# Properties

 Label 175.2.x.a.108.4 Level $175$ Weight $2$ Character 175.108 Analytic conductor $1.397$ Analytic rank $0$ Dimension $288$ Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [175,2,Mod(3,175)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(175, base_ring=CyclotomicField(60))

chi = DirichletCharacter(H, H._module([21, 10]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("175.3");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$175 = 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 175.x (of order $$60$$, degree $$16$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.39738203537$$ Analytic rank: $$0$$ Dimension: $$288$$ Relative dimension: $$18$$ over $$\Q(\zeta_{60})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

## Embedding invariants

 Embedding label 108.4 Character $$\chi$$ $$=$$ 175.108 Dual form 175.2.x.a.47.4

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(-0.0935941 - 1.78588i) q^{2} +(0.279642 + 0.226450i) q^{3} +(-1.19157 + 0.125239i) q^{4} +(1.07995 + 1.95799i) q^{5} +(0.378240 - 0.520602i) q^{6} +(-0.314872 - 2.62695i) q^{7} +(-0.224327 - 1.41635i) q^{8} +(-0.596815 - 2.80779i) q^{9} +O(q^{10})$$ $$q+(-0.0935941 - 1.78588i) q^{2} +(0.279642 + 0.226450i) q^{3} +(-1.19157 + 0.125239i) q^{4} +(1.07995 + 1.95799i) q^{5} +(0.378240 - 0.520602i) q^{6} +(-0.314872 - 2.62695i) q^{7} +(-0.224327 - 1.41635i) q^{8} +(-0.596815 - 2.80779i) q^{9} +(3.39566 - 2.11192i) q^{10} +(4.12989 + 0.877836i) q^{11} +(-0.361574 - 0.234809i) q^{12} +(0.268631 + 0.527217i) q^{13} +(-4.66195 + 0.808191i) q^{14} +(-0.141386 + 0.792089i) q^{15} +(-4.85234 + 1.03140i) q^{16} +(-0.811348 - 0.311447i) q^{17} +(-4.95853 + 1.32863i) q^{18} +(-0.667317 + 6.34910i) q^{19} +(-1.53205 - 2.19783i) q^{20} +(0.506820 - 0.805908i) q^{21} +(1.18118 - 7.45766i) q^{22} +(-1.61819 + 0.0848056i) q^{23} +(0.258000 - 0.446869i) q^{24} +(-2.66742 + 4.22905i) q^{25} +(0.916406 - 0.529087i) q^{26} +(0.959010 - 1.88216i) q^{27} +(0.704189 + 3.09076i) q^{28} +(-0.996818 - 1.37200i) q^{29} +(1.42781 + 0.178365i) q^{30} +(3.65980 + 8.22005i) q^{31} +(1.55381 + 5.79889i) q^{32} +(0.956106 + 1.18069i) q^{33} +(-0.480271 + 1.47812i) q^{34} +(4.80348 - 3.45348i) q^{35} +(1.06279 + 3.27094i) q^{36} +(-2.37321 + 3.65442i) q^{37} +(11.4012 + 0.597511i) q^{38} +(-0.0442678 + 0.208263i) q^{39} +(2.53093 - 1.96881i) q^{40} +(-5.70437 - 1.85346i) q^{41} +(-1.48669 - 0.829693i) q^{42} +(3.73281 + 3.73281i) q^{43} +(-5.03100 - 0.528779i) q^{44} +(4.85309 - 4.20083i) q^{45} +(0.302906 + 2.88195i) q^{46} +(-3.45442 - 8.99906i) q^{47} +(-1.59048 - 0.810389i) q^{48} +(-6.80171 + 1.65430i) q^{49} +(7.80224 + 4.36789i) q^{50} +(-0.156360 - 0.270823i) q^{51} +(-0.386121 - 0.594574i) q^{52} +(5.33703 - 6.59068i) q^{53} +(-3.45108 - 1.53652i) q^{54} +(2.74128 + 9.03429i) q^{55} +(-3.65004 + 1.03526i) q^{56} +(-1.62436 + 1.62436i) q^{57} +(-2.35694 + 1.90861i) q^{58} +(4.53398 + 5.03550i) q^{59} +(0.0692713 - 0.961538i) q^{60} +(-0.917861 - 0.826446i) q^{61} +(14.3375 - 7.30532i) q^{62} +(-7.18801 + 2.45190i) q^{63} +(0.774814 - 0.251752i) q^{64} +(-0.742177 + 1.09534i) q^{65} +(2.01909 - 1.81800i) q^{66} +(-4.10789 + 10.7014i) q^{67} +(1.00578 + 0.269499i) q^{68} +(-0.471717 - 0.342723i) q^{69} +(-6.61709 - 8.25523i) q^{70} +(-11.3299 + 8.23164i) q^{71} +(-3.84293 + 1.47516i) q^{72} +(2.92452 - 1.89921i) q^{73} +(6.74848 + 3.89623i) q^{74} +(-1.70359 + 0.578583i) q^{75} -7.64897i q^{76} +(1.00564 - 11.1254i) q^{77} +(0.376077 + 0.0595648i) q^{78} +(5.74668 - 12.9073i) q^{79} +(-7.25974 - 8.38696i) q^{80} +(-7.17266 + 3.19347i) q^{81} +(-2.77617 + 10.3608i) q^{82} +(3.01586 - 0.477665i) q^{83} +(-0.502981 + 1.02377i) q^{84} +(-0.266404 - 1.92496i) q^{85} +(6.31698 - 7.01572i) q^{86} +(0.0319372 - 0.609399i) q^{87} +(0.316873 - 6.04629i) q^{88} +(11.4094 - 12.6715i) q^{89} +(-7.95640 - 8.27388i) q^{90} +(1.30039 - 0.871684i) q^{91} +(1.91756 - 0.303712i) q^{92} +(-0.837993 + 3.12743i) q^{93} +(-15.7479 + 7.01144i) q^{94} +(-13.1521 + 5.55010i) q^{95} +(-0.878647 + 1.97347i) q^{96} +(-11.5748 - 1.83327i) q^{97} +(3.59099 + 11.9922i) q^{98} -12.1198i q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9}+O(q^{10})$$ 288 * q - 8 * q^2 - 24 * q^3 - 10 * q^4 - 30 * q^5 - 10 * q^7 - 36 * q^8 - 10 * q^9 $$288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9} - 36 q^{10} - 6 q^{11} - 36 q^{12} - 20 q^{14} - 28 q^{15} - 30 q^{16} - 42 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} + 32 q^{22} - 40 q^{23} + 2 q^{25} - 48 q^{26} + 22 q^{28} - 58 q^{30} - 18 q^{31} + 8 q^{32} - 30 q^{33} - 2 q^{35} + 40 q^{36} - 10 q^{37} + 72 q^{38} + 30 q^{39} - 48 q^{40} + 6 q^{42} - 108 q^{43} - 10 q^{44} + 186 q^{45} - 6 q^{46} - 54 q^{47} - 248 q^{50} - 16 q^{51} + 216 q^{52} + 50 q^{53} - 30 q^{54} + 4 q^{56} - 216 q^{57} - 4 q^{58} + 90 q^{59} + 96 q^{60} - 18 q^{61} - 66 q^{63} - 100 q^{64} + 14 q^{65} - 90 q^{66} + 4 q^{67} + 342 q^{68} - 60 q^{70} - 24 q^{71} + 58 q^{72} - 6 q^{73} + 216 q^{75} - 80 q^{77} - 132 q^{78} - 10 q^{79} - 6 q^{80} - 10 q^{81} + 216 q^{82} + 20 q^{84} - 48 q^{85} - 6 q^{86} - 48 q^{87} - 122 q^{88} + 120 q^{89} - 12 q^{91} - 4 q^{92} + 106 q^{93} - 30 q^{94} - 98 q^{95} - 90 q^{96} + 222 q^{98}+O(q^{100})$$ 288 * q - 8 * q^2 - 24 * q^3 - 10 * q^4 - 30 * q^5 - 10 * q^7 - 36 * q^8 - 10 * q^9 - 36 * q^10 - 6 * q^11 - 36 * q^12 - 20 * q^14 - 28 * q^15 - 30 * q^16 - 42 * q^17 - 14 * q^18 - 30 * q^19 - 12 * q^21 + 32 * q^22 - 40 * q^23 + 2 * q^25 - 48 * q^26 + 22 * q^28 - 58 * q^30 - 18 * q^31 + 8 * q^32 - 30 * q^33 - 2 * q^35 + 40 * q^36 - 10 * q^37 + 72 * q^38 + 30 * q^39 - 48 * q^40 + 6 * q^42 - 108 * q^43 - 10 * q^44 + 186 * q^45 - 6 * q^46 - 54 * q^47 - 248 * q^50 - 16 * q^51 + 216 * q^52 + 50 * q^53 - 30 * q^54 + 4 * q^56 - 216 * q^57 - 4 * q^58 + 90 * q^59 + 96 * q^60 - 18 * q^61 - 66 * q^63 - 100 * q^64 + 14 * q^65 - 90 * q^66 + 4 * q^67 + 342 * q^68 - 60 * q^70 - 24 * q^71 + 58 * q^72 - 6 * q^73 + 216 * q^75 - 80 * q^77 - 132 * q^78 - 10 * q^79 - 6 * q^80 - 10 * q^81 + 216 * q^82 + 20 * q^84 - 48 * q^85 - 6 * q^86 - 48 * q^87 - 122 * q^88 + 120 * q^89 - 12 * q^91 - 4 * q^92 + 106 * q^93 - 30 * q^94 - 98 * q^95 - 90 * q^96 + 222 * q^98

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/175\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$127$$ $$\chi(n)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{3}{20}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.0935941 1.78588i −0.0661810 1.26281i −0.806776 0.590857i $$-0.798790\pi$$
0.740595 0.671952i $$-0.234544\pi$$
