Properties

Label 175.2.x.a.103.9
Level $175$
Weight $2$
Character 175.103
Analytic conductor $1.397$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(3,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([21, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.x (of order \(60\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 103.9
Character \(\chi\) \(=\) 175.103
Dual form 175.2.x.a.17.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0374168 - 0.00196093i) q^{2} +(0.0687711 + 0.0849253i) q^{3} +(-1.98765 - 0.208910i) q^{4} +(-0.633655 - 2.14441i) q^{5} +(-0.00240666 - 0.00331248i) q^{6} +(-2.20341 - 1.46457i) q^{7} +(0.147975 + 0.0234370i) q^{8} +(0.621252 - 2.92276i) q^{9} +O(q^{10})\) \(q+(-0.0374168 - 0.00196093i) q^{2} +(0.0687711 + 0.0849253i) q^{3} +(-1.98765 - 0.208910i) q^{4} +(-0.633655 - 2.14441i) q^{5} +(-0.00240666 - 0.00331248i) q^{6} +(-2.20341 - 1.46457i) q^{7} +(0.147975 + 0.0234370i) q^{8} +(0.621252 - 2.92276i) q^{9} +(0.0195043 + 0.0814793i) q^{10} +(-1.34592 + 0.286085i) q^{11} +(-0.118951 - 0.183169i) q^{12} +(1.43400 + 0.730661i) q^{13} +(0.0795726 + 0.0591203i) q^{14} +(0.138537 - 0.201287i) q^{15} +(3.90435 + 0.829896i) q^{16} +(-1.56486 - 4.07660i) q^{17} +(-0.0289766 + 0.108142i) q^{18} +(-0.00716074 - 0.0681299i) q^{19} +(0.811494 + 4.39470i) q^{20} +(-0.0271520 - 0.287846i) q^{21} +(0.0509210 - 0.00806510i) q^{22} +(-0.295550 + 5.63942i) q^{23} +(0.00818604 + 0.0141786i) q^{24} +(-4.19696 + 2.71763i) q^{25} +(-0.0522229 - 0.0301509i) q^{26} +(0.583044 - 0.297076i) q^{27} +(4.07364 + 3.37137i) q^{28} +(3.88840 - 5.35192i) q^{29} +(-0.00557832 + 0.00725983i) q^{30} +(1.42674 - 3.20452i) q^{31} +(-0.433891 - 0.116261i) q^{32} +(-0.116856 - 0.0946285i) q^{33} +(0.0505580 + 0.155602i) q^{34} +(-1.74444 + 5.65305i) q^{35} +(-1.84543 + 5.67963i) q^{36} +(-6.49205 + 4.21599i) q^{37} +(0.000134334 + 0.00256324i) q^{38} +(0.0365664 + 0.172031i) q^{39} +(-0.0435068 - 0.332170i) q^{40} +(9.12263 - 2.96412i) q^{41} +(0.000451493 + 0.0108235i) q^{42} +(-3.38639 - 3.38639i) q^{43} +(2.73499 - 0.287459i) q^{44} +(-6.66125 + 0.519805i) q^{45} +(0.0221170 - 0.210429i) q^{46} +(6.65520 + 2.55469i) q^{47} +(0.198028 + 0.388651i) q^{48} +(2.71005 + 6.45412i) q^{49} +(0.162366 - 0.0934549i) q^{50} +(0.238589 - 0.413248i) q^{51} +(-2.69765 - 1.75187i) q^{52} +(2.30489 - 1.86647i) q^{53} +(-0.0223982 + 0.00997230i) q^{54} +(1.46633 + 2.70493i) q^{55} +(-0.291725 - 0.268362i) q^{56} +(0.00529350 - 0.00529350i) q^{57} +(-0.155986 + 0.192627i) q^{58} +(6.88713 - 7.64893i) q^{59} +(-0.317414 + 0.371145i) q^{60} +(5.62046 - 5.06069i) q^{61} +(-0.0596680 + 0.117105i) q^{62} +(-5.64947 + 5.53018i) q^{63} +(-7.57643 - 2.46173i) q^{64} +(0.658171 - 3.53807i) q^{65} +(0.00418683 + 0.00376984i) q^{66} +(-8.28713 + 3.18113i) q^{67} +(2.25874 + 8.42975i) q^{68} +(-0.499255 + 0.362730i) q^{69} +(0.0763564 - 0.208098i) q^{70} +(5.52909 + 4.01712i) q^{71} +(0.160431 - 0.417936i) q^{72} +(-0.233558 + 0.359648i) q^{73} +(0.251179 - 0.145018i) q^{74} +(-0.519425 - 0.169534i) q^{75} +0.136914i q^{76} +(3.38461 + 1.34084i) q^{77} +(-0.00103085 - 0.00650856i) q^{78} +(-3.70296 - 8.31698i) q^{79} +(-0.694378 - 8.89839i) q^{80} +(-8.12386 - 3.61697i) q^{81} +(-0.347152 + 0.0930190i) q^{82} +(0.663758 - 4.19080i) q^{83} +(-0.00616537 + 0.577808i) q^{84} +(-7.75030 + 5.93885i) q^{85} +(0.120067 + 0.133348i) q^{86} +(0.721923 - 0.0378344i) q^{87} +(-0.205868 + 0.0107891i) q^{88} +(-5.38706 - 5.98294i) q^{89} +(0.250262 - 0.00638718i) q^{90} +(-2.08959 - 3.71015i) q^{91} +(1.76558 - 11.1474i) q^{92} +(0.370263 - 0.0992118i) q^{93} +(-0.244007 - 0.108639i) q^{94} +(-0.141561 + 0.0585264i) q^{95} +(-0.0199657 - 0.0448436i) q^{96} +(-2.59509 - 16.3848i) q^{97} +(-0.0887454 - 0.246806i) q^{98} +4.11154i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9} - 36 q^{10} - 6 q^{11} - 36 q^{12} - 20 q^{14} - 28 q^{15} - 30 q^{16} - 42 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} + 32 q^{22} - 40 q^{23} + 2 q^{25} - 48 q^{26} + 22 q^{28} - 58 q^{30} - 18 q^{31} + 8 q^{32} - 30 q^{33} - 2 q^{35} + 40 q^{36} - 10 q^{37} + 72 q^{38} + 30 q^{39} - 48 q^{40} + 6 q^{42} - 108 q^{43} - 10 q^{44} + 186 q^{45} - 6 q^{46} - 54 q^{47} - 248 q^{50} - 16 q^{51} + 216 q^{52} + 50 q^{53} - 30 q^{54} + 4 q^{56} - 216 q^{57} - 4 q^{58} + 90 q^{59} + 96 q^{60} - 18 q^{61} - 66 q^{63} - 100 q^{64} + 14 q^{65} - 90 q^{66} + 4 q^{67} + 342 q^{68} - 60 q^{70} - 24 q^{71} + 58 q^{72} - 6 q^{73} + 216 q^{75} - 80 q^{77} - 132 q^{78} - 10 q^{79} - 6 q^{80} - 10 q^{81} + 216 q^{82} + 20 q^{84} - 48 q^{85} - 6 q^{86} - 48 q^{87} - 122 q^{88} + 120 q^{89} - 12 q^{91} - 4 q^{92} + 106 q^{93} - 30 q^{94} - 98 q^{95} - 90 q^{96} + 222 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0374168 0.00196093i −0.0264576 0.00138659i 0.0391025 0.999235i \(-0.487550\pi\)
