Properties

Label 175.2.x.a.108.4
Level $175$
Weight $2$
Character 175.108
Analytic conductor $1.397$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(3,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([21, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.x (of order \(60\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 108.4
Character \(\chi\) \(=\) 175.108
Dual form 175.2.x.a.47.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0935941 - 1.78588i) q^{2} +(0.279642 + 0.226450i) q^{3} +(-1.19157 + 0.125239i) q^{4} +(1.07995 + 1.95799i) q^{5} +(0.378240 - 0.520602i) q^{6} +(-0.314872 - 2.62695i) q^{7} +(-0.224327 - 1.41635i) q^{8} +(-0.596815 - 2.80779i) q^{9} +O(q^{10})\) \(q+(-0.0935941 - 1.78588i) q^{2} +(0.279642 + 0.226450i) q^{3} +(-1.19157 + 0.125239i) q^{4} +(1.07995 + 1.95799i) q^{5} +(0.378240 - 0.520602i) q^{6} +(-0.314872 - 2.62695i) q^{7} +(-0.224327 - 1.41635i) q^{8} +(-0.596815 - 2.80779i) q^{9} +(3.39566 - 2.11192i) q^{10} +(4.12989 + 0.877836i) q^{11} +(-0.361574 - 0.234809i) q^{12} +(0.268631 + 0.527217i) q^{13} +(-4.66195 + 0.808191i) q^{14} +(-0.141386 + 0.792089i) q^{15} +(-4.85234 + 1.03140i) q^{16} +(-0.811348 - 0.311447i) q^{17} +(-4.95853 + 1.32863i) q^{18} +(-0.667317 + 6.34910i) q^{19} +(-1.53205 - 2.19783i) q^{20} +(0.506820 - 0.805908i) q^{21} +(1.18118 - 7.45766i) q^{22} +(-1.61819 + 0.0848056i) q^{23} +(0.258000 - 0.446869i) q^{24} +(-2.66742 + 4.22905i) q^{25} +(0.916406 - 0.529087i) q^{26} +(0.959010 - 1.88216i) q^{27} +(0.704189 + 3.09076i) q^{28} +(-0.996818 - 1.37200i) q^{29} +(1.42781 + 0.178365i) q^{30} +(3.65980 + 8.22005i) q^{31} +(1.55381 + 5.79889i) q^{32} +(0.956106 + 1.18069i) q^{33} +(-0.480271 + 1.47812i) q^{34} +(4.80348 - 3.45348i) q^{35} +(1.06279 + 3.27094i) q^{36} +(-2.37321 + 3.65442i) q^{37} +(11.4012 + 0.597511i) q^{38} +(-0.0442678 + 0.208263i) q^{39} +(2.53093 - 1.96881i) q^{40} +(-5.70437 - 1.85346i) q^{41} +(-1.48669 - 0.829693i) q^{42} +(3.73281 + 3.73281i) q^{43} +(-5.03100 - 0.528779i) q^{44} +(4.85309 - 4.20083i) q^{45} +(0.302906 + 2.88195i) q^{46} +(-3.45442 - 8.99906i) q^{47} +(-1.59048 - 0.810389i) q^{48} +(-6.80171 + 1.65430i) q^{49} +(7.80224 + 4.36789i) q^{50} +(-0.156360 - 0.270823i) q^{51} +(-0.386121 - 0.594574i) q^{52} +(5.33703 - 6.59068i) q^{53} +(-3.45108 - 1.53652i) q^{54} +(2.74128 + 9.03429i) q^{55} +(-3.65004 + 1.03526i) q^{56} +(-1.62436 + 1.62436i) q^{57} +(-2.35694 + 1.90861i) q^{58} +(4.53398 + 5.03550i) q^{59} +(0.0692713 - 0.961538i) q^{60} +(-0.917861 - 0.826446i) q^{61} +(14.3375 - 7.30532i) q^{62} +(-7.18801 + 2.45190i) q^{63} +(0.774814 - 0.251752i) q^{64} +(-0.742177 + 1.09534i) q^{65} +(2.01909 - 1.81800i) q^{66} +(-4.10789 + 10.7014i) q^{67} +(1.00578 + 0.269499i) q^{68} +(-0.471717 - 0.342723i) q^{69} +(-6.61709 - 8.25523i) q^{70} +(-11.3299 + 8.23164i) q^{71} +(-3.84293 + 1.47516i) q^{72} +(2.92452 - 1.89921i) q^{73} +(6.74848 + 3.89623i) q^{74} +(-1.70359 + 0.578583i) q^{75} -7.64897i q^{76} +(1.00564 - 11.1254i) q^{77} +(0.376077 + 0.0595648i) q^{78} +(5.74668 - 12.9073i) q^{79} +(-7.25974 - 8.38696i) q^{80} +(-7.17266 + 3.19347i) q^{81} +(-2.77617 + 10.3608i) q^{82} +(3.01586 - 0.477665i) q^{83} +(-0.502981 + 1.02377i) q^{84} +(-0.266404 - 1.92496i) q^{85} +(6.31698 - 7.01572i) q^{86} +(0.0319372 - 0.609399i) q^{87} +(0.316873 - 6.04629i) q^{88} +(11.4094 - 12.6715i) q^{89} +(-7.95640 - 8.27388i) q^{90} +(1.30039 - 0.871684i) q^{91} +(1.91756 - 0.303712i) q^{92} +(-0.837993 + 3.12743i) q^{93} +(-15.7479 + 7.01144i) q^{94} +(-13.1521 + 5.55010i) q^{95} +(-0.878647 + 1.97347i) q^{96} +(-11.5748 - 1.83327i) q^{97} +(3.59099 + 11.9922i) q^{98} -12.1198i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9} - 36 q^{10} - 6 q^{11} - 36 q^{12} - 20 q^{14} - 28 q^{15} - 30 q^{16} - 42 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} + 32 q^{22} - 40 q^{23} + 2 q^{25} - 48 q^{26} + 22 q^{28} - 58 q^{30} - 18 q^{31} + 8 q^{32} - 30 q^{33} - 2 q^{35} + 40 q^{36} - 10 q^{37} + 72 q^{38} + 30 q^{39} - 48 q^{40} + 6 q^{42} - 108 q^{43} - 10 q^{44} + 186 q^{45} - 6 q^{46} - 54 q^{47} - 248 q^{50} - 16 q^{51} + 216 q^{52} + 50 q^{53} - 30 q^{54} + 4 q^{56} - 216 q^{57} - 4 q^{58} + 90 q^{59} + 96 q^{60} - 18 q^{61} - 66 q^{63} - 100 q^{64} + 14 q^{65} - 90 q^{66} + 4 q^{67} + 342 q^{68} - 60 q^{70} - 24 q^{71} + 58 q^{72} - 6 q^{73} + 216 q^{75} - 80 q^{77} - 132 q^{78} - 10 q^{79} - 6 q^{80} - 10 q^{81} + 216 q^{82} + 20 q^{84} - 48 q^{85} - 6 q^{86} - 48 q^{87} - 122 q^{88} + 120 q^{89} - 12 q^{91} - 4 q^{92} + 106 q^{93} - 30 q^{94} - 98 q^{95} - 90 q^{96} + 222 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{3}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0935941 1.78588i −0.0661810 1.26281i −0.806776 0.590857i \(-0.798790\pi\)
0.740595 0.671952i \(-0.234544\pi\)
\(3\) 0.279642 + 0.226450i 0.161451 + 0.130741i 0.706642 0.707572i \(-0.250209\pi\)
−0.545190 + 0.838312i \(0.683543\pi\)
\(4\) −1.19157 + 0.125239i −0.595785 + 0.0626196i
\(5\) 1.07995 + 1.95799i 0.482968 + 0.875638i
\(6\) 0.378240 0.520602i 0.154416 0.212535i
\(7\) −0.314872 2.62695i −0.119010 0.992893i
\(8\) −0.224327 1.41635i −0.0793117 0.500755i
\(9\) −0.596815 2.80779i −0.198938 0.935931i
\(10\) 3.39566 2.11192i 1.07380 0.667847i
\(11\) 4.12989 + 0.877836i 1.24521 + 0.264678i 0.782960 0.622072i \(-0.213709\pi\)
0.462250 + 0.886750i \(0.347042\pi\)
\(12\) −0.361574 0.234809i −0.104377 0.0677834i
\(13\) 0.268631 + 0.527217i 0.0745047 + 0.146224i 0.925254 0.379348i \(-0.123852\pi\)
−0.850749 + 0.525571i \(0.823852\pi\)
\(14\) −4.66195 + 0.808191i −1.24596 + 0.215998i
\(15\) −0.141386 + 0.792089i −0.0365058 + 0.204517i
\(16\) −4.85234 + 1.03140i −1.21308 + 0.257849i
\(17\) −0.811348 0.311447i −0.196781 0.0755371i 0.257982 0.966150i \(-0.416943\pi\)
−0.454763 + 0.890613i \(0.650276\pi\)
\(18\) −4.95853 + 1.32863i −1.16874 + 0.313162i
\(19\) −0.667317 + 6.34910i −0.153093 + 1.45658i 0.600702 + 0.799473i \(0.294888\pi\)
−0.753795 + 0.657110i \(0.771779\pi\)
\(20\) −1.53205 2.19783i −0.342577 0.491449i
\(21\) 0.506820 0.805908i 0.110597 0.175863i
\(22\) 1.18118 7.45766i 0.251828 1.58998i
\(23\) −1.61819 + 0.0848056i −0.337415 + 0.0176832i −0.220291 0.975434i \(-0.570701\pi\)
−0.117124 + 0.993117i \(0.537367\pi\)
\(24\) 0.258000 0.446869i 0.0526640 0.0912168i
\(25\) −2.66742 + 4.22905i −0.533485 + 0.845810i
\(26\) 0.916406 0.529087i 0.179722 0.103762i
