Properties

Label 175.2.x.a.108.1
Level $175$
Weight $2$
Character 175.108
Analytic conductor $1.397$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(3,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([21, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.x (of order \(60\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 108.1
Character \(\chi\) \(=\) 175.108
Dual form 175.2.x.a.47.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.139042 - 2.65307i) q^{2} +(0.171618 + 0.138973i) q^{3} +(-5.03041 + 0.528718i) q^{4} +(-2.22928 - 0.174120i) q^{5} +(0.344844 - 0.474637i) q^{6} +(-2.47603 + 0.932359i) q^{7} +(1.27096 + 8.02453i) q^{8} +(-0.613596 - 2.88674i) q^{9} +O(q^{10})\) \(q+(-0.139042 - 2.65307i) q^{2} +(0.171618 + 0.138973i) q^{3} +(-5.03041 + 0.528718i) q^{4} +(-2.22928 - 0.174120i) q^{5} +(0.344844 - 0.474637i) q^{6} +(-2.47603 + 0.932359i) q^{7} +(1.27096 + 8.02453i) q^{8} +(-0.613596 - 2.88674i) q^{9} +(-0.151991 + 5.93865i) q^{10} +(2.92528 + 0.621787i) q^{11} +(-0.936786 - 0.608356i) q^{12} +(-2.23475 - 4.38594i) q^{13} +(2.81788 + 6.43944i) q^{14} +(-0.358386 - 0.339692i) q^{15} +(11.2177 - 2.38441i) q^{16} +(-4.48584 - 1.72195i) q^{17} +(-7.57342 + 2.02929i) q^{18} +(0.376845 - 3.58544i) q^{19} +(11.3063 - 0.302763i) q^{20} +(-0.554503 - 0.184092i) q^{21} +(1.24291 - 7.84742i) q^{22} +(3.26342 - 0.171029i) q^{23} +(-0.897076 + 1.55378i) q^{24} +(4.93936 + 0.776324i) q^{25} +(-11.3255 + 6.53878i) q^{26} +(0.596641 - 1.17097i) q^{27} +(11.9625 - 5.99927i) q^{28} +(2.87272 + 3.95395i) q^{29} +(-0.851397 + 0.998054i) q^{30} +(-0.657478 - 1.47672i) q^{31} +(-3.68016 - 13.7345i) q^{32} +(0.415617 + 0.513245i) q^{33} +(-3.94475 + 12.1407i) q^{34} +(5.68209 - 1.64736i) q^{35} +(4.61291 + 14.1971i) q^{36} +(-0.731424 + 1.12629i) q^{37} +(-9.56484 - 0.501272i) q^{38} +(0.226006 - 1.06328i) q^{39} +(-1.43609 - 18.1102i) q^{40} +(-4.99103 - 1.62168i) q^{41} +(-0.411311 + 1.49673i) q^{42} +(-8.43891 - 8.43891i) q^{43} +(-15.0441 - 1.58120i) q^{44} +(0.865237 + 6.54219i) q^{45} +(-0.907502 - 8.63431i) q^{46} +(1.19805 + 3.12102i) q^{47} +(2.25653 + 1.14976i) q^{48} +(5.26142 - 4.61709i) q^{49} +(1.37287 - 13.2124i) q^{50} +(-0.530544 - 0.918929i) q^{51} +(13.5606 + 20.8816i) q^{52} +(-2.69056 + 3.32256i) q^{53} +(-3.18964 - 1.42012i) q^{54} +(-6.41299 - 1.89548i) q^{55} +(-10.6287 - 18.6840i) q^{56} +(0.562954 - 0.562954i) q^{57} +(10.0907 - 8.17129i) q^{58} +(0.374472 + 0.415893i) q^{59} +(1.98243 + 1.51931i) q^{60} +(7.43964 + 6.69868i) q^{61} +(-3.82643 + 1.94966i) q^{62} +(4.21076 + 6.57556i) q^{63} +(-14.1129 + 4.58555i) q^{64} +(4.21820 + 10.1666i) q^{65} +(1.30389 - 1.17403i) q^{66} +(3.34846 - 8.72305i) q^{67} +(23.4761 + 6.29039i) q^{68} +(0.583829 + 0.424177i) q^{69} +(-5.16061 - 14.8460i) q^{70} +(-0.293741 + 0.213415i) q^{71} +(22.3849 - 8.59275i) q^{72} +(2.45523 - 1.59444i) q^{73} +(3.08984 + 1.78392i) q^{74} +(0.739794 + 0.819671i) q^{75} +18.2355i q^{76} +(-7.82279 + 1.18785i) q^{77} +(-2.85237 - 0.451771i) q^{78} +(2.12904 - 4.78190i) q^{79} +(-25.4227 + 3.36227i) q^{80} +(-7.82313 + 3.48308i) q^{81} +(-3.60848 + 13.4670i) q^{82} +(0.898387 - 0.142291i) q^{83} +(2.88671 + 0.632885i) q^{84} +(9.70036 + 4.61979i) q^{85} +(-21.2157 + 23.5624i) q^{86} +(-0.0564851 + 1.07780i) q^{87} +(-1.27163 + 24.2642i) q^{88} +(6.04903 - 6.71813i) q^{89} +(17.2366 - 3.20517i) q^{90} +(9.62257 + 8.77612i) q^{91} +(-16.3259 + 2.58577i) q^{92} +(0.0923897 - 0.344803i) q^{93} +(8.11372 - 3.61246i) q^{94} +(-1.46439 + 7.92734i) q^{95} +(1.27715 - 2.86853i) q^{96} +(-7.15230 - 1.13281i) q^{97} +(-12.9810 - 13.3169i) q^{98} -8.82604i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9} - 36 q^{10} - 6 q^{11} - 36 q^{12} - 20 q^{14} - 28 q^{15} - 30 q^{16} - 42 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} + 32 q^{22} - 40 q^{23} + 2 q^{25} - 48 q^{26} + 22 q^{28} - 58 q^{30} - 18 q^{31} + 8 q^{32} - 30 q^{33} - 2 q^{35} + 40 q^{36} - 10 q^{37} + 72 q^{38} + 30 q^{39} - 48 q^{40} + 6 q^{42} - 108 q^{43} - 10 q^{44} + 186 q^{45} - 6 q^{46} - 54 q^{47} - 248 q^{50} - 16 q^{51} + 216 q^{52} + 50 q^{53} - 30 q^{54} + 4 q^{56} - 216 q^{57} - 4 q^{58} + 90 q^{59} + 96 q^{60} - 18 q^{61} - 66 q^{63} - 100 q^{64} + 14 q^{65} - 90 q^{66} + 4 q^{67} + 342 q^{68} - 60 q^{70} - 24 q^{71} + 58 q^{72} - 6 q^{73} + 216 q^{75} - 80 q^{77} - 132 q^{78} - 10 q^{79} - 6 q^{80} - 10 q^{81} + 216 q^{82} + 20 q^{84} - 48 q^{85} - 6 q^{86} - 48 q^{87} - 122 q^{88} + 120 q^{89} - 12 q^{91} - 4 q^{92} + 106 q^{93} - 30 q^{94} - 98 q^{95} - 90 q^{96} + 222 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{3}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.139042 2.65307i −0.0983173 1.87601i −0.391813 0.920045i \(-0.628152\pi\)
0.293496 0.955960i \(-0.405181\pi\)
\(3\) 0.171618 + 0.138973i 0.0990835 + 0.0802363i 0.677582 0.735447i \(-0.263028\pi\)
−0.578499 + 0.815683i \(0.696361\pi\)
\(4\) −5.03041 + 0.528718i −2.51521 + 0.264359i
\(5\) −2.22928 0.174120i −0.996964 0.0778689i
\(6\) 0.344844 0.474637i 0.140782 0.193770i
\(7\) −2.47603 + 0.932359i −0.935850 + 0.352398i
\(8\) 1.27096 + 8.02453i 0.449352 + 2.83710i
\(9\) −0.613596 2.88674i −0.204532 0.962247i
\(10\) −0.151991 + 5.93865i −0.0480636 + 1.87796i
\(11\) 2.92528 + 0.621787i 0.882004 + 0.187476i 0.626583 0.779354i \(-0.284453\pi\)
0.255421 + 0.966830i \(0.417786\pi\)
\(12\) −0.936786 0.608356i −0.270427 0.175617i
\(13\) −2.23475 4.38594i −0.619808 1.21644i −0.961026 0.276458i \(-0.910839\pi\)
0.341218 0.939984i \(-0.389161\pi\)
\(14\) 2.81788 + 6.43944i 0.753111 + 1.72101i
\(15\) −0.358386 0.339692i −0.0925348 0.0877082i
\(16\) 11.2177 2.38441i 2.80444 0.596102i
\(17\) −4.48584 1.72195i −1.08798 0.417635i −0.252744 0.967533i \(-0.581333\pi\)
−0.835232 + 0.549898i \(0.814666\pi\)
\(18\) −7.57342 + 2.02929i −1.78507 + 0.478309i
\(19\) 0.376845 3.58544i 0.0864543 0.822557i −0.862269 0.506450i \(-0.830957\pi\)
0.948723 0.316107i \(-0.102376\pi\)
\(20\) 11.3063 0.302763i 2.52816 0.0676999i
\(21\) −0.554503 0.184092i −0.121002 0.0401722i
\(22\) 1.24291 7.84742i 0.264989 1.67308i
\(23\) 3.26342 0.171029i 0.680470 0.0356619i 0.291030 0.956714i \(-0.406002\pi\)
0.389440 + 0.921052i \(0.372669\pi\)
\(24\) −0.897076 + 1.55378i −0.183115 + 0.317164i
\(25\) 4.93936 + 0.776324i 0.987873 + 0.155265i