−0.0655602 + 0.997849i \(0.520883\pi\)
\(3\) 0.0687711 + 0.0849253i 0.0397050 + 0.0490316i 0.796612 0.604491i \(-0.206624\pi\)
−0.756907 + 0.653523i \(0.773290\pi\)
\(4\) −1.98765 0.208910i −0.993824 0.104455i
\(5\) −0.633655 2.14441i −0.283379 0.959008i
\(6\) −0.00240666 0.00331248i −0.000982515 0.00135232i
\(7\) −2.20341 1.46457i −0.832812 0.553556i
\(8\) 0.147975 + 0.0234370i 0.0523172 + 0.00828623i
\(9\) 0.621252 2.92276i 0.207084 0.974254i
\(10\) 0.0195043 + 0.0814793i 0.00616780 + 0.0257660i
\(11\) −1.34592 + 0.286085i −0.405811 + 0.0862578i −0.406295 0.913742i \(-0.633179\pi\)
0.000483800 1.00000i \(0.499846\pi\)
\(12\) −0.118951 0.183169i −0.0343382 0.0528762i
\(13\) 1.43400 + 0.730661i 0.397721 + 0.202649i 0.641399 0.767207i \(-0.278354\pi\)
−0.243679 + 0.969856i \(0.578354\pi\)
\(14\) 0.0795726 + 0.0591203i 0.0212667 + 0.0158006i
\(15\) 0.138537 0.201287i 0.0357701 0.0519720i
\(16\) 3.90435 + 0.829896i 0.976088 + 0.207474i
\(17\) −1.56486 4.07660i −0.379534 0.988720i −0.981714 0.190360i \(-0.939035\pi\)
0.602180 0.798360i \(-0.294299\pi\)
\(18\) −0.0289766 + 0.108142i −0.00682984 + 0.0254893i
\(19\) −0.00716074 0.0681299i −0.00164279 0.0156301i 0.993670 0.112340i \(-0.0358347\pi\)
−0.995313 + 0.0967102i \(0.969168\pi\)
\(20\) 0.811494 + 4.39470i 0.181456 + 0.982685i
\(21\) −0.0271520 0.287846i −0.00592504 0.0628131i
\(22\) 0.0509210 0.00806510i 0.0108564 0.00171949i
\(23\) −0.295550 + 5.63942i −0.0616263 + 1.17590i 0.776389 + 0.630254i \(0.217049\pi\)
−0.838015 + 0.545647i \(0.816284\pi\)
\(24\) 0.00818604 + 0.0141786i 0.00167097 + 0.00289420i
\(25\) −4.19696 + 2.71763i −0.839393 + 0.543526i
\(26\) −0.0522229 0.0301509i −0.0102418 0.00591308i
\(27\) 0.583044 0.297076i 0.112207 0.0571722i
\(28\) 4.07364 + 3.37137i 0.769846 + 0.637129i
\(29\) 3.88840 5.35192i 0.722058 0.993827i −0.277395 0.960756i \(-0.589471\pi\)
0.999453 0.0330712i \(-0.0105288\pi\)
\(30\) −0.00557832 + 0.00725983i −0.00101846 + 0.00132546i
\(31\) 1.42674 3.20452i 0.256251 0.575549i −0.738911 0.673804i \(-0.764659\pi\)
0.995161 + 0.0982550i \(0.0313261\pi\)
\(32\) −0.433891 0.116261i −0.0767017 0.0205522i
\(33\) −0.116856 0.0946285i −0.0203421 0.0164727i
\(34\) 0.0505580 + 0.155602i 0.00867063 + 0.0266855i
\(35\) −1.74444 + 5.65305i −0.294864 + 0.955539i
\(36\) −1.84543 + 5.67963i −0.307571 + 0.946606i
\(37\) −6.49205 + 4.21599i −1.06729 + 0.693104i −0.953802 0.300436i \(-0.902868\pi\)
−0.113485 + 0.993540i \(0.536201\pi\)
\(38\) 0.000134334 0.00256324i 2.17918e−5 0.000415813i
\(39\) 0.0365664 + 0.172031i 0.00585531 + 0.0275471i
\(40\) −0.0435068 0.332170i −0.00687904 0.0525207i
\(41\) 9.12263 2.96412i 1.42472 0.462918i 0.507618 0.861582i \(-0.330526\pi\)
0.917097 + 0.398664i \(0.130526\pi\)
\(42\) 0.000451493 0.0108235i 6.96669e−5 0.00167010i
\(43\) −3.38639 3.38639i −0.516420 0.516420i 0.400067 0.916486i \(-0.368987\pi\)
−0.916486 + 0.400067i \(0.868987\pi\)
\(44\) 2.73499 0.287459i 0.412315 0.0433360i
\(45\) −6.66125 + 0.519805i −0.993001 + 0.0774880i
\(46\) 0.0221170 0.210429i 0.00326098 0.0310261i
\(47\) 6.65520 + 2.55469i 0.970761 + 0.372640i 0.791505 0.611162i \(-0.209298\pi\)
0.179256 + 0.983803i \(0.442631\pi\)
\(48\) 0.198028 + 0.388651i 0.0285828 + 0.0560970i
\(49\) 2.71005 + 6.45412i 0.387151 + 0.922016i
\(50\) 0.162366 0.0934549i 0.0229620 0.0132165i
\(51\) 0.238589 0.413248i 0.0334091 0.0578663i
\(52\) −2.69765 1.75187i −0.374097 0.242941i
\(53\) 2.30489 1.86647i 0.316601 0.256379i −0.457826 0.889042i \(-0.651372\pi\)
0.774427 + 0.632663i \(0.218038\pi\)
\(54\) −0.0223982 + 0.00997230i −0.00304800 + 0.00135706i
\(55\) 1.46633 + 2.70493i 0.197720 + 0.364732i
\(56\) −0.291725 0.268362i −0.0389835 0.0358614i
\(57\) 0.00529350 0.00529350i 0.000701141 0.000701141i
\(58\) −0.155986 + 0.192627i −0.0204820 + 0.0252931i
\(59\) 6.88713 7.64893i 0.896627 0.995806i −0.103372 0.994643i \(-0.532963\pi\)
0.999999 0.00116291i \(-0.000370164\pi\)
\(60\) −0.317414 + 0.371145i −0.0409780 + 0.0479146i
\(61\) 5.62046 5.06069i 0.719626 0.647954i −0.225656 0.974207i \(-0.572453\pi\)
0.945283 + 0.326253i \(0.105786\pi\)
\(62\) −0.0596680 + 0.117105i −0.00757784 + 0.0148723i
\(63\) −5.64947 + 5.53018i −0.711767 + 0.696737i
\(64\) −7.57643 2.46173i −0.947053 0.307716i
\(65\) 0.658171 3.53807i 0.0816361 0.438844i
\(66\) 0.00418683 + 0.00376984i 0.000515363 + 0.000464035i
\(67\) −8.28713 + 3.18113i −1.01243 + 0.388637i −0.807328 0.590103i \(-0.799087\pi\)
−0.205106 + 0.978740i \(0.565754\pi\)