$$3$$ 0.279642 + 0.226450i 0.161451 + 0.130741i 0.706642 0.707572i $$-0.250209\pi$$
−0.545190 + 0.838312i $$0.683543\pi$$
$$4$$ −1.19157 + 0.125239i −0.595785 + 0.0626196i
$$5$$ 1.07995 + 1.95799i 0.482968 + 0.875638i
$$6$$ 0.378240 0.520602i 0.154416 0.212535i
$$7$$ −0.314872 2.62695i −0.119010 0.992893i
$$8$$ −0.224327 1.41635i −0.0793117 0.500755i
$$9$$ −0.596815 2.80779i −0.198938 0.935931i
$$10$$ 3.39566 2.11192i 1.07380 0.667847i
$$11$$ 4.12989 + 0.877836i 1.24521 + 0.264678i 0.782960 0.622072i $$-0.213709\pi$$
0.462250 + 0.886750i $$0.347042\pi$$
$$12$$ −0.361574 0.234809i −0.104377 0.0677834i
$$13$$ 0.268631 + 0.527217i 0.0745047 + 0.146224i 0.925254 0.379348i $$-0.123852\pi$$
−0.850749 + 0.525571i $$0.823852\pi$$
$$14$$ −4.66195 + 0.808191i −1.24596 + 0.215998i
$$15$$ −0.141386 + 0.792089i −0.0365058 + 0.204517i
$$16$$ −4.85234 + 1.03140i −1.21308 + 0.257849i
$$17$$ −0.811348 0.311447i −0.196781 0.0755371i 0.257982 0.966150i $$-0.416943\pi$$
−0.454763 + 0.890613i $$0.650276\pi$$
$$18$$ −4.95853 + 1.32863i −1.16874 + 0.313162i
$$19$$ −0.667317 + 6.34910i −0.153093 + 1.45658i 0.600702 + 0.799473i $$0.294888\pi$$
−0.753795 + 0.657110i $$0.771779\pi$$
$$20$$ −1.53205 2.19783i −0.342577 0.491449i
$$21$$ 0.506820 0.805908i 0.110597 0.175863i
$$22$$ 1.18118 7.45766i 0.251828 1.58998i
$$23$$ −1.61819 + 0.0848056i −0.337415 + 0.0176832i −0.220291 0.975434i $$-0.570701\pi$$
−0.117124 + 0.993117i $$0.537367\pi$$
$$24$$ 0.258000 0.446869i 0.0526640 0.0912168i
$$25$$ −2.66742 + 4.22905i −0.533485 + 0.845810i
$$26$$ 0.916406 0.529087i 0.179722 0.103762i
$$27$$ 0.959010 1.88216i 0.184562 0.362223i
$$28$$ 0.704189 + 3.09076i 0.133079 + 0.584099i
$$29$$ −0.996818 1.37200i −0.185104 0.254774i 0.706373 0.707840i $$-0.250330\pi$$
−0.891477 + 0.453066i $$0.850330\pi$$
$$30$$ 1.42781 + 0.178365i 0.260681 + 0.0325648i
$$31$$ 3.65980 + 8.22005i 0.657320 + 1.47636i 0.866853 + 0.498563i $$0.166139\pi$$
−0.209534 + 0.977801i $$0.567195\pi$$
$$32$$ 1.55381 + 5.79889i 0.274677 + 1.02511i
$$33$$ 0.956106 + 1.18069i 0.166437 + 0.205532i
$$34$$ −0.480271 + 1.47812i −0.0823657 + 0.253496i
$$35$$ 4.80348 3.45348i 0.811937 0.583745i
$$36$$ 1.06279 + 3.27094i 0.177132 + 0.545157i
$$37$$ −2.37321 + 3.65442i −0.390153 + 0.600782i −0.978105 0.208113i $$-0.933268\pi$$
0.587952 + 0.808896i $$0.299934\pi$$
$$38$$ 11.4012 + 0.597511i 1.84952 + 0.0969291i
$$39$$ −0.0442678 + 0.208263i −0.00708851 + 0.0333488i
$$40$$ 2.53093 1.96881i 0.400175 0.311297i
$$41$$ −5.70437 1.85346i −0.890873 0.289462i −0.172408 0.985026i $$-0.555155\pi$$
−0.718465 + 0.695563i $$0.755155\pi$$
$$42$$ −1.48669 0.829693i −0.229401 0.128024i
$$43$$ 3.73281 + 3.73281i 0.569248 + 0.569248i 0.931918 0.362670i $$-0.118135\pi$$
−0.362670 + 0.931918i $$0.618135\pi$$
$$44$$ −5.03100 0.528779i −0.758452 0.0797165i
$$45$$ 4.85309 4.20083i 0.723456 0.626222i
$$46$$ 0.302906 + 2.88195i 0.0446610 + 0.424921i
$$47$$ −3.45442 8.99906i −0.503878 1.31265i −0.915875 0.401463i $$-0.868502\pi$$
0.411997 0.911185i $$-0.364831\pi$$
$$48$$ −1.59048 0.810389i −0.229566 0.116970i
$$49$$ −6.80171 + 1.65430i −0.971673 + 0.236329i
$$50$$ 7.80224 + 4.36789i 1.10340 + 0.617713i
$$51$$ −0.156360 0.270823i −0.0218948 0.0379228i
$$52$$ −0.386121 0.594574i −0.0535453 0.0824525i
$$53$$ 5.33703 6.59068i 0.733098 0.905300i −0.265166 0.964203i $$-0.585427\pi$$
0.998264 + 0.0589026i $$0.0187601\pi$$
$$54$$ −3.45108 1.53652i −0.469632 0.209094i
$$55$$ 2.74128 + 9.03429i 0.369634 + 1.21818i
$$56$$ −3.65004 + 1.03526i −0.487757 + 0.138343i
$$57$$ −1.62436 + 1.62436i −0.215152 + 0.215152i
$$58$$ −2.35694 + 1.90861i −0.309481 + 0.250613i
$$59$$ 4.53398 + 5.03550i 0.590274 + 0.655566i 0.962087 0.272742i $$-0.0879305\pi$$
−0.371813 + 0.928308i $$0.621264\pi$$
$$60$$ 0.0692713 0.961538i 0.00894289 0.124134i
$$61$$ −0.917861 0.826446i −0.117520 0.105816i 0.608276 0.793726i $$-0.291862\pi$$
−0.725796 + 0.687910i $$0.758528\pi$$
$$62$$ 14.3375 7.30532i 1.82086 0.927777i
$$63$$ −7.18801 + 2.45190i −0.905604 + 0.308910i
$$64$$ 0.774814 0.251752i 0.0968517 0.0314690i
$$65$$ −0.742177 + 1.09534i −0.0920557 + 0.135861i
$$66$$ 2.01909 1.81800i 0.248533 0.223780i
$$67$$ −4.10789 + 10.7014i −0.501859 + 1.30739i 0.415596 + 0.909549i $$0.363573\pi$$
−0.917455 + 0.397838i $$0.869760\pi$$
$$68$$ 1.00578 + 0.269499i 0.121969 + 0.0326815i
$$69$$ −0.471717 0.342723i −0.0567881 0.0412590i
$$70$$ −6.61709 8.25523i −0.790894 0.986689i
$$71$$ −11.3299 + 8.23164i −1.34461 + 0.976915i −0.345348 + 0.938475i $$0.612239\pi$$
−0.999261 + 0.0384406i $$0.987761\pi$$
$$72$$ −3.84293 + 1.47516i −0.452894 + 0.173850i
$$73$$ 2.92452 1.89921i 0.342289 0.222285i −0.362033 0.932165i $$-0.617917\pi$$
0.704323 + 0.709880i $$0.251251\pi$$
$$74$$ 6.74848 + 3.89623i 0.784494 + 0.452928i
$$75$$ −1.70359 + 0.578583i −0.196714 + 0.0668090i
$$76$$ 7.64897i 0.877397i
$$77$$ 1.00564 11.1254i 0.114604 1.26786i
$$78$$ 0.376077 + 0.0595648i 0.0425823 + 0.00674438i
$$79$$ 5.74668 12.9073i 0.646552 1.45218i −0.231123 0.972924i $$-0.574240\pi$$
0.877675 0.479255i $$-0.159093\pi$$
$$80$$ −7.25974 8.38696i −0.811663 0.937691i
$$81$$ −7.17266 + 3.19347i −0.796962 + 0.354830i
$$82$$ −2.77617 + 10.3608i −0.306577 + 1.14416i
$$83$$ 3.01586 0.477665i 0.331033 0.0524305i 0.0112944 0.999936i $$-0.496405\pi$$
0.319739 + 0.947506i $$0.396405\pi$$
$$84$$ −0.502981 + 1.02377i −0.0548797 + 0.111702i
$$85$$ −0.266404 1.92496i −0.0288956 0.208791i
$$86$$ 6.31698 7.01572i 0.681178 0.756525i
$$87$$ 0.0319372 0.609399i 0.00342403 0.0653344i
$$88$$ 0.316873 6.04629i 0.0337787 0.644537i
$$89$$ 11.4094 12.6715i 1.20940 1.34317i 0.286523 0.958073i $$-0.407500\pi$$
0.922875 0.385100i $$-0.125833\pi$$
$$90$$ −7.95640 8.27388i −0.838678 0.872143i
$$91$$ 1.30039 0.871684i 0.136318 0.0913774i
$$92$$ 1.91756 0.303712i 0.199920 0.0316642i
$$93$$ −0.837993 + 3.12743i −0.0868958 + 0.324300i
$$94$$ −15.7479 + 7.01144i −1.62428 + 0.723174i
$$95$$ −13.1521 + 5.55010i −1.34938 + 0.569428i
$$96$$ −0.878647 + 1.97347i −0.0896765 + 0.201417i
$$97$$ −11.5748 1.83327i −1.17524 0.186140i −0.461884 0.886940i $$-0.652826\pi$$
−0.713358 + 0.700800i $$0.752826\pi$$
$$98$$ 3.59099 + 11.9922i 0.362745 + 1.21140i
$$99$$ 12.1198i 1.21809i
$$100$$ 2.64878 5.37328i 0.264878 0.537328i
$$101$$ 3.84878 + 2.22209i 0.382967 + 0.221106i 0.679109 0.734038i $$-0.262367\pi$$
−0.296141 + 0.955144i $$0.595700\pi$$
$$102$$ −0.469024 + 0.304588i −0.0464403 + 0.0301587i
$$103$$ −1.95677 + 0.751133i −0.192806 + 0.0740114i −0.452855 0.891584i $$-0.649595\pi$$
0.260049 + 0.965595i $$0.416261\pi$$
$$104$$ 0.686462 0.498744i 0.0673131 0.0489058i
$$105$$ 2.12530 + 0.122008i 0.207408 + 0.0119068i