\(26\) −11.3255 + 6.53878i −2.22111 + 1.28236i
\(27\) 0.596641 1.17097i 0.114824 0.225354i
\(28\) 11.9625 5.99927i 2.26070 1.13376i
\(29\) 2.87272 + 3.95395i 0.533450 + 0.734231i 0.987651 0.156668i \(-0.0500753\pi\)
−0.454201 + 0.890899i \(0.650075\pi\)
\(30\) −0.851397 + 0.998054i −0.155443 + 0.182219i
\(31\) −0.657478 1.47672i −0.118087 0.265227i 0.844826 0.535042i \(-0.179704\pi\)
−0.962912 + 0.269815i \(0.913037\pi\)
\(32\) −3.68016 13.7345i −0.650566 2.42794i
\(33\) 0.415617 + 0.513245i 0.0723497 + 0.0893445i
\(34\) −3.94475 + 12.1407i −0.676518 + 2.08211i
\(35\) 5.68209 1.64736i 0.960449 0.278455i
\(36\) 4.61291 + 14.1971i 0.768819 + 2.36618i
\(37\) −0.731424 + 1.12629i −0.120245 + 0.185162i −0.893668 0.448730i \(-0.851877\pi\)
0.773422 + 0.633891i \(0.218543\pi\)
\(38\) −9.56484 0.501272i −1.55162 0.0813171i
\(39\) 0.226006 1.06328i 0.0361900 0.170260i
\(40\) −1.43609 18.1102i −0.227066 2.86347i
\(41\) −4.99103 1.62168i −0.779468 0.253264i −0.107855 0.994167i \(-0.534398\pi\)
−0.671613 + 0.740902i \(0.734398\pi\)
\(42\) −0.411311 + 1.49673i −0.0634667 + 0.230951i
\(43\) −8.43891 8.43891i −1.28692 1.28692i −0.936647 0.350276i \(-0.886088\pi\)
−0.350276 0.936647i \(-0.613912\pi\)
\(44\) −15.0441 1.58120i −2.26798 0.238375i
\(45\) 0.865237 + 6.54219i 0.128982 + 0.975252i
\(46\) −0.907502 8.63431i −0.133804 1.27306i
\(47\) 1.19805 + 3.12102i 0.174753 + 0.455248i 0.992782 0.119929i \(-0.0382666\pi\)
−0.818029 + 0.575177i \(0.804933\pi\)
\(48\) 2.25653 + 1.14976i 0.325703 + 0.165954i
\(49\) 5.26142 4.61709i 0.751631 0.659584i
\(50\) 1.37287 13.2124i 0.194153 1.86852i
\(51\) −0.530544 0.918929i −0.0742910 0.128676i
\(52\) 13.5606 + 20.8816i 1.88052 + 2.89575i
\(53\) −2.69056 + 3.32256i −0.369577 + 0.456389i −0.927677 0.373384i \(-0.878197\pi\)
0.558100 + 0.829774i \(0.311531\pi\)
\(54\) −3.18964 1.42012i −0.434055 0.193254i
\(55\) −6.41299 1.89548i −0.864727 0.255587i
\(56\) −10.6287 18.6840i −1.42032 2.49675i
\(57\) 0.562954 0.562954i 0.0745651 0.0745651i
\(58\) 10.0907 8.17129i 1.32497 1.07294i
\(59\) 0.374472 + 0.415893i 0.0487521 + 0.0541447i 0.767028 0.641614i \(-0.221735\pi\)
−0.718276 + 0.695759i \(0.755068\pi\)
\(60\) 1.98243 + 1.51931i 0.255931 + 0.196142i
\(61\) 7.43964 + 6.69868i 0.952549 + 0.857679i 0.989921 0.141623i \(-0.0452320\pi\)
−0.0373720 + 0.999301i \(0.511899\pi\)
\(62\) −3.82643 + 1.94966i −0.485957 + 0.247607i
\(63\) 4.21076 + 6.57556i 0.530506 + 0.828443i
\(64\) −14.1129 + 4.58555i −1.76411 + 0.573194i
\(65\) 4.21820 + 10.1666i 0.523203 + 1.26101i
\(66\) 1.30389 1.17403i 0.160497 0.144513i
\(67\) 3.34846 8.72305i 0.409080 1.06569i −0.562042 0.827108i \(-0.689984\pi\)
0.971122 0.238582i \(-0.0766824\pi\)
\(68\) 23.4761 + 6.29039i 2.84689 + 0.762822i
\(69\) 0.583829 + 0.424177i 0.0702848 + 0.0510649i
\(70\) −5.16061 14.8460i −0.616811 1.77443i
\(71\) −0.293741 + 0.213415i −0.0348607 + 0.0253278i −0.605079 0.796165i \(-0.706859\pi\)
0.570218 + 0.821493i \(0.306859\pi\)
\(72\) 22.3849 8.59275i 2.63808 1.01267i
\(73\) 2.45523 1.59444i 0.287363 0.186615i −0.392905 0.919579i \(-0.628530\pi\)
0.680268 + 0.732963i \(0.261863\pi\)
\(74\) 3.08984 + 1.78392i 0.359186 + 0.207376i
\(75\) 0.739794 + 0.819671i 0.0854241 + 0.0946474i
\(76\) 18.2355i 2.09176i
\(77\) −7.82279 + 1.18785i −0.891490 + 0.135368i
\(78\) −2.85237 0.451771i −0.322968 0.0511530i
\(79\) 2.12904 4.78190i 0.239536 0.538006i −0.753274 0.657706i \(-0.771527\pi\)
0.992810 + 0.119701i \(0.0381935\pi\)
\(80\) −25.4227 + 3.36227i −2.84234 + 0.375913i
\(81\) −7.82313 + 3.48308i −0.869237 + 0.387009i
\(82\) −3.60848 + 13.4670i −0.398490 + 1.48719i
\(83\) 0.898387 0.142291i 0.0986108 0.0156184i −0.106934 0.994266i \(-0.534103\pi\)
0.205545 + 0.978648i \(0.434103\pi\)
\(84\) 2.88671 + 0.632885i 0.314966 + 0.0690534i
\(85\) 9.70036 + 4.61979i 1.05215 + 0.501086i
\(86\) −21.2157 + 23.5624i −2.28775 + 2.54080i
\(87\) −0.0564851 + 1.07780i −0.00605584 + 0.115552i
\(88\) −1.27163 + 24.2642i −0.135557 + 2.58658i
\(89\) 6.04903 6.71813i 0.641196 0.712120i −0.331695 0.943387i \(-0.607620\pi\)
0.972890 + 0.231267i \(0.0742870\pi\)
\(90\) 17.2366 3.20517i 1.81690 0.337855i
\(91\) 9.62257 + 8.77612i 1.00872 + 0.919988i
\(92\) −16.3259 + 2.58577i −1.70210 + 0.269585i
\(93\) 0.0923897 0.344803i 0.00958037 0.0357544i
\(94\) 8.11372 3.61246i 0.836866 0.372597i
\(95\) −1.46439 + 7.92734i −0.150243 + 0.813328i
\(96\) 1.27715 2.86853i 0.130349 0.292768i
\(97\) −7.15230 1.13281i −0.726206 0.115020i −0.217624 0.976033i \(-0.569830\pi\)
−0.508583 + 0.861013i \(0.669830\pi\)
\(98\) −12.9810 13.3169i −1.31128 1.34521i
\(99\) 8.82604i 0.887051i
\(100\) −25.2575 1.29370i −2.52575 0.129370i
\(101\) 2.36935 + 1.36795i 0.235759 + 0.136116i 0.613226 0.789907i \(-0.289871\pi\)
−0.377467 + 0.926023i \(0.623205\pi\)
\(102\) −2.36422 + 1.53534i −0.234092 + 0.152021i
\(103\) 0.623225 0.239234i 0.0614082 0.0235724i −0.327470 0.944862i \(-0.606196\pi\)
0.388878 + 0.921289i \(0.372863\pi\)
\(104\) 32.3548 23.5072i 3.17265 2.30507i
\(105\) 1.20409 + 0.506943i 0.117507 + 0.0494726i
\(106\) 9.18910 + 6.67627i 0.892524 + 0.648457i
\(107\) 2.61232 + 0.699970i 0.252543 + 0.0676686i 0.382869 0.923802i \(-0.374936\pi\)
−0.130327 + 0.991471i \(0.541603\pi\)
\(108\) −2.38224 + 6.20594i −0.229231 + 0.597167i
\(109\) −3.45588 + 3.11169i −0.331013 + 0.298046i −0.817832 0.575458i \(-0.804824\pi\)
0.486818 + 0.873503i \(0.338157\pi\)
\(110\) −4.13719 + 17.2777i −0.394465 + 1.64736i
\(111\) −0.282050 + 0.0916436i −0.0267710 + 0.00869843i
\(112\) −25.5523 + 16.3628i −2.41447 + 1.54614i
\(113\) 15.5844 7.94063i 1.46605 0.746991i 0.474941 0.880018i \(-0.342470\pi\)
0.991112 + 0.133026i \(0.0424695\pi\)
\(114\) −1.57183 1.41528i −0.147216 0.132554i
\(115\) −7.30485 0.186957i −0.681181 0.0174338i
\(116\) −16.5415 18.3712i −1.53584 1.70572i
\(117\) −11.2899 + 9.14234i −1.04375 + 0.845210i
\(118\) 1.05133 1.05133i 0.0967825 0.0967825i
\(119\) 12.7125 + 0.0811892i 1.16536 + 0.00744260i
\(120\) 2.27038 3.30761i 0.207256 0.301942i
\(121\) −1.87838 0.836308i −0.170762 0.0760280i
\(122\) 16.7377 20.6693i 1.51536 1.87131i
\(123\) −0.631178 0.971930i −0.0569114 0.0876359i
\(124\) 4.08816 + 7.08089i 0.367127 + 0.635883i
\(125\) −10.8760 2.59069i −0.972783 0.231718i
\(126\) 16.8600 12.0857i 1.50200 1.07668i
\(127\) −4.64631 2.36741i −0.412293 0.210074i 0.235526 0.971868i \(-0.424319\pi\)