\(68\) 2.25874 + 8.42975i 0.273913 + 1.02226i
\(69\) −0.499255 + 0.362730i −0.0601032 + 0.0436675i
\(70\) 0.0763564 0.208098i 0.00912633 0.0248725i
\(71\) 5.52909 + 4.01712i 0.656182 + 0.476744i 0.865372 0.501131i \(-0.167082\pi\)
−0.209189 + 0.977875i \(0.567082\pi\)
\(72\) 0.160431 0.417936i 0.0189069 0.0492543i
\(73\) −0.233558 + 0.359648i −0.0273359 + 0.0420936i −0.852074 0.523421i \(-0.824656\pi\)
0.824738 + 0.565514i \(0.191322\pi\)
\(74\) 0.251179 0.145018i 0.0291989 0.0168580i
\(75\) −0.519425 0.169534i −0.0599781 0.0195761i
\(76\) 0.136914i 0.0157051i
\(77\) 3.38461 + 1.34084i 0.385713 + 0.152803i
\(78\) −0.00103085 0.00650856i −0.000116721 0.000736949i
\(79\) −3.70296 8.31698i −0.416616 0.935734i −0.992952 0.118521i \(-0.962185\pi\)
0.576336 0.817213i \(-0.304482\pi\)
\(80\) −0.694378 8.89839i −0.0776338 0.994870i
\(81\) −8.12386 3.61697i −0.902651 0.401886i
\(82\) −0.347152 + 0.0930190i −0.0383365 + 0.0102722i
\(83\) 0.663758 4.19080i 0.0728569 0.460000i −0.924107 0.382134i \(-0.875189\pi\)
0.996964 0.0778662i \(-0.0248107\pi\)
\(84\) −0.00616537 + 0.577808i −0.000672697 + 0.0630440i
\(85\) −7.75030 + 5.93885i −0.840638 + 0.644159i
\(86\) 0.120067 + 0.133348i 0.0129472 + 0.0143793i
\(87\) 0.721923 0.0378344i 0.0773983 0.00405627i
\(88\) −0.205868 + 0.0107891i −0.0219456 + 0.00115012i
\(89\) −5.38706 5.98294i −0.571027 0.634190i 0.386584 0.922254i \(-0.373655\pi\)
−0.957611 + 0.288064i \(0.906988\pi\)
\(90\) 0.250262 0.00638718i 0.0263799 0.000673268i
\(91\) −2.08959 3.71015i −0.219049 0.388929i
\(92\) 1.76558 11.1474i 0.184075 1.16220i
\(93\) 0.370263 0.0992118i 0.0383945 0.0102878i
\(94\) −0.244007 0.108639i −0.0251674 0.0112052i
\(95\) −0.141561 + 0.0585264i −0.0145238 + 0.00600468i
\(96\) −0.0199657 0.0448436i −0.00203774 0.00457684i
\(97\) −2.59509 16.3848i −0.263492 1.66362i −0.664306 0.747461i \(-0.731273\pi\)
0.400814 0.916159i \(-0.368727\pi\)
\(98\) −0.0887454 0.246806i −0.00896464 0.0249312i
\(99\) 4.11154i 0.413225i
\(100\) 8.90982 4.52490i 0.890982 0.452490i
\(101\) −3.41526 + 1.97180i −0.339831 + 0.196202i −0.660197 0.751092i \(-0.729527\pi\)
0.320366 + 0.947294i \(0.396194\pi\)
\(102\) −0.00973757 + 0.0149945i −0.000964164 + 0.00148468i
\(103\) 2.75221 7.16976i 0.271184 0.706457i −0.728585 0.684955i \(-0.759822\pi\)
0.999769 0.0215022i \(-0.00684488\pi\)
\(104\) 0.195072 + 0.141728i 0.0191284 + 0.0138976i
\(105\) −0.600053 + 0.240620i −0.0585592 + 0.0234821i
\(106\) −0.0899016 + 0.0653174i −0.00873202 + 0.00634418i
\(107\) 2.79297 + 10.4235i 0.270006 + 1.00768i 0.959114 + 0.283019i \(0.0913359\pi\)
−0.689108 + 0.724659i \(0.741997\pi\)
\(108\) −1.22095 + 0.468678i −0.117486 + 0.0450986i
\(109\) 2.14125 + 1.92799i 0.205094 + 0.184668i 0.765277 0.643702i \(-0.222602\pi\)
−0.560182 + 0.828369i \(0.689269\pi\)
\(110\) −0.0495612 0.104085i −0.00472548 0.00992411i
\(111\) −0.804510 0.261401i −0.0763607 0.0248111i
\(112\) −7.38746 7.54681i −0.698049 0.713107i
\(113\) 4.61149 9.05056i 0.433812 0.851405i −0.565826 0.824524i \(-0.691443\pi\)
0.999639 0.0268803i \(-0.00855729\pi\)
\(114\) −0.000208446 0 0.000187685i −1.95227e−5 0 1.75783e-5i
\(115\) 12.2805 2.93967i 1.14516 0.274126i
\(116\) −8.84684 + 9.82541i −0.821408 + 0.912266i
\(117\) 3.02642 3.73732i 0.279793 0.345516i
\(118\) −0.272693 + 0.272693i −0.0251034 + 0.0251034i
\(119\) −2.52244 + 11.2743i −0.231232 + 1.03351i
\(120\) 0.0252176 0.0265386i 0.00230204 0.00242263i
\(121\) −8.31934 + 3.70401i −0.756303 + 0.336728i
\(122\) −0.220223 + 0.178333i −0.0199381 + 0.0161455i
\(123\) 0.879102 + 0.570896i 0.0792660 + 0.0514759i
\(124\) −3.50532 + 6.07139i −0.314787 + 0.545227i
\(125\) 8.48713 + 7.27796i 0.759112 + 0.650960i
\(126\) 0.222229 0.195843i 0.0197978 0.0174471i
\(127\) 9.60727 + 18.8553i 0.852507 + 1.67314i 0.732919 + 0.680316i \(0.238157\pi\)
0.119588 + 0.992824i \(0.461843\pi\)
\(128\) 1.11738 + 0.428922i 0.0987634 + 0.0379117i
\(129\) 0.0547042 0.520476i 0.00481644 0.0458253i
\(130\) −0.0315645 + 0.131093i −0.00276839 + 0.0114976i
\(131\) −1.73179 + 0.182019i −0.151307 + 0.0159030i −0.179879 0.983689i \(-0.557571\pi\)
0.0285719 + 0.999592i \(0.490904\pi\)
\(132\) 0.212501 + 0.212501i 0.0184958 + 0.0184958i
\(133\) −0.0840031 + 0.160606i −0.00728400 + 0.0139263i
\(134\) 0.316315 0.102777i 0.0273255 0.00887859i
\(135\) −1.00650 1.06204i −0.0866257 0.0914058i
\(136\) −0.136017 0.639911i −0.0116634 0.0548719i
\(137\) −0.333352 6.36074i −0.0284802 0.543435i −0.975193 0.221356i \(-0.928952\pi\)
0.946713 0.322079i \(-0.104382\pi\)
\(138\) 0.0193918 0.0125932i 0.00165074 0.00107200i
\(139\) −6.65731 + 20.4891i −0.564665 + 1.73786i 0.104278 + 0.994548i \(0.466747\pi\)
