) q^{67} +(0.0981216 + 0.0262916i) q^{68} +(-18.2533 - 13.2618i) q^{69} +(7.87979 - 2.43221i) q^{70} +(6.77041 - 4.91899i) q^{71} +(13.2067 - 5.06956i) q^{72} +(-3.04851 + 1.97972i) q^{73} +(3.60057 + 2.07879i) q^{74} +(-12.8453 - 5.77430i) q^{75} +0.286138i q^{76} +(-3.39921 - 0.311973i) q^{77} +(10.5520 + 1.67128i) q^{78} +(-1.50732 + 3.38549i) q^{79} +(2.88356 + 8.18951i) q^{80} +(-0.493795 + 0.219852i) q^{81} +(4.42046 - 16.4974i) q^{82} +(0.0807312 - 0.0127866i) q^{83} +(-0.380652 - 0.187666i) q^{84} +(0.938062 - 3.87671i) q^{85} +(-5.53413 + 6.14628i) q^{86} +(-0.232558 + 4.43746i) q^{87} +(0.193605 - 3.69420i) q^{88} +(10.7285 - 11.9152i) q^{89} +(-5.85949 - 14.2180i) q^{90} +(-4.00031 - 5.98549i) q^{91} +(-0.450559 + 0.0713615i) q^{92} +(6.43047 - 23.9989i) q^{93} +(-7.75046 + 3.45072i) q^{94} +(11.2317 - 0.273985i) q^{95} +(0.368961 - 0.828699i) q^{96} +(5.33114 + 0.844370i) q^{97} +(-2.77331 - 9.35512i) q^{98} +6.36541i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9} - 36 q^{10} - 6 q^{11} - 36 q^{12} - 20 q^{14} - 28 q^{15} - 30 q^{16} - 42 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} + 32 q^{22} - 40 q^{23} + 2 q^{25} - 48 q^{26} + 22 q^{28} - 58 q^{30} - 18 q^{31} + 8 q^{32} - 30 q^{33} - 2 q^{35} + 40 q^{36} - 10 q^{37} + 72 q^{38} + 30 q^{39} - 48 q^{40} + 6 q^{42} - 108 q^{43} - 10 q^{44} + 186 q^{45} - 6 q^{46} - 54 q^{47} - 248 q^{50} - 16 q^{51} + 216 q^{52} + 50 q^{53} - 30 q^{54} + 4 q^{56} - 216 q^{57} - 4 q^{58} + 90 q^{59} + 96 q^{60} - 18 q^{61} - 66 q^{63} - 100 q^{64} + 14 q^{65} - 90 q^{66} + 4 q^{67} + 342 q^{68} - 60 q^{70} - 24 q^{71} + 58 q^{72} - 6 q^{73} + 216 q^{75} - 80 q^{77} - 132 q^{78} - 10 q^{79} - 6 q^{80} - 10 q^{81} + 216 q^{82} + 20 q^{84} - 48 q^{85} - 6 q^{86} - 48 q^{87} - 122 q^{88} + 120 q^{89} - 12 q^{91} - 4 q^{92} + 106 q^{93} - 30 q^{94} - 98 q^{95} - 90 q^{96} + 222 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{3}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0729528 1.39202i −0.0515855 0.984309i −0.894726 0.446616i \(-0.852629\pi\)
0.843140 0.537693i \(-0.180704\pi\)
\(3\) 2.18898 + 1.77260i 1.26381 + 1.02341i 0.998239 + 0.0593186i \(0.0188928\pi\)
0.265568 + 0.964092i \(0.414441\pi\)
\(4\) 0.0566371 0.00595280i 0.0283185 0.00297640i
\(5\) −0.287895 2.21746i −0.128750 0.991677i
\(6\) 2.30781 3.17642i 0.942158 1.29677i
\(7\) −2.62738 + 0.311259i −0.993056 + 0.117645i
\(8\) −0.448537 2.83195i −0.158582 1.00125i
\(9\) 1.02578 + 4.82592i 0.341927 + 1.60864i
\(10\) −3.06575 + 0.562526i −0.969475 + 0.177886i
\(11\) 1.26199 + 0.268244i 0.380503 + 0.0808785i 0.394193 0.919028i \(-0.371024\pi\)
−0.0136894 + 0.999906i \(0.504358\pi\)
\(12\) 0.134529 + 0.0873643i 0.0388352 + 0.0252199i
\(13\) 1.23533 + 2.42447i 0.342618 + 0.672426i 0.996448 0.0842159i \(-0.0268386\pi\)
−0.653829 + 0.756642i \(0.726839\pi\)
\(14\) 0.624954 + 3.63466i 0.167026 + 0.971405i
\(15\) 3.30047 5.36429i 0.852177 1.38505i
\(16\) −3.79801 + 0.807292i −0.949502 + 0.201823i
\(17\) 1.66528 + 0.639239i 0.403889 + 0.155038i 0.551828 0.833958i \(-0.313931\pi\)
−0.147939 + 0.988996i \(0.547264\pi\)
\(18\) 6.64296 1.77998i 1.56576 0.419544i
\(19\) −0.525199 + 4.99693i −0.120489 + 1.14638i 0.752485 + 0.658609i \(0.228855\pi\)
−0.872974 + 0.487766i \(0.837812\pi\)
\(20\) −0.0295056 0.123876i −0.00659765 0.0276996i
\(21\) −6.30301 3.97595i −1.37543 0.867624i
\(22\) 0.281336 1.77628i 0.0599810 0.378705i
\(23\) −7.99926 + 0.419223i −1.66796 + 0.0874141i −0.862768 0.505599i \(-0.831271\pi\)
−0.805193 + 0.593013i \(0.797938\pi\)
\(24\) 4.03808 6.99415i 0.824269 1.42768i
\(25\) −4.83423 + 1.27679i −0.966847 + 0.255358i
\(26\) 3.28479 1.89648i 0.644201 0.371930i
\(27\) −2.47276 + 4.85307i −0.475883 + 0.933973i
\(28\) −0.146954 + 0.0332690i −0.0277717 + 0.00628726i
\(29\) 0.927279 + 1.27629i 0.172191 + 0.237001i 0.886387 0.462945i \(-0.153207\pi\)
−0.714196 + 0.699946i \(0.753207\pi\)
\(30\) −7.70799 4.20299i −1.40728 0.767357i
\(31\) −3.58774 8.05820i −0.644378 1.44730i −0.879772 0.475396i \(-0.842305\pi\)
0.235395 0.971900i \(-0.424362\pi\)
\(32\) −0.0833536 0.311080i −0.0147350 0.0549917i
\(33\) 2.28697 + 2.82418i 0.398111 + 0.491626i
\(34\) 0.768350 2.36474i 0.131771 0.405549i
\(35\) 1.44661 + 5.73649i 0.244522 + 0.969644i
\(36\) 0.0868249 + 0.267220i 0.0144708 + 0.0445366i
\(37\) −1.62445 + 2.50144i −0.267059 + 0.411234i −0.946604 0.322399i \(-0.895511\pi\)
0.679545 + 0.733634i \(0.262177\pi\)
\(38\) 6.99416 + 0.366549i 1.13460 + 0.0594620i
\(39\) −1.59350 + 7.49685i −0.255165 + 1.20046i
\(40\) −6.15060 + 1.80991i −0.972495 + 0.286173i
\(41\) 11.6529 + 3.78627i 1.81988 + 0.591316i 0.999819 + 0.0190454i \(0.00606269\pi\)
0.820065 + 0.572271i \(0.193937\pi\)
\(42\) −5.07479 + 9.06399i −0.783058 + 1.39860i
\(43\) −4.19548 4.19548i −0.639805 0.639805i 0.310702 0.950507i \(-0.399436\pi\)
−0.950507 + 0.310702i \(0.899436\pi\)
\(44\) 0.0730720 + 0.00768018i 0.0110160 + 0.00115783i
\(45\) 10.4060 3.66398i 1.55123 0.546194i
\(46\) 1.16714 + 11.1046i 0.172085 + 1.63728i
\(47\) −2.18114 5.68207i −0.318152 0.828815i −0.995640 0.0932810i \(-0.970265\pi\)
0.677487 0.735534i \(-0.263069\pi\)
\(48\) −9.74476 4.96520i −1.40654 0.716666i
\(49\) 6.80624 1.63559i 0.972319 0.233656i
\(50\) 2.12999 + 6.63622i 0.301226 + 0.938503i
\(51\) 2.51214 + 4.35115i 0.351769 + 0.609283i
\(52\) 0.0843977 + 0.129961i 0.0117039 + 0.0180224i
\(53\) −2.51335 + 3.10373i −0.345235 + 0.426330i −0.919957 0.392019i \(-0.871777\pi\)
0.574722 + 0.818349i \(0.305110\pi\)
\(54\) 6.93598 + 3.08810i 0.943867 + 0.420237i
\(55\) 0.231499 2.87563i 0.0312153 0.387750i
\(56\) 2.05995 + 7.30099i 0.275272 + 0.975636i
\(57\) −10.0072 + 10.0072i −1.32549 + 1.32549i
\(58\) 1.70898 1.38390i 0.224400 0.181715i
\(59\) −2.98267 3.31260i −0.388311 0.431263i 0.517018 0.855975i \(-0.327042\pi\)
−0.905329 + 0.424712i \(0.860375\pi\)
\(60\) 0.154996 0.323464i 0.0200099 0.0417591i
\(61\) 6.76054 + 6.08722i 0.865598 + 0.779388i 0.976742 0.214416i \(-0.0687848\pi\)
−0.111144 + 0.993804i \(0.535451\pi\)
\(62\) −10.9555 + 5.58209i −1.39135 + 0.708926i