$$106$$ −12.2697 8.91446i −1.19174 0.865849i
$$107$$ 3.97800 + 1.06590i 0.384568 + 0.103045i 0.445923 0.895071i $$-0.352876\pi$$
−0.0613552 + 0.998116i $$0.519542\pi$$
$$108$$ −0.907008 + 2.36284i −0.0872769 + 0.227364i
$$109$$ 8.87403 7.99021i 0.849977 0.765323i −0.123925 0.992292i $$-0.539548\pi$$
0.973902 + 0.226968i $$0.0728814\pi$$
$$110$$ 15.8776 5.74116i 1.51387 0.547398i
$$111$$ −1.49119 + 0.484517i −0.141537 + 0.0459883i
$$112$$ 4.23729 + 12.4221i 0.400386 + 1.17378i
$$113$$ −3.18186 + 1.62124i −0.299324 + 0.152513i −0.597202 0.802091i $$-0.703721\pi$$
0.297878 + 0.954604i $$0.403721\pi$$
$$114$$ 3.05295 + 2.74889i 0.285935 + 0.257457i
$$115$$ −1.91361 3.07680i −0.178445 0.286913i
$$116$$ 1.35961 + 1.51000i 0.126236 + 0.140200i
$$117$$ 1.31999 1.06891i 0.122034 0.0988208i
$$118$$ 8.56845 8.56845i 0.788789 0.788789i
$$119$$ −0.562685 + 2.22943i −0.0515813 + 0.204372i
$$120$$ 1.15359 + 0.0225650i 0.105308 + 0.00205989i
$$121$$ 6.23643 + 2.77664i 0.566948 + 0.252421i
$$122$$ −1.39003 + 1.71654i −0.125847 + 0.155408i
$$123$$ −1.17547 1.81006i −0.105988 0.163207i
$$124$$ −5.39038 9.33642i −0.484071 0.838435i
$$125$$ −11.1611 0.655624i −0.998279 0.0586408i
$$126$$ 5.05155 + 12.6074i 0.450028 + 1.12316i
$$127$$ −2.93160 1.49373i −0.260138 0.132547i 0.319058 0.947735i $$-0.396633\pi$$
−0.579196 + 0.815188i $$0.696633\pi$$
$$128$$ 3.78077 + 9.84925i 0.334176 + 0.870559i
$$129$$ 0.198557 + 1.88914i 0.0174820 + 0.166330i
$$130$$ 2.02562 + 1.22292i 0.177658 + 0.107257i
$$131$$ −3.66772 0.385493i −0.320450 0.0336806i −0.0570620 0.998371i $$-0.518173\pi$$
−0.263388 + 0.964690i $$0.584840\pi$$
$$132$$ −1.28714 1.28714i −0.112031 0.112031i
$$133$$ 16.8889 0.246144i 1.46445 0.0213434i
$$134$$ 19.4960 + 6.33462i 1.68419 + 0.547228i
$$135$$ 4.72093 0.154910i 0.406313 0.0133326i
$$136$$ −0.259110 + 1.21902i −0.0222185 + 0.104530i
$$137$$ −1.00746 0.0527989i −0.0860734 0.00451092i 0.00925064 0.999957i $$-0.497055\pi$$
−0.0953240 + 0.995446i $$0.530389\pi$$
$$138$$ −0.567912 + 0.874508i −0.0483439 + 0.0744431i
$$139$$ 3.10037 + 9.54195i 0.262970 + 0.809337i 0.992154 + 0.125020i $$0.0398996\pi$$
−0.729185 + 0.684317i $$0.760100\pi$$
$$140$$ −5.29118 + 4.71665i −0.447186 + 0.398630i
$$141$$ 1.07183 3.29877i 0.0902647 0.277806i
$$142$$ 15.7611 + 19.4634i 1.32265 + 1.63333i
$$143$$ 0.646606 + 2.41316i 0.0540719 + 0.201799i
$$144$$ 5.79190 + 13.0088i 0.482658 + 1.08407i
$$145$$ 1.60985 3.43345i 0.133691 0.285132i
$$146$$ −3.66548 5.04510i −0.303357 0.417535i
$$147$$ −2.27666 1.07763i −0.187776 0.0888816i
$$148$$ 2.37017 4.65171i 0.194827 0.382369i
$$149$$ 6.19698 3.57783i 0.507676 0.293107i −0.224202 0.974543i $$-0.571977\pi$$
0.731878 + 0.681436i $$0.238644\pi$$
$$150$$ 1.19273 + 2.98826i 0.0973857 + 0.243990i
$$151$$ 12.2345 21.1907i 0.995627 1.72448i 0.416908 0.908949i $$-0.363114\pi$$
0.578718 0.815527i $$-0.303553\pi$$
$$152$$ 9.14223 0.479124i 0.741532 0.0388621i
$$153$$ −0.390255 + 2.46397i −0.0315502 + 0.199200i
$$154$$ −19.9628 0.754685i −1.60865 0.0608142i
$$155$$ −12.1423 + 16.0431i −0.975297 + 1.28861i
$$156$$ 0.0266654 0.253705i 0.00213494 0.0203126i
$$157$$ −19.3989 + 5.19791i −1.54820 + 0.414838i −0.928904 0.370321i $$-0.879248\pi$$
−0.619294 + 0.785159i $$0.712581\pi$$
$$158$$ −23.5887 9.05485i −1.87662 0.720365i
$$159$$ 2.98492 0.634464i 0.236719 0.0503162i
$$160$$ −9.67612 + 9.30484i −0.764964 + 0.735612i
$$161$$ 0.732301 + 4.22419i 0.0577134 + 0.332913i
$$162$$ 6.37449 + 12.5106i 0.500827 + 0.982928i
$$163$$ −13.5326 8.78818i −1.05996 0.688343i −0.107867 0.994165i $$-0.534402\pi$$
−0.952089 + 0.305822i $$0.901069\pi$$
$$164$$ 7.02929 + 1.49412i 0.548895 + 0.116671i
$$165$$ −1.27924 + 3.14713i −0.0995883 + 0.245004i
$$166$$ −1.13532 5.34126i −0.0881179 0.414562i
$$167$$ 1.58959 + 10.0363i 0.123006 + 0.776630i 0.969655 + 0.244478i $$0.0786165\pi$$
−0.846649 + 0.532152i $$0.821383\pi$$
$$168$$ −1.25514 0.537046i −0.0968361 0.0414340i
$$169$$ 7.43541 10.2340i 0.571955 0.787228i
$$170$$ −3.41281 + 0.655931i −0.261750 + 0.0503076i
$$171$$ 18.2252 1.91555i 1.39372 0.146486i
$$172$$ −4.91540 3.98041i −0.374795 0.303503i
$$173$$ −0.175568 3.35004i −0.0133482 0.254699i −0.997150 0.0754409i $$-0.975964\pi$$
0.983802 0.179258i $$-0.0573698\pi$$
$$174$$ −1.09130 −0.0827315
$$175$$ 11.9494 + 5.67557i 0.903289 + 0.429033i
$$176$$ −20.9450 −1.57879
$$177$$ 0.127605 + 2.43485i 0.00959140 + 0.183015i
$$178$$ −23.6976 19.1899i −1.77621 1.43835i
$$179$$ −2.88851 + 0.303595i −0.215897 + 0.0226917i −0.211860 0.977300i $$-0.567952\pi$$
−0.00403785 + 0.999992i $$0.501285\pi$$
$$180$$ −5.25669 + 5.61338i −0.391811 + 0.418397i
$$181$$ 4.64922 6.39910i 0.345574 0.475641i −0.600485 0.799636i $$-0.705026\pi$$
0.946059 + 0.323994i $$0.105026\pi$$
$$182$$ −1.67843 2.24076i −0.124414 0.166096i
$$183$$ −0.0695242 0.438958i −0.00513937 0.0324487i
$$184$$ 0.483118 + 2.27289i 0.0356159 + 0.167560i
$$185$$ −9.71824 0.700124i −0.714499 0.0514741i
$$186$$ 5.66366 + 1.20385i 0.415279 + 0.0882704i
$$187$$ −3.07738 1.99847i −0.225040 0.146143i
$$188$$ 5.24321 + 10.2904i 0.382401 + 0.750504i
$$189$$ −5.24631 1.92663i −0.381613 0.140142i
$$190$$ 11.1428 + 22.9687i 0.808382 + 1.66632i
$$191$$ 14.2348 3.02570i 1.03000 0.218932i 0.338237 0.941061i $$-0.390170\pi$$
0.691758 + 0.722129i $$0.256836\pi$$
$$192$$ 0.273680 + 0.105056i 0.0197511 + 0.00758175i
$$193$$ 0.600403 0.160877i 0.0432179 0.0115802i −0.237145 0.971474i $$-0.576212\pi$$
0.280363 + 0.959894i $$0.409545\pi$$
$$194$$ −2.19067 + 20.8428i −0.157281 + 1.49643i
$$195$$ −0.455584 + 0.138238i −0.0326250 + 0.00989943i
$$196$$ 7.89754 2.82306i 0.564110 0.201647i
$$197$$ 3.81776 24.1044i 0.272004 1.71736i −0.352048 0.935982i $$-0.614515\pi$$
0.624052 0.781383i $$-0.285485\pi$$
$$198$$ −21.6445 + 1.13434i −1.53821 + 0.0806141i
$$199$$ −4.29215 + 7.43422i −0.304262 + 0.526998i −0.977097 0.212795i $$-0.931743\pi$$
0.672835 + 0.739793i $$0.265077\pi$$
$$200$$ 6.58818 + 2.82931i 0.465855 + 0.200062i
$$201$$ −3.57207 + 2.06234i −0.251955 + 0.145466i
$$202$$ 3.60817 7.08143i 0.253870 0.498248i
$$203$$ −3.29031 + 3.05059i −0.230934 + 0.214110i
$$204$$ 0.220231 + 0.303123i 0.0154193 + 0.0212228i
$$205$$ −2.53137 13.1707i −0.176799 0.919883i
$$206$$ 1.52458 + 3.42426i 0.106222 + 0.238579i
$$207$$ 1.20387 + 4.49292i 0.0836751 + 0.312280i
$$208$$ −1.84726 2.28117i −0.128084 0.158171i
$$209$$ −8.32941 + 25.6353i −0.576158 + 1.77323i
$$210$$ 0.0189771 3.80695i 0.00130954 0.262704i
$$211$$ 1.28435 + 3.95282i 0.0884183 + 0.272123i 0.985483 0.169777i $$-0.0543046\pi$$
−0.897064 + 0.441900i $$0.854305\pi$$