−0.668944 + 0.743313i \(0.733253\pi\)
\(140\) 4.64830 10.8718i 0.392853 0.918838i
\(141\) 0.240728 + 0.740884i 0.0202729 + 0.0623937i
\(142\) −0.199003 0.161150i −0.0167000 0.0135234i
\(143\) −2.13909 0.573166i −0.178879 0.0479306i
\(144\) 4.85118 10.8959i 0.404265 0.907993i
\(145\) −13.9406 4.94704i −1.15770 0.410829i
\(146\) 0.00944423 0.0129989i 0.000781610 0.00107579i
\(147\) −0.361744 + 0.674009i −0.0298361 + 0.0555913i
\(148\) 13.7847 7.02364i 1.13309 0.577340i
\(149\) 16.9996 + 9.81475i 1.39266 + 0.804055i 0.993610 0.112871i \(-0.0360048\pi\)
0.399055 + 0.916927i \(0.369338\pi\)
\(150\) 0.0191028 + 0.00736196i 0.00155973 + 0.000601102i
\(151\) 4.56259 + 7.90264i 0.371299 + 0.643108i 0.989766 0.142703i \(-0.0455793\pi\)
−0.618467 + 0.785811i \(0.712246\pi\)
\(152\) 0.000537147 0.0102494i 4.35684e−5 0.000831334i
\(153\) −12.8871 + 2.04111i −1.04186 + 0.165014i
\(154\) −0.124012 0.0568068i −0.00999317 0.00457762i
\(155\) −7.77586 1.02896i −0.624572 0.0826480i
\(156\) −0.0367420 0.349577i −0.00294171 0.0279885i
\(157\) −4.77834 + 17.8330i −0.381353 + 1.42323i 0.462483 + 0.886628i \(0.346959\pi\)
−0.843836 + 0.536601i \(0.819708\pi\)
\(158\) 0.122244 + 0.318456i 0.00972519 + 0.0253350i
\(159\) 0.317020 + 0.0673847i 0.0251413 + 0.00534396i
\(160\) 0.0256268 + 1.00411i 0.00202598 + 0.0793816i
\(161\) 8.91056 11.9931i 0.702250 0.945190i
\(162\) 0.296876 + 0.151266i 0.0233248 + 0.0118846i
\(163\) 1.88268 + 2.89908i 0.147463 + 0.227073i 0.904682 0.426088i \(-0.140109\pi\)
−0.757218 + 0.653162i \(0.773442\pi\)
\(164\) −18.7518 + 3.98582i −1.46427 + 0.311240i
\(165\) −0.128875 + 0.310549i −0.0100329 + 0.0241762i
\(166\) −0.0330535 + 0.155505i −0.00256545 + 0.0120695i
\(167\) 13.0850 + 2.07246i 1.01255 + 0.160372i 0.640595 0.767879i \(-0.278688\pi\)
0.371954 + 0.928251i \(0.378688\pi\)
\(168\) 0.00272842 0.0432304i 0.000210502 0.00333530i
\(169\) −6.11871 8.42168i −0.470670 0.647822i
\(170\) 0.301637 0.207015i 0.0231345 0.0158773i
\(171\) −0.203576 0.0213967i −0.0155679 0.00163625i
\(172\) 6.02350 + 7.43840i 0.459287 + 0.567173i
\(173\) −10.1350 0.531152i −0.770549 0.0403828i −0.336990 0.941508i \(-0.609409\pi\)
−0.433559 + 0.901125i \(0.642742\pi\)
\(174\) −0.0270862 −0.00205340
\(175\) 13.2278 + 0.158700i 0.999928 + 0.0119966i
\(176\) −5.49238 −0.414003
\(177\) 1.12322 + 0.0588656i 0.0844266 + 0.00442461i
\(178\) 0.189834 + 0.234426i 0.0142287 + 0.0175710i
\(179\) 8.97496 + 0.943306i 0.670820 + 0.0705060i 0.433814 0.901002i \(-0.357167\pi\)
0.237006 + 0.971508i \(0.423834\pi\)
\(180\) 13.3488 + 0.358414i 0.994962 + 0.0267146i
\(181\) 9.31589 + 12.8222i 0.692445 + 0.953069i 0.999999 + 0.00153805i \(0.000489576\pi\)
−0.307554 + 0.951531i \(0.599510\pi\)
\(182\) 0.0709105 + 0.142919i 0.00525623 + 0.0105939i
\(183\) 0.816306 + 0.129290i 0.0603430 + 0.00955740i
\(184\) −0.175905 + 0.827568i −0.0129679 + 0.0610091i
\(185\) 13.1545 + 11.2501i 0.967139 + 0.827125i
\(186\) −0.0140486 + 0.00298612i −0.00103009 + 0.000218953i
\(187\) 3.27243 + 5.03910i 0.239304 + 0.368495i
\(188\) −12.6945 6.46817i −0.925841 0.471740i
\(189\) −1.71978 0.199330i −0.125095 0.0144991i
\(190\) 0.00541151 0.00191228i 0.000392592 0.000138731i
\(191\) −21.8970 4.65434i −1.58441 0.336776i −0.670251 0.742135i \(-0.733813\pi\)
−0.914158 + 0.405358i \(0.867147\pi\)
\(192\) −0.311976 0.812726i −0.0225150 0.0586535i
\(193\) 3.15224 11.7643i 0.226903 0.846814i −0.754730 0.656036i \(-0.772232\pi\)
0.981633 0.190779i \(-0.0611013\pi\)
\(194\) 0.0649705 + 0.618153i 0.00466461 + 0.0443808i
\(195\) 0.345735 0.187422i 0.0247586 0.0134216i
\(196\) −4.03830 13.3947i −0.288450 0.956762i
\(197\) 13.1804 2.08757i 0.939067 0.148734i 0.331906 0.943313i \(-0.392308\pi\)
0.607161 + 0.794579i \(0.292308\pi\)
\(198\) 0.00806244 0.153841i 0.000572973 0.0109330i
\(199\) 9.16969 + 15.8824i 0.650022 + 1.12587i 0.983117 + 0.182978i \(0.0585738\pi\)
−0.333095 + 0.942893i \(0.608093\pi\)
\(200\) −0.684740 + 0.303778i −0.0484184 + 0.0214803i
\(201\) −0.840074 0.485017i −0.0592542 0.0342104i
\(202\) 0.131654 0.0670813i 0.00926318 0.00471982i
\(203\) −16.4060 + 6.09765i −1.15148 + 0.427971i
\(204\) −0.560562 + 0.771548i −0.0392472 + 0.0540192i
\(205\) −12.1369 17.6844i −0.847677 1.23513i
\(206\) −0.117038 + 0.262872i −0.00815444 + 0.0183152i
\(207\) 16.2991 + 4.36732i 1.13286 + 0.303550i
\(208\) 4.99248 + 4.04283i 0.346166 + 0.280320i
\(209\) 0.0291287 + 0.0896490i 0.00201488 + 0.00620115i
\(210\) 0.0229239 0.00782655i 0.00158190 0.000540083i
\(211\) −2.94624 + 9.06760i −0.202828 + 0.624239i 0.796968 + 0.604022i \(0.206436\pi\)
−0.999796 + 0.0202178i \(0.993564\pi\)
\(212\) −4.97124 + 3.22836i −0.341426 + 0.221725i