\(27\) 0.959010 1.88216i 0.184562 0.362223i
\(28\) 0.704189 + 3.09076i 0.133079 + 0.584099i
\(29\) −0.996818 1.37200i −0.185104 0.254774i 0.706373 0.707840i \(-0.250330\pi\)
−0.891477 + 0.453066i \(0.850330\pi\)
\(30\) 1.42781 + 0.178365i 0.260681 + 0.0325648i
\(31\) 3.65980 + 8.22005i 0.657320 + 1.47636i 0.866853 + 0.498563i \(0.166139\pi\)
−0.209534 + 0.977801i \(0.567195\pi\)
\(32\) 1.55381 + 5.79889i 0.274677 + 1.02511i
\(33\) 0.956106 + 1.18069i 0.166437 + 0.205532i
\(34\) −0.480271 + 1.47812i −0.0823657 + 0.253496i
\(35\) 4.80348 3.45348i 0.811937 0.583745i
\(36\) 1.06279 + 3.27094i 0.177132 + 0.545157i
\(37\) −2.37321 + 3.65442i −0.390153 + 0.600782i −0.978105 0.208113i \(-0.933268\pi\)
0.587952 + 0.808896i \(0.299934\pi\)
\(38\) 11.4012 + 0.597511i 1.84952 + 0.0969291i
\(39\) −0.0442678 + 0.208263i −0.00708851 + 0.0333488i
\(40\) 2.53093 1.96881i 0.400175 0.311297i
\(41\) −5.70437 1.85346i −0.890873 0.289462i −0.172408 0.985026i \(-0.555155\pi\)
−0.718465 + 0.695563i \(0.755155\pi\)
\(42\) −1.48669 0.829693i −0.229401 0.128024i
\(43\) 3.73281 + 3.73281i 0.569248 + 0.569248i 0.931918 0.362670i \(-0.118135\pi\)
−0.362670 + 0.931918i \(0.618135\pi\)
\(44\) −5.03100 0.528779i −0.758452 0.0797165i
\(45\) 4.85309 4.20083i 0.723456 0.626222i
\(46\) 0.302906 + 2.88195i 0.0446610 + 0.424921i
\(47\) −3.45442 8.99906i −0.503878 1.31265i −0.915875 0.401463i \(-0.868502\pi\)
0.411997 0.911185i \(-0.364831\pi\)
\(48\) −1.59048 0.810389i −0.229566 0.116970i
\(49\) −6.80171 + 1.65430i −0.971673 + 0.236329i
\(50\) 7.80224 + 4.36789i 1.10340 + 0.617713i
\(51\) −0.156360 0.270823i −0.0218948 0.0379228i
\(52\) −0.386121 0.594574i −0.0535453 0.0824525i
\(53\) 5.33703 6.59068i 0.733098 0.905300i −0.265166 0.964203i \(-0.585427\pi\)
0.998264 + 0.0589026i \(0.0187601\pi\)
\(54\) −3.45108 1.53652i −0.469632 0.209094i
\(55\) 2.74128 + 9.03429i 0.369634 + 1.21818i
\(56\) −3.65004 + 1.03526i −0.487757 + 0.138343i
\(57\) −1.62436 + 1.62436i −0.215152 + 0.215152i
\(58\) −2.35694 + 1.90861i −0.309481 + 0.250613i
\(59\) 4.53398 + 5.03550i 0.590274 + 0.655566i 0.962087 0.272742i \(-0.0879305\pi\)
−0.371813 + 0.928308i \(0.621264\pi\)
\(60\) 0.0692713 0.961538i 0.00894289 0.124134i
\(61\) −0.917861 0.826446i −0.117520 0.105816i 0.608276 0.793726i \(-0.291862\pi\)
−0.725796 + 0.687910i \(0.758528\pi\)
\(62\) 14.3375 7.30532i 1.82086 0.927777i
\(63\) −7.18801 + 2.45190i −0.905604 + 0.308910i
\(64\) 0.774814 0.251752i 0.0968517 0.0314690i
\(65\) −0.742177 + 1.09534i −0.0920557 + 0.135861i
\(66\) 2.01909 1.81800i 0.248533 0.223780i
\(67\) −4.10789 + 10.7014i −0.501859 + 1.30739i 0.415596 + 0.909549i \(0.363573\pi\)
−0.917455 + 0.397838i \(0.869760\pi\)
\(68\) 1.00578 + 0.269499i 0.121969 + 0.0326815i
\(69\) −0.471717 0.342723i −0.0567881 0.0412590i
\(70\) −6.61709 8.25523i −0.790894 0.986689i
\(71\) −11.3299 + 8.23164i −1.34461 + 0.976915i −0.345348 + 0.938475i \(0.612239\pi\)
−0.999261 + 0.0384406i \(0.987761\pi\)
\(72\) −3.84293 + 1.47516i −0.452894 + 0.173850i
\(73\) 2.92452 1.89921i 0.342289 0.222285i −0.362033 0.932165i \(-0.617917\pi\)
0.704323 + 0.709880i \(0.251251\pi\)
\(74\) 6.74848 + 3.89623i 0.784494 + 0.452928i
\(75\) −1.70359 + 0.578583i −0.196714 + 0.0668090i
\(76\) 7.64897i 0.877397i
\(77\) 1.00564 11.1254i 0.114604 1.26786i
\(78\) 0.376077 + 0.0595648i 0.0425823 + 0.00674438i
\(79\) 5.74668 12.9073i 0.646552 1.45218i −0.231123 0.972924i \(-0.574240\pi\)
0.877675 0.479255i \(-0.159093\pi\)
\(80\) −7.25974 8.38696i −0.811663 0.937691i
\(81\) −7.17266 + 3.19347i −0.796962 + 0.354830i
\(82\) −2.77617 + 10.3608i −0.306577 + 1.14416i
\(83\) 3.01586 0.477665i 0.331033 0.0524305i 0.0112944 0.999936i \(-0.496405\pi\)
0.319739 + 0.947506i \(0.396405\pi\)
\(84\) −0.502981 + 1.02377i −0.0548797 + 0.111702i
\(85\) −0.266404 1.92496i −0.0288956 0.208791i
\(86\) 6.31698 7.01572i 0.681178 0.756525i
\(87\) 0.0319372 0.609399i 0.00342403 0.0653344i
\(88\) 0.316873 6.04629i 0.0337787 0.644537i
\(89\) 11.4094 12.6715i 1.20940 1.34317i 0.286523 0.958073i \(-0.407500\pi\)
0.922875 0.385100i \(-0.125833\pi\)
\(90\) −7.95640 8.27388i −0.838678 0.872143i
\(91\) 1.30039 0.871684i 0.136318 0.0913774i
\(92\) 1.91756 0.303712i 0.199920 0.0316642i
\(93\) −0.837993 + 3.12743i −0.0868958 + 0.324300i
\(94\) −15.7479 + 7.01144i −1.62428 + 0.723174i
\(95\) −13.1521 + 5.55010i −1.34938 + 0.569428i
\(96\) −0.878647 + 1.97347i −0.0896765 + 0.201417i
\(97\) −11.5748 1.83327i −1.17524 0.186140i −0.461884 0.886940i \(-0.652826\pi\)
−0.713358 + 0.700800i \(0.752826\pi\)
\(98\) 3.59099 + 11.9922i 0.362745 + 1.21140i
\(99\) 12.1198i 1.21809i
\(100\) 2.64878 5.37328i 0.264878 0.537328i
\(101\) 3.84878 + 2.22209i 0.382967 + 0.221106i 0.679109 0.734038i \(-0.262367\pi\)
−0.296141 + 0.955144i \(0.595700\pi\)
\(102\) −0.469024 + 0.304588i −0.0464403 + 0.0301587i
\(103\) −1.95677 + 0.751133i −0.192806 + 0.0740114i −0.452855 0.891584i \(-0.649595\pi\)
0.260049 + 0.965595i \(0.416261\pi\)
\(104\) 0.686462 0.498744i 0.0673131 0.0489058i
\(105\) 2.12530 + 0.122008i 0.207408 + 0.0119068i
\(106\) −12.2697 8.91446i −1.19174 0.865849i
\(107\) 3.97800 + 1.06590i 0.384568 + 0.103045i 0.445923 0.895071i \(-0.352876\pi\)
−0.0613552 + 0.998116i \(0.519542\pi\)
\(108\) −0.907008 + 2.36284i −0.0872769 + 0.227364i
\(109\) 8.87403 7.99021i 0.849977 0.765323i −0.123925 0.992292i \(-0.539548\pi\)
0.973902 + 0.226968i \(0.0728814\pi\)
\(110\) 15.8776 5.74116i 1.51387 0.547398i
\(111\) −1.49119 + 0.484517i −0.141537 + 0.0459883i
\(112\) 4.23729 + 12.4221i 0.400386 + 1.17378i
\(113\) −3.18186 + 1.62124i −0.299324 + 0.152513i −0.597202 0.802091i \(-0.703721\pi\)
0.297878 + 0.954604i \(0.403721\pi\)
\(114\) 3.05295 + 2.74889i 0.285935 + 0.257457i
\(115\) −1.91361 3.07680i −0.178445 0.286913i
\(116\) 1.35961 + 1.51000i 0.126236 + 0.140200i
\(117\) 1.31999 1.06891i 0.122034 0.0988208i
\(118\) 8.56845 8.56845i 0.788789 0.788789i
\(119\) −0.562685 + 2.22943i −0.0515813 + 0.204372i
\(120\) 1.15359 + 0.0225650i 0.105308 + 0.00205989i
\(121\) 6.23643 + 2.77664i 0.566948 + 0.252421i
\(122\) −1.39003 + 1.71654i −0.125847 + 0.155408i
\(123\) −1.17547 1.81006i −0.105988 0.163207i
\(124\) −5.39038 9.33642i −0.484071 0.838435i
\(125\) −11.1611 0.655624i −0.998279 0.0586408i
\(126\) 5.05155 + 12.6074i 0.450028 + 1.12316i
\(127\) −2.93160 1.49373i −0.260138 0.132547i 0.319058 0.947735i \(-0.396633\pi\)