\(63\) −4.19722 12.3602i −0.528801 1.55724i
\(64\) −7.81259 + 2.53846i −0.976573 + 0.317308i
\(65\) 5.02051 3.43728i 0.622717 0.426342i
\(66\) 3.76448 3.38955i 0.463375 0.417225i
\(67\) 1.57927 4.11413i 0.192938 0.502621i −0.802650 0.596450i \(-0.796577\pi\)
0.995588 + 0.0938290i \(0.0299107\pi\)
\(68\) 0.0981216 + 0.0262916i 0.0118990 + 0.00318832i
\(69\) −18.2533 13.2618i −2.19744 1.59653i
\(70\) 7.87979 2.43221i 0.941815 0.290705i
\(71\) 6.77041 4.91899i 0.803500 0.583777i −0.108439 0.994103i \(-0.534585\pi\)
0.911939 + 0.410326i \(0.134585\pi\)
\(72\) 13.2067 5.06956i 1.55642 0.597454i
\(73\) −3.04851 + 1.97972i −0.356801 + 0.231709i −0.710575 0.703622i \(-0.751565\pi\)
0.353774 + 0.935331i \(0.384898\pi\)
\(74\) 3.60057 + 2.07879i 0.418558 + 0.241655i
\(75\) −12.8453 5.77430i −1.48324 0.666758i
\(76\) 0.286138i 0.0328223i
\(77\) −3.39921 0.311973i −0.387376 0.0355526i
\(78\) 10.5520 + 1.67128i 1.19478 + 0.189235i
\(79\) −1.50732 + 3.38549i −0.169586 + 0.380897i −0.978267 0.207351i \(-0.933516\pi\)
0.808680 + 0.588249i \(0.200182\pi\)
\(80\) 2.88356 + 8.18951i 0.322392 + 0.915615i
\(81\) −0.493795 + 0.219852i −0.0548661 + 0.0244279i
\(82\) 4.42046 16.4974i 0.488158 1.82183i
\(83\) 0.0807312 0.0127866i 0.00886140 0.00140351i −0.152002 0.988380i \(-0.548572\pi\)
0.160864 + 0.986977i \(0.448572\pi\)
\(84\) −0.380652 0.187666i −0.0415325 0.0204760i
\(85\) 0.938062 3.87671i 0.101747 0.420488i
\(86\) −5.53413 + 6.14628i −0.596761 + 0.662770i
\(87\) −0.232558 + 4.43746i −0.0249328 + 0.475746i
\(88\) 0.193605 3.69420i 0.0206383 0.393803i
\(89\) 10.7285 11.9152i 1.13722 1.26301i 0.176860 0.984236i \(-0.443406\pi\)
0.960357 0.278772i \(-0.0899274\pi\)
\(90\) −5.85949 14.2180i −0.617645 1.49871i
\(91\) −4.00031 5.98549i −0.419346 0.627449i
\(92\) −0.450559 + 0.0713615i −0.0469740 + 0.00743995i
\(93\) 6.43047 23.9989i 0.666809 2.48857i
\(94\) −7.75046 + 3.45072i −0.799398 + 0.355915i
\(95\) 11.2317 0.273985i 1.15235 0.0281103i
\(96\) 0.368961 0.828699i 0.0376569 0.0845788i
\(97\) 5.33114 + 0.844370i 0.541296 + 0.0857328i 0.421095 0.907017i \(-0.361646\pi\)
0.120201 + 0.992750i \(0.461646\pi\)
\(98\) −2.77331 9.35512i −0.280147 0.945010i
\(99\) 6.36541i 0.639747i
\(100\) −0.266196 + 0.101091i −0.0266196 + 0.0101091i
\(101\) 4.22128 + 2.43716i 0.420033 + 0.242506i 0.695091 0.718921i \(-0.255364\pi\)
−0.275058 + 0.961428i \(0.588697\pi\)
\(102\) 5.87363 3.81438i 0.581576 0.377680i
\(103\) 0.722703 0.277420i 0.0712101 0.0273350i −0.322502 0.946569i \(-0.604524\pi\)
0.393712 + 0.919234i \(0.371191\pi\)
\(104\) 6.31188 4.58585i 0.618931 0.449679i
\(105\) −7.00190 + 15.1213i −0.683315 + 1.47569i
\(106\) 4.50382 + 3.27222i 0.437450 + 0.317826i
\(107\) 2.38325 + 0.638591i 0.230398 + 0.0617349i 0.372171 0.928164i \(-0.378614\pi\)
−0.141773 + 0.989899i \(0.545280\pi\)
\(108\) −0.111161 + 0.289583i −0.0106964 + 0.0278652i
\(109\) −5.77179 + 5.19695i −0.552837 + 0.497777i −0.897539 0.440935i \(-0.854647\pi\)
0.344701 + 0.938712i \(0.387980\pi\)
\(110\) −4.01983 0.112467i −0.383276 0.0107233i
\(111\) −7.98995 + 2.59609i −0.758372 + 0.246410i
\(112\) 9.72753 3.30322i 0.919165 0.312125i
\(113\) −0.329784 + 0.168033i −0.0310234 + 0.0158072i −0.469433 0.882968i \(-0.655542\pi\)
0.438410 + 0.898775i \(0.355542\pi\)
\(114\) 14.6603 + 13.2002i 1.37307 + 1.23631i
\(115\) 3.23256 + 17.6173i 0.301437 + 1.64282i
\(116\) 0.0601158 + 0.0667654i 0.00558161 + 0.00619901i
\(117\) −10.4331 + 8.44856i −0.964541 + 0.781070i
\(118\) −4.39362 + 4.39362i −0.404465 + 0.404465i
\(119\) −4.57428 1.16119i −0.419323 0.106446i
\(120\) −16.6718 6.94068i −1.52192 0.633594i
\(121\) −8.52834 3.79706i −0.775304 0.345188i
\(122\) 7.98035 9.85491i 0.722507 0.892222i
\(123\) 18.7965 + 28.9441i 1.69482 + 2.60980i
\(124\) −0.251168 0.435036i −0.0225556 0.0390674i
\(125\) 4.22298 + 10.3521i 0.377714 + 0.925922i
\(126\) −16.8995 + 6.74435i −1.50553 + 0.600834i
\(127\) 18.6864 + 9.52119i 1.65815 + 0.844869i 0.995377 + 0.0960485i \(0.0306204\pi\)
0.662773 + 0.748821i \(0.269380\pi\)
\(128\) 3.87272 + 10.0888i 0.342304 + 0.891731i
\(129\) −1.74691 16.6207i −0.153807 1.46337i
\(130\) −5.15103 6.73790i −0.451775 0.590953i
\(131\) −7.88372 0.828612i −0.688804 0.0723962i −0.246341 0.969183i \(-0.579228\pi\)
−0.442463 + 0.896787i \(0.645895\pi\)
\(132\) 0.146339 + 0.146339i 0.0127372 + 0.0127372i
\(133\) −0.175443 13.2923i −0.0152128 1.15259i
\(134\) −5.84218 1.89824i −0.504687 0.163983i
\(135\) 11.4734 + 4.08607i 0.987470 + 0.351673i
\(136\) 1.06336 5.00270i 0.0911821 0.428978i
\(137\) −8.88855 0.465829i −0.759400 0.0397985i −0.331295 0.943527i \(-0.607486\pi\)
−0.428106 + 0.903729i \(0.640819\pi\)
\(138\) −17.1291 + 26.3765i −1.45813 + 2.24532i
\(139\) 0.759246 + 2.33672i 0.0643984 + 0.198198i 0.978079 0.208236i \(-0.0667722\pi\)
−0.913680 + 0.406434i \(0.866772\pi\)
\(140\) 0.116080 + 0.316287i 0.00981055 + 0.0267311i
\(141\) 5.29756 16.3042i 0.446135 1.37306i
\(142\) −7.34127 9.06571i −0.616066 0.760778i
\(143\) 0.908619 + 3.39101i 0.0759826 + 0.283571i
\(144\) −7.79185 17.5008i −0.649321 1.45840i
\(145\) 2.56316 2.42364i 0.212859 0.201272i
\(146\) 2.97822 + 4.09917i 0.246479 + 0.339249i
\(147\) 17.7979 + 8.48446i 1.46795 + 0.699787i
\(148\) −0.0771138 + 0.151344i −0.00633871 + 0.0124404i
\(149\) −0.625395 + 0.361072i −0.0512344 + 0.0295802i −0.525398 0.850856i \(-0.676084\pi\)
0.474164 + 0.880437i \(0.342750\pi\)
\(150\) −7.10086 + 18.3022i −0.579782 + 1.49437i
\(151\) 8.32092 14.4123i 0.677147 1.17285i −0.298689 0.954350i \(-0.596549\pi\)
0.975836 0.218503i \(-0.0701173\pi\)
\(152\) 14.3866 0.753972i 1.16691 0.0611552i
\(153\) −1.37671 + 8.69221i −0.111300 + 0.702723i
\(154\) −0.186292 + 4.75454i −0.0150118 + 0.383132i
\(155\) −16.8358 + 10.2756i −1.35229 + 0.825354i
\(156\) −0.0456242 + 0.434085i −0.00365286 + 0.0347546i
\(157\) 3.31620 0.888573i 0.264661 0.0709158i −0.124048 0.992276i \(-0.539588\pi\)
0.388709 + 0.921360i \(0.372921\pi\)
\(158\) 4.82264 + 1.85124i 0.383669 + 0.147277i
\(159\) −11.0033 + 2.33883i −0.872622 + 0.185482i