\(213\) 0.0390869 + 0.745822i 0.00267819 + 0.0511029i
\(214\) −0.0840641 0.395490i −0.00574650 0.0270352i
\(215\) −5.11599 + 9.40760i −0.348908 + 0.641593i
\(216\) 0.0932387 0.0302951i 0.00634409 0.00206132i
\(217\) −7.83695 + 4.97131i −0.532007 + 0.337474i
\(218\) −0.0763379 0.0763379i −0.00517026 0.00517026i
\(219\) −0.0466053 + 0.00489841i −0.00314929 + 0.000331004i
\(220\) −2.34946 5.68277i −0.158401 0.383132i
\(221\) 0.734597 6.98923i 0.0494144 0.470146i
\(222\) 0.0295896 + 0.0113584i 0.00198592 + 0.000762324i
\(223\) −11.4092 22.3918i −0.764015 1.49946i −0.863458 0.504421i \(-0.831706\pi\)
0.0994426 0.995043i \(-0.468294\pi\)
\(224\) 0.785768 + 0.891634i 0.0525013 + 0.0595748i
\(225\) 5.33561 + 13.9551i 0.355707 + 0.930337i
\(226\) −0.190294 + 0.329600i −0.0126582 + 0.0219246i
\(227\) 10.3775 + 6.73926i 0.688782 + 0.447300i 0.840992 0.541048i \(-0.181972\pi\)
−0.152210 + 0.988348i \(0.548639\pi\)
\(228\) −0.0116275 + 0.00941575i −0.000770048 + 0.000623573i
\(229\) 13.4922 6.00710i 0.891587 0.396960i 0.0907719 0.995872i \(-0.471067\pi\)
0.800815 + 0.598912i \(0.204400\pi\)
\(230\) −0.465261 + 0.0859117i −0.0306784 + 0.00566485i
\(231\) 0.118893 + 0.379650i 0.00782256 + 0.0249791i
\(232\) 0.700820 0.700820i 0.0460111 0.0460111i
\(233\) −0.763731 + 0.943130i −0.0500337 + 0.0617865i −0.801549 0.597930i \(-0.795990\pi\)
0.751515 + 0.659716i \(0.229324\pi\)
\(234\) −0.120568 + 0.133904i −0.00788175 + 0.00875357i
\(235\) 1.26120 15.8903i 0.0822716 1.03657i
\(236\) −15.2871 + 13.7646i −0.995107 + 0.895998i
\(237\) 0.451665 0.886443i 0.0293388 0.0575807i
\(238\) 0.116490 0.416900i 0.00755090 0.0270236i
\(239\) −24.4748 7.95235i −1.58314 0.514395i −0.620280 0.784380i \(-0.712981\pi\)
−0.962864 + 0.269986i \(0.912981\pi\)
\(240\) 0.707945 0.670923i 0.0456977 0.0433079i
\(241\) −10.1804 9.16652i −0.655780 0.590467i 0.272587 0.962131i \(-0.412121\pi\)
−0.928367 + 0.371664i \(0.878787\pi\)
\(242\) 0.318546 0.122278i 0.0204769 0.00786035i
\(243\) −0.759601 2.83487i −0.0487284 0.181857i
\(244\) −12.2287 + 8.88469i −0.782864 + 0.568784i
\(245\) 12.1230 9.90114i 0.774511 0.632561i
\(246\) −0.0317737 0.0230849i −0.00202582 0.00147184i
\(247\) 0.0395113 0.102931i 0.00251405 0.00654931i
\(248\) 0.286227 0.440751i 0.0181754 0.0279877i
\(249\) 0.401552 0.231836i 0.0254473 0.0146920i
\(250\) −0.303289 0.288960i −0.0191817 0.0182754i
\(251\) 24.5816i 1.55158i −0.630992 0.775789i \(-0.717352\pi\)
0.630992 0.775789i \(-0.282648\pi\)
\(252\) 12.3845 9.81182i 0.780148 0.618087i
\(253\) −1.21556 7.67477i −0.0764219 0.482509i
\(254\) −0.322499 0.724344i −0.0202354 0.0454494i
\(255\) −1.03736 0.249775i −0.0649617 0.0156415i
\(256\) 14.5142 + 6.46215i 0.907140 + 0.403885i
\(257\) −19.7898 + 5.30267i −1.23446 + 0.330772i −0.816313 0.577610i \(-0.803986\pi\)
−0.418143 + 0.908381i \(0.637319\pi\)
\(258\) −0.00306747 + 0.0193672i −0.000190972 + 0.00120575i
\(259\) 20.4793 + 0.218520i 1.27252 + 0.0135782i
\(260\) −2.04735 + 6.89494i −0.126971 + 0.427606i
\(261\) −13.2267 14.6898i −0.818713 0.909273i
\(262\) 0.0651550 0.00341463i 0.00402529 0.000210956i
\(263\) 12.7212 0.666689i 0.784422 0.0411098i 0.344080 0.938940i \(-0.388191\pi\)
0.440341 + 0.897830i \(0.354857\pi\)
\(264\) −0.0150741 0.0167414i −0.000927744 0.00103036i
\(265\) −5.46297 3.75993i −0.335588 0.230971i
\(266\) 0.00345806 0.00584462i 0.000212027 0.000358357i
\(267\) 0.137628 0.868951i 0.00842272 0.0531790i
\(268\) 17.1365 4.59170i 1.04678 0.280483i
\(269\) 18.1556 + 8.08338i 1.10696 + 0.492852i 0.877070 0.480363i \(-0.159495\pi\)
0.229895 + 0.973215i \(0.426162\pi\)
\(270\) 0.0355774 + 0.0417118i 0.00216517 + 0.00253850i
\(271\) 3.28374 + 7.37540i 0.199473 + 0.448024i 0.985391 0.170307i \(-0.0544760\pi\)
−0.785918 + 0.618331i \(0.787809\pi\)
\(272\) −2.72661 17.2151i −0.165325 1.04382i
\(273\) 0.171382 0.432610i 0.0103725 0.0261828i
\(274\) 0.238652i 0.0144175i
\(275\) 4.87131 4.85840i 0.293751 0.292973i
\(276\) 1.06812 0.616679i 0.0642933 0.0371197i
\(277\) 2.20513 3.39560i 0.132493 0.204022i −0.766197 0.642606i \(-0.777853\pi\)
0.898690 + 0.438584i \(0.144520\pi\)
\(278\) 0.289272 0.753580i 0.0173494 0.0451968i
\(279\) −8.47968 6.16085i −0.507665 0.368840i
\(280\) −0.390624 + 0.795627i −0.0233442 + 0.0475478i
\(281\) 1.03849 0.754506i 0.0619510 0.0450100i −0.556379 0.830929i \(-0.687810\pi\)
0.618330 + 0.785919i \(0.287810\pi\)
\(282\) −0.00755443 0.0281935i −0.000449860 0.00167890i
\(283\) −0.292342 + 0.112220i −0.0173779 + 0.00667076i −0.367041 0.930205i \(-0.619629\pi\)
0.349663 + 0.936875i \(0.386296\pi\)
\(284\) −10.1507 9.13970i −0.602331 0.542342i
\(285\) −0.0147057 0.00799716i −0.000871089 0.000473711i