$$212$$ −5.53404 + 8.52167i −0.380079 + 0.585271i
$$213$$ −5.03236 0.263735i −0.344812 0.0180708i
$$214$$ 1.53126 7.20400i 0.104675 0.492455i
$$215$$ −3.27755 + 11.3400i −0.223527 + 0.773383i
$$216$$ −2.88093 0.936071i −0.196023 0.0636916i
$$217$$ 20.4413 12.2024i 1.38764 0.828351i
$$218$$ −15.1001 15.1001i −1.02271 1.02271i
$$219$$ 1.24789 + 0.131159i 0.0843249 + 0.00886290i
$$220$$ −4.39788 10.4217i −0.296505 0.702630i
$$221$$ −0.0537525 0.511421i −0.00361578 0.0344019i
$$222$$ 1.00486 + 2.61774i 0.0674416 + 0.175691i
$$223$$ 11.3328 + 5.77436i 0.758902 + 0.386680i 0.790215 0.612830i $$-0.209969\pi$$
−0.0313132 + 0.999510i $$0.509969\pi$$
$$224$$ 14.7441 5.90768i 0.985134 0.394723i
$$225$$ 13.4663 + 4.96561i 0.897750 + 0.331041i
$$226$$ 3.19314 + 5.53069i 0.212405 + 0.367896i
$$227$$ 3.81371 + 5.87260i 0.253125 + 0.389778i 0.942275 0.334841i $$-0.108682\pi$$
−0.689150 + 0.724619i $$0.742016\pi$$
$$228$$ 1.73211 2.13897i 0.114712 0.141657i
$$229$$ −13.5136 6.01664i −0.893003 0.397591i −0.0916563 0.995791i $$-0.529216\pi$$
−0.801347 + 0.598200i $$0.795883\pi$$
$$230$$ −5.31570 + 3.70545i −0.350507 + 0.244330i
$$231$$ 2.80057 2.88341i 0.184264 0.189714i
$$232$$ −1.71962 + 1.71962i −0.112899 + 0.112899i
$$233$$ 1.98260 1.60547i 0.129884 0.105178i −0.562177 0.827017i $$-0.690036\pi$$
0.692061 + 0.721839i $$0.256703\pi$$
$$234$$ −2.03249 2.25731i −0.132868 0.147565i
$$235$$ 13.8894 16.4822i 0.906048 1.07518i
$$236$$ −6.03320 5.43232i −0.392728 0.353614i
$$237$$ 4.52986 2.30808i 0.294246 0.149926i
$$238$$ 4.03417 + 0.796227i 0.261496 + 0.0516118i
$$239$$ −0.945911 + 0.307345i −0.0611859 + 0.0198805i −0.339450 0.940624i $$-0.610241\pi$$
0.278264 + 0.960505i $$0.410241\pi$$
$$240$$ −0.130903 3.98931i −0.00844977 0.257509i
$$241$$ −3.98537 + 3.58844i −0.256720 + 0.231152i −0.787434 0.616399i $$-0.788591\pi$$
0.530713 + 0.847551i $$0.321924\pi$$
$$242$$ 4.37505 11.3974i 0.281239 0.732653i
$$243$$ −8.85021 2.37141i −0.567741 0.152126i
$$244$$ 1.19720 + 0.869816i 0.0766428 + 0.0556843i
$$245$$ −10.5846 11.5311i −0.676225 0.736695i
$$246$$ −3.12253 + 2.26865i −0.199086 + 0.144644i
$$247$$ −3.52661 + 1.35374i −0.224393 + 0.0861364i
$$248$$ 10.8215 7.02754i 0.687163 0.446249i
$$249$$ 0.951527 + 0.549365i 0.0603006 + 0.0348146i
$$250$$ −0.126253 + 19.9938i −0.00798496 + 1.26452i
$$251$$ 15.5071i 0.978800i −0.872059 0.489400i $$-0.837216\pi$$
0.872059 0.489400i $$-0.162784\pi$$
$$252$$ 8.25794 3.82183i 0.520202 0.240753i
$$253$$ −6.75739 1.07026i −0.424833 0.0672870i
$$254$$ −2.39324 + 5.37530i −0.150165 + 0.337277i
$$255$$ 0.361408 0.598626i 0.0226322 0.0374874i
$$256$$ 18.7242 8.33657i 1.17027 0.521036i
$$257$$ 4.03975 15.0766i 0.251993 0.940449i −0.717746 0.696305i $$-0.754826\pi$$
0.969739 0.244145i $$-0.0785072\pi$$
$$258$$ 3.35520 0.531412i 0.208886 0.0330842i
$$259$$ 10.3472 + 5.08362i 0.642945 + 0.315881i
$$260$$ 0.747177 1.39813i 0.0463379 0.0867082i
$$261$$ −3.25738 + 3.61769i −0.201627 + 0.223929i
$$262$$ −0.345168 + 6.58619i −0.0213245 + 0.406896i
$$263$$ 0.215114 4.10463i 0.0132645 0.253102i −0.983946 0.178465i $$-0.942887\pi$$
0.997211 0.0746370i $$-0.0237798\pi$$
$$264$$ 1.45779 1.61904i 0.0897208 0.0996451i
$$265$$ 18.6682 + 3.33224i 1.14678 + 0.204698i
$$266$$ −2.02028 30.1385i −0.123872 1.84791i
$$267$$ 6.06001 0.959811i 0.370866 0.0587395i
$$268$$ 3.55461 13.2660i 0.217132 0.810349i
$$269$$ −10.7761 + 4.79784i −0.657032 + 0.292529i −0.708044 0.706169i $$-0.750422\pi$$
0.0510119 + 0.998698i $$0.483755\pi$$
$$270$$ −0.718503 8.41653i −0.0437267 0.512214i
$$271$$ −2.73943 + 6.15287i −0.166409 + 0.373760i −0.977431 0.211255i $$-0.932245\pi$$
0.811022 + 0.585015i $$0.198912\pi$$
$$272$$ 4.25816 + 0.674426i 0.258189 + 0.0408931i
$$273$$ 0.561036 + 0.0507128i 0.0339554 + 0.00306928i
$$274$$ 1.80415i 0.108993i
$$275$$ −14.7286 + 15.1240i −0.888167 + 0.912009i
$$276$$ 0.605007 + 0.349301i 0.0364171 + 0.0210254i
$$277$$ −25.5422 + 16.5873i −1.53468 + 0.996635i −0.547543 + 0.836778i $$0.684437\pi$$
−0.987140 + 0.159857i $$0.948897\pi$$
$$278$$ 16.7506 6.42996i 1.00464 0.385643i
$$279$$ 20.8960 15.1818i 1.25101 0.908911i
$$280$$ −5.96889 6.02869i −0.356709 0.360283i
$$281$$ 3.78178 + 2.74762i 0.225602 + 0.163909i 0.694845 0.719160i $$-0.255473\pi$$
−0.469243 + 0.883069i $$0.655473\pi$$
$$282$$ −5.99152 1.60542i −0.356790 0.0956016i
$$283$$ −2.00715 + 5.22881i −0.119313 + 0.310821i −0.980211 0.197957i $$-0.936569\pi$$
0.860898 + 0.508778i $$0.169903\pi$$
$$284$$ 12.4694 11.2275i 0.739924 0.666231i
$$285$$ −4.93470 1.42625i −0.292306 0.0844838i
$$286$$ 4.24911 1.38062i 0.251255 0.0816377i
$$287$$ −3.07280 + 15.5687i −0.181382 + 0.918991i
$$288$$ 15.3547 7.82364i 0.904787 0.461012i
$$289$$ −12.0722 10.8698i −0.710128 0.639402i
$$290$$ −6.28241 2.55365i −0.368916 0.149956i
$$291$$ −2.82166 3.13377i −0.165408 0.183705i
$$292$$ −3.24692 + 2.62930i −0.190012 + 0.153868i
$$293$$ −7.38400 + 7.38400i −0.431378 + 0.431378i −0.889097 0.457719i $$-0.848667\pi$$
0.457719 + 0.889097i $$0.348667\pi$$
$$294$$ −1.71144 + 4.16671i −0.0998133 + 0.243007i
$$295$$ −4.96297 + 14.3155i −0.288955 + 0.833483i
$$296$$ 5.70830 + 2.54150i 0.331788 + 0.147722i
$$297$$ 5.61284 6.93128i 0.325690 0.402194i
$$298$$ −6.96958 10.7322i −0.403737 0.621700i
$$299$$ −0.479406 0.830355i −0.0277247 0.0480207i
$$300$$ 1.95749 0.902779i 0.113016 0.0521219i
$$301$$ 8.63053 10.9812i 0.497456 0.632948i
$$302$$ −38.9892 19.8660i −2.24358 1.14316i
$$303$$ 0.573087 + 1.49294i 0.0329230 + 0.0857674i
$$304$$ −3.31039 31.4962i −0.189864 1.80643i
$$305$$ 0.626927 2.68968i 0.0358977 0.154011i
$$306$$ 4.43689 + 0.466336i 0.253640 + 0.0266587i
$$307$$ 19.4310 + 19.4310i 1.10899 + 1.10899i 0.993284 + 0.115702i $$0.0369117\pi$$
0.115702 + 0.993284i $$0.463088\pi$$
$$308$$ 0.195044 + 13.3827i 0.0111137 + 0.762549i
$$309$$ −0.717289 0.233061i −0.0408051 0.0132584i
$$310$$ 29.7875 + 20.1833i 1.69182 + 1.14633i
$$311$$ 3.11924 14.6749i 0.176876 0.832135i −0.796808 0.604232i $$-0.793480\pi$$
0.973684 0.227902i $$-0.0731867\pi$$
$$312$$ 0.304904 + 0.0159793i 0.0172618 + 0.000904652i
$$313$$ −16.6103 + 25.5775i −0.938867 + 1.44573i −0.0441858 + 0.999023i $$0.514069\pi$$
−0.894681 + 0.446705i $$0.852597\pi$$
$$314$$ 11.0985 + 34.1576i 0.626323 + 1.92762i
$$315$$ −12.5635 11.4261i −0.707871 0.643788i
$$316$$ −5.23108 + 16.0996i −0.294271 + 0.905674i
$$317$$ −15.9146 19.6529i −0.893852 1.10382i −0.994058 0.108849i $$-0.965283\pi$$
0.100206 0.994967i $$-0.468050\pi$$
$$318$$ −1.41245 5.27133i −0.0792061 0.295601i
$$319$$ −2.91236 6.54127i −0.163061 0.366241i
$$320$$ 1.32969 + 1.24520i 0.0743317 + 0.0696085i