\(160\) −0.665809 + 0.274391i −0.0526368 + 0.0216925i
\(161\) 20.8866 3.59130i 1.64609 0.283034i
\(162\) 0.342062 + 0.671335i 0.0268749 + 0.0527450i
\(163\) 2.66502 + 1.73068i 0.208740 + 0.135557i 0.644775 0.764372i \(-0.276951\pi\)
−0.436035 + 0.899930i \(0.643618\pi\)
\(164\) 0.682527 + 0.145076i 0.0532964 + 0.0113285i
\(165\) 5.60408 5.88433i 0.436277 0.458094i
\(166\) −0.0236888 0.111447i −0.00183861 0.00864996i
\(167\) −1.83269 11.5711i −0.141818 0.895401i −0.951302 0.308260i \(-0.900253\pi\)
0.809485 0.587141i \(-0.199747\pi\)
\(168\) −8.43256 + 19.6332i −0.650586 + 1.51473i
\(169\) 3.28920 4.52720i 0.253016 0.348246i
\(170\) −5.46491 1.02299i −0.419139 0.0784595i
\(171\) −24.6535 + 2.59119i −1.88530 + 0.198153i
\(172\) −0.262595 0.212645i −0.0200226 0.0162140i
\(173\) −1.18749 22.6586i −0.0902829 1.72270i −0.550451 0.834868i \(-0.685544\pi\)
0.460168 0.887832i \(-0.347789\pi\)
\(174\) 6.19402 0.469567
\(175\) 12.3039 4.85931i 0.930091 0.367329i
\(176\) −5.00959 −0.377612
\(177\) −0.657104 12.5383i −0.0493909 0.942435i
\(178\) −17.3689 14.0651i −1.30185 1.05422i
\(179\) −7.69663 + 0.808948i −0.575273 + 0.0604636i −0.387698 0.921787i \(-0.626730\pi\)
−0.187575 + 0.982250i \(0.560063\pi\)
\(180\) 0.567552 0.269462i 0.0423028 0.0200845i
\(181\) −2.15081 + 2.96033i −0.159868 + 0.220040i −0.881435 0.472305i \(-0.843422\pi\)
0.721567 + 0.692345i \(0.243422\pi\)
\(182\) −8.04010 + 6.00518i −0.595972 + 0.445134i
\(183\) 4.00848 + 25.3085i 0.296315 + 1.87086i
\(184\) 4.77518 + 22.4655i 0.352031 + 1.65618i
\(185\) 6.01451 + 2.88201i 0.442196 + 0.211889i
\(186\) −33.8761 7.20058i −2.48392 0.527972i
\(187\) 1.93008 + 1.25341i 0.141142 + 0.0916585i
\(188\) −0.157358 0.308832i −0.0114765 0.0225239i
\(189\) 4.98632 13.5205i 0.362701 0.983473i
\(190\) −1.20078 15.6148i −0.0871136 1.13282i
\(191\) −20.6511 + 4.38952i −1.49426 + 0.317614i −0.881321 0.472517i \(-0.843345\pi\)
−0.612937 + 0.790132i \(0.710012\pi\)
\(192\) −21.6013 8.29195i −1.55894 0.598420i
\(193\) −19.5342 + 5.23417i −1.40610 + 0.376764i −0.880532 0.473987i \(-0.842814\pi\)
−0.525569 + 0.850751i \(0.676148\pi\)
\(194\) 0.786461 7.48268i 0.0564646 0.537225i
\(195\) 17.0827 + 1.37522i 1.22332 + 0.0984818i
\(196\) 0.375749 0.133151i 0.0268392 0.00951079i
\(197\) −1.00475 + 6.34375i −0.0715856 + 0.451974i 0.925695 + 0.378272i \(0.123481\pi\)
−0.997280 + 0.0737022i \(0.976519\pi\)
\(198\) 8.86079 0.464374i 0.629709 0.0330017i
\(199\) −6.15950 + 10.6686i −0.436636 + 0.756275i −0.997428 0.0716817i \(-0.977163\pi\)
0.560792 + 0.827957i \(0.310497\pi\)
\(200\) 5.78413 + 13.1176i 0.409000 + 0.927556i
\(201\) 10.7497 6.20633i 0.758224 0.437761i
\(202\) 3.08463 6.05392i 0.217033 0.425952i
\(203\) −2.83357 3.06467i −0.198878 0.215098i
\(204\) 0.168182 + 0.231482i 0.0117751 + 0.0162070i
\(205\) 5.04107 26.9299i 0.352084 1.88087i
\(206\) −0.438898 0.985781i −0.0305795 0.0686826i
\(207\) −10.2286 38.1738i −0.710939 2.65326i
\(208\) −6.64904 8.21088i −0.461028 0.569322i
\(209\) −2.00319 + 6.16518i −0.138563 + 0.426455i
\(210\) 21.5600 + 8.64366i 1.48778 + 0.596469i
\(211\) 0.536205 + 1.65027i 0.0369139 + 0.113609i 0.967816 0.251661i \(-0.0809767\pi\)
−0.930902 + 0.365270i \(0.880977\pi\)
\(212\) −0.123873 + 0.190748i −0.00850763 + 0.0131006i
\(213\) 23.5397 + 1.23366i 1.61291 + 0.0845291i
\(214\) 0.715068 3.36413i 0.0488810 0.229967i
\(215\) −8.09544 + 10.5112i −0.552105 + 0.716855i
\(216\) 14.8528 + 4.82596i 1.01060 + 0.328365i
\(217\) 11.9345 + 20.0552i 0.810170 + 1.36144i
\(218\) 7.65534 + 7.65534i 0.518485 + 0.518485i
\(219\) −10.1824 1.07021i −0.688061 0.0723181i
\(220\) −0.00400659 0.164245i −0.000270124 0.0110734i
\(221\) 0.507346 + 4.82708i 0.0341278 + 0.324704i
\(222\) 4.19671 + 10.9328i 0.281665 + 0.733762i
\(223\) 18.0830 + 9.21376i 1.21093 + 0.616999i 0.938534 0.345187i \(-0.112184\pi\)
0.272395 + 0.962186i \(0.412184\pi\)
\(224\) 0.315828 + 0.791380i 0.0211021 + 0.0528763i
\(225\) −11.1205 22.0199i −0.741370 1.46799i
\(226\) 0.257965 + 0.446808i 0.0171596 + 0.0297212i
\(227\) 0.428586 + 0.659965i 0.0284463 + 0.0438034i 0.852608 0.522552i \(-0.175020\pi\)
−0.824161 + 0.566355i \(0.808353\pi\)
\(228\) −0.507208 + 0.626350i −0.0335907 + 0.0414810i
\(229\) 8.27315 + 3.68345i 0.546705 + 0.243409i 0.661454 0.749986i \(-0.269940\pi\)
−0.114749 + 0.993395i \(0.536606\pi\)
\(230\) 24.2879 5.78503i 1.60150 0.381453i
\(231\) −6.88779 6.70834i −0.453184 0.441376i
\(232\) 3.19847 3.19847i 0.209990 0.209990i
\(233\) 6.53523 5.29213i 0.428137 0.346699i −0.390906 0.920431i \(-0.627838\pi\)
0.819043 + 0.573732i \(0.194505\pi\)
\(234\) 12.5217 + 13.9068i 0.818571 + 0.909115i
\(235\) −11.9718 + 6.47243i −0.780955 + 0.422215i
\(236\) −0.188649 0.169860i −0.0122800 0.0110570i
\(237\) −9.30060 + 4.73889i −0.604139 + 0.307824i
\(238\) −1.28270 + 6.45221i −0.0831451 + 0.418235i
\(239\) −15.6184 + 5.07472i −1.01027 + 0.328256i −0.766962 0.641693i \(-0.778232\pi\)
−0.243308 + 0.969949i \(0.578232\pi\)
\(240\) −8.20466 + 23.0381i −0.529609 + 1.48710i
\(241\) −12.5470 + 11.2973i −0.808222 + 0.727726i −0.965662 0.259802i \(-0.916343\pi\)
0.157440 + 0.987529i \(0.449676\pi\)
\(242\) −4.66343 + 12.1487i −0.299777 + 0.780945i
\(243\) 14.3128 + 3.83510i 0.918165 + 0.246022i
\(244\) 0.419133 + 0.304518i 0.0268322 + 0.0194948i
\(245\) −5.58633 14.6217i −0.356897 0.934144i
\(246\) 38.9195 28.2767i 2.48142 1.80286i
\(247\) −12.7637 + 4.89952i −0.812134 + 0.311749i
\(248\) −21.2112 + 13.7747i −1.34691 + 0.874695i
\(249\) 0.199384 + 0.115115i 0.0126355 + 0.00729509i
\(250\) 14.1023 6.63370i 0.891909 0.419552i
\(251\) 22.9915i 1.45121i 0.688113 + 0.725604i \(0.258440\pi\)
−0.688113 + 0.725604i \(0.741560\pi\)
\(252\) −0.311296 0.675062i −0.0196098 0.0425249i
\(253\) −10.2074 1.61670i −0.641735 0.101641i
\(254\) 11.8905 26.7065i 0.746076 1.67571i
\(255\) 8.92525 6.82323i 0.558921 0.427287i
\(256\) −1.24759 + 0.555463i −0.0779744 + 0.0347165i
\(257\) −3.92282 + 14.6401i −0.244698 + 0.913227i 0.728836 + 0.684688i \(0.240062\pi\)
−0.973535 + 0.228539i \(0.926605\pi\)
\(258\) −23.0090 + 3.64427i −1.43248 + 0.226882i