−0.647819 + 0.761794i \(0.724319\pi\)
\(128\) 3.93679 + 10.2557i 0.347966 + 0.906483i
\(129\) −0.275484 2.62105i −0.0242550 0.230771i
\(130\) 26.3862 12.6048i 2.31422 1.10551i
\(131\) 3.74207 + 0.393308i 0.326946 + 0.0343634i 0.266580 0.963813i \(-0.414106\pi\)
0.0603664 + 0.998176i \(0.480773\pi\)
\(132\) −2.36209 2.36209i −0.205594 0.205594i
\(133\) 2.40984 + 9.22901i 0.208960 + 0.800257i
\(134\) −23.6085 7.67085i −2.03946 0.662661i
\(135\) −1.53397 + 2.50654i −0.132023 + 0.215729i
\(136\) 8.11653 38.1853i 0.695987 3.27436i
\(137\) 3.98957 + 0.209084i 0.340852 + 0.0178633i 0.221994 0.975048i \(-0.428743\pi\)
0.118858 + 0.992911i \(0.462077\pi\)
\(138\) 1.04419 1.60792i 0.0888877 0.136875i
\(139\) −2.53686 7.80766i −0.215174 0.662237i −0.999141 0.0414349i \(-0.986807\pi\)
0.783967 0.620802i \(-0.213193\pi\)
\(140\) −27.7123 + 11.2911i −2.34212 + 0.954275i
\(141\) −0.228132 + 0.702119i −0.0192122 + 0.0591291i
\(142\) 0.607049 + 0.749643i 0.0509424 + 0.0629086i
\(143\) −3.81014 14.2196i −0.318620 1.18911i
\(144\) −13.7663 30.9197i −1.14719 2.57664i
\(145\) −5.71562 9.31466i −0.474656 0.773541i
\(146\) −4.57155 6.29220i −0.378344 0.520746i
\(147\) 1.54460 0.0611781i 0.127397 0.00504589i
\(148\) 3.08387 6.05244i 0.253493 0.497508i
\(149\) −18.8977 + 10.9106i −1.54816 + 0.893830i −0.549877 + 0.835246i \(0.685325\pi\)
−0.998282 + 0.0585846i \(0.981341\pi\)
\(150\) 2.07178 2.07670i 0.169160 0.169561i
\(151\) 1.20290 2.08349i 0.0978908 0.169552i −0.812921 0.582375i \(-0.802124\pi\)
0.910811 + 0.412823i \(0.135457\pi\)
\(152\) 29.2505 1.53295i 2.37253 0.124339i
\(153\) −2.21834 + 14.0060i −0.179342 + 1.13232i
\(154\) 4.23913 + 20.5893i 0.341599 + 1.65913i
\(155\) 1.20858 + 3.40650i 0.0970751 + 0.273617i
\(156\) −0.574732 + 5.46821i −0.0460154 + 0.437807i
\(157\) −21.1941 + 5.67894i −1.69147 + 0.453229i −0.970769 0.240016i \(-0.922847\pi\)
−0.720703 + 0.693244i \(0.756181\pi\)
\(158\) −12.9827 4.98361i −1.03285 0.396475i
\(159\) −0.923495 + 0.196295i −0.0732379 + 0.0155672i
\(160\) 5.81264 + 31.2589i 0.459529 + 2.47123i
\(161\) −7.92085 + 3.46615i −0.624251 + 0.273171i
\(162\) 10.3286 + 20.2710i 0.811492 + 1.59264i
\(163\) 7.44756 + 4.83650i 0.583338 + 0.378824i 0.802310 0.596907i \(-0.203604\pi\)
−0.218973 + 0.975731i \(0.570271\pi\)
\(164\) 25.9644 + 5.51889i 2.02748 + 0.430953i
\(165\) −0.837161 1.21653i −0.0651729 0.0947070i
\(166\) −0.502420 2.36370i −0.0389954 0.183459i
\(167\) −1.64313 10.3743i −0.127149 0.802786i −0.966022 0.258460i \(-0.916785\pi\)
0.838873 0.544327i \(-0.183215\pi\)
\(168\) 0.772502 4.68360i 0.0595999 0.361347i
\(169\) −6.60118 + 9.08574i −0.507783 + 0.698903i
\(170\) 10.9079 26.3781i 0.836595 2.02311i
\(171\) −10.5815 + 1.11216i −0.809186 + 0.0850489i
\(172\) 46.9130 + 37.9894i 3.57709 + 2.89667i
\(173\) 0.942653 + 17.9869i 0.0716686 + 1.36752i 0.763663 + 0.645615i \(0.223399\pi\)
−0.691994 + 0.721903i \(0.743268\pi\)
\(174\) 2.86733 0.217372
\(175\) −12.9538 + 2.68306i −0.979216 + 0.202820i
\(176\) 34.2976 2.58528
\(177\) 0.00646797 + 0.123416i 0.000486162 + 0.00927653i
\(178\) −18.6647 15.1144i −1.39898 1.13287i
\(179\) 6.45610 0.678563i 0.482552 0.0507182i 0.139870 0.990170i \(-0.455332\pi\)
0.342681 + 0.939452i \(0.388665\pi\)
\(180\) −7.81147 32.4525i −0.582233 2.41886i
\(181\) 10.3669 14.2688i 0.770563 1.06059i −0.225698 0.974197i \(-0.572466\pi\)
0.996261 0.0863916i \(-0.0275336\pi\)
\(182\) 21.9457 26.7496i 1.62673 1.98281i
\(183\) 0.345836 + 2.18352i 0.0255650 + 0.161411i
\(184\) 5.52010 + 25.9700i 0.406947 + 1.91454i
\(185\) 1.82666 2.38347i 0.134299 0.175236i
\(186\) −0.927634 0.197175i −0.0680174 0.0144575i
\(187\) −12.0516 7.82642i −0.881303 0.572325i
\(188\) −7.67682 15.0666i −0.559890 1.09885i
\(189\) −0.385532 + 3.45565i −0.0280433 + 0.251361i
\(190\) 21.2354 + 2.78291i 1.54058 + 0.201893i
\(191\) 11.8497 2.51873i 0.857414 0.182249i 0.241828 0.970319i \(-0.422253\pi\)
0.615586 + 0.788070i \(0.288920\pi\)
\(192\) −3.05929 1.17435i −0.220785 0.0847515i
\(193\) −8.29161 + 2.22173i −0.596843 + 0.159924i −0.544579 0.838710i \(-0.683311\pi\)
−0.0522644 + 0.998633i \(0.516644\pi\)
\(194\) −2.01097 + 19.1331i −0.144379 + 1.37368i
\(195\) −0.688969 + 2.33099i −0.0493381 + 0.166925i
\(196\) −24.0260 + 26.0077i −1.71614 + 1.85769i
\(197\) 0.621240 3.92235i 0.0442615 0.279456i −0.955624 0.294589i \(-0.904817\pi\)
0.999885 + 0.0151331i \(0.00481720\pi\)
\(198\) −23.4161 + 1.22719i −1.66411 + 0.0872124i
\(199\) 6.13171 10.6204i 0.434666 0.752863i −0.562603 0.826727i \(-0.690200\pi\)
0.997268 + 0.0738644i \(0.0235332\pi\)
\(200\) 0.0481015 + 40.6227i 0.00340129 + 2.87246i
\(201\) 1.78693 1.03168i 0.126040 0.0727693i
\(202\) 3.29982 6.47626i 0.232174 0.455668i
\(203\) −10.7994 7.11169i −0.757971 0.499143i
\(204\) 3.15471 + 4.34209i 0.220874 + 0.304007i
\(205\) 10.8440 + 4.48422i 0.757380 + 0.313192i
\(206\) −0.721358 1.62020i −0.0502594 0.112885i
\(207\) −2.49614 9.31571i −0.173494 0.647487i
\(208\) −35.5267 43.8719i −2.46334 3.04197i
\(209\) 3.33176 10.2541i 0.230463 0.709291i
\(210\) 1.17754 3.26502i 0.0812579 0.225308i
\(211\) −6.78037 20.8678i −0.466780 1.43660i −0.856730 0.515765i \(-0.827508\pi\)
0.389950 0.920836i \(-0.372492\pi\)
\(212\) 11.7779 18.1364i 0.808912 1.24561i
\(213\) −0.0800702 0.00419630i −0.00548632 0.000287526i
\(214\) 1.49385 7.02801i 0.102117 0.480425i
\(215\) 17.3433 + 20.2821i 1.18280 + 1.38323i
\(216\) 10.1548 + 3.29950i 0.690948 + 0.224503i
\(217\) 3.00477 + 3.04339i 0.203977 + 0.206599i
\(218\) 8.73604 + 8.73604i 0.591679 + 0.591679i
\(219\) 0.642945 + 0.0675763i 0.0434462 + 0.00456638i
\(220\) 33.2622 + 6.14441i 2.24253 + 0.414256i
\(221\) 2.47234 + 23.5228i 0.166308 + 1.58231i
\(222\) 0.282354 + 0.735557i 0.0189504 + 0.0493674i
\(223\) 1.26491 + 0.644506i 0.0847049 + 0.0431593i 0.495830 0.868420i \(-0.334864\pi\)
−0.411125 + 0.911579i \(0.634864\pi\)
\(224\) 21.9177 + 30.5758i 1.46444 + 2.04293i
\(225\) −0.789727 14.7350i −0.0526484 0.982335i
\(226\) −23.2339 40.2423i −1.54550 2.67688i
\(227\) 15.4376 + 23.7719i 1.02463 + 1.57779i 0.796939 + 0.604060i \(0.206451\pi\)
0.227692 + 0.973733i \(0.426882\pi\)
\(228\) −2.53425 + 3.12954i −0.167835 + 0.207259i
\(229\) 0.553987 + 0.246651i 0.0366085 + 0.0162992i 0.424959 0.905212i \(-0.360288\pi\)
−0.388351 + 0.921512i \(0.626955\pi\)
\(230\) 0.519669 + 19.4063i 0.0342660 + 1.27961i