−0.579196 + 0.815188i \(0.696633\pi\)
\(128\) 3.78077 + 9.84925i 0.334176 + 0.870559i
\(129\) 0.198557 + 1.88914i 0.0174820 + 0.166330i
\(130\) 2.02562 + 1.22292i 0.177658 + 0.107257i
\(131\) −3.66772 0.385493i −0.320450 0.0336806i −0.0570620 0.998371i \(-0.518173\pi\)
−0.263388 + 0.964690i \(0.584840\pi\)
\(132\) −1.28714 1.28714i −0.112031 0.112031i
\(133\) 16.8889 0.246144i 1.46445 0.0213434i
\(134\) 19.4960 + 6.33462i 1.68419 + 0.547228i
\(135\) 4.72093 0.154910i 0.406313 0.0133326i
\(136\) −0.259110 + 1.21902i −0.0222185 + 0.104530i
\(137\) −1.00746 0.0527989i −0.0860734 0.00451092i 0.00925064 0.999957i \(-0.497055\pi\)
−0.0953240 + 0.995446i \(0.530389\pi\)
\(138\) −0.567912 + 0.874508i −0.0483439 + 0.0744431i
\(139\) 3.10037 + 9.54195i 0.262970 + 0.809337i 0.992154 + 0.125020i \(0.0398996\pi\)
−0.729185 + 0.684317i \(0.760100\pi\)
\(140\) −5.29118 + 4.71665i −0.447186 + 0.398630i
\(141\) 1.07183 3.29877i 0.0902647 0.277806i
\(142\) 15.7611 + 19.4634i 1.32265 + 1.63333i
\(143\) 0.646606 + 2.41316i 0.0540719 + 0.201799i
\(144\) 5.79190 + 13.0088i 0.482658 + 1.08407i
\(145\) 1.60985 3.43345i 0.133691 0.285132i
\(146\) −3.66548 5.04510i −0.303357 0.417535i
\(147\) −2.27666 1.07763i −0.187776 0.0888816i
\(148\) 2.37017 4.65171i 0.194827 0.382369i
\(149\) 6.19698 3.57783i 0.507676 0.293107i −0.224202 0.974543i \(-0.571977\pi\)
0.731878 + 0.681436i \(0.238644\pi\)
\(150\) 1.19273 + 2.98826i 0.0973857 + 0.243990i
\(151\) 12.2345 21.1907i 0.995627 1.72448i 0.416908 0.908949i \(-0.363114\pi\)
0.578718 0.815527i \(-0.303553\pi\)
\(152\) 9.14223 0.479124i 0.741532 0.0388621i
\(153\) −0.390255 + 2.46397i −0.0315502 + 0.199200i
\(154\) −19.9628 0.754685i −1.60865 0.0608142i
\(155\) −12.1423 + 16.0431i −0.975297 + 1.28861i
\(156\) 0.0266654 0.253705i 0.00213494 0.0203126i
\(157\) −19.3989 + 5.19791i −1.54820 + 0.414838i −0.928904 0.370321i \(-0.879248\pi\)
−0.619294 + 0.785159i \(0.712581\pi\)
\(158\) −23.5887 9.05485i −1.87662 0.720365i
\(159\) 2.98492 0.634464i 0.236719 0.0503162i
\(160\) −9.67612 + 9.30484i −0.764964 + 0.735612i
\(161\) 0.732301 + 4.22419i 0.0577134 + 0.332913i
\(162\) 6.37449 + 12.5106i 0.500827 + 0.982928i
\(163\) −13.5326 8.78818i −1.05996 0.688343i −0.107867 0.994165i \(-0.534402\pi\)
−0.952089 + 0.305822i \(0.901069\pi\)
\(164\) 7.02929 + 1.49412i 0.548895 + 0.116671i
\(165\) −1.27924 + 3.14713i −0.0995883 + 0.245004i
\(166\) −1.13532 5.34126i −0.0881179 0.414562i
\(167\) 1.58959 + 10.0363i 0.123006 + 0.776630i 0.969655 + 0.244478i \(0.0786165\pi\)
−0.846649 + 0.532152i \(0.821383\pi\)
\(168\) −1.25514 0.537046i −0.0968361 0.0414340i
\(169\) 7.43541 10.2340i 0.571955 0.787228i
\(170\) −3.41281 + 0.655931i −0.261750 + 0.0503076i
\(171\) 18.2252 1.91555i 1.39372 0.146486i
\(172\) −4.91540 3.98041i −0.374795 0.303503i
\(173\) −0.175568 3.35004i −0.0133482 0.254699i −0.997150 0.0754409i \(-0.975964\pi\)
0.983802 0.179258i \(-0.0573698\pi\)
\(174\) −1.09130 −0.0827315
\(175\) 11.9494 + 5.67557i 0.903289 + 0.429033i
\(176\) −20.9450 −1.57879
\(177\) 0.127605 + 2.43485i 0.00959140 + 0.183015i
\(178\) −23.6976 19.1899i −1.77621 1.43835i
\(179\) −2.88851 + 0.303595i −0.215897 + 0.0226917i −0.211860 0.977300i \(-0.567952\pi\)
−0.00403785 + 0.999992i \(0.501285\pi\)
\(180\) −5.25669 + 5.61338i −0.391811 + 0.418397i
\(181\) 4.64922 6.39910i 0.345574 0.475641i −0.600485 0.799636i \(-0.705026\pi\)
0.946059 + 0.323994i \(0.105026\pi\)
\(182\) −1.67843 2.24076i −0.124414 0.166096i
\(183\) −0.0695242 0.438958i −0.00513937 0.0324487i
\(184\) 0.483118 + 2.27289i 0.0356159 + 0.167560i
\(185\) −9.71824 0.700124i −0.714499 0.0514741i
\(186\) 5.66366 + 1.20385i 0.415279 + 0.0882704i
\(187\) −3.07738 1.99847i −0.225040 0.146143i
\(188\) 5.24321 + 10.2904i 0.382401 + 0.750504i
\(189\) −5.24631 1.92663i −0.381613 0.140142i
\(190\) 11.1428 + 22.9687i 0.808382 + 1.66632i
\(191\) 14.2348 3.02570i 1.03000 0.218932i 0.338237 0.941061i \(-0.390170\pi\)
0.691758 + 0.722129i \(0.256836\pi\)
\(192\) 0.273680 + 0.105056i 0.0197511 + 0.00758175i
\(193\) 0.600403 0.160877i 0.0432179 0.0115802i −0.237145 0.971474i \(-0.576212\pi\)
0.280363 + 0.959894i \(0.409545\pi\)
\(194\) −2.19067 + 20.8428i −0.157281 + 1.49643i
\(195\) −0.455584 + 0.138238i −0.0326250 + 0.00989943i
\(196\) 7.89754 2.82306i 0.564110 0.201647i
\(197\) 3.81776 24.1044i 0.272004 1.71736i −0.352048 0.935982i \(-0.614515\pi\)
0.624052 0.781383i \(-0.285485\pi\)
\(198\) −21.6445 + 1.13434i −1.53821 + 0.0806141i
\(199\) −4.29215 + 7.43422i −0.304262 + 0.526998i −0.977097 0.212795i \(-0.931743\pi\)
0.672835 + 0.739793i \(0.265077\pi\)
\(200\) 6.58818 + 2.82931i 0.465855 + 0.200062i
\(201\) −3.57207 + 2.06234i −0.251955 + 0.145466i
\(202\) 3.60817 7.08143i 0.253870 0.498248i
\(203\) −3.29031 + 3.05059i −0.230934 + 0.214110i
\(204\) 0.220231 + 0.303123i 0.0154193 + 0.0212228i
\(205\) −2.53137 13.1707i −0.176799 0.919883i
\(206\) 1.52458 + 3.42426i 0.106222 + 0.238579i
\(207\) 1.20387 + 4.49292i 0.0836751 + 0.312280i
\(208\) −1.84726 2.28117i −0.128084 0.158171i
\(209\) −8.32941 + 25.6353i −0.576158 + 1.77323i
\(210\) 0.0189771 3.80695i 0.00130954 0.262704i
\(211\) 1.28435 + 3.95282i 0.0884183 + 0.272123i 0.985483 0.169777i \(-0.0543046\pi\)
−0.897064 + 0.441900i \(0.854305\pi\)
\(212\) −5.53404 + 8.52167i −0.380079 + 0.585271i
\(213\) −5.03236 0.263735i −0.344812 0.0180708i
\(214\) 1.53126 7.20400i 0.104675 0.492455i
\(215\) −3.27755 + 11.3400i −0.223527 + 0.773383i
\(216\) −2.88093 0.936071i −0.196023 0.0636916i
\(217\) 20.4413 12.2024i 1.38764 0.828351i
\(218\) −15.1001 15.1001i −1.02271 1.02271i
\(219\) 1.24789 + 0.131159i 0.0843249 + 0.00886290i
\(220\) −4.39788 10.4217i −0.296505 0.702630i
\(221\) −0.0537525 0.511421i −0.00361578 0.0344019i
\(222\) 1.00486 + 2.61774i 0.0674416 + 0.175691i
\(223\) 11.3328 + 5.77436i 0.758902 + 0.386680i 0.790215 0.612830i \(-0.209969\pi\)
−0.0313132 + 0.999510i \(0.509969\pi\)
\(224\) 14.7441 5.90768i 0.985134 0.394723i
\(225\) 13.4663 + 4.96561i 0.897750 + 0.331041i
\(226\) 3.19314 + 5.53069i 0.212405 + 0.367896i
\(227\) 3.81371 + 5.87260i 0.253125 + 0.389778i 0.942275 0.334841i \(-0.108682\pi\)
−0.689150 + 0.724619i \(0.742016\pi\)
\(228\) 1.73211 2.13897i 0.114712 0.141657i
\(229\) −13.5136 6.01664i −0.893003 0.397591i −0.0916563 0.995791i \(-0.529216\pi\)
−0.801347 + 0.598200i \(0.795883\pi\)
\(230\) −5.31570 + 3.70545i −0.350507 + 0.244330i