\(259\) 3.48946 7.07786i 0.216825 0.439797i
\(260\) 0.263885 0.224563i 0.0163655 0.0139268i
\(261\) −5.20809 + 5.78417i −0.322372 + 0.358031i
\(262\) −0.578308 + 11.0348i −0.0357280 + 0.681730i
\(263\) 1.23865 23.6349i 0.0763785 1.45739i −0.644648 0.764480i \(-0.722996\pi\)
0.721026 0.692908i \(-0.243671\pi\)
\(264\) 6.97213 7.74334i 0.429105 0.476570i
\(265\) 7.60597 + 4.67970i 0.467231 + 0.287472i
\(266\) −18.4904 + 1.21393i −1.13372 + 0.0744310i
\(267\) 44.6053 7.06478i 2.72980 0.432358i
\(268\) 0.0649545 0.242413i 0.00396773 0.0148078i
\(269\) 15.1332 6.73772i 0.922686 0.410806i 0.110281 0.993900i \(-0.464825\pi\)
0.812404 + 0.583094i \(0.198158\pi\)
\(270\) 4.85089 16.2693i 0.295216 0.990117i
\(271\) −6.18795 + 13.8984i −0.375891 + 0.844265i 0.622221 + 0.782842i \(0.286231\pi\)
−0.998112 + 0.0614235i \(0.980436\pi\)
\(272\) −6.84078 1.08347i −0.414783 0.0656952i
\(273\) 1.85328 20.1930i 0.112166 1.22214i
\(274\) 12.4071i 0.749538i
\(275\) −6.44323 + 0.314539i −0.388541 + 0.0189674i
\(276\) −1.11276 0.642452i −0.0669802 0.0386711i
\(277\) 13.3962 8.69960i 0.804900 0.522708i −0.0753843 0.997155i \(-0.524018\pi\)
0.880284 + 0.474446i \(0.157352\pi\)
\(278\) 3.19738 1.22736i 0.191766 0.0736121i
\(279\) 35.2080 25.5801i 2.10785 1.53144i
\(280\) 15.5966 6.66976i 0.932075 0.398594i
\(281\) −21.8808 15.8974i −1.30530 0.948357i −0.305309 0.952253i \(-0.598760\pi\)
−0.999992 + 0.00389666i \(0.998760\pi\)
\(282\) −23.0823 6.18489i −1.37453 0.368305i
\(283\) 0.0979916 0.255277i 0.00582500 0.0151746i −0.930637 0.365943i \(-0.880746\pi\)
0.936462 + 0.350769i \(0.114080\pi\)
\(284\) 0.354174 0.318900i 0.0210164 0.0189232i
\(285\) 25.0716 + 19.3095i 1.48511 + 1.14380i
\(286\) 4.65408 1.51220i 0.275202 0.0894185i
\(287\) −31.7952 6.32088i −1.87681 0.373110i
\(288\) 1.41574 0.721357i 0.0834235 0.0425064i
\(289\) −10.2689 9.24620i −0.604056 0.543894i
\(290\) −3.56075 3.39117i −0.209094 0.199136i
\(291\) 10.1730 + 11.2983i 0.596353 + 0.662318i
\(292\) −0.160874 + 0.130273i −0.00941441 + 0.00762364i
\(293\) −4.77266 + 4.77266i −0.278822 + 0.278822i −0.832639 0.553817i \(-0.813171\pi\)
0.553817 + 0.832639i \(0.313171\pi\)
\(294\) 10.5122 25.3941i 0.613081 1.48102i
\(295\) −6.48684 + 7.56763i −0.377679 + 0.440605i
\(296\) 7.81258 + 3.47839i 0.454097 + 0.202177i
\(297\) −4.42240 + 5.46120i −0.256613 + 0.316891i
\(298\) 0.548245 + 0.844223i 0.0317590 + 0.0489046i
\(299\) −10.8981 18.8761i −0.630253 1.09163i
\(300\) −0.761891 0.250574i −0.0439878 0.0144669i
\(301\) 12.3290 + 9.71724i 0.710632 + 0.560092i
\(302\) −20.6692 10.5315i −1.18938 0.606020i
\(303\) 4.92019 + 12.8175i 0.282657 + 0.736347i
\(304\) −2.03927 19.4024i −0.116960 1.11280i
\(305\) 11.5518 16.7437i 0.661455 0.958741i
\(306\) 12.2002 + 1.28229i 0.697438 + 0.0733037i
\(307\) 15.6825 + 15.6825i 0.895046 + 0.895046i 0.994993 0.0999465i \(-0.0318672\pi\)
−0.0999465 + 0.994993i \(0.531867\pi\)
\(308\) −0.194378 + 0.00256557i −0.0110757 + 0.000146187i
\(309\) 2.07374 + 0.673798i 0.117971 + 0.0383310i
\(310\) 15.5321 + 22.6862i 0.882162 + 1.28849i
\(311\) 3.34459 15.7351i 0.189655 0.892254i −0.775657 0.631154i \(-0.782581\pi\)
0.965312 0.261100i \(-0.0840852\pi\)
\(312\) 21.9454 + 1.15011i 1.24242 + 0.0651122i
\(313\) −9.82351 + 15.1269i −0.555258 + 0.855022i −0.999157 0.0410549i \(-0.986928\pi\)
0.443899 + 0.896077i \(0.353595\pi\)
\(314\) −1.47884 4.55140i −0.0834558 0.256850i
\(315\) −26.1999 + 12.8656i −1.47620 + 0.724895i
\(316\) −0.0652169 + 0.200717i −0.00366874 + 0.0112912i
\(317\) 4.54033 + 5.60684i 0.255010 + 0.314912i 0.888533 0.458812i \(-0.151725\pi\)
−0.633523 + 0.773724i \(0.718392\pi\)
\(318\) 4.05844 + 15.1463i 0.227586 + 0.849362i
\(319\) 0.827857 + 1.85940i 0.0463511 + 0.104106i
\(320\) 7.87814 + 16.5933i 0.440401 + 0.927592i
\(321\) 4.08492 + 5.62241i 0.227998 + 0.313812i
\(322\) −6.52291 28.8126i −0.363507 1.60567i
\(323\) −4.06884 + 7.98554i −0.226396 + 0.444328i
\(324\) −0.0266583 + 0.0153912i −0.00148102 + 0.000855067i
\(325\) −9.06739 10.1432i −0.502969 0.562643i
\(326\) 2.21473 3.83602i 0.122662 0.212458i
\(327\) −21.8464 + 1.14492i −1.20811 + 0.0633144i
\(328\) 5.49575 34.6988i 0.303452 1.91592i
\(329\) 7.49928 + 14.2501i 0.413449 + 0.785631i
\(330\) −8.59996 7.37173i −0.473412 0.405801i
\(331\) 2.34470 22.3083i 0.128876 1.22618i −0.718630 0.695393i \(-0.755230\pi\)
0.847506 0.530785i \(-0.178103\pi\)
\(332\) 0.00449626 0.00120477i 0.000246765 6.61204e-5i
\(333\) −13.7381 5.27356i −0.752843 0.288989i
\(334\) −15.9736 + 3.39529i −0.874036 + 0.185782i
\(335\) −9.57757 2.31752i −0.523279 0.126620i
\(336\) 27.1486 + 10.0123i 1.48108 + 0.546217i
\(337\) 4.68604 + 9.19687i 0.255265 + 0.500985i 0.982703 0.185188i \(-0.0592893\pi\)
−0.727438 + 0.686173i \(0.759289\pi\)
\(338\) −6.54192 4.24837i −0.355834 0.231081i
\(339\) −1.01974 0.216753i −0.0553849 0.0117724i
\(340\) 0.0300518 0.225150i 0.00162979 0.0122105i
\(341\) −2.36612 11.1317i −0.128133 0.602817i
\(342\) 5.40554 + 34.1293i 0.292298 + 1.84550i
\(343\) −17.3735 + 6.41581i −0.938079 + 0.346421i
\(344\) −9.99956 + 13.7632i −0.539140 + 0.742063i
\(345\) −24.1525 + 44.2940i −1.30033 + 2.38471i
\(346\) −31.4546 + 3.30602i −1.69101 + 0.177732i
\(347\) 2.91800 + 2.36295i 0.156646 + 0.126850i 0.704439 0.709764i \(-0.251199\pi\)
−0.547793 + 0.836614i \(0.684532\pi\)
\(348\) 0.0132439 + 0.252709i 0.000709949 + 0.0135466i
\(349\) −30.7324 −1.64507 −0.822534 0.568716i \(-0.807440\pi\)
−0.822534 + 0.568716i \(0.807440\pi\)
\(350\) −7.66187 16.7729i −0.409544 0.896548i
\(351\) −14.8208 −0.791074
\(352\) −0.0217460 0.414938i −0.00115906 0.0221163i
\(353\) −21.0661 17.0590i −1.12123 0.907957i −0.124786 0.992184i \(-0.539825\pi\)
−0.996447 + 0.0842271i \(0.973158\pi\)
\(354\) −17.4056 + 1.82941i −0.925100 + 0.0972319i
\(355\) −12.8568 13.5969i −0.682369 0.721651i
\(356\) 0.536701 0.738706i 0.0284451 0.0391513i
\(357\) −7.95467 10.6502i −0.421006 0.563668i
\(358\) 1.68757 + 10.6549i 0.0891906 + 0.563127i
\(359\) 4.03408 + 18.9789i 0.212911 + 1.00167i 0.946657 + 0.322243i \(0.104437\pi\)