\(286\) 0.0789137 + 0.0256406i 0.00466627 + 0.00151616i
\(287\) −24.4421 6.82957i −1.44277 0.403137i
\(288\) −0.609358 + 1.19593i −0.0359067 + 0.0704709i
\(289\) −1.53639 + 1.38337i −0.0903759 + 0.0813748i
\(290\) 0.511911 + 0.212439i 0.0300605 + 0.0124748i
\(291\) 1.21301 1.34719i 0.0711081 0.0789735i
\(292\) 0.539365 0.666061i 0.0315640 0.0389783i
\(293\) −13.9434 + 13.9434i −0.814584 + 0.814584i −0.985317 0.170733i \(-0.945386\pi\)
0.170733 + 0.985317i \(0.445386\pi\)
\(294\) 0.0148570 0.0245099i 0.000866476 0.00142944i
\(295\) −20.7665 9.92202i −1.20907 0.577682i
\(296\) −1.05947 + 0.471708i −0.0615806 + 0.0274175i
\(297\) −0.699743 + 0.566641i −0.0406032 + 0.0328798i
\(298\) −0.616825 0.400571i −0.0357317 0.0232045i
\(299\) −4.54432 + 7.87099i −0.262805 + 0.455191i
\(300\) 0.997017 + 0.445487i 0.0575628 + 0.0257202i
\(301\) 2.50200 + 12.4212i 0.144213 + 0.715948i
\(302\) −0.155221 0.304638i −0.00893196 0.0175300i
\(303\) −0.402327 0.154439i −0.0231131 0.00887228i
\(304\) 0.0285827 0.271946i 0.00163933 0.0155972i
\(305\) −14.4136 8.84583i −0.825321 0.506511i
\(306\) 0.486196 0.0511012i 0.0277940 0.00292126i
\(307\) −14.7442 14.7442i −0.841499 0.841499i 0.147555 0.989054i \(-0.452860\pi\)
−0.989054 + 0.147555i \(0.952860\pi\)
\(308\) −6.44730 3.37219i −0.367369 0.192149i
\(309\) 0.798166 0.259340i 0.0454061 0.0147533i
\(310\) 0.288930 + 0.0537482i 0.0164101 + 0.00305270i
\(311\) 1.78340 + 8.39025i 0.101128 + 0.475768i 0.999344 + 0.0362144i \(0.0115299\pi\)
−0.898217 + 0.439553i \(0.855137\pi\)
\(312\) 0.00137903 + 0.0263134i 7.80720e−5 + 0.00148970i
\(313\) 20.3951 13.2447i 1.15280 0.748636i 0.180776 0.983524i \(-0.442139\pi\)
0.972022 + 0.234888i \(0.0754724\pi\)
\(314\) 0.213759 0.657884i 0.0120631 0.0371265i
\(315\) 15.4388 + 8.61054i 0.869877 + 0.485149i
\(316\) 5.62268 + 17.3048i 0.316300 + 0.973472i
\(317\) −3.55609 2.87966i −0.199730 0.161738i 0.524238 0.851572i \(-0.324350\pi\)
−0.723968 + 0.689834i \(0.757684\pi\)
\(318\) −0.0117297 0.00314297i −0.000657771 0.000176249i
\(319\) −3.70238 + 8.31568i −0.207293 + 0.465589i
\(320\) −0.478111 + 17.8068i −0.0267272 + 0.995432i
\(321\) −0.693143 + 0.954029i −0.0386875 + 0.0532487i
\(322\) −0.356922 + 0.431271i −0.0198905 + 0.0240338i
\(323\) −0.266533 + 0.135805i −0.0148303 + 0.00755640i
\(324\) 15.3917 + 8.88642i 0.855097 + 0.493690i
\(325\) −8.00412 + 0.830529i −0.443989 + 0.0460695i
\(326\) −0.0647591 0.112166i −0.00358667 0.00621230i
\(327\) −0.0164789 + 0.314436i −0.000911285 + 0.0173884i
\(328\) 1.41939 0.224810i 0.0783729 0.0124130i
\(329\) −10.9226 15.3761i −0.602184 0.847710i
\(330\) 0.00543106 0.0113670i 0.000298970 0.000625735i
\(331\) −0.248393 2.36330i −0.0136529 0.129899i 0.985572 0.169255i \(-0.0541360\pi\)
−0.999225 + 0.0393560i \(0.987469\pi\)
\(332\) −2.19482 + 8.19117i −0.120456 + 0.449549i
\(333\) 8.28913 + 21.5939i 0.454241 + 1.18334i
\(334\) −0.485535 0.103204i −0.0265673 0.00564705i
\(335\) 12.0728 + 15.7552i 0.659609 + 0.860801i
\(336\) 0.132871 1.14638i 0.00724872 0.0625404i
\(337\) 19.0320 + 9.69727i 1.03674 + 0.528244i 0.887621 0.460575i \(-0.152357\pi\)
0.149117 + 0.988820i \(0.452357\pi\)
\(338\) 0.212428 + 0.327110i 0.0115546 + 0.0177925i
\(339\) 1.08576 0.230785i 0.0589703 0.0125345i
\(340\) 16.6456 10.1852i 0.902732 0.552371i
\(341\) −1.00352 + 4.72120i −0.0543438 + 0.255667i
\(342\) 0.00757520 + 0.00119979i 0.000409620 + 6.48774e-5i
\(343\) 3.48115 18.1902i 0.187964 0.982176i
\(344\) −0.421735 0.580469i −0.0227384 0.0312968i
\(345\) 1.09420 + 0.840760i 0.0589095 + 0.0452650i
\(346\) 0.378177 + 0.0397480i 0.0203309 + 0.00213686i
\(347\) 16.5160 + 20.3955i 0.886624 + 1.09489i 0.994910 + 0.100770i \(0.0321305\pi\)
−0.108286 + 0.994120i \(0.534536\pi\)
\(348\) −1.44283 0.0756157i −0.0773439 0.00405342i
\(349\) −16.7152 −0.894745 −0.447373 0.894348i \(-0.647640\pi\)
−0.447373 + 0.894348i \(0.647640\pi\)
\(350\) −0.494630 0.0318768i −0.0264391 0.00170389i
\(351\) 1.05315 0.0562129
\(352\) 0.617243 + 0.0323484i 0.0328992 + 0.00172417i
\(353\) 18.1261 + 22.3839i 0.964758 + 1.19138i 0.981489 + 0.191516i \(0.0613405\pi\)
−0.0167319 + 0.999860i \(0.505326\pi\)
\(354\) −0.0419119 0.00440512i −0.00222759 0.000234130i
\(355\) 5.11080 14.4021i 0.271253 0.764384i
\(356\) 9.45769 + 13.0174i 0.501256 + 0.689920i
\(357\) −1.13094 + 0.561125i −0.0598558 + 0.0296979i
\(358\) −0.333964 0.0528947i −0.0176505 0.00279557i
\(359\) 0.933188 4.39030i 0.0492518 0.231711i −0.946636 0.322304i \(-0.895543\pi\)
0.995888 + 0.0905925i \(0.0288761\pi\)
\(360\) −0.997883 0.0792013i −0.0525931 0.00417428i
\(361\) 18.5802 3.94935i 0.977906 0.207860i
\(362\) −0.323427 0.498034i −0.0169989 0.0261761i