\(231\) 2.80057 2.88341i 0.184264 0.189714i
\(232\) −1.71962 + 1.71962i −0.112899 + 0.112899i
\(233\) 1.98260 1.60547i 0.129884 0.105178i −0.562177 0.827017i \(-0.690036\pi\)
0.692061 + 0.721839i \(0.256703\pi\)
\(234\) −2.03249 2.25731i −0.132868 0.147565i
\(235\) 13.8894 16.4822i 0.906048 1.07518i
\(236\) −6.03320 5.43232i −0.392728 0.353614i
\(237\) 4.52986 2.30808i 0.294246 0.149926i
\(238\) 4.03417 + 0.796227i 0.261496 + 0.0516118i
\(239\) −0.945911 + 0.307345i −0.0611859 + 0.0198805i −0.339450 0.940624i \(-0.610241\pi\)
0.278264 + 0.960505i \(0.410241\pi\)
\(240\) −0.130903 3.98931i −0.00844977 0.257509i
\(241\) −3.98537 + 3.58844i −0.256720 + 0.231152i −0.787434 0.616399i \(-0.788591\pi\)
0.530713 + 0.847551i \(0.321924\pi\)
\(242\) 4.37505 11.3974i 0.281239 0.732653i
\(243\) −8.85021 2.37141i −0.567741 0.152126i
\(244\) 1.19720 + 0.869816i 0.0766428 + 0.0556843i
\(245\) −10.5846 11.5311i −0.676225 0.736695i
\(246\) −3.12253 + 2.26865i −0.199086 + 0.144644i
\(247\) −3.52661 + 1.35374i −0.224393 + 0.0861364i
\(248\) 10.8215 7.02754i 0.687163 0.446249i
\(249\) 0.951527 + 0.549365i 0.0603006 + 0.0348146i
\(250\) −0.126253 + 19.9938i −0.00798496 + 1.26452i
\(251\) 15.5071i 0.978800i −0.872059 0.489400i \(-0.837216\pi\)
0.872059 0.489400i \(-0.162784\pi\)
\(252\) 8.25794 3.82183i 0.520202 0.240753i
\(253\) −6.75739 1.07026i −0.424833 0.0672870i
\(254\) −2.39324 + 5.37530i −0.150165 + 0.337277i
\(255\) 0.361408 0.598626i 0.0226322 0.0374874i
\(256\) 18.7242 8.33657i 1.17027 0.521036i
\(257\) 4.03975 15.0766i 0.251993 0.940449i −0.717746 0.696305i \(-0.754826\pi\)
0.969739 0.244145i \(-0.0785072\pi\)
\(258\) 3.35520 0.531412i 0.208886 0.0330842i
\(259\) 10.3472 + 5.08362i 0.642945 + 0.315881i
\(260\) 0.747177 1.39813i 0.0463379 0.0867082i
\(261\) −3.25738 + 3.61769i −0.201627 + 0.223929i
\(262\) −0.345168 + 6.58619i −0.0213245 + 0.406896i
\(263\) 0.215114 4.10463i 0.0132645 0.253102i −0.983946 0.178465i \(-0.942887\pi\)
0.997211 0.0746370i \(-0.0237798\pi\)
\(264\) 1.45779 1.61904i 0.0897208 0.0996451i
\(265\) 18.6682 + 3.33224i 1.14678 + 0.204698i
\(266\) −2.02028 30.1385i −0.123872 1.84791i
\(267\) 6.06001 0.959811i 0.370866 0.0587395i
\(268\) 3.55461 13.2660i 0.217132 0.810349i
\(269\) −10.7761 + 4.79784i −0.657032 + 0.292529i −0.708044 0.706169i \(-0.750422\pi\)
0.0510119 + 0.998698i \(0.483755\pi\)
\(270\) −0.718503 8.41653i −0.0437267 0.512214i
\(271\) −2.73943 + 6.15287i −0.166409 + 0.373760i −0.977431 0.211255i \(-0.932245\pi\)
0.811022 + 0.585015i \(0.198912\pi\)
\(272\) 4.25816 + 0.674426i 0.258189 + 0.0408931i
\(273\) 0.561036 + 0.0507128i 0.0339554 + 0.00306928i
\(274\) 1.80415i 0.108993i
\(275\) −14.7286 + 15.1240i −0.888167 + 0.912009i
\(276\) 0.605007 + 0.349301i 0.0364171 + 0.0210254i
\(277\) −25.5422 + 16.5873i −1.53468 + 0.996635i −0.547543 + 0.836778i \(0.684437\pi\)
−0.987140 + 0.159857i \(0.948897\pi\)
\(278\) 16.7506 6.42996i 1.00464 0.385643i
\(279\) 20.8960 15.1818i 1.25101 0.908911i
\(280\) −5.96889 6.02869i −0.356709 0.360283i
\(281\) 3.78178 + 2.74762i 0.225602 + 0.163909i 0.694845 0.719160i \(-0.255473\pi\)
−0.469243 + 0.883069i \(0.655473\pi\)
\(282\) −5.99152 1.60542i −0.356790 0.0956016i
\(283\) −2.00715 + 5.22881i −0.119313 + 0.310821i −0.980211 0.197957i \(-0.936569\pi\)
0.860898 + 0.508778i \(0.169903\pi\)
\(284\) 12.4694 11.2275i 0.739924 0.666231i
\(285\) −4.93470 1.42625i −0.292306 0.0844838i
\(286\) 4.24911 1.38062i 0.251255 0.0816377i
\(287\) −3.07280 + 15.5687i −0.181382 + 0.918991i
\(288\) 15.3547 7.82364i 0.904787 0.461012i
\(289\) −12.0722 10.8698i −0.710128 0.639402i
\(290\) −6.28241 2.55365i −0.368916 0.149956i
\(291\) −2.82166 3.13377i −0.165408 0.183705i
\(292\) −3.24692 + 2.62930i −0.190012 + 0.153868i
\(293\) −7.38400 + 7.38400i −0.431378 + 0.431378i −0.889097 0.457719i \(-0.848667\pi\)
0.457719 + 0.889097i \(0.348667\pi\)
\(294\) −1.71144 + 4.16671i −0.0998133 + 0.243007i
\(295\) −4.96297 + 14.3155i −0.288955 + 0.833483i
\(296\) 5.70830 + 2.54150i 0.331788 + 0.147722i
\(297\) 5.61284 6.93128i 0.325690 0.402194i
\(298\) −6.96958 10.7322i −0.403737 0.621700i
\(299\) −0.479406 0.830355i −0.0277247 0.0480207i
\(300\) 1.95749 0.902779i 0.113016 0.0521219i
\(301\) 8.63053 10.9812i 0.497456 0.632948i
\(302\) −38.9892 19.8660i −2.24358 1.14316i
\(303\) 0.573087 + 1.49294i 0.0329230 + 0.0857674i
\(304\) −3.31039 31.4962i −0.189864 1.80643i
\(305\) 0.626927 2.68968i 0.0358977 0.154011i
\(306\) 4.43689 + 0.466336i 0.253640 + 0.0266587i
\(307\) 19.4310 + 19.4310i 1.10899 + 1.10899i 0.993284 + 0.115702i \(0.0369117\pi\)
0.115702 + 0.993284i \(0.463088\pi\)
\(308\) 0.195044 + 13.3827i 0.0111137 + 0.762549i
\(309\) −0.717289 0.233061i −0.0408051 0.0132584i
\(310\) 29.7875 + 20.1833i 1.69182 + 1.14633i
\(311\) 3.11924 14.6749i 0.176876 0.832135i −0.796808 0.604232i \(-0.793480\pi\)
0.973684 0.227902i \(-0.0731867\pi\)
\(312\) 0.304904 + 0.0159793i 0.0172618 + 0.000904652i
\(313\) −16.6103 + 25.5775i −0.938867 + 1.44573i −0.0441858 + 0.999023i \(0.514069\pi\)
−0.894681 + 0.446705i \(0.852597\pi\)
\(314\) 11.0985 + 34.1576i 0.626323 + 1.92762i
\(315\) −12.5635 11.4261i −0.707871 0.643788i
\(316\) −5.23108 + 16.0996i −0.294271 + 0.905674i
\(317\) −15.9146 19.6529i −0.893852 1.10382i −0.994058 0.108849i \(-0.965283\pi\)
0.100206 0.994967i \(-0.468050\pi\)
\(318\) −1.41245 5.27133i −0.0792061 0.295601i
\(319\) −2.91236 6.54127i −0.163061 0.366241i
\(320\) 1.32969 + 1.24520i 0.0743317 + 0.0696085i
\(321\) 0.871043 + 1.19889i 0.0486169 + 0.0669154i
\(322\) 7.47537 1.70316i 0.416586 0.0949136i
\(323\) 2.51883 4.94349i 0.140152 0.275063i
\(324\) 8.14678 4.70355i 0.452599 0.261308i
\(325\) −2.94618 0.270259i −0.163425 0.0149913i
\(326\) −14.4281 + 24.9902i −0.799097 + 1.38408i
\(327\) 4.29093 0.224878i 0.237289 0.0124358i
\(328\) −1.34550 + 8.49516i −0.0742928 + 0.469066i
\(329\) −22.5524 + 11.9081i −1.24335 + 0.656516i
\(330\) 5.74013 + 1.99001i 0.315984 + 0.109546i
\(331\) 0.691950 6.58346i 0.0380330 0.361860i −0.958909 0.283714i \(-0.908433\pi\)
0.996942 0.0781459i \(-0.0249000\pi\)
\(332\) −3.53378 + 0.946875i −0.193942 + 0.0519665i
\(333\) 11.6772 + 4.48246i 0.639907 + 0.245637i
\(334\) 17.7748 3.77815i 0.972595 0.206731i
\(335\) −25.3896 + 3.51379i −1.38718 + 0.191979i
\(336\) −1.62805 + 4.43327i −0.0888175 + 0.241855i