\(231\) −1.50761 0.883303i −0.0991933 0.0581171i
\(232\) −28.0775 + 28.0775i −1.84338 + 1.84338i
\(233\) 3.49716 2.83194i 0.229106 0.185527i −0.507893 0.861420i \(-0.669575\pi\)
0.736999 + 0.675894i \(0.236242\pi\)
\(234\) 25.8251 + 28.6816i 1.68824 + 1.87498i
\(235\) −2.12735 7.16623i −0.138773 0.467473i
\(236\) −2.10364 1.89412i −0.136935 0.123297i
\(237\) 1.02994 0.524779i 0.0669016 0.0340881i
\(238\) −1.55217 33.7386i −0.100612 2.18695i
\(239\) −12.4990 + 4.06118i −0.808494 + 0.262696i −0.683960 0.729520i \(-0.739744\pi\)
−0.124534 + 0.992215i \(0.539744\pi\)
\(240\) −4.83024 2.95605i −0.311791 0.190812i
\(241\) −12.3140 + 11.0876i −0.793216 + 0.714215i −0.962479 0.271356i \(-0.912528\pi\)
0.169263 + 0.985571i \(0.445861\pi\)
\(242\) −1.95761 + 5.09975i −0.125840 + 0.327824i
\(243\) −5.63495 1.50988i −0.361482 0.0968588i
\(244\) −40.9662 29.7637i −2.62259 1.90542i
\(245\) −12.5331 + 9.37666i −0.800710 + 0.599053i
\(246\) −2.49084 + 1.80970i −0.158810 + 0.115382i
\(247\) −16.5677 + 6.35975i −1.05418 + 0.404661i
\(248\) 11.0144 7.15280i 0.699412 0.454203i
\(249\) 0.173954 + 0.100432i 0.0110239 + 0.00636464i
\(250\) −5.36105 + 29.2151i −0.339063 + 1.84773i
\(251\) 21.3400i 1.34697i 0.739200 + 0.673486i \(0.235204\pi\)
−0.739200 + 0.673486i \(0.764796\pi\)
\(252\) −24.6585 30.8515i −1.55334 1.94346i
\(253\) 9.65275 + 1.52885i 0.606863 + 0.0961177i
\(254\) −5.63488 + 12.6562i −0.353564 + 0.794118i
\(255\) 1.02273 + 2.14093i 0.0640456 + 0.134070i
\(256\) −0.450797 + 0.200708i −0.0281748 + 0.0125442i
\(257\) 5.79368 21.6223i 0.361400 1.34876i −0.510836 0.859678i \(-0.670664\pi\)
0.872236 0.489085i \(-0.162669\pi\)
\(258\) −6.91553 + 1.09531i −0.430542 + 0.0681912i
\(259\) 0.760915 3.47068i 0.0472810 0.215658i
\(260\) −26.5945 48.9120i −1.64932 3.03339i
\(261\) 9.65136 10.7189i 0.597404 0.663485i
\(262\) 0.523170 9.98267i 0.0323215 0.616731i
\(263\) 1.28540 24.5269i 0.0792610 1.51239i −0.612619 0.790378i \(-0.709884\pi\)
0.691880 0.722012i \(-0.256783\pi\)
\(264\) −3.59031 + 3.98745i −0.220969 + 0.245410i
\(265\) 6.57653 6.93844i 0.403993 0.426225i
\(266\) 24.1502 7.67670i 1.48074 0.470689i
\(267\) 1.97176 0.312296i 0.120670 0.0191122i
\(268\) −12.2321 + 45.6509i −0.747196 + 2.78857i
\(269\) −21.7527 + 9.68493i −1.32629 + 0.590501i −0.942897 0.333086i \(-0.891910\pi\)
−0.383390 + 0.923587i \(0.625243\pi\)
\(270\) 6.86332 + 3.72122i 0.417688 + 0.226466i
\(271\) 11.5585 25.9608i 0.702129 1.57701i −0.110268 0.993902i \(-0.535171\pi\)
0.812397 0.583105i \(-0.198162\pi\)
\(272\) −54.4269 8.62037i −3.30011 0.522687i
\(273\) 0.431757 + 2.84342i 0.0261311 + 0.172092i
\(274\) 10.6137i 0.641196i
\(275\) 13.9663 + 5.34219i 0.842199 + 0.322146i
\(276\) −3.16117 1.82510i −0.190280 0.109858i
\(277\) 10.1183 6.57090i 0.607950 0.394807i −0.203631 0.979048i \(-0.565274\pi\)
0.811581 + 0.584240i \(0.198607\pi\)
\(278\) −20.3615 + 7.81606i −1.22120 + 0.468776i
\(279\) −3.85948 + 2.80408i −0.231061 + 0.167876i
\(280\) 20.4410 + 43.5024i 1.22158 + 2.59977i
\(281\) 5.98822 + 4.35069i 0.357227 + 0.259541i 0.751895 0.659283i \(-0.229140\pi\)
−0.394668 + 0.918824i \(0.629140\pi\)
\(282\) 1.89449 + 0.507628i 0.112815 + 0.0302288i
\(283\) −9.16617 + 23.8787i −0.544872 + 1.41944i 0.334087 + 0.942542i \(0.391572\pi\)
−0.878959 + 0.476898i \(0.841761\pi\)
\(284\) 1.36480 1.22887i 0.0809862 0.0729203i
\(285\) −1.35300 + 1.15696i −0.0801450 + 0.0685324i
\(286\) −37.1959 + 12.0857i −2.19944 + 0.714642i
\(287\) 13.8699 0.638097i 0.818715 0.0376657i
\(288\) −37.3899 + 19.0511i −2.20322 + 1.12260i
\(289\) 4.52417 + 4.07358i 0.266128 + 0.239623i
\(290\) −23.9178 + 16.4591i −1.40450 + 0.966510i
\(291\) −1.07003 1.18839i −0.0627263 0.0696647i
\(292\) −11.5078 + 9.31883i −0.673443 + 0.545343i
\(293\) −1.98458 + 1.98458i −0.115941 + 0.115941i −0.762697 0.646756i \(-0.776125\pi\)
0.646756 + 0.762697i \(0.276125\pi\)
\(294\) −0.377074 4.08944i −0.0219914 0.238501i
\(295\) −0.762387 0.992345i −0.0443879 0.0577765i
\(296\) −9.96759 4.43786i −0.579354 0.257945i
\(297\) 2.47344 3.05444i 0.143523 0.177237i
\(298\) 31.5741 + 48.6199i 1.82904 + 2.81648i
\(299\) −8.04305 13.9310i −0.465141 0.805649i
\(300\) −4.15485 3.73214i −0.239880 0.215475i
\(301\) 28.7631 + 13.0269i 1.65788 + 0.750857i
\(302\) −5.69490 2.90170i −0.327705 0.166974i
\(303\) 0.216515 + 0.564040i 0.0124384 + 0.0324033i
\(304\) −4.32180 41.1192i −0.247872 2.35835i
\(305\) −15.4187 16.2286i −0.882870 0.929248i
\(306\) 37.4675 + 3.93799i 2.14187 + 0.225120i
\(307\) 17.0423 + 17.0423i 0.972656 + 0.972656i 0.999636 0.0269795i \(-0.00858889\pi\)
−0.0269795 + 0.999636i \(0.508589\pi\)
\(308\) 38.7238 10.1114i 2.20650 0.576151i
\(309\) 0.140204 + 0.0455549i 0.00797590 + 0.00259153i
\(310\) 8.86965 3.68008i 0.503762 0.209015i
\(311\) 5.89343 27.7264i 0.334186 1.57222i −0.414975 0.909833i \(-0.636210\pi\)
0.749161 0.662388i \(-0.230457\pi\)
\(312\) 8.81953 + 0.462212i 0.499308 + 0.0261676i
\(313\) 11.7313 18.0646i 0.663091 1.02107i −0.333828 0.942634i \(-0.608341\pi\)
0.996919 0.0784364i \(-0.0249927\pi\)
\(314\) 18.0135 + 55.4398i 1.01656 + 3.12865i
\(315\) −8.24202 15.3919i −0.464385 0.867237i
\(316\) −8.18167 + 25.1806i −0.460255 + 1.41652i
\(317\) 0.142171 + 0.175566i 0.00798511 + 0.00986079i 0.781123 0.624377i \(-0.214647\pi\)
−0.773138 + 0.634238i \(0.781314\pi\)
\(318\) 0.649189 + 2.42281i 0.0364047 + 0.135864i
\(319\) 5.94497 + 13.3526i 0.332855 + 0.747603i
\(320\) 32.2600 7.76514i 1.80339 0.434085i
\(321\) 0.351044 + 0.483170i 0.0195934 + 0.0269679i
\(322\) 10.2973 + 20.5327i 0.573844 + 1.14424i
\(323\) −7.86443 + 15.4348i −0.437589 + 0.858816i
\(324\) 37.5120 21.6576i 2.08400 1.20320i
\(325\) −7.63333 23.3987i −0.423421 1.29792i
\(326\) 11.7961 20.4314i 0.653323 1.13159i
\(327\) −1.02553 + 0.0537458i −0.0567120 + 0.00297215i
\(328\) 6.66985 42.1118i 0.368281 2.32523i
\(329\) −5.87631 6.61072i −0.323972 0.364461i
\(330\) −3.11115 + 2.39020i −0.171263 + 0.131576i
\(331\) 1.99845 19.0140i 0.109845 1.04510i −0.791254 0.611488i \(-0.790571\pi\)
0.901099 0.433614i \(-0.142762\pi\)
\(332\) −4.44403 + 1.19077i −0.243898 + 0.0653522i
\(333\) 3.70012 + 1.42034i 0.202765 + 0.0778343i
\(334\) −27.2953 + 5.80179i −1.49353 + 0.317460i
\(335\) −8.98352 + 18.8631i −0.490822 + 1.03060i
\(336\) −6.65923 0.742941i −0.363291 0.0405308i