−0.733746 + 0.679424i \(0.762230\pi\)
\(360\) −15.0437 27.8257i −0.792871 1.46654i
\(361\) −6.10870 1.29845i −0.321511 0.0683392i
\(362\) 4.27776 + 2.77801i 0.224834 + 0.146009i
\(363\) −11.9377 23.4290i −0.626566 1.22970i
\(364\) −0.262196 0.315187i −0.0137428 0.0165203i
\(365\) 5.26760 + 6.18998i 0.275719 + 0.323998i
\(366\) 34.9376 7.42622i 1.82622 0.388175i
\(367\) 23.5342 + 9.03393i 1.22848 + 0.471567i 0.884115 0.467270i \(-0.154762\pi\)
0.344361 + 0.938837i \(0.388096\pi\)
\(368\) 30.0428 8.04995i 1.56609 0.419633i
\(369\) −6.31887 + 60.1200i −0.328947 + 3.12972i
\(370\) 3.57305 8.58259i 0.185754 0.446188i
\(371\) 5.63746 8.93698i 0.292683 0.463985i
\(372\) 0.221343 1.39750i 0.0114761 0.0724572i
\(373\) 24.5191 1.28499i 1.26955 0.0665343i 0.594373 0.804190i \(-0.297400\pi\)
0.675177 + 0.737655i \(0.264067\pi\)
\(374\) 1.60397 2.77816i 0.0829394 0.143655i
\(375\) −9.10617 + 30.1462i −0.470241 + 1.55674i
\(376\) −15.1130 + 8.72551i −0.779394 + 0.449984i
\(377\) −1.94883 + 3.82479i −0.100370 + 0.196987i
\(378\) −19.1846 5.95471i −0.986751 0.306277i
\(379\) 15.0440 + 20.7063i 0.772758 + 1.06361i 0.996044 + 0.0888570i \(0.0283214\pi\)
−0.223287 + 0.974753i \(0.571679\pi\)
\(380\) 0.634499 0.0823777i 0.0325491 0.00422589i
\(381\) 24.0268 + 53.9652i 1.23093 + 2.76472i
\(382\) 7.61687 + 28.4265i 0.389713 + 1.45443i
\(383\) 1.30564 + 1.61233i 0.0667151 + 0.0823863i 0.809411 0.587243i \(-0.199787\pi\)
−0.742696 + 0.669629i \(0.766453\pi\)
\(384\) −9.40607 + 28.9489i −0.480002 + 1.47729i
\(385\) 0.286828 + 7.62742i 0.0146181 + 0.388729i
\(386\) 8.71116 + 26.8102i 0.443386 + 1.36460i
\(387\) 15.9434 24.5507i 0.810449 1.24798i
\(388\) 0.306967 + 0.0160874i 0.0155839 + 0.000816716i
\(389\) −2.86503 + 13.4789i −0.145263 + 0.683408i 0.843890 + 0.536516i \(0.180260\pi\)
−0.989153 + 0.146891i \(0.953073\pi\)
\(390\) 0.668111 23.8798i 0.0338311 1.20920i
\(391\) −13.5890 4.41532i −0.687223 0.223292i
\(392\) −7.68475 18.5413i −0.388139 0.936477i
\(393\) −15.7885 15.7885i −0.796424 0.796424i
\(394\) 8.90395 + 0.935843i 0.448575 + 0.0471471i
\(395\) 7.94113 + 2.36775i 0.399561 + 0.119134i
\(396\) 0.0378920 + 0.360518i 0.00190414 + 0.0181167i
\(397\) 10.0090 + 26.0743i 0.502337 + 1.30863i 0.917084 + 0.398695i \(0.130537\pi\)
−0.414747 + 0.909937i \(0.636130\pi\)
\(398\) 15.3003 + 7.79587i 0.766932 + 0.390772i
\(399\) 23.1779 29.4076i 1.16035 1.47222i
\(400\) 17.3297 8.75189i 0.866486 0.437595i
\(401\) −7.51425 13.0151i −0.375244 0.649941i 0.615120 0.788434i \(-0.289108\pi\)
−0.990364 + 0.138492i \(0.955774\pi\)
\(402\) −9.42358 14.5110i −0.470006 0.723745i
\(403\) 15.1048 18.6529i 0.752424 0.929166i
\(404\) 0.253589 + 0.112905i 0.0126165 + 0.00561723i
\(405\) 0.629672 + 1.03167i 0.0312887 + 0.0512643i
\(406\) −4.05938 + 4.16797i −0.201464 + 0.206853i
\(407\) −2.72104 + 2.72104i −0.134877 + 0.134877i
\(408\) 11.1954 9.06589i 0.554257 0.448829i
\(409\) 20.0714 + 22.2915i 0.992466 + 1.10225i 0.994759 + 0.102248i \(0.0326034\pi\)
−0.00229310 + 0.999997i \(0.500730\pi\)
\(410\) −37.8549 5.05267i −1.86952 0.249534i
\(411\) −18.6311 16.7755i −0.919005 0.827476i
\(412\) 0.0392804 0.0200144i 0.00193521 0.000986036i
\(413\) 8.86769 + 7.77506i 0.436350 + 0.382586i
\(414\) −52.3925 + 17.0234i −2.57495 + 0.836653i
\(415\) −0.0515958 0.175337i −0.00253274 0.00860695i
\(416\) 0.651234 0.586373i 0.0319294 0.0287493i
\(417\) −2.48009 + 6.46087i −0.121451 + 0.316390i
\(418\) 8.72822 + 2.33872i 0.426911 + 0.114390i
\(419\) −29.1668 21.1909i −1.42489 1.03524i −0.990939 0.134309i \(-0.957118\pi\)
−0.433953 0.900936i \(-0.642882\pi\)
\(420\) −0.306553 + 0.898108i −0.0149582 + 0.0438232i
\(421\) −4.26114 + 3.09590i −0.207675 + 0.150885i −0.686761 0.726883i \(-0.740968\pi\)
0.479086 + 0.877768i \(0.340968\pi\)
\(422\) 2.25810 0.866802i 0.109922 0.0421953i
\(423\) 25.1838 16.3546i 1.22448 0.795187i
\(424\) 9.91694 + 5.72555i 0.481609 + 0.278057i
\(425\) −8.86650 0.964027i −0.430089 0.0467622i
\(426\) 32.8578i 1.59196i
\(427\) −19.6572 13.8891i −0.951279 0.672143i
\(428\) 0.138782 + 0.0219809i 0.00670827 + 0.00106249i
\(429\) −4.02196 + 9.03347i −0.194182 + 0.436140i
\(430\) 15.2224 + 10.5022i 0.734087 + 0.506462i
\(431\) 11.9356 5.31409i 0.574919 0.255971i −0.0986160 0.995126i \(-0.531442\pi\)
0.673535 + 0.739155i \(0.264775\pi\)
\(432\) 5.47373 20.4282i 0.263355 0.982854i
\(433\) −18.2189 + 2.88559i −0.875544 + 0.138673i −0.578001 0.816036i \(-0.696167\pi\)
−0.297543 + 0.954708i \(0.596167\pi\)
\(434\) 27.0467 18.0762i 1.29828 0.867688i
\(435\) 9.90684 0.761836i 0.474996 0.0365273i
\(436\) −0.295961 + 0.328698i −0.0141740 + 0.0157418i
\(437\) 2.10637 40.1919i 0.100761 1.92264i
\(438\) −0.746925 + 14.2522i −0.0356894 + 0.680995i
\(439\) −15.9544 + 17.7191i −0.761461 + 0.845688i −0.991850 0.127410i \(-0.959333\pi\)
0.230389 + 0.973099i \(0.426000\pi\)
\(440\) −8.24747 + 0.634231i −0.393183 + 0.0302358i
\(441\) 14.8749 + 31.1686i 0.708330 + 1.48422i
\(442\) 6.68239 1.05839i 0.317849 0.0503423i
\(443\) 0.405207 1.51225i 0.0192520 0.0718493i −0.955632 0.294565i \(-0.904825\pi\)
0.974884 + 0.222715i \(0.0714920\pi\)
\(444\) −0.437073 + 0.194598i −0.0207426 + 0.00923519i
\(445\) −29.5101 20.3596i −1.39891 0.965140i
\(446\) 11.5066 25.8442i 0.544851 1.22376i
\(447\) −2.00901 0.318196i −0.0950230 0.0150502i
\(448\) 19.7365 9.10124i 0.932462 0.429993i
\(449\) 11.3780i 0.536963i −0.963285 0.268482i \(-0.913478\pi\)
0.963285 0.268482i \(-0.0865219\pi\)
\(450\) −29.8410 + 17.0865i −1.40672 + 0.805464i
\(451\) 13.6902 + 7.90405i 0.644647 + 0.372187i
\(452\) −0.0176777 + 0.0114800i −0.000831489 + 0.000539976i
\(453\) 43.7615 16.7985i 2.05609 0.789260i
\(454\) 0.887420 0.644748i 0.0416487 0.0302595i
\(455\) −12.1209 + 10.5937i −0.568236 + 0.496641i
\(456\) 32.8285 + 23.8513i 1.53734 + 1.11694i
\(457\) −3.60529 0.966035i −0.168648 0.0451892i 0.173507 0.984833i \(-0.444490\pi\)
−0.342155 + 0.939643i \(0.611157\pi\)
\(458\) 4.52389 11.7851i 0.211388 0.550684i
\(459\) −7.22010 + 6.50101i −0.337005 + 0.303441i
\(460\) 0.287955 + 0.978551i 0.0134260 + 0.0456252i