\(337\) 2.24236 + 4.40088i 0.122149 + 0.239731i 0.943982 0.329998i \(-0.107048\pi\)
−0.821833 + 0.569729i \(0.807048\pi\)
\(338\) −18.9726 12.3209i −1.03197 0.670170i
\(339\) −1.25691 0.267165i −0.0682660 0.0145104i
\(340\) 0.558519 + 2.26036i 0.0302900 + 0.122585i
\(341\) 7.89874 + 37.1606i 0.427741 + 2.01236i
\(342\) −5.12671 32.3688i −0.277221 1.75030i
\(343\) 6.48744 + 17.3468i 0.350289 + 0.936642i
\(344\) 4.44958 6.12432i 0.239905 0.330201i
\(345\) 0.161616 1.29374i 0.00870112 0.0696526i
\(346\) −5.96635 + 0.627089i −0.320753 + 0.0337125i
\(347\) 20.0098 + 16.2036i 1.07418 + 0.869857i 0.991934 0.126755i \(-0.0404561\pi\)
0.0822499 + 0.996612i \(0.473789\pi\)
\(348\) 0.0382651 + 0.730141i 0.00205122 + 0.0391397i
\(349\) −23.8148 −1.27478 −0.637389 0.770543i \(-0.719985\pi\)
−0.637389 + 0.770543i \(0.719985\pi\)
\(350\) 9.01751 21.8714i 0.482006 1.16908i
\(351\) 1.24993 0.0667163
\(352\) 1.32659 + 25.3128i 0.0707073 + 1.34918i
\(353\) 24.6090 + 19.9280i 1.30980 + 1.06066i 0.993716 + 0.111929i \(0.0357031\pi\)
0.316089 + 0.948730i \(0.397630\pi\)
\(354\) 4.33642 0.455776i 0.230478 0.0242242i
\(355\) −28.3531 13.2940i −1.50483 0.705572i
\(356\) −12.0082 + 16.5279i −0.636433 + 0.875975i
\(357\) −0.662205 + 0.496024i −0.0350476 + 0.0262524i
\(358\) 0.812532 + 5.13013i 0.0429437 + 0.271136i
\(359\) −2.63745 12.4082i −0.139199 0.654881i −0.991313 0.131524i \(-0.958013\pi\)
0.852114 0.523357i \(-0.175320\pi\)
\(360\) −7.03851 5.93131i −0.370962 0.312607i
\(361\) −21.2809 4.52340i −1.12005 0.238073i
\(362\) −11.8632 7.70404i −0.623515 0.404915i
\(363\) 1.11520 + 2.18870i 0.0585328 + 0.114877i
\(364\) −1.44034 + 1.20153i −0.0754941 + 0.0629775i
\(365\) 6.87696 + 3.67513i 0.359956 + 0.192365i
\(366\) −0.777421 + 0.165246i −0.0406364 + 0.00863754i
\(367\) −7.32836 2.81310i −0.382538 0.146842i 0.159497 0.987198i \(-0.449013\pi\)
−0.542035 + 0.840356i \(0.682346\pi\)
\(368\) 7.76452 2.08050i 0.404754 0.108453i
\(369\) −1.79969 + 17.1229i −0.0936879 + 0.891381i
\(370\) −0.340769 + 17.4212i −0.0177157 + 0.905683i
\(371\) −18.9939 11.9449i −0.986112 0.620147i
\(372\) 0.606851 3.83151i 0.0314638 0.198654i
\(373\) 3.64111 0.190823i 0.188530 0.00988042i 0.0421626 0.999111i \(-0.486575\pi\)
0.146367 + 0.989230i \(0.453242\pi\)
\(374\) −3.28101 + 5.68288i −0.169657 + 0.293855i
\(375\) −2.97265 2.71077i −0.153507 0.139983i
\(376\) −11.9709 + 6.91139i −0.617351 + 0.356428i
\(377\) 0.455567 0.894102i 0.0234629 0.0460486i
\(378\) −2.94971 + 9.54961i −0.151717 + 0.491179i
\(379\) 12.1944 + 16.7841i 0.626384 + 0.862143i 0.997798 0.0663239i \(-0.0211271\pi\)
−0.371414 + 0.928467i \(0.621127\pi\)
\(380\) 14.9766 8.26049i 0.768283 0.423754i
\(381\) −0.481546 1.08157i −0.0246703 0.0554105i
\(382\) −6.73584 25.1385i −0.344636 1.28620i
\(383\) −12.2271 15.0992i −0.624775 0.771533i 0.362253 0.932080i \(-0.382008\pi\)
−0.987028 + 0.160546i \(0.948674\pi\)
\(384\) −1.17310 + 3.61042i −0.0598643 + 0.184243i
\(385\) 22.8695 10.0458i 1.16554 0.511984i
\(386\) −0.343502 1.05719i −0.0174838 0.0538096i
\(387\) 8.25315 12.7087i 0.419531 0.646022i
\(388\) 14.0218 + 0.734850i 0.711848 + 0.0373064i
\(389\) 3.18105 14.9656i 0.161285 0.758788i −0.820930 0.571029i \(-0.806544\pi\)
0.982215 0.187759i \(-0.0601224\pi\)
\(390\) 0.289517 + 0.800681i 0.0146603 + 0.0405440i
\(391\) 1.33933 + 0.435173i 0.0677326 + 0.0220077i
\(392\) 3.86888 + 9.26248i 0.195408 + 0.467826i
\(393\) −0.938353 0.938353i −0.0473337 0.0473337i
\(394\) −43.4049 4.56204i −2.18671 0.229832i
\(395\) 31.4784 2.68725i 1.58385 0.135210i
\(396\) 1.51787 + 14.4416i 0.0762760 + 0.725717i
\(397\) 10.4769 + 27.2933i 0.525822 + 1.36981i 0.897321 + 0.441379i \(0.145511\pi\)
−0.371499 + 0.928434i \(0.621156\pi\)
\(398\) 13.6784 + 6.96947i 0.685634 + 0.349348i
\(399\) 4.77858 + 3.75565i 0.239228 + 0.188017i
\(400\) 8.58141 23.2719i 0.429071 1.16360i
\(401\) 10.9327 + 18.9359i 0.545952 + 0.945616i 0.998546 + 0.0538996i \(0.0171651\pi\)
−0.452595 + 0.891716i \(0.649502\pi\)
\(402\) 4.01742 + 6.18628i 0.200371 + 0.308544i
\(403\) −3.35062 + 4.13767i −0.166906 + 0.206112i
\(404\) −4.86438 2.16576i −0.242012 0.107751i
\(405\) −13.9989 10.5952i −0.695610 0.526479i
\(406\) 5.75595 + 5.59059i 0.285663 + 0.277456i
\(407\) −13.0091 + 13.0091i −0.644836 + 0.644836i
\(408\) −0.348504 + 0.282213i −0.0172535 + 0.0139716i
\(409\) 20.5599 + 22.8341i 1.01662 + 1.12907i 0.991594 + 0.129385i \(0.0413002\pi\)
0.0250261 + 0.999687i \(0.492033\pi\)
\(410\) −23.2844 + 5.75343i −1.14994 + 0.284142i
\(411\) −0.269773 0.242904i −0.0133069 0.0119816i
\(412\) 2.23756 1.14009i 0.110237 0.0561683i
\(413\) 11.8004 13.4961i 0.580658 0.664098i
\(414\) 7.91115 2.57049i 0.388812 0.126333i
\(415\) 4.19223 + 5.38915i 0.205789 + 0.264543i
\(416\) −2.63987 + 2.37695i −0.129431 + 0.116540i
\(417\) −1.29378 + 3.37041i −0.0633566 + 0.165049i
\(418\) 46.5612 + 12.4760i 2.27738 + 0.610223i
\(419\) −8.60424 6.25134i −0.420345 0.305398i 0.357432 0.933939i \(-0.383652\pi\)
−0.777776 + 0.628541i \(0.783652\pi\)
\(420\) −2.54772 + 0.120789i −0.124316 + 0.00589389i
\(421\) 17.2687 12.5464i 0.841623 0.611475i −0.0812007 0.996698i \(-0.525875\pi\)
0.922824 + 0.385223i \(0.125875\pi\)
\(422\) 6.93906 2.66366i 0.337788 0.129665i
\(423\) −23.2059 + 15.0701i −1.12831 + 0.732731i
\(424\) −10.5319 6.08062i −0.511476 0.295301i
\(425\) 3.48133 2.60047i 0.168869 0.126141i
\(426\) 9.01188i 0.436627i
\(427\) −1.88202 + 2.67140i −0.0910774 + 0.129278i
\(428\) −4.87356 0.771896i −0.235572 0.0373110i
\(429\) −0.365642 + 0.821246i −0.0176534 + 0.0396501i
\(430\) 20.5587 + 4.79195i 0.991429 + 0.231088i
\(431\) −7.00187 + 3.11743i −0.337268 + 0.150161i −0.568381 0.822765i \(-0.692430\pi\)
0.231113 + 0.972927i \(0.425763\pi\)
\(432\) −2.71219 + 10.1220i −0.130490 + 0.486996i
\(433\) 20.2759 3.21139i 0.974399 0.154330i 0.351121 0.936330i \(-0.385801\pi\)
0.623278 + 0.782000i \(0.285801\pi\)
\(434\) −23.7052 35.3636i −1.13788 1.69751i
\(435\) 1.22768 0.595586i 0.0588630 0.0285562i
\(436\) −9.57334 + 10.6323i −0.458480 + 0.509194i
\(437\) 0.541405 10.3306i 0.0258989 0.494180i
\(438\) 0.117439 2.24087i 0.00561145 0.107073i
\(439\) 8.37290 9.29905i 0.399617 0.443820i −0.509431 0.860512i \(-0.670144\pi\)
0.909048 + 0.416692i \(0.136811\pi\)
\(440\) 12.1808 5.90925i 0.580695 0.281712i
\(441\) 8.70430 + 18.1105i 0.414491 + 0.862404i
\(442\) −0.908306 + 0.143862i −0.0432037 + 0.00684280i