\(337\) −0.693845 1.36175i −0.0377961 0.0741791i 0.871336 0.490687i \(-0.163254\pi\)
−0.909132 + 0.416507i \(0.863254\pi\)
\(338\) 25.0230 + 16.2501i 1.36107 + 0.883889i
\(339\) 3.77809 + 0.803057i 0.205198 + 0.0436161i
\(340\) −51.2394 18.1107i −2.77885 0.982190i
\(341\) −1.00510 4.72863i −0.0544292 0.256069i
\(342\) 4.42190 + 27.9188i 0.239109 + 1.50968i
\(343\) −8.72262 + 16.3376i −0.470977 + 0.882145i
\(344\) 56.9928 78.4438i 3.07284 4.22941i
\(345\) −1.22766 1.04726i −0.0660950 0.0563828i
\(346\) 47.5894 5.00185i 2.55842 0.268901i
\(347\) 15.4209 + 12.4876i 0.827835 + 0.670368i 0.946549 0.322561i \(-0.104544\pi\)
−0.118714 + 0.992929i \(0.537877\pi\)
\(348\) −0.285708 5.45164i −0.0153156 0.292239i
\(349\) 7.02028 0.375787 0.187894 0.982189i \(-0.439834\pi\)
0.187894 + 0.982189i \(0.439834\pi\)
\(350\) 8.91947 + 33.9943i 0.476766 + 1.81707i
\(351\) −6.46917 −0.345299
\(352\) −2.22553 42.4656i −0.118621 2.26342i
\(353\) 20.9689 + 16.9803i 1.11606 + 0.903768i 0.996031 0.0890029i \(-0.0283680\pi\)
0.120029 + 0.992770i \(0.461701\pi\)
\(354\) 0.326533 0.0343200i 0.0173550 0.00182409i
\(355\) 0.691991 0.424616i 0.0367271 0.0225363i
\(356\) −26.8771 + 36.9932i −1.42448 + 1.96063i
\(357\) 2.17041 + 1.78064i 0.114870 + 0.0942413i
\(358\) −2.69794 17.0341i −0.142591 0.900283i
\(359\) −2.90347 13.6598i −0.153239 0.720934i −0.985925 0.167188i \(-0.946531\pi\)
0.832686 0.553746i \(-0.186802\pi\)
\(360\) −51.3983 + 15.2580i −2.70893 + 0.804166i
\(361\) 5.87140 + 1.24800i 0.309021 + 0.0656845i
\(362\) −39.2975 25.5201i −2.06543 1.34131i
\(363\) −0.206138 0.404570i −0.0108195 0.0212344i
\(364\) −53.0456 39.0599i −2.78035 2.04730i
\(365\) −5.75101 + 3.12695i −0.301022 + 0.163672i
\(366\) 5.74496 1.22113i 0.300294 0.0638295i
\(367\) 26.5370 + 10.1866i 1.38522 + 0.531737i 0.932906 0.360120i \(-0.117264\pi\)
0.452317 + 0.891857i \(0.350598\pi\)
\(368\) 36.2004 9.69987i 1.88708 0.505641i
\(369\) −1.61891 + 15.4029i −0.0842770 + 0.801842i
\(370\) −6.57749 4.51485i −0.341948 0.234716i
\(371\) 3.56408 10.7353i 0.185038 0.557350i
\(372\) −0.282455 + 1.78335i −0.0146446 + 0.0924624i
\(373\) 22.0879 1.15758i 1.14367 0.0599372i 0.528929 0.848666i \(-0.322594\pi\)
0.614741 + 0.788729i \(0.289261\pi\)
\(374\) −19.0884 + 33.0620i −0.987037 + 1.70960i
\(375\) −1.50649 1.95609i −0.0777946 0.101012i
\(376\) −23.5221 + 13.5805i −1.21306 + 0.700359i
\(377\) 10.9220 21.4357i 0.562512 1.10399i
\(378\) 9.22169 + 0.542364i 0.474312 + 0.0278962i
\(379\) 19.8453 + 27.3147i 1.01938 + 1.40306i 0.912636 + 0.408774i \(0.134044\pi\)
0.106747 + 0.994286i \(0.465956\pi\)
\(380\) 3.17517 40.6520i 0.162883 2.08541i
\(381\) −0.468382 1.05200i −0.0239959 0.0538957i
\(382\) −8.32997 31.0879i −0.426199 1.59059i
\(383\) 23.8477 + 29.4495i 1.21856 + 1.50480i 0.803836 + 0.594851i \(0.202789\pi\)
0.414725 + 0.909947i \(0.363878\pi\)
\(384\) −0.749644 + 2.30717i −0.0382551 + 0.117737i
\(385\) 17.6460 1.28593i 0.899324 0.0655373i
\(386\) 7.04729 + 21.6893i 0.358698 + 1.10396i
\(387\) −19.1829 + 29.5391i −0.975121 + 1.50155i
\(388\) 36.5780 + 1.91697i 1.85697 + 0.0973195i
\(389\) 2.63857 12.4135i 0.133781 0.629388i −0.859252 0.511552i \(-0.829071\pi\)
0.993033 0.117836i \(-0.0375958\pi\)
\(390\) 6.28007 + 1.50378i 0.318004 + 0.0761468i
\(391\) −14.9337 4.85225i −0.755229 0.245389i
\(392\) 43.7370 + 36.3522i 2.20905 + 1.83606i
\(393\) 0.587546 + 0.587546i 0.0296378 + 0.0296378i
\(394\) −10.4927 1.10282i −0.528613 0.0555594i
\(395\) −5.57884 + 10.2895i −0.280702 + 0.517720i
\(396\) 4.66649 + 44.3987i 0.234500 + 2.23112i
\(397\) −9.62248 25.0674i −0.482938 1.25810i −0.931303 0.364246i \(-0.881327\pi\)
0.448364 0.893851i \(-0.352007\pi\)
\(398\) −29.0294 14.7912i −1.45511 0.741416i
\(399\) −0.869015 + 1.91877i −0.0435052 + 0.0960584i
\(400\) 57.2596 3.06884i 2.86298 0.153442i
\(401\) 1.13896 + 1.97273i 0.0568769 + 0.0985137i 0.893062 0.449934i \(-0.148552\pi\)
−0.836185 + 0.548447i \(0.815219\pi\)
\(402\) −2.98559 4.59740i −0.148907 0.229297i
\(403\) −5.00751 + 6.18376i −0.249442 + 0.308035i
\(404\) −12.6421 5.62861i −0.628967 0.280034i
\(405\) 18.0464 6.40260i 0.896733 0.318148i
\(406\) −17.3663 + 29.6405i −0.861873 + 1.47103i
\(407\) −2.83993 + 2.83993i −0.140770 + 0.140770i
\(408\) 6.69967 5.42529i 0.331683 0.268592i
\(409\) −19.4149 21.5624i −0.960005 1.06619i −0.997759 0.0669069i \(-0.978687\pi\)
0.0377539 0.999287i \(-0.487980\pi\)
\(410\) 10.3892 29.3935i 0.513086 1.45164i
\(411\) 0.655623 + 0.590326i 0.0323395 + 0.0291186i
\(412\) −3.00859 + 1.53295i −0.148223 + 0.0755233i
\(413\) −1.31496 0.680620i −0.0647051 0.0334911i
\(414\) −24.3682 + 7.91770i −1.19763 + 0.389134i
\(415\) −2.02753 + 0.160778i −0.0995276 + 0.00789229i
\(416\) −52.0146 + 46.8342i −2.55023 + 2.29624i
\(417\) 0.649685 1.69249i 0.0318152 0.0828815i
\(418\) −27.6681 7.41365i −1.35329 0.362613i
\(419\) −4.33888 3.15238i −0.211968 0.154004i 0.476736 0.879047i \(-0.341820\pi\)
−0.688704 + 0.725043i \(0.741820\pi\)
\(420\) −6.32509 1.91351i −0.308633 0.0933698i
\(421\) −15.3126 + 11.1253i −0.746290 + 0.542212i −0.894675 0.446718i \(-0.852593\pi\)
0.148385 + 0.988930i \(0.452593\pi\)
\(422\) −54.4211 + 20.8903i −2.64918 + 1.01692i
\(423\) 8.27447 5.37350i 0.402318 0.261269i
\(424\) −30.0816 17.3676i −1.46089 0.843446i
\(425\) −20.8204 11.9878i −1.00994 0.581494i
\(426\) 0.213016i 0.0103206i
\(427\) −24.6663 9.64971i −1.19369 0.466982i
\(428\) −13.5112 2.13996i −0.653086 0.103439i
\(429\) 1.32226 2.96985i 0.0638394 0.143386i
\(430\) 51.3984 48.8331i 2.47865 2.35494i
\(431\) −21.2587 + 9.46500i −1.02400 + 0.455913i −0.848853 0.528630i \(-0.822706\pi\)
−0.175145 + 0.984543i \(0.556039\pi\)
\(432\) 3.90089 14.5583i 0.187682 0.700438i
\(433\) −5.95872 + 0.943769i −0.286358 + 0.0453546i −0.297961 0.954578i \(-0.596307\pi\)
0.0116031 + 0.999933i \(0.496307\pi\)
\(434\) 7.65655 8.39502i 0.367526 0.402974i
\(435\) 0.313587 2.39288i 0.0150354 0.114730i
\(436\) 15.7393 17.4803i 0.753776 0.837153i
\(437\) 0.616591 11.7653i 0.0294956 0.562809i
\(438\) 0.0898886 1.71518i 0.00429504 0.0819543i
\(439\) 23.9122 26.5572i 1.14127 1.26751i 0.182535 0.983199i \(-0.441570\pi\)
0.958733 0.284307i \(-0.0917636\pi\)
\(440\) 7.05971 53.8703i 0.336559 2.56817i
\(441\) −16.5567 12.3553i −0.788416 0.588349i
\(442\) 62.0638 9.82995i 2.95208 0.467563i
\(443\) 5.44524 20.3219i 0.258711 0.965523i −0.707277 0.706936i \(-0.750077\pi\)