\(461\) 12.7265 4.13508i 0.592730 0.192590i 0.00273459 0.999996i \(-0.499130\pi\)
0.589995 + 0.807407i \(0.299130\pi\)
\(462\) −8.83568 + 10.0774i −0.411073 + 0.468841i
\(463\) −9.37027 + 4.77439i −0.435473 + 0.221885i −0.657963 0.753050i \(-0.728582\pi\)
0.222490 + 0.974935i \(0.428582\pi\)
\(464\) −4.55215 4.09877i −0.211328 0.190281i
\(465\) −55.0677 7.35015i −2.55370 0.340855i
\(466\) −7.84353 8.71112i −0.363344 0.403535i
\(467\) −4.93204 + 3.99389i −0.228228 + 0.184815i −0.736613 0.676315i \(-0.763576\pi\)
0.508385 + 0.861130i \(0.330243\pi\)
\(468\) −0.540608 + 0.540608i −0.0249896 + 0.0249896i
\(469\) −2.86877 + 11.3009i −0.132468 + 0.521829i
\(470\) 9.88315 + 16.1929i 0.455876 + 0.746921i
\(471\) 8.83417 + 3.93322i 0.407057 + 0.181233i
\(472\) −8.04326 + 9.93260i −0.370221 + 0.457185i
\(473\) −4.16923 6.42005i −0.191701 0.295194i
\(474\) 7.27515 + 12.6009i 0.334159 + 0.578780i
\(475\) −3.84110 24.8269i −0.176242 1.13914i
\(476\) −0.265986 0.0385368i −0.0121914 0.00176633i
\(477\) −17.5565 8.94549i −0.803857 0.409586i
\(478\) 8.20354 + 21.3709i 0.375221 + 0.977484i
\(479\) 0.446532 + 4.24847i 0.0204026 + 0.194117i 0.999976 0.00697082i \(-0.00221890\pi\)
−0.979573 + 0.201088i \(0.935552\pi\)
\(480\) −1.94383 0.579576i −0.0887232 0.0264539i
\(481\) −8.07140 0.848338i −0.368024 0.0386809i
\(482\) 16.6415 + 16.6415i 0.758000 + 0.758000i
\(483\) 52.0862 + 29.1623i 2.37001 + 1.32693i
\(484\) −0.505624 0.164287i −0.0229829 0.00746759i
\(485\) 0.337546 12.0647i 0.0153272 0.547829i
\(486\) 4.29439 20.2035i 0.194797 0.916450i
\(487\) −17.0588 0.894014i −0.773009 0.0405117i −0.338247 0.941057i \(-0.609834\pi\)
−0.434761 + 0.900546i \(0.643167\pi\)
\(488\) 14.2063 21.8759i 0.643091 0.990273i
\(489\) 2.76586 + 8.51243i 0.125076 + 0.384945i
\(490\) −19.9462 + 8.84299i −0.901075 + 0.399486i
\(491\) 2.07485 6.38573i 0.0936366 0.288184i −0.893259 0.449542i \(-0.851587\pi\)
0.986896 + 0.161358i \(0.0515873\pi\)
\(492\) 1.23688 + 1.52741i 0.0557627 + 0.0688612i
\(493\) 0.728320 + 2.71813i 0.0328019 + 0.122418i
\(494\) 7.75140 + 17.4099i 0.348752 + 0.783309i
\(495\) 14.1150 1.83257i 0.634423 0.0823678i
\(496\) 20.1316 + 27.7088i 0.903935 + 1.24416i
\(497\) −16.2574 + 15.0314i −0.729242 + 0.674250i
\(498\) 0.145697 0.285946i 0.00652882 0.0128135i
\(499\) 16.7831 9.68973i 0.751315 0.433772i −0.0748537 0.997195i \(-0.523849\pi\)
0.826169 + 0.563422i \(0.190516\pi\)
\(500\) 0.300801 + 0.561175i 0.0134522 + 0.0250965i
\(501\) 16.4993 28.5776i 0.737133 1.27675i
\(502\) 32.0046 1.67729i 1.42844 0.0748612i
\(503\) −3.99874 + 25.2471i −0.178295 + 1.12571i 0.722469 + 0.691403i \(0.243007\pi\)
−0.900764 + 0.434308i \(0.856993\pi\)
\(504\) −33.1210 + 17.4303i −1.47532 + 0.776409i
\(505\) 4.18901 10.0622i 0.186408 0.447760i
\(506\) −1.50582 + 14.3269i −0.0669418 + 0.636908i
\(507\) 15.2249 4.07950i 0.676162 0.181177i
\(508\) 1.11502 + 0.428016i 0.0494710 + 0.0189901i
\(509\) −9.39640 + 1.99727i −0.416488 + 0.0885273i −0.411389 0.911460i \(-0.634956\pi\)
−0.00509877 + 0.999987i \(0.501623\pi\)
\(510\) −10.1492 11.9264i −0.449415 0.528109i
\(511\) 7.39337 6.15036i 0.327064 0.272076i
\(512\) 10.6764 + 20.9536i 0.471834 + 0.926026i
\(513\) −22.9518 14.9050i −1.01335 0.658074i
\(514\) 20.6656 + 4.39261i 0.911521 + 0.193750i
\(515\) −0.823229 1.52270i −0.0362758 0.0670980i
\(516\) −0.197880 0.930950i −0.00871116 0.0409828i
\(517\) −1.22839 7.75578i −0.0540247 0.341099i
\(518\) −10.1071 4.34106i −0.444081 0.190735i
\(519\) 37.5652 51.7041i 1.64893 2.26956i
\(520\) −11.9861 12.6761i −0.525624 0.555883i
\(521\) 9.34459 0.982156i 0.409394 0.0430290i 0.102407 0.994743i \(-0.467346\pi\)
0.306987 + 0.951714i \(0.400679\pi\)
\(522\) 8.43164 + 6.82781i 0.369043 + 0.298845i
\(523\) −0.284342 5.42556i −0.0124334 0.237243i −0.997776 0.0666562i \(-0.978767\pi\)
0.985343 0.170587i \(-0.0545664\pi\)
\(524\) −0.451443 −0.0197214
\(525\) 35.5467 + 11.1731i 1.55138 + 0.487632i
\(526\) −32.9906 −1.43846
\(527\) −0.823460 15.7126i −0.0358705 0.684449i
\(528\) −10.9659 8.87999i −0.477229 0.386452i
\(529\) 40.9384 4.30280i 1.77993 0.187078i
\(530\) 5.95938 10.9291i 0.258859 0.474729i
\(531\) 12.9267 17.7921i 0.560973 0.772113i
\(532\) −0.0890630 0.751793i −0.00386137 0.0325944i
\(533\) 5.21551 + 32.9295i 0.225909 + 1.42633i
\(534\) −13.0884 61.5762i −0.566392 2.66466i
\(535\) 0.729921 5.46861i 0.0315572 0.236428i
\(536\) −12.3594 2.62707i −0.533844 0.113472i
\(537\) −18.2817 11.8723i −0.788913 0.512326i
\(538\) −10.4831 20.5742i −0.451957 0.887016i
\(539\) 9.02812 0.238363i 0.388868 0.0102670i
\(540\) 0.674141 + 0.163124i 0.0290104 + 0.00701976i
\(541\) −12.3954 + 2.63473i −0.532922 + 0.113276i −0.466509 0.884516i \(-0.654489\pi\)
−0.0664124 + 0.997792i \(0.521155\pi\)
\(542\) 19.7983 + 7.59985i 0.850409 + 0.326441i
\(543\) −9.95556 + 2.66758i −0.427234 + 0.114477i
\(544\) 0.0600478 0.571316i 0.00257453 0.0244950i
\(545\) 13.1857 + 11.3025i 0.564812 + 0.484147i
\(546\) −28.2444 1.10667i −1.20875 0.0473610i
\(547\) 4.53361 28.6241i 0.193843 1.22388i −0.678359 0.734731i \(-0.737309\pi\)
0.872202 0.489146i \(-0.162691\pi\)
\(548\) −0.506195 + 0.0265285i −0.0216236 + 0.00113324i
\(549\) −22.4416 + 38.8700i −0.957784 + 1.65893i
\(550\) 0.907897 + 8.94618i 0.0387129 + 0.381466i
\(551\) −6.86454 + 3.96324i −0.292439 + 0.168840i
\(552\) −29.3695 + 57.6409i −1.25005 + 2.45336i
\(553\) 2.90653 9.36413i 0.123598 0.398203i
\(554\) −13.0873 18.0132i −0.556028 0.765306i
\(555\) 8.05699 + 16.9700i 0.342000 + 0.720335i
\(556\) 0.0569115 + 0.127825i 0.00241358 + 0.00542100i
\(557\) 3.15789 + 11.7854i 0.133804 + 0.499364i 1.00000 0.000340697i \(-0.000108447\pi\)
−0.866196 + 0.499705i \(0.833442\pi\)
\(558\) −38.1766 47.1442i −1.61615 1.99577i
\(559\) 4.98901 15.3546i 0.211013 0.649430i
\(560\) −10.1253 20.6194i −0.427871 0.871329i
\(561\) 2.00312 + 6.16496i 0.0845716 + 0.260285i
\(562\) −20.5332 + 31.6184i −0.866142 + 1.33374i
\(563\) −5.04157 0.264218i −0.212477 0.0111354i −0.0541995 0.998530i \(-0.517261\pi\)
−0.158277 + 0.987395i \(0.550594\pi\)