\(443\) −9.05910 + 33.8090i −0.430411 + 1.60632i 0.321405 + 0.946942i \(0.395845\pi\)
−0.751816 + 0.659373i \(0.770822\pi\)
\(444\) 1.71618 0.764091i 0.0814462 0.0362622i
\(445\) 37.1322 + 8.65500i 1.76023 + 0.410286i
\(446\) 9.25164 20.7795i 0.438078 0.983939i
\(447\) 2.54313 + 0.402793i 0.120286 + 0.0190514i
\(448\) −0.905307 1.95613i −0.0427717 0.0924182i
\(449\) 4.28525i 0.202233i 0.994875 + 0.101117i \(0.0322416\pi\)
−0.994875 + 0.101117i \(0.967758\pi\)
\(450\) 7.60764 24.5139i 0.358627 1.15560i
\(451\) −21.9314 12.6621i −1.03271 0.596235i
\(452\) 3.58837 2.33031i 0.168783 0.109609i
\(453\) 8.21990 3.15532i 0.386205 0.148250i
\(454\) 10.1308 7.36048i 0.475464 0.345445i
\(455\) 3.11110 + 1.60477i 0.145851 + 0.0752327i
\(456\) 2.66505 + 1.93627i 0.124802 + 0.0906742i
\(457\) 17.0829 + 4.57736i 0.799107 + 0.214120i 0.635192 0.772355i \(-0.280921\pi\)
0.163915 + 0.986474i \(0.447588\pi\)
\(458\) −9.48021 + 24.6968i −0.442981 + 1.15401i
\(459\) −1.36429 + 1.22841i −0.0636794 + 0.0573372i
\(460\) 2.66553 + 3.42657i 0.124281 + 0.159765i
\(461\) −23.7965 + 7.73195i −1.10831 + 0.360113i −0.805297 0.592872i \(-0.797994\pi\)
−0.303017 + 0.952985i \(0.597994\pi\)
\(462\) −5.41154 4.73161i −0.251768 0.220135i
\(463\) 24.3244 12.3939i 1.13045 0.575994i 0.214277 0.976773i \(-0.431260\pi\)
0.916175 + 0.400779i \(0.131260\pi\)
\(464\) 6.25198 + 5.62931i 0.290241 + 0.261334i
\(465\) −7.02846 + 1.73669i −0.325937 + 0.0805369i
\(466\) −3.05275 3.39042i −0.141416 0.157058i
\(467\) −5.50117 + 4.45476i −0.254564 + 0.206142i −0.748104 0.663581i \(-0.769036\pi\)
0.493541 + 0.869723i \(0.335702\pi\)
\(468\) −1.43900 + 1.43900i −0.0665177 + 0.0665177i
\(469\) 29.4056 + 7.42165i 1.35782 + 0.342700i
\(470\) −30.7353 23.2623i −1.41771 1.07301i
\(471\) −6.60180 2.93931i −0.304195 0.135436i
\(472\) 6.11492 7.55129i 0.281462 0.347576i
\(473\) 12.1393 + 18.6929i 0.558166 + 0.859500i
\(474\) −4.54592 7.87377i −0.208801 0.361654i
\(475\) −25.0706 19.7578i −1.15032 0.906552i
\(476\) 0.391267 2.72700i 0.0179337 0.124992i
\(477\) −21.6905 11.0519i −0.993140 0.506030i
\(478\) 0.637414 + 1.66052i 0.0291546 + 0.0759504i
\(479\) −3.94813 37.5639i −0.180394 1.71634i −0.592809 0.805343i \(-0.701981\pi\)
0.412415 0.910996i \(-0.364685\pi\)
\(480\) −4.81293 + 0.410870i −0.219679 + 0.0187536i
\(481\) −2.56419 0.269507i −0.116917 0.0122885i
\(482\) 6.78154 + 6.78154i 0.308891 + 0.308891i
\(483\) −0.751784 + 1.34709i −0.0342074 + 0.0612947i
\(484\) −7.77889 2.52751i −0.353586 0.114887i
\(485\) −8.91067 24.6431i −0.404612 1.11899i
\(486\) −3.40672 + 16.0274i −0.154532 + 0.727017i
\(487\) −13.1253 0.687869i −0.594765 0.0311703i −0.247421 0.968908i \(-0.579583\pi\)
−0.347344 + 0.937738i \(0.612916\pi\)
\(488\) −0.964633 + 1.48540i −0.0436669 + 0.0672411i
\(489\) −1.79421 5.52200i −0.0811368 0.249713i
\(490\) −19.6025 + 19.9821i −0.885552 + 0.902699i
\(491\) −7.21929 + 22.2187i −0.325802 + 1.00272i 0.645275 + 0.763950i \(0.276743\pi\)
−0.971077 + 0.238765i \(0.923257\pi\)
\(492\) 1.62734 + 2.00960i 0.0733662 + 0.0905997i
\(493\) 0.381460 + 1.42363i 0.0171801 + 0.0641170i
\(494\) 2.74769 + 6.17142i 0.123624 + 0.277665i
\(495\) 23.7304 13.0888i 1.06660 0.588296i
\(496\) −26.2367 36.1118i −1.17806 1.62147i
\(497\) 25.1915 + 27.1711i 1.12999 + 1.21879i
\(498\) 0.892043 1.75073i 0.0399734 0.0784522i
\(499\) −7.78986 + 4.49748i −0.348722 + 0.201335i −0.664122 0.747624i \(-0.731195\pi\)
0.315400 + 0.948959i \(0.397861\pi\)
\(500\) 13.3814 0.616585i 0.598432 0.0275745i
\(501\) −1.82819 + 3.16652i −0.0816777 + 0.141470i
\(502\) −27.6939 + 1.45137i −1.23604 + 0.0647780i
\(503\) 5.63363 35.5693i 0.251191 1.58596i −0.463228 0.886239i \(-0.653309\pi\)
0.714419 0.699718i \(-0.246691\pi\)
\(504\) 5.08521 + 9.63069i 0.226513 + 0.428985i
\(505\) −0.194347 + 9.93559i −0.00864831 + 0.442128i
\(506\) −1.27892 + 12.1681i −0.0568547 + 0.540937i
\(507\) 4.39673 1.17810i 0.195266 0.0523213i
\(508\) 3.68029 + 1.41273i 0.163286 + 0.0626797i
\(509\) −8.98152 + 1.90908i −0.398099 + 0.0846185i −0.402611 0.915371i \(-0.631897\pi\)
0.00451185 + 0.999990i \(0.498564\pi\)
\(510\) −1.10290 0.589403i −0.0488372 0.0260992i
\(511\) −5.90997 7.08456i −0.261442 0.313403i
\(512\) −7.06144 13.8588i −0.312074 0.612480i
\(513\) 11.3101 + 7.34485i 0.499352 + 0.324283i
\(514\) −27.3030 5.80344i −1.20429 0.255979i
\(515\) −3.58392 3.02014i −0.157926 0.133083i
\(516\) −0.473189 2.22618i −0.0208310 0.0980021i
\(517\) −6.36667 40.1976i −0.280006 1.76789i
\(518\) 8.11030 18.9547i 0.356346 0.832822i
\(519\) 0.709520 0.976571i 0.0311445 0.0428667i
\(520\) 1.71788 + 0.805466i 0.0753339 + 0.0353220i
\(521\) −12.1370 + 1.27565i −0.531732 + 0.0558872i −0.366590 0.930383i \(-0.619475\pi\)
−0.165142 + 0.986270i \(0.552808\pi\)
\(522\) 6.76564 + 5.47871i 0.296124 + 0.239796i
\(523\) −1.06831 20.3847i −0.0467141 0.891359i −0.917019 0.398845i \(-0.869411\pi\)
0.870304 0.492514i \(-0.163922\pi\)
\(524\) 4.41862 0.193028
\(525\) 2.05632 + 4.29306i 0.0897451 + 0.187365i
\(526\) −7.35051 −0.320498
\(527\) −0.409260 7.80915i −0.0178277 0.340172i
\(528\) −5.85711 4.74300i −0.254898 0.206412i
\(529\) −20.2627 + 2.12969i −0.880985 + 0.0925953i
\(530\) 4.20375 33.6511i 0.182599 1.46171i
\(531\) 11.4327 15.7357i 0.496136 0.682873i
\(532\) −20.0934 + 2.40845i −0.871162 + 0.104419i
\(533\) −0.555191 3.50534i −0.0240480 0.151833i
\(534\) −2.28129 10.7326i −0.0987211 0.464446i
\(535\) 2.20901 + 8.93999i 0.0955039 + 0.386509i
\(536\) 16.0785 + 3.41758i 0.694484 + 0.147617i
\(537\) −0.876498 0.569204i −0.0378237 0.0245630i
\(538\) 9.57695 + 18.7958i 0.412892 + 0.810346i
\(539\) −29.5426 + 0.861311i −1.27249 + 0.0370993i
\(540\) −5.60592 + 0.775832i −0.241241 + 0.0333865i
\(541\) 17.2586 3.66843i 0.742006 0.157718i 0.178627 0.983917i \(-0.442835\pi\)
0.563379 + 0.826199i \(0.309501\pi\)
\(542\) 11.2447 + 4.31643i 0.483001 + 0.185407i
\(543\) 2.74919 0.736644i 0.117979 0.0316124i
\(544\) 0.545370 5.18885i 0.0233825 0.222470i
\(545\) 25.2282 + 8.74621i 1.08066 + 0.374646i
\(546\) 0.0380575 1.00669i 0.00162871 0.0430824i
\(547\) 0.468776 2.95974i 0.0200434 0.126549i −0.975638 0.219388i \(-0.929594\pi\)
0.995681 + 0.0928385i \(0.0295940\pi\)
\(548\) 1.20708 0.0632602i 0.0515637 0.00270234i
\(549\) −1.77270 + 3.07040i −0.0756568 + 0.131041i
\(550\) 28.3881 + 24.8880i 1.21047 + 1.06123i
\(551\) 9.37617 5.41333i 0.399438 0.230616i
\(552\) −0.379595 + 0.744998i −0.0161567 + 0.0317092i