0.965988 0.258586i \(-0.0832567\pi\)
\(444\) 1.37038 0.610130i 0.0650351 0.0289555i
\(445\) −14.6547 + 13.9233i −0.694701 + 0.660029i
\(446\) 1.53404 3.44552i 0.0726391 0.163150i
\(447\) −4.75946 0.753824i −0.225115 0.0356547i
\(448\) 30.6685 24.5122i 1.44895 1.15809i
\(449\) 17.1662i 0.810122i 0.914290 + 0.405061i \(0.132750\pi\)
−0.914290 + 0.405061i \(0.867250\pi\)
\(450\) −38.9833 + 4.14398i −1.83769 + 0.195349i
\(451\) −13.5918 7.84723i −0.640013 0.369512i
\(452\) −74.1974 + 48.1844i −3.48995 + 2.26640i
\(453\) 0.495989 0.190392i 0.0233036 0.00894541i
\(454\) 60.9220 44.2624i 2.85921 2.07734i
\(455\) −19.9233 21.2399i −0.934018 0.995742i
\(456\) 5.23294 + 3.80195i 0.245055 + 0.178043i
\(457\) 22.4126 + 6.00543i 1.04842 + 0.280922i 0.741597 0.670845i \(-0.234069\pi\)
0.306819 + 0.951768i \(0.400735\pi\)
\(458\) 0.577355 1.50406i 0.0269780 0.0702802i
\(459\) −4.69280 + 4.22542i −0.219041 + 0.197226i
\(460\) 36.8453 2.92174i 1.71792 0.136227i
\(461\) 15.9507 5.18270i 0.742899 0.241383i 0.0869763 0.996210i \(-0.472280\pi\)
0.655923 + 0.754828i \(0.272280\pi\)
\(462\) −2.13385 + 4.12261i −0.0992756 + 0.191801i
\(463\) −25.0376 + 12.7573i −1.16360 + 0.592882i −0.925644 0.378395i \(-0.876476\pi\)
−0.237952 + 0.971277i \(0.576476\pi\)
\(464\) 41.6532 + 37.5047i 1.93370 + 1.74111i
\(465\) −0.266000 + 0.752575i −0.0123354 + 0.0348999i
\(466\) −7.99959 8.88445i −0.370574 0.411564i
\(467\) 4.43522 3.59157i 0.205238 0.166198i −0.521191 0.853440i \(-0.674512\pi\)
0.726429 + 0.687242i \(0.241179\pi\)
\(468\) 51.9589 51.9589i 2.40180 2.40180i
\(469\) −0.157878 + 24.7205i −0.00729015 + 1.14149i
\(470\) −18.7167 + 6.64042i −0.863339 + 0.306300i
\(471\) −4.42650 1.97081i −0.203962 0.0908099i
\(472\) −2.86141 + 3.53354i −0.131707 + 0.162645i
\(473\) −19.4390 29.9334i −0.893804 1.37634i
\(474\) −1.53548 2.65953i −0.0705270 0.122156i
\(475\) 4.64484 17.4173i 0.213120 0.799159i
\(476\) −63.9922 + 6.31293i −2.93308 + 0.289353i
\(477\) 11.2423 + 5.72824i 0.514750 + 0.262278i
\(478\) 12.5125 + 32.5961i 0.572308 + 1.49091i
\(479\) 1.95747 + 18.6240i 0.0894389 + 0.850954i 0.943632 + 0.330998i \(0.107385\pi\)
−0.854193 + 0.519957i \(0.825948\pi\)
\(480\) −3.34660 + 6.17238i −0.152751 + 0.281729i
\(481\) 6.57441 + 0.690999i 0.299767 + 0.0315068i
\(482\) 31.1284 + 31.1284i 1.41786 + 1.41786i
\(483\) −1.84106 0.505935i −0.0837712 0.0230208i
\(484\) 9.89119 + 3.21384i 0.449599 + 0.146084i
\(485\) 15.7472 + 3.77072i 0.715045 + 0.171219i
\(486\) −3.22233 + 15.1599i −0.146168 + 0.687665i
\(487\) 22.7688 + 1.19326i 1.03175 + 0.0540719i 0.560689 0.828027i \(-0.310536\pi\)
0.471065 + 0.882098i \(0.343870\pi\)
\(488\) −44.2983 + 68.2134i −2.00529 + 3.08787i
\(489\) 0.605988 + 1.86504i 0.0274037 + 0.0843400i
\(490\) 26.6196 + 31.9474i 1.20255 + 1.44324i
\(491\) 3.66657 11.2845i 0.165470 0.509264i −0.833601 0.552368i \(-0.813724\pi\)
0.999071 + 0.0431034i \(0.0137245\pi\)
\(492\) 3.68897 + 4.55549i 0.166311 + 0.205377i
\(493\) −6.07802 22.6835i −0.273740 1.02161i
\(494\) 19.1765 + 43.0711i 0.862790 + 1.93786i
\(495\) −1.53679 + 19.6757i −0.0690736 + 0.884357i
\(496\) −10.8965 14.9978i −0.489268 0.673420i
\(497\) 0.528331 0.802294i 0.0236989 0.0359878i
\(498\) 0.242267 0.475476i 0.0108563 0.0213066i
\(499\) −8.20677 + 4.73818i −0.367385 + 0.212110i −0.672316 0.740265i \(-0.734700\pi\)
0.304930 + 0.952375i \(0.401367\pi\)
\(500\) 56.0807 + 7.28186i 2.50801 + 0.325655i
\(501\) 1.15976 2.00876i 0.0518142 0.0897449i
\(502\) 56.6167 2.96715i 2.52693 0.132431i
\(503\) 3.15307 19.9077i 0.140588 0.887640i −0.812062 0.583572i \(-0.801655\pi\)
0.952650 0.304069i \(-0.0983452\pi\)
\(504\) −47.4140 + 42.1466i −2.11199 + 1.87736i
\(505\) −5.04376 3.46208i −0.224444 0.154061i
\(506\) 2.71400 25.8220i 0.120652 1.14793i
\(507\) −2.39556 + 0.641887i −0.106390 + 0.0285072i
\(508\) 24.6245 + 9.45248i 1.09254 + 0.419386i
\(509\) −17.3660 + 3.69127i −0.769737 + 0.163613i −0.576010 0.817443i \(-0.695391\pi\)
−0.193727 + 0.981055i \(0.562058\pi\)
\(510\) 5.53783 3.01105i 0.245219 0.133331i
\(511\) −4.59261 + 6.23703i −0.203165 + 0.275910i
\(512\) 10.5696 + 20.7441i 0.467117 + 0.916768i
\(513\) −3.97362 2.58050i −0.175440 0.113932i
\(514\) −58.1711 12.3647i −2.56582 0.545382i
\(515\) −1.43100 + 0.424803i −0.0630573 + 0.0187190i
\(516\) 2.77159 + 13.0393i 0.122013 + 0.574024i
\(517\) 1.56401 + 9.87478i 0.0687852 + 0.434292i
\(518\) −9.31377 1.53619i −0.409224 0.0674965i
\(519\) −2.33792 + 3.21787i −0.102623 + 0.141249i
\(520\) −76.2210 + 46.7704i −3.34251 + 2.05102i
\(521\) 14.6625 1.54109i 0.642376 0.0675164i 0.222261 0.974987i \(-0.428656\pi\)
0.420115 + 0.907471i \(0.361990\pi\)
\(522\) −29.7800 24.1154i −1.30344 1.05550i
\(523\) −0.217309 4.14649i −0.00950224 0.181314i −0.999257 0.0385369i \(-0.987730\pi\)
0.989755 0.142777i \(-0.0456031\pi\)
\(524\) −19.0321 −0.831422
\(525\) −2.59598 1.33977i −0.113298 0.0584725i
\(526\) −65.2502 −2.84504
\(527\) 0.406500 + 7.75647i 0.0177074 + 0.337877i
\(528\) 5.88608 + 4.76645i 0.256159 + 0.207433i
\(529\) −12.2533 + 1.28788i −0.532754 + 0.0559947i
\(530\) −19.3226 16.4833i −0.839320 0.715988i
\(531\) 0.970802 1.33619i 0.0421292 0.0579859i
\(532\) −17.0020 45.1516i −0.737132 1.95757i
\(533\) 4.04109 + 25.5144i 0.175039 + 1.10515i
\(534\) −1.10270 5.18780i −0.0477185 0.224498i
\(535\) −5.70172 2.01529i −0.246507 0.0871284i
\(536\) 74.2541 + 15.7832i 3.20729 + 0.681730i
\(537\) 1.20228 + 0.780772i 0.0518824 + 0.0336928i
\(538\) 28.7194 + 56.3649i 1.23818 + 2.43006i
\(539\) 18.2619 10.2348i 0.786597 0.440843i
\(540\) 6.39125 13.4200i 0.275036 0.577504i
\(541\) −29.5536 + 6.28181i −1.27061 + 0.270076i −0.793393 0.608710i \(-0.791687\pi\)
−0.477216 + 0.878786i \(0.658354\pi\)
\(542\) −70.4830 27.0559i −3.02750 1.16215i
\(543\) 3.76211 1.00806i 0.161448 0.0432598i
\(544\) −7.14162 + 67.9480i −0.306194 + 2.91324i
\(545\) 8.24592 6.33508i 0.353217 0.271365i
\(546\) 7.48376 1.54084i 0.320275 0.0659417i
\(547\) −1.01423 + 6.40362i −0.0433655 + 0.273799i −0.999838 0.0180249i \(-0.994262\pi\)
0.956472 + 0.291824i \(0.0942622\pi\)
\(548\) −20.1797 + 1.05757i −0.862035 + 0.0451773i
\(549\) 14.7724 25.5866i 0.630472 1.09201i
\(550\) 12.2313 37.7964i 0.521546 1.61164i
\(551\) 15.2593 8.80994i 0.650066 0.375316i
\(552\) −2.66179 + 5.22406i −0.113293 + 0.222351i