$$321$$ 0.871043 + 1.19889i 0.0486169 + 0.0669154i
$$322$$ 7.47537 1.70316i 0.416586 0.0949136i
$$323$$ 2.51883 4.94349i 0.140152 0.275063i
$$324$$ 8.14678 4.70355i 0.452599 0.261308i
$$325$$ −2.94618 0.270259i −0.163425 0.0149913i
$$326$$ −14.4281 + 24.9902i −0.799097 + 1.38408i
$$327$$ 4.29093 0.224878i 0.237289 0.0124358i
$$328$$ −1.34550 + 8.49516i −0.0742928 + 0.469066i
$$329$$ −22.5524 + 11.9081i −1.24335 + 0.656516i
$$330$$ 5.74013 + 1.99001i 0.315984 + 0.109546i
$$331$$ 0.691950 6.58346i 0.0380330 0.361860i −0.958909 0.283714i $$-0.908433\pi$$
0.996942 0.0781459i $$-0.0249000\pi$$
$$332$$ −3.53378 + 0.946875i −0.193942 + 0.0519665i
$$333$$ 11.6772 + 4.48246i 0.639907 + 0.245637i
$$334$$ 17.7748 3.77815i 0.972595 0.206731i
$$335$$ −25.3896 + 3.51379i −1.38718 + 0.191979i
$$336$$ −1.62805 + 4.43327i −0.0888175 + 0.241855i
$$337$$ 2.24236 + 4.40088i 0.122149 + 0.239731i 0.943982 0.329998i $$-0.107048\pi$$
−0.821833 + 0.569729i $$0.807048\pi$$
$$338$$ −18.9726 12.3209i −1.03197 0.670170i
$$339$$ −1.25691 0.267165i −0.0682660 0.0145104i
$$340$$ 0.558519 + 2.26036i 0.0302900 + 0.122585i
$$341$$ 7.89874 + 37.1606i 0.427741 + 2.01236i
$$342$$ −5.12671 32.3688i −0.277221 1.75030i
$$343$$ 6.48744 + 17.3468i 0.350289 + 0.936642i
$$344$$ 4.44958 6.12432i 0.239905 0.330201i
$$345$$ 0.161616 1.29374i 0.00870112 0.0696526i
$$346$$ −5.96635 + 0.627089i −0.320753 + 0.0337125i
$$347$$ 20.0098 + 16.2036i 1.07418 + 0.869857i 0.991934 0.126755i $$-0.0404561\pi$$
0.0822499 + 0.996612i $$0.473789\pi$$
$$348$$ 0.0382651 + 0.730141i 0.00205122 + 0.0391397i
$$349$$ −23.8148 −1.27478 −0.637389 0.770543i $$-0.719985\pi$$
−0.637389 + 0.770543i $$0.719985\pi$$
$$350$$ 9.01751 21.8714i 0.482006 1.16908i
$$351$$ 1.24993 0.0667163
$$352$$ 1.32659 + 25.3128i 0.0707073 + 1.34918i
$$353$$ 24.6090 + 19.9280i 1.30980 + 1.06066i 0.993716 + 0.111929i $$0.0357031\pi$$
0.316089 + 0.948730i $$0.397630\pi$$
$$354$$ 4.33642 0.455776i 0.230478 0.0242242i
$$355$$ −28.3531 13.2940i −1.50483 0.705572i
$$356$$ −12.0082 + 16.5279i −0.636433 + 0.875975i
$$357$$ −0.662205 + 0.496024i −0.0350476 + 0.0262524i
$$358$$ 0.812532 + 5.13013i 0.0429437 + 0.271136i
$$359$$ −2.63745 12.4082i −0.139199 0.654881i −0.991313 0.131524i $$-0.958013\pi$$
0.852114 0.523357i $$-0.175320\pi$$
$$360$$ −7.03851 5.93131i −0.370962 0.312607i
$$361$$ −21.2809 4.52340i −1.12005 0.238073i
$$362$$ −11.8632 7.70404i −0.623515 0.404915i
$$363$$ 1.11520 + 2.18870i 0.0585328 + 0.114877i
$$364$$ −1.44034 + 1.20153i −0.0754941 + 0.0629775i
$$365$$ 6.87696 + 3.67513i 0.359956 + 0.192365i
$$366$$ −0.777421 + 0.165246i −0.0406364 + 0.00863754i
$$367$$ −7.32836 2.81310i −0.382538 0.146842i 0.159497 0.987198i $$-0.449013\pi$$
−0.542035 + 0.840356i $$0.682346\pi$$
$$368$$ 7.76452 2.08050i 0.404754 0.108453i
$$369$$ −1.79969 + 17.1229i −0.0936879 + 0.891381i
$$370$$ −0.340769 + 17.4212i −0.0177157 + 0.905683i
$$371$$ −18.9939 11.9449i −0.986112 0.620147i
$$372$$ 0.606851 3.83151i 0.0314638 0.198654i
$$373$$ 3.64111 0.190823i 0.188530 0.00988042i 0.0421626 0.999111i $$-0.486575\pi$$
0.146367 + 0.989230i $$0.453242\pi$$
$$374$$ −3.28101 + 5.68288i −0.169657 + 0.293855i
$$375$$ −2.97265 2.71077i −0.153507 0.139983i
$$376$$ −11.9709 + 6.91139i −0.617351 + 0.356428i
$$377$$ 0.455567 0.894102i 0.0234629 0.0460486i
$$378$$ −2.94971 + 9.54961i −0.151717 + 0.491179i
$$379$$ 12.1944 + 16.7841i 0.626384 + 0.862143i 0.997798 0.0663239i $$-0.0211271\pi$$
−0.371414 + 0.928467i $$0.621127\pi$$
$$380$$ 14.9766 8.26049i 0.768283 0.423754i
$$381$$ −0.481546 1.08157i −0.0246703 0.0554105i
$$382$$ −6.73584 25.1385i −0.344636 1.28620i
$$383$$ −12.2271 15.0992i −0.624775 0.771533i 0.362253 0.932080i $$-0.382008\pi$$
−0.987028 + 0.160546i $$0.948674\pi$$
$$384$$ −1.17310 + 3.61042i −0.0598643 + 0.184243i
$$385$$ 22.8695 10.0458i 1.16554 0.511984i
$$386$$ −0.343502 1.05719i −0.0174838 0.0538096i
$$387$$ 8.25315 12.7087i 0.419531 0.646022i
$$388$$ 14.0218 + 0.734850i 0.711848 + 0.0373064i
$$389$$ 3.18105 14.9656i 0.161285 0.758788i −0.820930 0.571029i $$-0.806544\pi$$
0.982215 0.187759i $$-0.0601224\pi$$
$$390$$ 0.289517 + 0.800681i 0.0146603 + 0.0405440i
$$391$$ 1.33933 + 0.435173i 0.0677326 + 0.0220077i
$$392$$ 3.86888 + 9.26248i 0.195408 + 0.467826i
$$393$$ −0.938353 0.938353i −0.0473337 0.0473337i
$$394$$ −43.4049 4.56204i −2.18671 0.229832i
$$395$$ 31.4784 2.68725i 1.58385 0.135210i
$$396$$ 1.51787 + 14.4416i 0.0762760 + 0.725717i
$$397$$ 10.4769 + 27.2933i 0.525822 + 1.36981i 0.897321 + 0.441379i $$0.145511\pi$$
−0.371499 + 0.928434i $$0.621156\pi$$
$$398$$ 13.6784 + 6.96947i 0.685634 + 0.349348i
$$399$$ 4.77858 + 3.75565i 0.239228 + 0.188017i
$$400$$ 8.58141 23.2719i 0.429071 1.16360i
$$401$$ 10.9327 + 18.9359i 0.545952 + 0.945616i 0.998546 + 0.0538996i $$0.0171651\pi$$
−0.452595 + 0.891716i $$0.649502\pi$$
$$402$$ 4.01742 + 6.18628i 0.200371 + 0.308544i
$$403$$ −3.35062 + 4.13767i −0.166906 + 0.206112i
$$404$$ −4.86438 2.16576i −0.242012 0.107751i
$$405$$ −13.9989 10.5952i −0.695610 0.526479i
$$406$$ 5.75595 + 5.59059i 0.285663 + 0.277456i
$$407$$ −13.0091 + 13.0091i −0.644836 + 0.644836i
$$408$$ −0.348504 + 0.282213i −0.0172535 + 0.0139716i
$$409$$ 20.5599 + 22.8341i 1.01662 + 1.12907i 0.991594 + 0.129385i $$0.0413002\pi$$
0.0250261 + 0.999687i $$0.492033\pi$$
$$410$$ −23.2844 + 5.75343i −1.14994 + 0.284142i
$$411$$ −0.269773 0.242904i −0.0133069 0.0119816i
$$412$$ 2.23756 1.14009i 0.110237 0.0561683i
$$413$$ 11.8004 13.4961i 0.580658 0.664098i
$$414$$ 7.91115 2.57049i 0.388812 0.126333i
$$415$$ 4.19223 + 5.38915i 0.205789 + 0.264543i
$$416$$ −2.63987 + 2.37695i −0.129431 + 0.116540i
$$417$$ −1.29378 + 3.37041i −0.0633566 + 0.165049i
$$418$$ 46.5612 + 12.4760i 2.27738 + 0.610223i
$$419$$ −8.60424 6.25134i −0.420345 0.305398i 0.357432 0.933939i $$-0.383652\pi$$
−0.777776 + 0.628541i $$0.783652\pi$$
$$420$$ −2.54772 + 0.120789i −0.124316 + 0.00589389i
$$421$$ 17.2687 12.5464i 0.841623 0.611475i −0.0812007 0.996698i $$-0.525875\pi$$
0.922824 + 0.385223i $$0.125875\pi$$
$$422$$ 6.93906 2.66366i 0.337788 0.129665i
$$423$$ −23.2059 + 15.0701i −1.12831 + 0.732731i
$$424$$ −10.5319 6.08062i −0.511476 0.295301i
$$425$$ 3.48133 2.60047i 0.168869 0.126141i
$$426$$ 9.01188i 0.436627i
$$427$$ −1.88202 + 2.67140i −0.0910774 + 0.129278i
$$428$$ −4.87356 0.771896i −0.235572 0.0373110i
$$429$$ −0.365642 + 0.821246i −0.0176534 + 0.0396501i
$$430$$ 20.5587 + 4.79195i 0.991429 + 0.231088i
$$431$$ −7.00187 + 3.11743i −0.337268 + 0.150161i −0.568381 0.822765i $$-0.692430\pi$$
0.231113 + 0.972927i $$0.425763\pi$$
$$432$$ −2.71219 + 10.1220i −0.130490 + 0.486996i