\(553\) −35.7162 11.0321i −1.51881 0.469133i
\(554\) 32.0136 + 44.0629i 1.36013 + 1.87205i
\(555\) −2.55909 2.39648i −0.108627 0.101725i
\(556\) −4.88933 10.9816i −0.207354 0.465724i
\(557\) −8.10705 30.2559i −0.343507 1.28198i −0.894347 0.447373i \(-0.852359\pi\)
0.550841 0.834610i \(-0.314307\pi\)
\(558\) −29.0687 35.8968i −1.23057 1.51963i
\(559\) −0.965254 + 2.97075i −0.0408259 + 0.125649i
\(560\) −19.7462 + 21.7118i −0.834430 + 0.917490i
\(561\) −0.408011 1.25573i −0.0172262 0.0530169i
\(562\) 4.55298 7.01097i 0.192056 0.295740i
\(563\) −18.5816 0.973818i −0.783119 0.0410415i −0.343414 0.939184i \(-0.611584\pi\)
−0.439705 + 0.898142i \(0.644917\pi\)
\(564\) −0.864032 + 4.06495i −0.0363823 + 0.171165i
\(565\) −6.61061 4.47919i −0.278110 0.188441i
\(566\) 9.52590 + 3.09515i 0.400404 + 0.130099i
\(567\) 10.6476 + 17.8367i 0.447155 + 0.749070i
\(568\) 14.2005 + 14.2005i 0.595838 + 0.595838i
\(569\) −1.55796 0.163748i −0.0653132 0.00686469i 0.0718155 0.997418i \(-0.477121\pi\)
−0.137129 + 0.990553i \(0.543787\pi\)
\(570\) −2.08526 + 8.94628i −0.0873418 + 0.374719i
\(571\) 1.38221 + 13.1509i 0.0578437 + 0.550346i 0.984617 + 0.174725i \(0.0559038\pi\)
−0.926773 + 0.375621i \(0.877430\pi\)
\(572\) −1.07270 2.79448i −0.0448518 0.116843i
\(573\) 4.66582 + 2.37736i 0.194918 + 0.0993154i
\(574\) 28.0914 + 4.03053i 1.17251 + 0.168231i
\(575\) 3.95774 7.06961i 0.165049 0.294823i
\(576\) −1.16929 2.02527i −0.0487204 0.0843861i
\(577\) 5.05877 + 7.78982i 0.210599 + 0.324294i 0.928146 0.372216i \(-0.121402\pi\)
−0.717547 + 0.696510i \(0.754735\pi\)
\(578\) −18.2824 + 22.5768i −0.760446 + 0.939073i
\(579\) 0.204328 + 0.0909729i 0.00849160 + 0.00378070i
\(580\) −1.48825 + 4.29281i −0.0617961 + 0.178249i
\(581\) −2.20441 7.77210i −0.0914543 0.322441i
\(582\) −5.33245 + 5.33245i −0.221037 + 0.221037i
\(583\) 27.8269 22.5338i 1.15247 0.933254i
\(584\) −3.34599 3.71610i −0.138458 0.153773i
\(585\) 3.51844 + 1.43016i 0.145469 + 0.0591300i
\(586\) 13.8781 + 12.4959i 0.573297 + 0.516199i
\(587\) 11.8830 6.05467i 0.490462 0.249903i −0.191226 0.981546i \(-0.561246\pi\)
0.681688 + 0.731643i \(0.261246\pi\)
\(588\) 2.84776 + 0.998948i 0.117440 + 0.0411959i
\(589\) −54.6321 + 17.7511i −2.25108 + 0.731419i
\(590\) 26.0304 + 7.52342i 1.07165 + 0.309734i
\(591\) 6.52603 5.87606i 0.268445 0.241709i
\(592\) 7.74645 20.1802i 0.318377 0.829400i
\(593\) −35.2829 9.45404i −1.44890 0.388231i −0.553257 0.833011i \(-0.686615\pi\)
−0.895640 + 0.444780i \(0.853282\pi\)
\(594\) −12.9038 9.37515i −0.529449 0.384667i
\(595\) −4.97287 + 1.30594i −0.203868 + 0.0535385i
\(596\) −6.93605 + 5.03934i −0.284112 + 0.206419i
\(597\) −2.88374 + 1.10696i −0.118024 + 0.0453050i
\(598\) −1.43805 + 0.933878i −0.0588061 + 0.0381891i
\(599\) 0.214739 + 0.123980i 0.00877399 + 0.00506567i 0.504381 0.863481i \(-0.331721\pi\)
−0.495607 + 0.868547i \(0.665054\pi\)
\(600\) 1.20164 + 2.28308i 0.0490566 + 0.0932065i
\(601\) 19.3484i 0.789237i 0.918845 + 0.394618i \(0.129123\pi\)
−0.918845 + 0.394618i \(0.870877\pi\)
\(602\) −20.4190 14.3853i −0.832215 0.586302i
\(603\) 32.4991 + 5.14734i 1.32346 + 0.209616i
\(604\) −11.9243 + 26.7825i −0.485194 + 1.08976i
\(605\) 1.29840 + 15.2095i 0.0527876 + 0.618353i
\(606\) 2.61258 1.16320i 0.106129 0.0472517i
\(607\) 9.35079 34.8976i 0.379537 1.41645i −0.467065 0.884223i \(-0.654688\pi\)
0.846601 0.532227i \(-0.178645\pi\)
\(608\) −37.8546 + 5.99558i −1.53521 + 0.243153i
\(609\) −1.61091 + 0.107985i −0.0652776 + 0.00437577i
\(610\) −4.86212 0.867880i −0.196862 0.0351394i
\(611\) 3.81650 4.23865i 0.154399 0.171477i
\(612\) 0.156431 2.98487i 0.00632333 0.120656i
\(613\) −0.817047 + 15.5902i −0.0330002 + 0.629681i 0.931200 + 0.364508i \(0.118763\pi\)
−0.964201 + 0.265174i \(0.914571\pi\)
\(614\) 32.8828 36.5201i 1.32704 1.47383i
\(615\) 2.27463 4.25632i 0.0917219 0.171631i
\(616\) −15.9831 + 1.07140i −0.643976 + 0.0431679i
\(617\) 27.4606 4.34934i 1.10552 0.175098i 0.423120 0.906074i \(-0.360935\pi\)
0.682403 + 0.730976i \(0.260935\pi\)
\(618\) −0.349086 + 1.30281i −0.0140423 + 0.0524065i
\(619\) 32.8458 14.6239i 1.32018 0.587784i 0.378913 0.925432i \(-0.376298\pi\)
0.941272 + 0.337648i \(0.109631\pi\)
\(620\) 12.4592 20.6372i 0.500375 0.828808i
\(621\) −1.39224 + 3.12702i −0.0558687 + 0.125483i
\(622\) −26.4995 4.19711i −1.06253 0.168289i
\(623\) −36.8798 25.9821i −1.47756 1.04095i
\(624\) 1.05622i 0.0422827i
\(625\) −10.7697 22.5613i −0.430788 0.902453i
\(626\) 47.2331 + 27.2700i 1.88781 + 1.08993i
\(627\) −8.13436 + 5.28251i −0.324855 + 0.210963i
\(628\) 22.4641 8.62317i 0.896416 0.344102i
\(629\) 3.06365 2.22587i 0.122156 0.0887514i
\(630\) −19.2298 + 23.5063i −0.766133 + 0.936512i
\(631\) 23.2118 + 16.8644i 0.924048 + 0.671360i 0.944528 0.328430i \(-0.106520\pi\)
−0.0204802 + 0.999790i \(0.506520\pi\)
\(632\) −19.5703 5.24385i −0.778465 0.208589i
\(633\) −0.535957 + 1.39622i −0.0213024 + 0.0554946i
\(634\) −33.6082 + 30.2610i −1.33475 + 1.20182i
\(635\) −0.241284 7.35319i −0.00957506 0.291802i
\(636\) −3.47728 + 1.12984i −0.137883 + 0.0448009i
\(637\) −2.69933 3.14158i −0.106951 0.124474i
\(638\) −11.4094 + 5.81335i −0.451701 + 0.230153i
\(639\) 29.8746 + 26.8992i 1.18182 + 1.06412i
\(640\) −15.2017 + 18.0394i −0.600898 + 0.713069i
\(641\) 12.0398 + 13.3716i 0.475545 + 0.528146i 0.932416 0.361387i \(-0.117697\pi\)
−0.456871 + 0.889533i \(0.651030\pi\)
\(642\) 2.05955 1.66779i 0.0812838 0.0658223i
\(643\) −9.47610 + 9.47610i −0.373701 + 0.373701i −0.868823 0.495122i \(-0.835123\pi\)
0.495122 + 0.868823i \(0.335123\pi\)
\(644\) −1.40162 4.94171i −0.0552317 0.194731i
\(645\) −3.48448 + 2.42895i −0.137201 + 0.0956397i
\(646\) −9.06424 4.03566i −0.356628 0.158781i
\(647\) −8.71831 + 10.7662i −0.342752 + 0.423264i −0.919151 0.393905i \(-0.871124\pi\)
0.576399 + 0.817168i \(0.304457\pi\)
\(648\) 6.13209 + 9.44260i 0.240891 + 0.370940i
\(649\) 14.3045 + 24.7762i 0.561502 + 0.972549i
\(650\) −0.206906 + 5.28682i −0.00811554 + 0.207366i
\(651\) 8.47946 + 1.21662i 0.332336 + 0.0476832i
\(652\) 17.2257 + 8.77692i 0.674610 + 0.343731i
\(653\) 13.1540 + 34.2673i 0.514754 + 1.34098i 0.907004 + 0.421122i \(0.138364\pi\)
−0.392249 + 0.919859i \(0.628303\pi\)
\(654\) −0.803212 7.64205i −0.0314081 0.298828i
\(655\) −3.20616 7.59765i −0.125275 0.296865i
\(656\) 29.5912 + 3.11016i 1.15534 + 0.121431i
\(657\) −7.07798 7.07798i −0.276138 0.276138i