\(553\) −0.813112 + 13.8251i −0.0345770 + 0.587905i
\(554\) −18.8399 25.9310i −0.800433 1.10170i
\(555\) 0.644725 0.155189i 0.0273671 0.00658739i
\(556\) 16.8895 + 37.9345i 0.716275 + 1.60878i
\(557\) 3.18632 + 11.8915i 0.135009 + 0.503860i 0.999998 + 0.00206894i \(0.000658565\pi\)
−0.864989 + 0.501791i \(0.832675\pi\)
\(558\) 7.97605 + 9.84960i 0.337653 + 0.416967i
\(559\) −18.1537 + 55.8715i −0.767821 + 2.36311i
\(560\) 59.8123 32.0281i 2.52753 1.35343i
\(561\) −0.980610 3.01801i −0.0414014 0.127420i
\(562\) 10.7101 16.4921i 0.451778 0.695677i
\(563\) 8.51592 + 0.446300i 0.358903 + 0.0188093i 0.230936 0.972969i \(-0.425821\pi\)
0.127968 + 0.991778i \(0.459155\pi\)
\(564\) 0.776378 3.65257i 0.0326914 0.153801i
\(565\) −36.1245 + 14.9883i −1.51977 + 0.630563i
\(566\) 64.6263 + 20.9984i 2.71645 + 0.882627i
\(567\) 16.1228 15.9182i 0.677094 0.668500i
\(568\) −2.08589 2.08589i −0.0875221 0.0875221i
\(569\) −31.0809 3.26674i −1.30298 0.136949i −0.572512 0.819896i \(-0.694031\pi\)
−0.730468 + 0.682947i \(0.760698\pi\)
\(570\) 3.25762 + 3.42875i 0.136447 + 0.143615i
\(571\) −0.883002 8.40120i −0.0369525 0.351579i −0.997339 0.0729071i \(-0.976772\pi\)
0.960386 0.278672i \(-0.0898943\pi\)
\(572\) 26.6847 + 69.5161i 1.11575 + 2.90662i
\(573\) 2.38365 + 1.21453i 0.0995786 + 0.0507378i
\(574\) −3.62141 36.7092i −0.151155 1.53221i
\(575\) 16.2520 + 1.68870i 0.677755 + 0.0704236i
\(576\) 21.8969 + 37.9266i 0.912372 + 1.58027i
\(577\) −7.64659 11.7747i −0.318332 0.490188i 0.642892 0.765957i \(-0.277734\pi\)
−0.961224 + 0.275769i \(0.911068\pi\)
\(578\) 10.1785 12.5694i 0.423368 0.522816i
\(579\) −1.73175 0.771024i −0.0719690 0.0320427i
\(580\) 33.6768 + 43.8347i 1.39835 + 1.82014i
\(581\) −2.09177 + 1.18993i −0.0867811 + 0.0493668i
\(582\) −3.00411 + 3.00411i −0.124524 + 0.124524i
\(583\) −9.93656 + 8.04646i −0.411530 + 0.333251i
\(584\) 15.9151 + 17.6756i 0.658573 + 0.731420i
\(585\) 26.7601 18.4150i 1.10639 0.761368i
\(586\) 5.54118 + 4.98931i 0.228904 + 0.206106i
\(587\) 17.5353 8.93468i 0.723759 0.368774i −0.0529805 0.998596i \(-0.516872\pi\)
0.776740 + 0.629822i \(0.216872\pi\)
\(588\) −7.73765 + 1.12441i −0.319095 + 0.0463699i
\(589\) −5.54247 + 1.80086i −0.228373 + 0.0742030i
\(590\) −2.52676 + 2.16064i −0.104025 + 0.0889523i
\(591\) 0.651718 0.586810i 0.0268081 0.0241381i
\(592\) −5.51939 + 14.3785i −0.226845 + 0.590953i
\(593\) −4.03167 1.08028i −0.165561 0.0443619i 0.175086 0.984553i \(-0.443980\pi\)
−0.340647 + 0.940191i \(0.610646\pi\)
\(594\) −8.44756 6.13751i −0.346608 0.251825i
\(595\) −28.3256 2.39450i −1.16124 0.0981650i
\(596\) 89.2946 64.8763i 3.65765 2.65744i
\(597\) 2.52827 0.970511i 0.103475 0.0397204i
\(598\) −35.8415 + 23.2758i −1.46567 + 0.951817i
\(599\) −0.232901 0.134465i −0.00951606 0.00549410i 0.495234 0.868759i \(-0.335082\pi\)
−0.504750 + 0.863265i \(0.668416\pi\)
\(600\) −5.63722 + 6.97827i −0.230139 + 0.284887i
\(601\) 10.5831i 0.431694i 0.976427 + 0.215847i \(0.0692513\pi\)
−0.976427 + 0.215847i \(0.930749\pi\)
\(602\) 30.5620 78.1218i 1.24561 3.18401i
\(603\) −27.2358 4.31373i −1.10913 0.175669i
\(604\) −4.94952 + 11.1168i −0.201393 + 0.452336i
\(605\) 4.04181 + 2.19143i 0.164323 + 0.0890941i
\(606\) 1.46633 0.652854i 0.0595658 0.0265204i
\(607\) −0.323127 + 1.20593i −0.0131153 + 0.0489470i −0.972173 0.234262i \(-0.924732\pi\)
0.959058 + 0.283209i \(0.0913992\pi\)
\(608\) −50.6313 + 8.01920i −2.05337 + 0.325222i
\(609\) −0.865037 2.72132i −0.0350531 0.110274i
\(610\) −40.9119 + 43.1633i −1.65647 + 1.74763i
\(611\) 11.0113 12.2293i 0.445469 0.494743i
\(612\) 3.75392 71.6291i 0.151743 2.89543i
\(613\) 1.40509 26.8108i 0.0567512 1.08288i −0.810734 0.585415i \(-0.800932\pi\)
0.867485 0.497463i \(-0.165735\pi\)
\(614\) 42.8449 47.5841i 1.72908 1.92034i
\(615\) 1.23784 + 2.27660i 0.0499145 + 0.0918015i
\(616\) −19.4744 61.2645i −0.784644 2.46842i
\(617\) −9.11291 + 1.44334i −0.366872 + 0.0581068i −0.337149 0.941451i \(-0.609463\pi\)
−0.0297232 + 0.999558i \(0.509463\pi\)
\(618\) 0.101366 0.378304i 0.00407755 0.0152176i
\(619\) 7.43093 3.30846i 0.298674 0.132978i −0.251928 0.967746i \(-0.581065\pi\)
0.550602 + 0.834768i \(0.314398\pi\)
\(620\) −7.88071 16.4971i −0.316497 0.662540i
\(621\) 1.74682 3.92342i 0.0700975 0.157442i
\(622\) −74.3796 11.7806i −2.98235 0.472358i
\(623\) −8.71385 + 22.2741i −0.349113 + 0.892394i
\(624\) 12.4665i 0.499058i
\(625\) 23.7946 + 7.66910i 0.951786 + 0.306764i
\(626\) −49.5578 28.6122i −1.98073 1.14357i
\(627\) 1.99683 1.29676i 0.0797459 0.0517876i
\(628\) 103.612 39.7731i 4.13459 1.58712i
\(629\) 5.22048 3.79290i 0.208154 0.151233i
\(630\) −39.6899 + 24.0068i −1.58128 + 0.956453i
\(631\) −26.1031 18.9650i −1.03915 0.754985i −0.0690289 0.997615i \(-0.521990\pi\)
−0.970119 + 0.242629i \(0.921990\pi\)
\(632\) 41.0784 + 11.0069i 1.63401 + 0.437832i
\(633\) 1.73644 4.52358i 0.0690173 0.179796i
\(634\) 0.446023 0.401601i 0.0177138 0.0159496i
\(635\) 9.94570 + 6.08664i 0.394683 + 0.241541i
\(636\) 4.54178 1.47571i 0.180093 0.0585158i
\(637\) −32.0082 12.7582i −1.26821 0.505499i
\(638\) 34.5989 17.6290i 1.36978 0.697939i
\(639\) 0.796314 + 0.717004i 0.0315017 + 0.0283642i
\(640\) −6.99048 23.5483i −0.276323 0.930827i
\(641\) 19.6339 + 21.8057i 0.775494 + 0.861273i 0.993401 0.114697i \(-0.0365896\pi\)
−0.217907 + 0.975970i \(0.569923\pi\)
\(642\) 1.23308 0.998525i 0.0486656 0.0394086i
\(643\) −23.5100 + 23.5100i −0.927145 + 0.927145i −0.997521 0.0703751i \(-0.977580\pi\)
0.0703751 + 0.997521i \(0.477580\pi\)
\(644\) 38.0126 21.6241i 1.49790 0.852107i
\(645\) 0.157752 + 5.89102i 0.00621148 + 0.231959i
\(646\) 42.0432 + 18.7188i 1.65417 + 0.736482i
\(647\) 1.06439 1.31441i 0.0418455 0.0516749i −0.755794 0.654810i \(-0.772749\pi\)
0.797639 + 0.603135i \(0.206082\pi\)
\(648\) −37.8930 58.3501i −1.48858 2.29221i
\(649\) 0.836837 + 1.44944i 0.0328487 + 0.0568956i
\(650\) −61.0170 + 23.5052i −2.39328 + 0.921948i
\(651\) 0.0927208 + 0.939882i 0.00363401 + 0.0368369i
\(652\) −40.0214 20.3919i −1.56736 0.798610i
\(653\) −6.29260 16.3928i −0.246249 0.641499i 0.753627 0.657303i \(-0.228303\pi\)
−0.999875 + 0.0158035i \(0.994969\pi\)
\(654\) 0.285183 + 2.71334i 0.0111515 + 0.106100i
\(655\) −8.27364 1.52836i −0.323278 0.0597180i
\(656\) −59.8549 6.29100i −2.33694 0.245622i
\(657\) −6.10926 6.10926i −0.238345 0.238345i
\(658\) −16.7217 + 16.5094i −0.651879 + 0.643605i