$$433$$ 20.2759 3.21139i 0.974399 0.154330i 0.351121 0.936330i $$-0.385801\pi$$
0.623278 + 0.782000i $$0.285801\pi$$
$$434$$ −23.7052 35.3636i −1.13788 1.69751i
$$435$$ 1.22768 0.595586i 0.0588630 0.0285562i
$$436$$ −9.57334 + 10.6323i −0.458480 + 0.509194i
$$437$$ 0.541405 10.3306i 0.0258989 0.494180i
$$438$$ 0.117439 2.24087i 0.00561145 0.107073i
$$439$$ 8.37290 9.29905i 0.399617 0.443820i −0.509431 0.860512i $$-0.670144\pi$$
0.909048 + 0.416692i $$0.136811\pi$$
$$440$$ 12.1808 5.90925i 0.580695 0.281712i
$$441$$ 8.70430 + 18.1105i 0.414491 + 0.862404i
$$442$$ −0.908306 + 0.143862i −0.0432037 + 0.00684280i
$$443$$ −9.05910 + 33.8090i −0.430411 + 1.60632i 0.321405 + 0.946942i $$0.395845\pi$$
−0.751816 + 0.659373i $$0.770822\pi$$
$$444$$ 1.71618 0.764091i 0.0814462 0.0362622i
$$445$$ 37.1322 + 8.65500i 1.76023 + 0.410286i
$$446$$ 9.25164 20.7795i 0.438078 0.983939i
$$447$$ 2.54313 + 0.402793i 0.120286 + 0.0190514i
$$448$$ −0.905307 1.95613i −0.0427717 0.0924182i
$$449$$ 4.28525i 0.202233i 0.994875 + 0.101117i $$0.0322416\pi$$
−0.994875 + 0.101117i $$0.967758\pi$$
$$450$$ 7.60764 24.5139i 0.358627 1.15560i
$$451$$ −21.9314 12.6621i −1.03271 0.596235i
$$452$$ 3.58837 2.33031i 0.168783 0.109609i
$$453$$ 8.21990 3.15532i 0.386205 0.148250i
$$454$$ 10.1308 7.36048i 0.475464 0.345445i
$$455$$ 3.11110 + 1.60477i 0.145851 + 0.0752327i
$$456$$ 2.66505 + 1.93627i 0.124802 + 0.0906742i
$$457$$ 17.0829 + 4.57736i 0.799107 + 0.214120i 0.635192 0.772355i $$-0.280921\pi$$
0.163915 + 0.986474i $$0.447588\pi$$
$$458$$ −9.48021 + 24.6968i −0.442981 + 1.15401i
$$459$$ −1.36429 + 1.22841i −0.0636794 + 0.0573372i
$$460$$ 2.66553 + 3.42657i 0.124281 + 0.159765i
$$461$$ −23.7965 + 7.73195i −1.10831 + 0.360113i −0.805297 0.592872i $$-0.797994\pi$$
−0.303017 + 0.952985i $$0.597994\pi$$
$$462$$ −5.41154 4.73161i −0.251768 0.220135i
$$463$$ 24.3244 12.3939i 1.13045 0.575994i 0.214277 0.976773i $$-0.431260\pi$$
0.916175 + 0.400779i $$0.131260\pi$$
$$464$$ 6.25198 + 5.62931i 0.290241 + 0.261334i
$$465$$ −7.02846 + 1.73669i −0.325937 + 0.0805369i
$$466$$ −3.05275 3.39042i −0.141416 0.157058i
$$467$$ −5.50117 + 4.45476i −0.254564 + 0.206142i −0.748104 0.663581i $$-0.769036\pi$$
0.493541 + 0.869723i $$0.335702\pi$$
$$468$$ −1.43900 + 1.43900i −0.0665177 + 0.0665177i
$$469$$ 29.4056 + 7.42165i 1.35782 + 0.342700i
$$470$$ −30.7353 23.2623i −1.41771 1.07301i
$$471$$ −6.60180 2.93931i −0.304195 0.135436i
$$472$$ 6.11492 7.55129i 0.281462 0.347576i
$$473$$ 12.1393 + 18.6929i 0.558166 + 0.859500i
$$474$$ −4.54592 7.87377i −0.208801 0.361654i
$$475$$ −25.0706 19.7578i −1.15032 0.906552i
$$476$$ 0.391267 2.72700i 0.0179337 0.124992i
$$477$$ −21.6905 11.0519i −0.993140 0.506030i
$$478$$ 0.637414 + 1.66052i 0.0291546 + 0.0759504i
$$479$$ −3.94813 37.5639i −0.180394 1.71634i −0.592809 0.805343i $$-0.701981\pi$$
0.412415 0.910996i $$-0.364685\pi$$
$$480$$ −4.81293 + 0.410870i −0.219679 + 0.0187536i
$$481$$ −2.56419 0.269507i −0.116917 0.0122885i
$$482$$ 6.78154 + 6.78154i 0.308891 + 0.308891i
$$483$$ −0.751784 + 1.34709i −0.0342074 + 0.0612947i
$$484$$ −7.77889 2.52751i −0.353586 0.114887i
$$485$$ −8.91067 24.6431i −0.404612 1.11899i
$$486$$ −3.40672 + 16.0274i −0.154532 + 0.727017i
$$487$$ −13.1253 0.687869i −0.594765 0.0311703i −0.247421 0.968908i $$-0.579583\pi$$
−0.347344 + 0.937738i $$0.612916\pi$$
$$488$$ −0.964633 + 1.48540i −0.0436669 + 0.0672411i
$$489$$ −1.79421 5.52200i −0.0811368 0.249713i
$$490$$ −19.6025 + 19.9821i −0.885552 + 0.902699i
$$491$$ −7.21929 + 22.2187i −0.325802 + 1.00272i 0.645275 + 0.763950i $$0.276743\pi$$
−0.971077 + 0.238765i $$0.923257\pi$$
$$492$$ 1.62734 + 2.00960i 0.0733662 + 0.0905997i
$$493$$ 0.381460 + 1.42363i 0.0171801 + 0.0641170i
$$494$$ 2.74769 + 6.17142i 0.123624 + 0.277665i
$$495$$ 23.7304 13.0888i 1.06660 0.588296i
$$496$$ −26.2367 36.1118i −1.17806 1.62147i
$$497$$ 25.1915 + 27.1711i 1.12999 + 1.21879i
$$498$$ 0.892043 1.75073i 0.0399734 0.0784522i
$$499$$ −7.78986 + 4.49748i −0.348722 + 0.201335i −0.664122 0.747624i $$-0.731195\pi$$
0.315400 + 0.948959i $$0.397861\pi$$
$$500$$ 13.3814 0.616585i 0.598432 0.0275745i
$$501$$ −1.82819 + 3.16652i −0.0816777 + 0.141470i
$$502$$ −27.6939 + 1.45137i −1.23604 + 0.0647780i
$$503$$ 5.63363 35.5693i 0.251191 1.58596i −0.463228 0.886239i $$-0.653309\pi$$
0.714419 0.699718i $$-0.246691\pi$$
$$504$$ 5.08521 + 9.63069i 0.226513 + 0.428985i
$$505$$ −0.194347 + 9.93559i −0.00864831 + 0.442128i
$$506$$ −1.27892 + 12.1681i −0.0568547 + 0.540937i
$$507$$ 4.39673 1.17810i 0.195266 0.0523213i
$$508$$ 3.68029 + 1.41273i 0.163286 + 0.0626797i
$$509$$ −8.98152 + 1.90908i −0.398099 + 0.0846185i −0.402611 0.915371i $$-0.631897\pi$$
0.00451185 + 0.999990i $$0.498564\pi$$
$$510$$ −1.10290 0.589403i −0.0488372 0.0260992i
$$511$$ −5.90997 7.08456i −0.261442 0.313403i
$$512$$ −7.06144 13.8588i −0.312074 0.612480i
$$513$$ 11.3101 + 7.34485i 0.499352 + 0.324283i
$$514$$ −27.3030 5.80344i −1.20429 0.255979i
$$515$$ −3.58392 3.02014i −0.157926 0.133083i
$$516$$ −0.473189 2.22618i −0.0208310 0.0980021i
$$517$$ −6.36667 40.1976i −0.280006 1.76789i
$$518$$ 8.11030 18.9547i 0.356346 0.832822i
$$519$$ 0.709520 0.976571i 0.0311445 0.0428667i
$$520$$ 1.71788 + 0.805466i 0.0753339 + 0.0353220i
$$521$$ −12.1370 + 1.27565i −0.531732 + 0.0558872i −0.366590 0.930383i $$-0.619475\pi$$
−0.165142 + 0.986270i $$0.552808\pi$$
$$522$$ 6.76564 + 5.47871i 0.296124 + 0.239796i
$$523$$ −1.06831 20.3847i −0.0467141 0.891359i −0.917019 0.398845i $$-0.869411\pi$$
0.870304 0.492514i $$-0.163922\pi$$
$$524$$ 4.41862 0.193028
$$525$$ 2.05632 + 4.29306i 0.0897451 + 0.187365i
$$526$$ −7.35051 −0.320498
$$527$$ −0.409260 7.80915i −0.0178277 0.340172i
$$528$$ −5.85711 4.74300i −0.254898 0.206412i
$$529$$ −20.2627 + 2.12969i −0.880985 + 0.0925953i
$$530$$ 4.20375 33.6511i 0.182599 1.46171i
$$531$$ 11.4327 15.7357i 0.496136 0.682873i
$$532$$ −20.0934 + 2.40845i −0.871162 + 0.104419i
$$533$$ −0.555191 3.50534i −0.0240480 0.151833i
$$534$$ −2.28129 10.7326i −0.0987211 0.464446i
$$535$$ 2.20901 + 8.93999i 0.0955039 + 0.386509i
$$536$$ 16.0785 + 3.41758i 0.694484 + 0.147617i
$$537$$ −0.876498 0.569204i −0.0378237 0.0245630i
$$538$$ 9.57695 + 18.7958i 0.412892 + 0.810346i
$$539$$ −29.5426 + 0.861311i −1.27249 + 0.0370993i
$$540$$ −5.60592 + 0.775832i −0.241241 + 0.0333865i
$$541$$ 17.2586 3.66843i 0.742006 0.157718i 0.178627 0.983917i $$-0.442835\pi$$
0.563379 + 0.826199i $$0.309501\pi$$
$$542$$ 11.2447 + 4.31643i 0.483001 + 0.185407i
$$543$$ 2.74919 0.736644i 0.117979 0.0316124i
$$544$$ 0.545370 5.18885i 0.0233825 0.222470i