\(363\) −0.886694 0.451793i −0.0465394 0.0237130i
\(364\) 3.37829 + 7.81100i 0.177070 + 0.409408i
\(365\) 0.919227 + 0.272951i 0.0481145 + 0.0142869i
\(366\) −0.0302900 0.00643833i −0.00158328 0.000336537i
\(367\) −11.7573 30.6289i −0.613728 1.59882i −0.789067 0.614307i \(-0.789436\pi\)
0.175339 0.984508i \(-0.443898\pi\)
\(368\) −5.83406 + 21.7730i −0.304121 + 1.13500i
\(369\) −2.99597 28.5047i −0.155964 1.48390i
\(370\) −0.470139 0.446738i −0.0244413 0.0232248i
\(371\) −7.81221 + 0.736911i −0.405590 + 0.0382585i
\(372\) −0.756679 + 0.119846i −0.0392320 + 0.00621374i
\(373\) −1.97463 + 37.6781i −0.102242 + 1.95090i 0.162791 + 0.986661i \(0.447950\pi\)
−0.265033 + 0.964239i \(0.585383\pi\)
\(374\) −0.112562 0.194964i −0.00582046 0.0100813i
\(375\) −0.0344132 + 1.22128i −0.00177709 + 0.0630669i
\(376\) 0.924931 + 0.534009i 0.0476997 + 0.0275394i
\(377\) 9.48641 4.83357i 0.488575 0.248941i
\(378\) 0.0639575 + 0.0108306i 0.00328962 + 0.000557067i
\(379\) −2.24596 + 3.09129i −0.115367 + 0.158789i −0.862795 0.505553i \(-0.831288\pi\)
0.747428 + 0.664343i \(0.231288\pi\)
\(380\) 0.293600 0.0867564i 0.0150614 0.00445051i
\(381\) −0.940591 + 2.11260i −0.0481879 + 0.108232i
\(382\) 0.810186 + 0.217089i 0.0414527 + 0.0111072i
\(383\) −12.5030 10.1248i −0.638876 0.517351i 0.254262 0.967135i \(-0.418168\pi\)
−0.893137 + 0.449784i \(0.851501\pi\)
\(384\) 0.0404172 + 0.124391i 0.00206253 + 0.00634782i
\(385\) 0.730626 8.10762i 0.0372361 0.413202i
\(386\) −0.141016 + 0.434001i −0.00717751 + 0.0220901i
\(387\) −12.0014 + 7.79381i −0.610066 + 0.396182i
\(388\) 1.73518 + 33.1093i 0.0880906 + 1.68087i
\(389\) −3.20212 15.0648i −0.162354 0.763815i −0.981688 0.190498i \(-0.938990\pi\)
0.819334 0.573317i \(-0.194344\pi\)
\(390\) −0.0133038 + 0.00633475i −0.000673664 + 0.000320773i
\(391\) 23.4521 7.62006i 1.18603 0.385363i
\(392\) 0.249756 + 1.01857i 0.0126146 + 0.0514453i
\(393\) −0.134555 0.134555i −0.00678742 0.00678742i
\(394\) −0.497262 + 0.0522644i −0.0250517 + 0.00263304i
\(395\) −15.4886 + 13.2108i −0.779316 + 0.664705i
\(396\) 0.858943 8.17229i 0.0431635 0.410673i
\(397\) −10.9348 4.19748i −0.548802 0.210665i 0.0681376 0.997676i \(-0.478294\pi\)
−0.616939 + 0.787011i \(0.711628\pi\)
\(398\) −0.311956 0.612248i −0.0156369 0.0306892i
\(399\) −0.0194165 + 0.00391105i −0.000972040 + 0.000195797i
\(400\) −18.6418 + 7.12754i −0.932089 + 0.356377i
\(401\) 6.37349 11.0392i 0.318277 0.551271i −0.661852 0.749635i \(-0.730229\pi\)
0.980129 + 0.198363i \(0.0635626\pi\)
\(402\) 0.0304818 + 0.0197951i 0.00152029 + 0.000987289i
\(403\) 4.38737 3.55282i 0.218550 0.176979i
\(404\) 7.20026 3.20576i 0.358226 0.159493i
\(405\) −2.60854 + 19.7128i −0.129619 + 0.979535i
\(406\) 0.625817 0.195983i 0.0310588 0.00972649i
\(407\) 7.53167 7.53167i 0.373331 0.373331i
\(408\) 0.0449906 0.0555587i 0.00222736 0.00275057i
\(409\) 6.77254 7.52166i 0.334880 0.371922i −0.552061 0.833803i \(-0.686159\pi\)
0.886942 + 0.461881i \(0.152825\pi\)
\(410\) 0.419445 + 0.685492i 0.0207149 + 0.0338541i
\(411\) 0.517262 0.465745i 0.0255147 0.0229735i
\(412\) −6.96826 + 13.6760i −0.343302 + 0.673768i
\(413\) −26.3776 + 6.76705i −1.29796 + 0.332985i
\(414\) −0.601294 0.195372i −0.0295520 0.00960203i
\(415\) −9.40738 + 1.23216i −0.461790 + 0.0604841i
\(416\) −0.537253 0.483745i −0.0263410 0.0237175i
\(417\) −2.19787 + 0.843684i −0.107630 + 0.0413154i
\(418\) −0.000914107 0.00341149i −4.47104e−5 0.000166862i
\(419\) −2.20460 + 1.60174i −0.107702 + 0.0782499i −0.640333 0.768098i \(-0.721203\pi\)
0.532631 + 0.846348i \(0.321203\pi\)
\(420\) 1.24296 0.352910i 0.0606504 0.0172202i
\(421\) 27.0480 + 19.6515i 1.31824 + 0.957756i 0.999952 + 0.00976112i \(0.00310711\pi\)
0.318286 + 0.947995i \(0.396893\pi\)
\(422\) 0.128020 0.333503i 0.00623190 0.0162347i
\(423\) 11.6013 17.8645i 0.564075 0.868600i
\(424\) 0.384812 0.222171i 0.0186881 0.0107896i
\(425\) 17.6463 + 12.8566i 0.855973 + 0.623638i
\(426\) 0.0279829i 0.00135577i
\(427\) −19.7959 + 2.91921i −0.957993 + 0.141270i
\(428\) −3.37386 21.3017i −0.163082 1.02966i
\(429\) −0.0984310 0.221080i −0.00475230 0.0106738i
\(430\) 0.209872 0.341970i 0.0101209 0.0164912i
\(431\) −28.4527 12.6680i −1.37052 0.610194i −0.416278 0.909237i \(-0.636666\pi\)
−0.954240 + 0.299043i \(0.903332\pi\)
\(432\) 2.52295 0.676023i 0.121386 0.0325252i
\(433\) −0.835932 + 5.27787i −0.0401723 + 0.253638i −0.999599 0.0283205i \(-0.990984\pi\)
0.959427 + 0.281959i \(0.0909841\pi\)
\(434\) 0.302982 0.170642i 0.0145436 0.00819110i
\(435\) −0.538582 1.52412i −0.0258231 0.0730761i
\(436\) −3.85327 4.27949i −0.184538 0.204950i
\(437\) 0.386330 0.0202467i 0.0184807 0.000968530i