\(564\) 0.202983 0.954959i 0.00854711 0.0402110i
\(565\) 0.467549 + 0.682905i 0.0196699 + 0.0287300i
\(566\) −0.362500 0.117783i −0.0152370 0.00495081i
\(567\) 1.22895 0.731331i 0.0516112 0.0307130i
\(568\) −16.9671 16.9671i −0.711924 0.711924i
\(569\) 8.68031 + 0.912337i 0.363897 + 0.0382472i 0.284713 0.958613i \(-0.408102\pi\)
0.0791845 + 0.996860i \(0.474768\pi\)
\(570\) 25.0503 36.3089i 1.04924 1.52081i
\(571\) 2.74150 + 26.0836i 0.114728 + 1.09156i 0.888746 + 0.458401i \(0.151577\pi\)
−0.774018 + 0.633164i \(0.781756\pi\)
\(572\) 0.0716476 + 0.186648i 0.00299573 + 0.00780416i
\(573\) −52.9856 26.9975i −2.21350 1.12784i
\(574\) −6.47927 + 44.7208i −0.270439 + 1.86661i
\(575\) 38.1350 12.2400i 1.59034 0.510443i
\(576\) −20.2644 35.0990i −0.844351 1.46246i
\(577\) 2.41399 + 3.71722i 0.100496 + 0.154750i 0.885342 0.464941i \(-0.153925\pi\)
−0.784846 + 0.619691i \(0.787258\pi\)
\(578\) −12.1218 + 14.9691i −0.504199 + 0.622635i
\(579\) −52.0380 23.1688i −2.16262 0.962862i
\(580\) 0.130742 0.152526i 0.00542878 0.00633328i
\(581\) −0.208132 + 0.0587235i −0.00863475 + 0.00243626i
\(582\) 14.9853 14.9853i 0.621162 0.621162i
\(583\) −4.00437 + 3.24268i −0.165844 + 0.134298i
\(584\) 6.97384 + 7.74524i 0.288580 + 0.320500i
\(585\) 21.7380 + 20.7027i 0.898754 + 0.855950i
\(586\) 6.99184 + 6.29548i 0.288830 + 0.260064i
\(587\) 22.6393 11.5353i 0.934426 0.476114i 0.0806428 0.996743i \(-0.474303\pi\)
0.853783 + 0.520629i \(0.174303\pi\)
\(588\) 1.05853 + 0.374587i 0.0436530 + 0.0154477i
\(589\) 42.1506 13.6956i 1.73678 0.564315i
\(590\) 11.0076 + 8.47775i 0.453174 + 0.349024i
\(591\) −13.4443 + 12.1053i −0.553025 + 0.497946i
\(592\) 4.15030 10.8119i 0.170576 0.444367i
\(593\) 36.7909 + 9.85810i 1.51082 + 0.404824i 0.916708 0.399557i \(-0.130836\pi\)
0.594114 + 0.804381i \(0.297503\pi\)
\(594\) 7.92475 + 5.75767i 0.325156 + 0.236240i
\(595\) −1.25798 + 10.4776i −0.0515723 + 0.429538i
\(596\) −0.0332712 + 0.0241729i −0.00136284 + 0.000990161i
\(597\) −32.3941 + 12.4349i −1.32580 + 0.508928i
\(598\) −25.4809 + 16.5475i −1.04199 + 0.676676i
\(599\) 18.8301 + 10.8716i 0.769377 + 0.444200i 0.832652 0.553796i \(-0.186821\pi\)
−0.0632751 + 0.997996i \(0.520155\pi\)
\(600\) −10.5909 + 38.9671i −0.432373 + 1.59083i
\(601\) 0.106137i 0.00432940i −0.999998 0.00216470i \(-0.999311\pi\)
0.999998 0.00216470i \(-0.000689047\pi\)
\(602\) 12.6272 17.8711i 0.514646 0.728374i
\(603\) 21.4744 + 3.40122i 0.874507 + 0.138508i
\(604\) 0.385479 0.865801i 0.0156849 0.0352289i
\(605\) −5.96456 + 20.0044i −0.242494 + 0.813294i
\(606\) 17.4833 7.78409i 0.710213 0.316207i
\(607\) −0.359253 + 1.34075i −0.0145816 + 0.0544194i −0.972833 0.231507i \(-0.925634\pi\)
0.958252 + 0.285926i \(0.0923012\pi\)
\(608\) 1.59822 0.253134i 0.0648165 0.0102659i
\(609\) −0.770182 11.7313i −0.0312094 0.475376i
\(610\) −24.1503 14.8589i −0.977819 0.601619i
\(611\) 11.0816 12.3073i 0.448312 0.497901i
\(612\) −0.0262299 + 0.500496i −0.00106028 + 0.0202314i
\(613\) 0.869711 16.5951i 0.0351273 0.670269i −0.923152 0.384435i \(-0.874396\pi\)
0.958279 0.285834i \(-0.0922705\pi\)
\(614\) 20.6863 22.9745i 0.834831 0.927174i
\(615\) 58.7708 50.0133i 2.36987 2.01673i
\(616\) 0.641179 + 9.76632i 0.0258338 + 0.393496i
\(617\) −34.8080 + 5.51305i −1.40132 + 0.221947i −0.810916 0.585162i \(-0.801031\pi\)
−0.590402 + 0.807109i \(0.701031\pi\)
\(618\) 0.786657 2.93584i 0.0316440 0.118097i
\(619\) −13.7308 + 6.11335i −0.551888 + 0.245716i −0.663682 0.748015i \(-0.731007\pi\)
0.111794 + 0.993731i \(0.464340\pi\)
\(620\) −0.892363 + 0.682199i −0.0358382 + 0.0273978i
\(621\) 17.7457 39.8576i 0.712112 1.59943i
\(622\) −22.1476 3.50783i −0.888037 0.140651i
\(623\) −24.4791 + 34.6451i −0.980734 + 1.38803i
\(624\) 29.7595i 1.19133i
\(625\) 21.7396 12.3446i 0.869585 0.493784i
\(626\) 21.7736 + 12.5710i 0.870249 + 0.502439i
\(627\) −15.3133 + 9.94460i −0.611556 + 0.397149i
\(628\) 0.182530 0.0700668i 0.00728375 0.00279597i
\(629\) −4.30418 + 3.12717i −0.171619 + 0.124689i
\(630\) 19.8206 + 35.5323i 0.789671 + 1.41564i
\(631\) −15.3013 11.1170i −0.609134 0.442562i 0.239975 0.970779i \(-0.422861\pi\)
−0.849109 + 0.528217i \(0.822861\pi\)
\(632\) 10.2636 + 2.75013i 0.408265 + 0.109394i
\(633\) −1.75153 + 4.56288i −0.0696169 + 0.181358i
\(634\) 7.47362 6.72928i 0.296815 0.267254i
\(635\) 15.7331 44.1774i 0.624350 1.75313i
\(636\) −0.609275 + 0.197965i −0.0241593 + 0.00784983i
\(637\) 12.3734 + 14.4810i 0.490251 + 0.573758i
\(638\) 2.52793 1.28804i 0.100082 0.0509942i
\(639\) 30.6836 + 27.6276i 1.21382 + 1.09293i
\(640\) 21.2565 11.4921i 0.840238 0.454265i
\(641\) −0.00964018 0.0107065i −0.000380764 0.000422881i 0.742954 0.669342i \(-0.233424\pi\)
−0.743335 + 0.668919i \(0.766757\pi\)
\(642\) 7.52852 6.09648i 0.297127 0.240609i
\(643\) −13.5176 + 13.5176i −0.533083 + 0.533083i −0.921489 0.388405i \(-0.873026\pi\)
0.388405 + 0.921489i \(0.373026\pi\)
\(644\) 1.16158 0.327734i 0.0457726 0.0129145i
\(645\) −36.3528 + 8.65871i −1.43139 + 0.340937i
\(646\) 11.4129 + 5.08135i 0.449034 + 0.199923i
\(647\) −7.58979 + 9.37261i −0.298385 + 0.368475i −0.904184 0.427143i \(-0.859520\pi\)
0.605799 + 0.795618i \(0.292854\pi\)
\(648\) 0.844094 + 1.29979i 0.0331591 + 0.0510606i
\(649\) −2.87551 4.98053i −0.112874 0.195503i
\(650\) −13.4581 + 13.3620i −0.527868 + 0.524101i
\(651\) −9.42544 + 65.0556i −0.369412 + 2.54973i
\(652\) 0.161241 + 0.0821564i 0.00631469 + 0.00321749i
\(653\) 12.2814 + 31.9942i 0.480609 + 1.25203i 0.932893 + 0.360154i \(0.117276\pi\)
−0.452284 + 0.891874i \(0.649391\pi\)
\(654\) 3.18752 + 30.3272i 0.124642 + 1.18589i
\(655\) 0.432270 + 17.7204i 0.0168902 + 0.692392i
\(656\) −47.3146 4.97296i −1.84732 0.194162i
\(657\) −12.6811 12.6811i −0.494736 0.494736i
\(658\) 19.2893 11.4788i 0.751976 0.447489i
\(659\) −33.4008 10.8526i −1.30111 0.422756i −0.425142 0.905127i \(-0.639776\pi\)
−0.875967 + 0.482371i \(0.839776\pi\)
\(660\) 0.282371 0.366631i 0.0109913 0.0142711i
\(661\) 8.15884 38.3843i 0.317342 1.49298i −0.473410 0.880842i \(-0.656977\pi\)
0.790753 0.612136i \(-0.209689\pi\)