$$545$$ 25.2282 + 8.74621i 1.08066 + 0.374646i
$$546$$ 0.0380575 1.00669i 0.00162871 0.0430824i
$$547$$ 0.468776 2.95974i 0.0200434 0.126549i −0.975638 0.219388i $$-0.929594\pi$$
0.995681 + 0.0928385i $$0.0295940\pi$$
$$548$$ 1.20708 0.0632602i 0.0515637 0.00270234i
$$549$$ −1.77270 + 3.07040i −0.0756568 + 0.131041i
$$550$$ 28.3881 + 24.8880i 1.21047 + 1.06123i
$$551$$ 9.37617 5.41333i 0.399438 0.230616i
$$552$$ −0.379595 + 0.744998i −0.0161567 + 0.0317092i
$$553$$ −35.7162 11.0321i −1.51881 0.469133i
$$554$$ 32.0136 + 44.0629i 1.36013 + 1.87205i
$$555$$ −2.55909 2.39648i −0.108627 0.101725i
$$556$$ −4.88933 10.9816i −0.207354 0.465724i
$$557$$ −8.10705 30.2559i −0.343507 1.28198i −0.894347 0.447373i $$-0.852359\pi$$
0.550841 0.834610i $$-0.314307\pi$$
$$558$$ −29.0687 35.8968i −1.23057 1.51963i
$$559$$ −0.965254 + 2.97075i −0.0408259 + 0.125649i
$$560$$ −19.7462 + 21.7118i −0.834430 + 0.917490i
$$561$$ −0.408011 1.25573i −0.0172262 0.0530169i
$$562$$ 4.55298 7.01097i 0.192056 0.295740i
$$563$$ −18.5816 0.973818i −0.783119 0.0410415i −0.343414 0.939184i $$-0.611584\pi$$
−0.439705 + 0.898142i $$0.644917\pi$$
$$564$$ −0.864032 + 4.06495i −0.0363823 + 0.171165i
$$565$$ −6.61061 4.47919i −0.278110 0.188441i
$$566$$ 9.52590 + 3.09515i 0.400404 + 0.130099i
$$567$$ 10.6476 + 17.8367i 0.447155 + 0.749070i
$$568$$ 14.2005 + 14.2005i 0.595838 + 0.595838i
$$569$$ −1.55796 0.163748i −0.0653132 0.00686469i 0.0718155 0.997418i $$-0.477121\pi$$
−0.137129 + 0.990553i $$0.543787\pi$$
$$570$$ −2.08526 + 8.94628i −0.0873418 + 0.374719i
$$571$$ 1.38221 + 13.1509i 0.0578437 + 0.550346i 0.984617 + 0.174725i $$0.0559038\pi$$
−0.926773 + 0.375621i $$0.877430\pi$$
$$572$$ −1.07270 2.79448i −0.0448518 0.116843i
$$573$$ 4.66582 + 2.37736i 0.194918 + 0.0993154i
$$574$$ 28.0914 + 4.03053i 1.17251 + 0.168231i
$$575$$ 3.95774 7.06961i 0.165049 0.294823i
$$576$$ −1.16929 2.02527i −0.0487204 0.0843861i
$$577$$ 5.05877 + 7.78982i 0.210599 + 0.324294i 0.928146 0.372216i $$-0.121402\pi$$
−0.717547 + 0.696510i $$0.754735\pi$$
$$578$$ −18.2824 + 22.5768i −0.760446 + 0.939073i
$$579$$ 0.204328 + 0.0909729i 0.00849160 + 0.00378070i
$$580$$ −1.48825 + 4.29281i −0.0617961 + 0.178249i
$$581$$ −2.20441 7.77210i −0.0914543 0.322441i
$$582$$ −5.33245 + 5.33245i −0.221037 + 0.221037i
$$583$$ 27.8269 22.5338i 1.15247 0.933254i
$$584$$ −3.34599 3.71610i −0.138458 0.153773i
$$585$$ 3.51844 + 1.43016i 0.145469 + 0.0591300i
$$586$$ 13.8781 + 12.4959i 0.573297 + 0.516199i
$$587$$ 11.8830 6.05467i 0.490462 0.249903i −0.191226 0.981546i $$-0.561246\pi$$
0.681688 + 0.731643i $$0.261246\pi$$
$$588$$ 2.84776 + 0.998948i 0.117440 + 0.0411959i
$$589$$ −54.6321 + 17.7511i −2.25108 + 0.731419i
$$590$$ 26.0304 + 7.52342i 1.07165 + 0.309734i
$$591$$ 6.52603 5.87606i 0.268445 0.241709i
$$592$$ 7.74645 20.1802i 0.318377 0.829400i
$$593$$ −35.2829 9.45404i −1.44890 0.388231i −0.553257 0.833011i $$-0.686615\pi$$
−0.895640 + 0.444780i $$0.853282\pi$$
$$594$$ −12.9038 9.37515i −0.529449 0.384667i
$$595$$ −4.97287 + 1.30594i −0.203868 + 0.0535385i
$$596$$ −6.93605 + 5.03934i −0.284112 + 0.206419i
$$597$$ −2.88374 + 1.10696i −0.118024 + 0.0453050i
$$598$$ −1.43805 + 0.933878i −0.0588061 + 0.0381891i
$$599$$ 0.214739 + 0.123980i 0.00877399 + 0.00506567i 0.504381 0.863481i $$-0.331721\pi$$
−0.495607 + 0.868547i $$0.665054\pi$$
$$600$$ 1.20164 + 2.28308i 0.0490566 + 0.0932065i
$$601$$ 19.3484i 0.789237i 0.918845 + 0.394618i $$0.129123\pi$$
−0.918845 + 0.394618i $$0.870877\pi$$
$$602$$ −20.4190 14.3853i −0.832215 0.586302i
$$603$$ 32.4991 + 5.14734i 1.32346 + 0.209616i
$$604$$ −11.9243 + 26.7825i −0.485194 + 1.08976i
$$605$$ 1.29840 + 15.2095i 0.0527876 + 0.618353i
$$606$$ 2.61258 1.16320i 0.106129 0.0472517i
$$607$$ 9.35079 34.8976i 0.379537 1.41645i −0.467065 0.884223i $$-0.654688\pi$$
0.846601 0.532227i $$-0.178645\pi$$
$$608$$ −37.8546 + 5.99558i −1.53521 + 0.243153i
$$609$$ −1.61091 + 0.107985i −0.0652776 + 0.00437577i
$$610$$ −4.86212 0.867880i −0.196862 0.0351394i
$$611$$ 3.81650 4.23865i 0.154399 0.171477i
$$612$$ 0.156431 2.98487i 0.00632333 0.120656i
$$613$$ −0.817047 + 15.5902i −0.0330002 + 0.629681i 0.931200 + 0.364508i $$0.118763\pi$$
−0.964201 + 0.265174i $$0.914571\pi$$
$$614$$ 32.8828 36.5201i 1.32704 1.47383i
$$615$$ 2.27463 4.25632i 0.0917219 0.171631i
$$616$$ −15.9831 + 1.07140i −0.643976 + 0.0431679i
$$617$$ 27.4606 4.34934i 1.10552 0.175098i 0.423120 0.906074i $$-0.360935\pi$$
0.682403 + 0.730976i $$0.260935\pi$$
$$618$$ −0.349086 + 1.30281i −0.0140423 + 0.0524065i
$$619$$ 32.8458 14.6239i 1.32018 0.587784i 0.378913 0.925432i $$-0.376298\pi$$
0.941272 + 0.337648i $$0.109631\pi$$
$$620$$ 12.4592 20.6372i 0.500375 0.828808i
$$621$$ −1.39224 + 3.12702i −0.0558687 + 0.125483i
$$622$$ −26.4995 4.19711i −1.06253 0.168289i
$$623$$ −36.8798 25.9821i −1.47756 1.04095i
$$624$$ 1.05622i 0.0422827i
$$625$$ −10.7697 22.5613i −0.430788 0.902453i
$$626$$ 47.2331 + 27.2700i 1.88781 + 1.08993i
$$627$$ −8.13436 + 5.28251i −0.324855 + 0.210963i
$$628$$ 22.4641 8.62317i 0.896416 0.344102i
$$629$$ 3.06365 2.22587i 0.122156 0.0887514i
$$630$$ −19.2298 + 23.5063i −0.766133 + 0.936512i
$$631$$ 23.2118 + 16.8644i 0.924048 + 0.671360i 0.944528 0.328430i $$-0.106520\pi$$
−0.0204802 + 0.999790i $$0.506520\pi$$
$$632$$ −19.5703 5.24385i −0.778465 0.208589i
$$633$$ −0.535957 + 1.39622i −0.0213024 + 0.0554946i
$$634$$ −33.6082 + 30.2610i −1.33475 + 1.20182i
$$635$$ −0.241284 7.35319i −0.00957506 0.291802i
$$636$$ −3.47728 + 1.12984i −0.137883 + 0.0448009i
$$637$$ −2.69933 3.14158i −0.106951 0.124474i
$$638$$ −11.4094 + 5.81335i −0.451701 + 0.230153i
$$639$$ 29.8746 + 26.8992i 1.18182 + 1.06412i
$$640$$ −15.2017 + 18.0394i −0.600898 + 0.713069i
$$641$$ 12.0398 + 13.3716i 0.475545 + 0.528146i 0.932416 0.361387i $$-0.117697\pi$$
−0.456871 + 0.889533i $$0.651030\pi$$
$$642$$ 2.05955 1.66779i 0.0812838 0.0658223i
$$643$$ −9.47610 + 9.47610i −0.373701 + 0.373701i −0.868823 0.495122i $$-0.835123\pi$$
0.495122 + 0.868823i $$0.335123\pi$$
$$644$$ −1.40162 4.94171i −0.0552317 0.194731i
$$645$$ −3.48448 + 2.42895i −0.137201 + 0.0956397i
$$646$$ −9.06424 4.03566i −0.356628 0.158781i
$$647$$ −8.71831 + 10.7662i −0.342752 + 0.423264i −0.919151 0.393905i $$-0.871124\pi$$
0.576399 + 0.817168i $$0.304457\pi$$
$$648$$ 6.13209 + 9.44260i 0.240891 + 0.370940i
$$649$$ 14.3045 + 24.7762i 0.561502 + 0.972549i
$$650$$ −0.206906 + 5.28682i −0.00811554 + 0.207366i
$$651$$ 8.47946 + 1.21662i 0.332336 + 0.0476832i
$$652$$ 17.2257 + 8.77692i 0.674610 + 0.343731i
$$653$$ 13.1540 + 34.2673i 0.514754 + 1.34098i 0.907004 + 0.421122i $$0.138364\pi$$