\(658\) 23.3773 + 39.1613i 0.911341 + 1.52667i
\(659\) −17.1826 5.58297i −0.669340 0.217482i −0.0454175 0.998968i \(-0.514462\pi\)
−0.623922 + 0.781486i \(0.714462\pi\)
\(660\) 1.13016 3.91024i 0.0439912 0.152206i
\(661\) 5.47564 25.7609i 0.212978 1.00198i −0.733619 0.679561i \(-0.762170\pi\)
0.946596 0.322421i \(-0.104497\pi\)
\(662\) −11.8221 0.619568i −0.459477 0.0240802i
\(663\) 0.100780 0.155187i 0.00391396 0.00602696i
\(664\) −1.35308 4.16435i −0.0525097 0.161608i
\(665\) 18.7210 + 32.8023i 0.725971 + 1.27202i
\(666\) 6.91223 21.2737i 0.267843 0.824337i
\(667\) 1.72939 + 2.13562i 0.0669623 + 0.0826916i
\(668\) −3.15104 11.7598i −0.121917 0.455002i
\(669\) 1.86153 + 4.18107i 0.0719709 + 0.161649i
\(670\) 8.65153 + 45.0139i 0.334238 + 1.73904i
\(671\) −3.06518 4.21886i −0.118330 0.162867i
\(672\) 5.46087 + 1.68677i 0.210658 + 0.0650685i
\(673\) 23.2205 45.5727i 0.895083 1.75670i 0.297896 0.954598i \(-0.403715\pi\)
0.597187 0.802102i \(-0.296285\pi\)
\(674\) 7.64957 4.41648i 0.294651 0.170117i
\(675\) 5.40168 + 9.07623i 0.207911 + 0.349344i
\(676\) −7.57813 + 13.1257i −0.291466 + 0.504835i
\(677\) 39.4906 2.06961i 1.51775 0.0795417i 0.724854 0.688903i \(-0.241907\pi\)
0.792893 + 0.609361i \(0.208574\pi\)
\(678\) −0.359485 + 2.26970i −0.0138059 + 0.0871673i
\(679\) −1.17132 + 30.9836i −0.0449512 + 1.18904i
\(680\) −2.66664 + 0.809141i −0.102261 + 0.0310292i
\(681\) −0.263374 + 2.50584i −0.0100925 + 0.0960240i
\(682\) 65.6252 17.5842i 2.51292 0.673335i
\(683\) 10.1751 + 3.90584i 0.389338 + 0.149453i 0.545159 0.838332i \(-0.316469\pi\)
−0.155822 + 0.987785i \(0.549802\pi\)
\(684\) −21.4767 + 4.56502i −0.821183 + 0.174548i
\(685\) −0.984629 2.02962i −0.0376207 0.0775478i
\(686\) 30.3722 13.2094i 1.15962 0.504336i
\(687\) −2.41650 4.74265i −0.0921953 0.180943i
\(688\) −21.9628 14.2628i −0.837326 0.543766i
\(689\) 4.90841 + 1.04332i 0.186996 + 0.0397471i
\(690\) −2.32559 0.167541i −0.0885338 0.00637817i
\(691\) −7.18035 33.7809i −0.273153 1.28509i −0.874080 0.485782i \(-0.838535\pi\)
0.600927 0.799304i \(-0.294798\pi\)
\(692\) 0.628759 + 3.96983i 0.0239018 + 0.150910i
\(693\) −31.8381 + 3.81618i −1.20943 + 0.144965i
\(694\) 27.0650 37.2518i 1.02737 1.41406i
\(695\) −15.3348 + 16.3753i −0.581681 + 0.621150i
\(696\) −0.870285 + 0.0914706i −0.0329881 + 0.00346719i
\(697\) 4.05097 + 3.28041i 0.153442 + 0.124255i
\(698\) 2.22893 + 42.5304i 0.0843661 + 1.60980i
\(699\) 0.917976 0.0347211
\(700\) −14.9493 5.26632i −0.565032 0.199048i
\(701\) 16.6461 0.628716 0.314358 0.949305i \(-0.398211\pi\)
0.314358 + 0.949305i \(0.398211\pi\)
\(702\) −0.116986 2.23223i −0.00441535 0.0842499i
\(703\) −21.6186 17.5064i −0.815360 0.660265i
\(704\) 3.42090 0.359551i 0.128930 0.0135511i
\(705\) 7.61647 1.46386i 0.286853 0.0551322i
\(706\) 33.2858 45.8139i 1.25273 1.72423i
\(707\) 4.62545 10.8102i 0.173958 0.406560i
\(708\) −0.456990 2.88532i −0.0171747 0.108437i
\(709\) −3.91289 18.4087i −0.146952 0.691353i −0.988506 0.151181i \(-0.951692\pi\)
0.841555 0.540172i \(-0.181641\pi\)
\(710\) −21.0878 + 51.8795i −0.791412 + 1.94700i
\(711\) −39.6706 8.43225i −1.48776 0.316234i
\(712\) −20.5067 13.3172i −0.768519 0.499082i
\(713\) −6.61935 12.9912i −0.247897 0.486525i
\(714\) 0.947818 + 1.13620i 0.0354712 + 0.0425210i
\(715\) −4.02664 + 3.87214i −0.150588 + 0.144810i
\(716\) 3.40384 0.723509i 0.127208 0.0270388i
\(717\) −0.334115 0.128255i −0.0124777 0.00478976i
\(718\) −21.9128 + 5.87151i −0.817777 + 0.219123i
\(719\) −4.33832 + 41.2764i −0.161792 + 1.53935i 0.548926 + 0.835871i \(0.315037\pi\)
−0.710718 + 0.703477i \(0.751630\pi\)
\(720\) −19.2161 + 25.3893i −0.716143 + 0.946203i
\(721\) 2.58932 + 4.90382i 0.0964313 + 0.182628i
\(722\) −6.08648 + 38.4285i −0.226515 + 1.43016i
\(723\) −1.92708 + 0.100994i −0.0716688 + 0.00375601i
\(724\) −4.73846 + 8.20725i −0.176103 + 0.305020i
\(725\) 8.46120 0.555882i 0.314241 0.0206449i
\(726\) 3.80439 2.19646i 0.141194 0.0815184i
\(727\) −9.01500 + 17.6929i −0.334348 + 0.656195i −0.995573 0.0939929i \(-0.970037\pi\)
0.661225 + 0.750188i \(0.270037\pi\)
\(728\) −1.52632 1.64626i −0.0565692 0.0610144i
\(729\) 11.9070 + 16.3886i 0.441001 + 0.606985i
\(730\) 5.91971 12.6254i 0.219098 0.467287i
\(731\) −1.86603 4.19118i −0.0690177 0.155016i
\(732\) 0.137818 + 0.514343i 0.00509389 + 0.0190107i
\(733\) −6.23862 7.70405i −0.230429 0.284556i 0.648797 0.760962i \(-0.275273\pi\)
−0.879225 + 0.476406i \(0.841939\pi\)
\(734\) −4.33796 + 13.3509i −0.160117 + 0.492790i
\(735\) −0.348687 5.62146i −0.0128615 0.207351i
\(736\) −3.00613 9.25192i −0.110807 0.341030i
\(737\) −26.3593 + 40.5897i −0.970956 + 1.49514i
\(738\) 30.7479 + 1.61143i 1.13184 + 0.0593174i
\(739\) 1.91774 9.02225i 0.0705451 0.331889i −0.928696 0.370842i \(-0.879069\pi\)
0.999241 + 0.0389534i \(0.0124024\pi\)
\(740\) 11.6677 0.382857i 0.428911 0.0140741i
\(741\) −1.29274 0.420038i −0.0474901 0.0154305i
\(742\) −19.5544 + 35.0388i −0.717866 + 1.28631i
\(743\) −31.8855 31.8855i −1.16976 1.16976i −0.982265 0.187500i \(-0.939962\pi\)
−0.187500 0.982265i \(-0.560038\pi\)
\(744\) 4.61752 + 0.485321i 0.169286 + 0.0177927i
\(745\) 13.6978 + 8.26973i 0.501847 + 0.302980i
\(746\) −0.681574 6.48474i −0.0249542 0.237423i
\(747\) −3.14109 8.18282i −0.114927 0.299394i
\(748\) 3.91720 + 1.99592i 0.143227 + 0.0729779i
\(749\) 1.54751 10.7856i 0.0565447 0.394098i
\(750\) −4.56289 + 5.56251i −0.166613 + 0.203114i
\(751\) −4.83420 8.37308i −0.176403 0.305538i 0.764243 0.644928i \(-0.223113\pi\)
−0.940646 + 0.339390i \(0.889779\pi\)
\(752\) 26.0436 + 40.1036i 0.949712 + 1.46243i
\(753\) 3.51158 4.33644i 0.127969 0.158029i
\(754\) −1.63940 0.729907i −0.0597034 0.0265816i
\(755\) 54.7037 + 1.07004i 1.99087 + 0.0389427i
\(756\) 6.49264 + 1.63867i 0.236135 + 0.0595979i
\(757\) −29.1640 + 29.1640i −1.05998 + 1.05998i −0.0619022 + 0.998082i \(0.519717\pi\)
−0.998082 + 0.0619022i \(0.980283\pi\)
\(758\) 28.8332 23.3486i 1.04727 0.848061i
\(759\) −1.64729 1.82950i −0.0597928 0.0664066i
\(760\) 10.8113 + 17.3829i 0.392165 + 0.630545i
\(761\) −2.78122 2.50423i −0.100819 0.0907781i 0.617180 0.786822i \(-0.288275\pi\)
−0.717999 + 0.696044i \(0.754942\pi\)
\(762\) −1.88649 + 0.961213i −0.0683402 + 0.0348211i
\(763\) −23.7840 20.7957i −0.861040 0.752855i
\(764\) −16.5829 + 5.38810i −0.599947 + 0.194934i
\(765\) −5.24588 + 1.89685i −0.189665 + 0.0685807i
\(766\) −25.8210 + 23.2493i −0.932951