\(662\) −31.2248 1.63642i −1.21359 0.0636013i
\(663\) −7.44590 + 11.4657i −0.289175 + 0.445290i
\(664\) −0.0724219 0.222892i −0.00281051 0.00864987i
\(665\) −29.4246 + 4.21582i −1.14104 + 0.163483i
\(666\) −6.33868 + 19.5085i −0.245619 + 0.755937i
\(667\) −7.95259 9.82063i −0.307926 0.380257i
\(668\) −0.172679 0.644445i −0.00668114 0.0249343i
\(669\) 23.2510 + 52.2227i 0.898937 + 2.01905i
\(670\) −2.52733 + 13.5013i −0.0976393 + 0.521600i
\(671\) 6.89886 + 9.49546i 0.266327 + 0.366568i
\(672\) −0.711460 + 2.29215i −0.0274451 + 0.0884216i
\(673\) 4.21677 8.27589i 0.162545 0.319012i −0.795341 0.606163i \(-0.792708\pi\)
0.957885 + 0.287151i \(0.0927081\pi\)
\(674\) 12.4604 7.19401i 0.479956 0.277103i
\(675\) 5.75756 26.6181i 0.221609 1.02453i
\(676\) 0.159341 0.275987i 0.00612851 0.0106149i
\(677\) 7.95521 0.416915i 0.305744 0.0160233i 0.101153 0.994871i \(-0.467747\pi\)
0.204591 + 0.978848i \(0.434414\pi\)
\(678\) −0.227333 + 1.43532i −0.00873065 + 0.0551232i
\(679\) −14.2698 0.559115i −0.547623 0.0214569i
\(680\) −11.3994 0.917696i −0.437147 0.0351920i
\(681\) −0.231688 + 2.20436i −0.00887829 + 0.0844713i
\(682\) −15.3230 + 4.10579i −0.586749 + 0.157219i
\(683\) −41.6585 15.9912i −1.59402 0.611887i −0.610392 0.792100i \(-0.708988\pi\)
−0.983628 + 0.180213i \(0.942321\pi\)
\(684\) −1.38088 + 0.293515i −0.0527992 + 0.0112228i
\(685\) 1.52601 + 19.8441i 0.0583059 + 0.758204i
\(686\) 10.1984 + 23.7162i 0.389377 + 0.905489i
\(687\) 11.5805 + 22.7280i 0.441823 + 0.867126i
\(688\) 19.3214 + 12.5475i 0.736623 + 0.478369i
\(689\) −10.6297 2.25941i −0.404960 0.0860768i
\(690\) 63.4202 + 30.3894i 2.41437 + 1.15691i
\(691\) 0.280036 + 1.31747i 0.0106531 + 0.0501188i 0.983153 0.182784i \(-0.0585109\pi\)
−0.972500 + 0.232903i \(0.925178\pi\)
\(692\) −0.202138 1.27625i −0.00768412 0.0485156i
\(693\) −1.98129 16.7243i −0.0752629 0.635305i
\(694\) 3.07640 4.23431i 0.116779 0.160732i
\(695\) 4.96299 2.35633i 0.188257 0.0893805i
\(696\) 12.6710 1.33177i 0.480292 0.0504808i
\(697\) 16.9850 + 13.7542i 0.643354 + 0.520978i
\(698\) 2.24202 + 42.7802i 0.0848616 + 1.61926i
\(699\) 23.6863 0.895898
\(700\) 0.667933 0.348460i 0.0252455 0.0131705i
\(701\) 20.4883 0.773831 0.386915 0.922115i \(-0.373541\pi\)
0.386915 + 0.922115i \(0.373541\pi\)
\(702\) 1.08122 + 20.6309i 0.0408079 + 0.778662i
\(703\) −11.6464 9.43105i −0.439251 0.355699i
\(704\) −10.5403 + 1.10783i −0.397253 + 0.0417529i
\(705\) −37.6791 7.05322i −1.41908 0.265640i
\(706\) −22.2096 + 30.5689i −0.835871 + 1.15048i
\(707\) −11.8495 5.08942i −0.445646 0.191408i
\(708\) −0.111854 0.706220i −0.00420374 0.0265414i
\(709\) −7.17730 33.7666i −0.269549 1.26813i −0.879580 0.475752i \(-0.842176\pi\)
0.610030 0.792378i \(-0.291157\pi\)
\(710\) −17.9893 + 18.8889i −0.675127 + 0.708889i
\(711\) −17.8843 3.80142i −0.670713 0.142564i
\(712\) −38.5554 25.0381i −1.44492 0.938344i
\(713\) 32.0775 + 62.9556i 1.20131 + 2.35770i
\(714\) −14.2450 + 11.8500i −0.533105 + 0.443477i
\(715\) 7.25784 2.99108i 0.271428 0.111860i
\(716\) −0.431099 + 0.0916329i −0.0161109 + 0.00342448i
\(717\) −43.1838 16.5767i −1.61273 0.619068i
\(718\) 26.1247 7.00010i 0.974966 0.261241i
\(719\) −0.651471 + 6.19833i −0.0242958 + 0.231159i 0.975635 + 0.219400i \(0.0704098\pi\)
−0.999931 + 0.0117592i \(0.996257\pi\)
\(720\) −36.5640 + 22.3165i −1.36266 + 0.831686i
\(721\) −1.81247 + 0.953835i −0.0674998 + 0.0355227i
\(722\) −1.36182 + 8.59818i −0.0506816 + 0.319991i
\(723\) −47.4907 + 2.48888i −1.76620 + 0.0925626i
\(724\) −0.104193 + 0.180468i −0.00387231 + 0.00670704i
\(725\) −6.11223 4.98594i −0.227003 0.185173i
\(726\) −31.7429 + 18.3267i −1.17809 + 0.680169i
\(727\) 10.2720 20.1599i 0.380967 0.747690i −0.618301 0.785941i \(-0.712179\pi\)
0.999268 + 0.0382513i \(0.0121787\pi\)
\(728\) −15.1563 + 14.0134i −0.561730 + 0.519371i
\(729\) 25.4854 + 35.0777i 0.943904 + 1.29917i
\(730\) 8.23231 7.78420i 0.304691 0.288106i
\(731\) −4.30471 9.66855i −0.159216 0.357604i
\(732\) 0.377685 + 1.40954i 0.0139596 + 0.0520980i
\(733\) 3.66568 + 4.52674i 0.135395 + 0.167199i 0.840334 0.542069i \(-0.182359\pi\)
−0.704939 + 0.709268i \(0.749026\pi\)
\(734\) 10.8586 33.4192i 0.400797 1.23353i
\(735\) 13.6900 41.9088i 0.504963 1.54583i
\(736\) 0.797179 + 2.45346i 0.0293844 + 0.0904359i
\(737\) 3.09660 4.76835i 0.114065 0.175644i
\(738\) 84.1495 + 4.41009i 3.09758 + 0.162338i
\(739\) 10.4801 49.3051i 0.385518 1.81372i −0.173820 0.984777i \(-0.555611\pi\)
0.559338 0.828940i \(-0.311056\pi\)
\(740\) 0.357800 + 0.127425i 0.0131530 + 0.00468425i
\(741\) −36.6243 11.9000i −1.34543 0.437156i
\(742\) −12.8518 7.19550i −0.471803 0.264155i
\(743\) 1.41788 + 1.41788i 0.0520170 + 0.0520170i 0.732637 0.680620i \(-0.238289\pi\)
−0.680620 + 0.732637i \(0.738289\pi\)
\(744\) −70.8479 7.44641i −2.59741 0.272999i
\(745\) 0.980710 + 1.28284i 0.0359304 + 0.0469995i
\(746\) −3.57747 34.0374i −0.130981 1.24620i
\(747\) 0.144520 + 0.376486i 0.00528769 + 0.0137749i
\(748\) 0.116776 + 0.0595001i 0.00426974 + 0.00217554i
\(749\) −6.46047 0.936011i −0.236061 0.0342011i
\(750\) 42.6286 + 10.4767i 1.55657 + 0.382557i
\(751\) −19.4772 33.7356i −0.710735 1.23103i −0.964582 0.263784i \(-0.915029\pi\)
0.253847 0.967244i \(-0.418304\pi\)
\(752\) 12.8711 + 19.8197i 0.469360 + 0.722752i
\(753\) −40.7546 + 50.3278i −1.48518 + 1.83405i
\(754\) 5.46637 + 2.43379i 0.199074 + 0.0886333i
\(755\) −34.3541 14.3021i −1.25027 0.520506i
\(756\) 0.201926 0.795445i 0.00734397 0.0289300i
\(757\) 9.13491 9.13491i 0.332014 0.332014i −0.521337 0.853351i \(-0.674567\pi\)
0.853351 + 0.521337i \(0.174567\pi\)
\(758\) 27.7261 22.4522i 1.00706 0.815499i
\(759\) −19.4781 21.6326i −0.707008 0.785212i
\(760\) −5.81374 31.6847i −0.210886 1.14932i
\(761\) 12.6693 + 11.4074i 0.459260 + 0.413520i 0.866015 0.500018i \(-0.166673\pi\)
−0.406755 + 0.913537i \(0.633340\pi\)
\(762\) 73.3679 37.3828i 2.65784 1.35424i
\(763\) 13.5471 15.4509i 0.490438 0.559359i
\(764\) −1.14349 + 0.371541i −0.0413699 + 0.0134419i
\(765\) 19.6709 + 0.550355i 0.711204 + 0.0198981i
\(766\) 2.14915 1.93511i 0.0776520 0.0699182i