−0.392249 + 0.919859i $$0.628303\pi$$
$$654$$ −0.803212 7.64205i −0.0314081 0.298828i
$$655$$ −3.20616 7.59765i −0.125275 0.296865i
$$656$$ 29.5912 + 3.11016i 1.15534 + 0.121431i
$$657$$ −7.07798 7.07798i −0.276138 0.276138i
$$658$$ 23.3773 + 39.1613i 0.911341 + 1.52667i
$$659$$ −17.1826 5.58297i −0.669340 0.217482i −0.0454175 0.998968i $$-0.514462\pi$$
−0.623922 + 0.781486i $$0.714462\pi$$
$$660$$ 1.13016 3.91024i 0.0439912 0.152206i
$$661$$ 5.47564 25.7609i 0.212978 1.00198i −0.733619 0.679561i $$-0.762170\pi$$
0.946596 0.322421i $$-0.104497\pi$$
$$662$$ −11.8221 0.619568i −0.459477 0.0240802i
$$663$$ 0.100780 0.155187i 0.00391396 0.00602696i
$$664$$ −1.35308 4.16435i −0.0525097 0.161608i
$$665$$ 18.7210 + 32.8023i 0.725971 + 1.27202i
$$666$$ 6.91223 21.2737i 0.267843 0.824337i
$$667$$ 1.72939 + 2.13562i 0.0669623 + 0.0826916i
$$668$$ −3.15104 11.7598i −0.121917 0.455002i
$$669$$ 1.86153 + 4.18107i 0.0719709 + 0.161649i
$$670$$ 8.65153 + 45.0139i 0.334238 + 1.73904i
$$671$$ −3.06518 4.21886i −0.118330 0.162867i
$$672$$ 5.46087 + 1.68677i 0.210658 + 0.0650685i
$$673$$ 23.2205 45.5727i 0.895083 1.75670i 0.297896 0.954598i $$-0.403715\pi$$
0.597187 0.802102i $$-0.296285\pi$$
$$674$$ 7.64957 4.41648i 0.294651 0.170117i
$$675$$ 5.40168 + 9.07623i 0.207911 + 0.349344i
$$676$$ −7.57813 + 13.1257i −0.291466 + 0.504835i
$$677$$ 39.4906 2.06961i 1.51775 0.0795417i 0.724854 0.688903i $$-0.241907\pi$$
0.792893 + 0.609361i $$0.208574\pi$$
$$678$$ −0.359485 + 2.26970i −0.0138059 + 0.0871673i
$$679$$ −1.17132 + 30.9836i −0.0449512 + 1.18904i
$$680$$ −2.66664 + 0.809141i −0.102261 + 0.0310292i
$$681$$ −0.263374 + 2.50584i −0.0100925 + 0.0960240i
$$682$$ 65.6252 17.5842i 2.51292 0.673335i
$$683$$ 10.1751 + 3.90584i 0.389338 + 0.149453i 0.545159 0.838332i $$-0.316469\pi$$
−0.155822 + 0.987785i $$0.549802\pi$$
$$684$$ −21.4767 + 4.56502i −0.821183 + 0.174548i
$$685$$ −0.984629 2.02962i −0.0376207 0.0775478i
$$686$$ 30.3722 13.2094i 1.15962 0.504336i
$$687$$ −2.41650 4.74265i −0.0921953 0.180943i
$$688$$ −21.9628 14.2628i −0.837326 0.543766i
$$689$$ 4.90841 + 1.04332i 0.186996 + 0.0397471i
$$690$$ −2.32559 0.167541i −0.0885338 0.00637817i
$$691$$ −7.18035 33.7809i −0.273153 1.28509i −0.874080 0.485782i $$-0.838535\pi$$
0.600927 0.799304i $$-0.294798\pi$$
$$692$$ 0.628759 + 3.96983i 0.0239018 + 0.150910i
$$693$$ −31.8381 + 3.81618i −1.20943 + 0.144965i
$$694$$ 27.0650 37.2518i 1.02737 1.41406i
$$695$$ −15.3348 + 16.3753i −0.581681 + 0.621150i
$$696$$ −0.870285 + 0.0914706i −0.0329881 + 0.00346719i
$$697$$ 4.05097 + 3.28041i 0.153442 + 0.124255i
$$698$$ 2.22893 + 42.5304i 0.0843661 + 1.60980i
$$699$$ 0.917976 0.0347211
$$700$$ −14.9493 5.26632i −0.565032 0.199048i
$$701$$ 16.6461 0.628716 0.314358 0.949305i $$-0.398211\pi$$
0.314358 + 0.949305i $$0.398211\pi$$
$$702$$ −0.116986 2.23223i −0.00441535 0.0842499i
$$703$$ −21.6186 17.5064i −0.815360 0.660265i
$$704$$ 3.42090 0.359551i 0.128930 0.0135511i
$$705$$ 7.61647 1.46386i 0.286853 0.0551322i
$$706$$ 33.2858 45.8139i 1.25273 1.72423i
$$707$$ 4.62545 10.8102i 0.173958 0.406560i
$$708$$ −0.456990 2.88532i −0.0171747 0.108437i
$$709$$ −3.91289 18.4087i −0.146952 0.691353i −0.988506 0.151181i $$-0.951692\pi$$
0.841555 0.540172i $$-0.181641\pi$$
$$710$$ −21.0878 + 51.8795i −0.791412 + 1.94700i
$$711$$ −39.6706 8.43225i −1.48776 0.316234i
$$712$$ −20.5067 13.3172i −0.768519 0.499082i
$$713$$ −6.61935 12.9912i −0.247897 0.486525i
$$714$$ 0.947818 + 1.13620i 0.0354712 + 0.0425210i
$$715$$ −4.02664 + 3.87214i −0.150588 + 0.144810i
$$716$$ 3.40384 0.723509i 0.127208 0.0270388i
$$717$$ −0.334115 0.128255i −0.0124777 0.00478976i
$$718$$ −21.9128 + 5.87151i −0.817777 + 0.219123i
$$719$$ −4.33832 + 41.2764i −0.161792 + 1.53935i 0.548926 + 0.835871i $$0.315037\pi$$
−0.710718 + 0.703477i $$0.751630\pi$$
$$720$$ −19.2161 + 25.3893i −0.716143 + 0.946203i
$$721$$ 2.58932 + 4.90382i 0.0964313 + 0.182628i
$$722$$ −6.08648 + 38.4285i −0.226515 + 1.43016i
$$723$$ −1.92708 + 0.100994i −0.0716688 + 0.00375601i
$$724$$ −4.73846 + 8.20725i −0.176103 + 0.305020i
$$725$$ 8.46120 0.555882i 0.314241 0.0206449i
$$726$$ 3.80439 2.19646i 0.141194 0.0815184i
$$727$$ −9.01500 + 17.6929i −0.334348 + 0.656195i −0.995573 0.0939929i $$-0.970037\pi$$
0.661225 + 0.750188i $$0.270037\pi$$
$$728$$ −1.52632 1.64626i −0.0565692 0.0610144i
$$729$$ 11.9070 + 16.3886i 0.441001 + 0.606985i
$$730$$ 5.91971 12.6254i 0.219098 0.467287i
$$731$$ −1.86603 4.19118i −0.0690177 0.155016i
$$732$$ 0.137818 + 0.514343i 0.00509389 + 0.0190107i
$$733$$ −6.23862 7.70405i −0.230429 0.284556i 0.648797 0.760962i $$-0.275273\pi$$
−0.879225 + 0.476406i $$0.841939\pi$$
$$734$$ −4.33796 + 13.3509i −0.160117 + 0.492790i
$$735$$ −0.348687 5.62146i −0.0128615 0.207351i
$$736$$ −3.00613 9.25192i −0.110807 0.341030i
$$737$$ −26.3593 + 40.5897i −0.970956 + 1.49514i
$$738$$ 30.7479 + 1.61143i 1.13184 + 0.0593174i
$$739$$ 1.91774 9.02225i 0.0705451 0.331889i −0.928696 0.370842i $$-0.879069\pi$$
0.999241 + 0.0389534i $$0.0124024\pi$$
$$740$$ 11.6677 0.382857i 0.428911 0.0140741i
$$741$$ −1.29274 0.420038i −0.0474901 0.0154305i
$$742$$ −19.5544 + 35.0388i −0.717866 + 1.28631i
$$743$$ −31.8855 31.8855i −1.16976 1.16976i −0.982265 0.187500i $$-0.939962\pi$$
−0.187500 0.982265i $$-0.560038\pi$$
$$744$$ 4.61752 + 0.485321i 0.169286 + 0.0177927i
$$745$$ 13.6978 + 8.26973i 0.501847 + 0.302980i
$$746$$ −0.681574 6.48474i −0.0249542 0.237423i
$$747$$ −3.14109 8.18282i −0.114927 0.299394i
$$748$$ 3.91720 + 1.99592i 0.143227 + 0.0729779i
$$749$$ 1.54751 10.7856i 0.0565447 0.394098i
$$750$$ −4.56289 + 5.56251i −0.166613 + 0.203114i
$$751$$ −4.83420 8.37308i −0.176403 0.305538i 0.764243 0.644928i $$-0.223113\pi$$
−0.940646 + 0.339390i $$0.889779\pi$$
$$752$$ 26.0436 + 40.1036i 0.949712 + 1.46243i
$$753$$ 3.51158 4.33644i 0.127969 0.158029i
$$754$$ −1.63940 0.729907i −0.0597034 0.0265816i
$$755$$ 54.7037 + 1.07004i 1.99087 + 0.0389427i
$$756$$ 6.49264 + 1.63867i 0.236135 + 0.0595979i
$$757$$ −29.1640 + 29.1640i −1.05998 + 1.05998i −0.0619022 + 0.998082i $$0.519717\pi$$
−0.998082 + 0.0619022i $$0.980283\pi$$
$$758$$ 28.8332 23.3486i 1.04727 0.848061i
$$759$$ −1.64729 1.82950i −0.0597928 0.0664066i
$$760$$ 10.8113 + 17.3829i 0.392165 + 0.630545i
$$761$$ −2.78122 2.50423i −0.100819 0.0907781i 0.617180 0.786822i $$-0.288275\pi$$
−0.717999 + 0.696044i $$0.754942\pi$$
$$762$$ −1.88649 + 0.961213i −0.0683402 + 0.0348211i
$$763$$ −23.7840 20.7957i −0.861040 0.752855i
$$764$$ −16.5829 + 5.38810i −0.599947 + 0.194934i
$$765$$ −5.24588 + 1.89685i −0.189665 + 0.0685807i
$$766$$ −25.8210 + 23.2493i −0.932951