\(659\) −12.1353 3.94299i −0.472724 0.153597i 0.0629598 0.998016i \(-0.479946\pi\)
−0.535684 + 0.844419i \(0.679946\pi\)
\(660\) 4.85447 + 5.67704i 0.188960 + 0.220979i
\(661\) −9.56810 + 45.0144i −0.372156 + 1.75086i 0.250268 + 0.968177i \(0.419481\pi\)
−0.622424 + 0.782680i \(0.713852\pi\)
\(662\) −50.7233 2.65829i −1.97142 0.103318i
\(663\) −2.84474 + 4.38051i −0.110480 + 0.170125i
\(664\) 2.28363 + 7.02829i 0.0886220 + 0.272751i
\(665\) −3.76525 20.9936i −0.146010 0.814098i
\(666\) 3.25380 10.0142i 0.126082 0.388041i
\(667\) 10.0511 + 12.4121i 0.389181 + 0.480598i
\(668\) 13.7507 + 51.3182i 0.532029 + 1.98556i
\(669\) 0.127513 + 0.286398i 0.00492992 + 0.0110728i
\(670\) 51.2942 + 21.2112i 1.98167 + 0.819459i
\(671\) 17.5979 + 24.2214i 0.679358 + 0.935056i
\(672\) −0.487764 + 8.29333i −0.0188159 + 0.319922i
\(673\) 13.5468 26.5870i 0.522189 1.02485i −0.467816 0.883826i \(-0.654959\pi\)
0.990006 0.141028i \(-0.0450409\pi\)
\(674\) −3.51634 + 2.03016i −0.135444 + 0.0781988i
\(675\) 3.85608 5.32068i 0.148421 0.204793i
\(676\) 28.4029 49.1952i 1.09242 1.89212i
\(677\) −28.8246 + 1.51063i −1.10782 + 0.0580583i −0.597456 0.801902i \(-0.703822\pi\)
−0.510362 + 0.859960i \(0.670488\pi\)
\(678\) 1.60526 10.1352i 0.0616495 0.389240i
\(679\) 18.7655 3.86364i 0.720153 0.148273i
\(680\) −24.7428 + 83.7124i −0.948844 + 3.21022i
\(681\) −0.654283 + 6.22509i −0.0250722 + 0.238546i
\(682\) −12.4056 + 3.32408i −0.475036 + 0.127286i
\(683\) −14.8084 5.68441i −0.566628 0.217508i 0.0581537 0.998308i \(-0.481479\pi\)
−0.624782 + 0.780800i \(0.714812\pi\)
\(684\) 52.6412 11.1892i 2.01279 0.427831i
\(685\) −8.85745 1.16077i −0.338426 0.0443508i
\(686\) 44.5575 + 20.8701i 1.70121 + 0.796826i
\(687\) 0.0607961 + 0.119319i 0.00231952 + 0.00455231i
\(688\) −114.787 74.5438i −4.37623 2.84196i
\(689\) 20.5853 + 4.37554i 0.784238 + 0.166695i
\(690\) −2.60777 + 3.40268i −0.0992762 + 0.129538i
\(691\) 0.246952 + 1.16182i 0.00939451 + 0.0441977i 0.982595 0.185760i \(-0.0594746\pi\)
−0.973201 + 0.229957i \(0.926141\pi\)
\(692\) −14.2519 89.9831i −0.541777 3.42064i
\(693\) 8.22904 + 21.8535i 0.312595 + 0.830147i
\(694\) 30.9863 42.6489i 1.17622 1.61893i
\(695\) 4.29590 + 17.8472i 0.162953 + 0.676981i
\(696\) −8.72062 + 0.916574i −0.330554 + 0.0347427i
\(697\) 19.5965 + 15.8689i 0.742270 + 0.601079i
\(698\) −0.976112 18.6253i −0.0369464 0.704979i
\(699\) 0.993738 0.0375866
\(700\) 63.7444 20.3458i 2.40931 0.768999i
\(701\) 8.69736 0.328495 0.164247 0.986419i \(-0.447480\pi\)
0.164247 + 0.986419i \(0.447480\pi\)
\(702\) 0.899484 + 17.1632i 0.0339488 + 0.647782i
\(703\) 3.76263 + 3.04692i 0.141910 + 0.114917i
\(704\) −44.1353 + 4.63881i −1.66341 + 0.174832i
\(705\) 0.630824 1.52550i 0.0237582 0.0574536i
\(706\) 42.1343 57.9929i 1.58574 2.18259i
\(707\) −7.14199 1.17798i −0.268602 0.0443027i
\(708\) −0.0977889 0.617415i −0.00367513 0.0232039i
\(709\) 3.56761 + 16.7843i 0.133985 + 0.630348i 0.992972 + 0.118351i \(0.0377608\pi\)
−0.858987 + 0.511997i \(0.828906\pi\)
\(710\) −1.22275 1.77686i −0.0458891 0.0666844i
\(711\) −15.1105 3.21183i −0.566687 0.120453i
\(712\) 61.5979 + 40.0021i 2.30848 + 1.49914i
\(713\) −2.39819 4.70671i −0.0898129 0.176268i
\(714\) 4.42238 6.00584i 0.165503 0.224763i
\(715\) 6.01794 + 32.3629i 0.225058 + 1.21031i
\(716\) −32.1181 + 6.82691i −1.20031 + 0.255134i
\(717\) −2.70945 1.04006i −0.101186 0.0388417i
\(718\) −35.8366 + 9.60239i −1.33741 + 0.358358i
\(719\) 3.40612 32.4070i 0.127027 1.20858i −0.726366 0.687309i \(-0.758792\pi\)
0.853392 0.521269i \(-0.174541\pi\)
\(720\) 25.3052 + 71.3256i 0.943071 + 2.65815i
\(721\) −1.32007 + 1.17342i −0.0491620 + 0.0437004i
\(722\) 2.49468 15.7508i 0.0928423 0.586183i
\(723\) −3.65419 + 0.191508i −0.135901 + 0.00712225i
\(724\) −44.6055 + 77.2589i −1.65775 + 2.87131i
\(725\) 11.1198 + 21.7602i 0.412981 + 0.808153i
\(726\) −1.04469 + 0.603152i −0.0387721 + 0.0223851i
\(727\) −10.8247 + 21.2447i −0.401466 + 0.787922i −0.999912 0.0132413i \(-0.995785\pi\)
0.598446 + 0.801163i \(0.295785\pi\)
\(728\) −58.1943 + 88.3707i −2.15683 + 3.27524i
\(729\) 14.3432 + 19.7418i 0.531231 + 0.731177i
\(730\) 9.09566 + 14.8231i 0.336646 + 0.548626i
\(731\) 23.3242 + 52.3870i 0.862677 + 1.93760i
\(732\) −2.89417 10.8012i −0.106972 0.399223i
\(733\) 20.4613 + 25.2676i 0.755754 + 0.933278i 0.999330 0.0366035i \(-0.0116538\pi\)
−0.243576 + 0.969882i \(0.578321\pi\)
\(734\) 23.3361 71.8210i 0.861350 2.65096i
\(735\) −3.45400 0.132563i −0.127403 0.00488968i
\(736\) −14.3589 44.1921i −0.529276 1.62894i
\(737\) 15.2191 23.4353i 0.560601 0.863250i
\(738\) 41.0900 + 2.15344i 1.51254 + 0.0792691i
\(739\) −11.0359 + 51.9197i −0.405961 + 1.90990i 0.00879226 + 0.999961i \(0.497201\pi\)
−0.414753 + 0.909934i \(0.636132\pi\)
\(740\) −7.92867 + 12.9556i −0.291464 + 0.476258i
\(741\) −3.72715 1.21102i −0.136920 0.0444881i
\(742\) −28.9771 7.96309i −1.06378 0.292334i
\(743\) −35.7302 35.7302i −1.31082 1.31082i −0.920814 0.390001i \(-0.872474\pi\)
−0.390001 0.920814i \(-0.627526\pi\)
\(744\) 2.88431 + 0.303153i 0.105744 + 0.0111141i
\(745\) 44.0280 21.0323i 1.61306 0.770563i
\(746\) −6.14228 58.4399i −0.224885 2.13964i
\(747\) −0.962003 2.50610i −0.0351979 0.0916936i
\(748\) 64.7627 + 32.9982i 2.36796 + 1.20653i
\(749\) −7.12080 + 0.702478i −0.260189 + 0.0256680i
\(750\) −4.98018 + 4.26879i −0.181850 + 0.155874i
\(751\) 20.8809 + 36.1668i 0.761956 + 1.31975i 0.941841 + 0.336058i \(0.109094\pi\)
−0.179886 + 0.983688i \(0.557573\pi\)
\(752\) 20.8812 + 32.1542i 0.761459 + 1.17254i
\(753\) −2.96570 + 3.66233i −0.108076 + 0.133463i
\(754\) −58.3890 25.9964i −2.12640 0.946735i
\(755\) −3.04438 + 4.43523i −0.110796 + 0.161414i
\(756\) 0.112321 17.5872i 0.00408509 0.639639i
\(757\) −22.3878 + 22.3878i −0.813699 + 0.813699i −0.985186 0.171487i \(-0.945143\pi\)
0.171487 + 0.985186i \(0.445143\pi\)
\(758\) 69.7084 56.4488i 2.53192 2.05031i
\(759\) 1.44411 + 1.60385i 0.0524180 + 0.0582161i
\(760\) −65.4743 1.67572i −2.37500 0.0607846i
\(761\) −20.4298 18.3950i −0.740578 0.666820i 0.209860 0.977731i \(-0.432699\pi\)
−0.950439 + 0.310912i \(0.899366\pi\)
\(762\) −2.72591 + 1.38892i −0.0987494 + 0.0503154i
\(763\) 5.65564 10.9267i 0.204748 0.395575i
\(764\) −58.2772 + 18.9354i −2.10839 + 0.685059i
\(765\) 7.38403 30.8371i 0.266970 1.11492i
\(766\) 74.8157 67.3644i 2.70320 2.43397i