\(438\) 0.00175342 9.18930e-5i 8.37818e−5 4.39082e-6i
\(439\) 17.8883 + 19.8670i 0.853763 + 0.948200i 0.999152 0.0411749i \(-0.0131101\pi\)
−0.145389 + 0.989375i \(0.546443\pi\)
\(440\) 0.153586 + 0.434629i 0.00732191 + 0.0207201i
\(441\) 20.5475 3.91121i 0.978451 0.186248i
\(442\) −0.0411916 + 0.260074i −0.00195929 + 0.0123704i
\(443\) 28.5150 7.64058i 1.35479 0.363015i 0.492889 0.870092i \(-0.335941\pi\)
0.861901 + 0.507077i \(0.169274\pi\)
\(444\) 1.54447 + 0.687643i 0.0732974 + 0.0326341i
\(445\) −9.41632 + 15.3432i −0.446376 + 0.727336i
\(446\) 0.382986 + 0.860200i 0.0181349 + 0.0407317i
\(447\) 0.335564 + 2.11867i 0.0158717 + 0.100210i
\(448\) 13.0886 + 16.5204i 0.618379 + 0.780517i
\(449\) 16.6858i 0.787450i −0.919228 0.393725i \(-0.871186\pi\)
0.919228 0.393725i \(-0.128814\pi\)
\(450\) −0.172276 0.532616i −0.00812118 0.0251077i
\(451\) −11.4304 + 6.59932i −0.538235 + 0.310750i
\(452\) −11.0568 + 17.0259i −0.520067 + 0.800832i
\(453\) −0.357359 + 0.930953i −0.0167902 + 0.0437400i
\(454\) −0.375079 0.272511i −0.0176033 0.0127896i
\(455\) −6.63198 + 6.83189i −0.310912 + 0.320284i
\(456\) 0.000907371 0 0.000659243i 4.24915e−5 0 3.08719e-5i
\(457\) −2.74552 10.2464i −0.128430 0.479308i 0.871509 0.490380i \(-0.163142\pi\)
−0.999939 + 0.0110724i \(0.996475\pi\)
\(458\) −0.516612 + 0.198309i −0.0241397 + 0.00926637i
\(459\) −2.12344 1.91195i −0.0991136 0.0892423i
\(460\) −25.0234 + 3.27751i −1.16672 + 0.152814i
\(461\) 19.5350 + 6.34729i 0.909833 + 0.295623i 0.726290 0.687389i \(-0.241243\pi\)
0.183544 + 0.983012i \(0.441243\pi\)
\(462\) −0.00370411 0.0144384i −0.000172331 0.000671736i
\(463\) −1.32037 + 2.59137i −0.0613628 + 0.120431i −0.919651 0.392737i \(-0.871528\pi\)
0.858288 + 0.513168i \(0.171528\pi\)
\(464\) 19.6232 17.6688i 0.910985 0.820255i
\(465\) −0.447370 0.731129i −0.0207463 0.0339053i
\(466\) 0.0304258 0.0337912i 0.00140945 0.00156535i
\(467\) 4.61554 5.69972i 0.213582 0.263752i −0.659084 0.752069i \(-0.729056\pi\)
0.872666 + 0.488318i \(0.162389\pi\)
\(468\) −6.79623 + 6.79623i −0.314156 + 0.314156i
\(469\) 22.9190 + 5.12776i 1.05830 + 0.236778i
\(470\) −0.0783497 + 0.592089i −0.00361400 + 0.0273110i
\(471\) −1.84309 + 0.820595i −0.0849249 + 0.0378110i
\(472\) 1.19839 0.970439i 0.0551605 0.0446681i
\(473\) 5.52661 + 3.58902i 0.254114 + 0.165023i
\(474\) −0.0186381 + 0.0322821i −0.000856077 + 0.00148277i
\(475\) 0.215205 + 0.266478i 0.00987429 + 0.0122269i
\(476\) 7.36903 21.8823i 0.337759 1.00297i
\(477\) −4.02332 7.89620i −0.184215 0.361542i
\(478\) 0.900174 + 0.345545i 0.0411730 + 0.0158048i
\(479\) 0.617027 5.87062i 0.0281927 0.268235i −0.971341 0.237691i \(-0.923609\pi\)
0.999533 0.0305441i \(-0.00972400\pi\)
\(480\) −0.0835117 + 0.0712299i −0.00381177 + 0.00325119i
\(481\) −12.3901 + 1.30225i −0.564939 + 0.0593774i
\(482\) 0.362945 + 0.362945i 0.0165317 + 0.0165317i
\(483\) 1.63131 0.0680487i 0.0742271 0.00309632i
\(484\) 17.3097 5.62427i 0.786805 0.255649i
\(485\) −33.4912 + 15.9472i −1.52076 + 0.724126i
\(486\) 0.0228628 + 0.107561i 0.00103708 + 0.00487907i
\(487\) −0.910186 17.3674i −0.0412444 0.786991i −0.938458 0.345394i \(-0.887745\pi\)
0.897213 0.441597i \(-0.145588\pi\)
\(488\) 0.950297 0.617130i 0.0430179 0.0279362i
\(489\) −0.116731 + 0.359261i −0.00527875 + 0.0162463i
\(490\) −0.473019 + 0.346696i −0.0213688 + 0.0156621i
\(491\) −1.67096 5.14268i −0.0754092 0.232086i 0.906246 0.422751i \(-0.138936\pi\)
−0.981655 + 0.190665i \(0.938936\pi\)
\(492\) −1.62808 1.31839i −0.0733995 0.0594377i
\(493\) −27.9024 7.47643i −1.25666 0.336721i
\(494\) −0.00168022 + 0.00377385i −7.55969e−5 + 0.000169793i
\(495\) 8.81682 2.60530i 0.396286 0.117099i
\(496\) 8.22993 11.3275i 0.369535 0.508621i
\(497\) −6.29951 16.9491i −0.282572 0.760272i
\(498\) −0.0154794 + 0.00788715i −0.000693648 + 0.000353432i
\(499\) −2.08554 1.20409i −0.0933616 0.0539023i 0.452592 0.891718i \(-0.350499\pi\)
−0.545954 + 0.837815i \(0.683833\pi\)
\(500\) −15.3490 16.2391i −0.686427 0.726233i
\(501\) 0.723867 + 1.25377i 0.0323400 + 0.0560145i
\(502\) −0.0482028 + 0.919765i −0.00215140 + 0.0410511i
\(503\) 24.0156 3.80370i 1.07080 0.169599i 0.403946 0.914783i \(-0.367638\pi\)
0.666859 + 0.745184i \(0.267638\pi\)
\(504\) −0.965593 + 0.685924i −0.0430109 + 0.0305535i
\(505\) 6.39244 + 6.07426i 0.284460 + 0.270301i
\(506\) 0.0304328 + 0.289549i 0.00135290 + 0.0128720i
\(507\) 0.294423 1.09880i 0.0130758 0.0487995i
\(508\) −15.1568 39.4848i −0.672474 1.75185i
\(509\) −17.7343 3.76954i −0.786058 0.167082i −0.202639 0.979253i \(-0.564952\pi\)
−0.583419 + 0.812172i \(0.698285\pi\)
\(510\) 0.0383247 + 0.0113800i 0.00169705 + 0.000503913i
\(511\) 1.04136 0.450390i 0.0460668 0.0199241i
\(512\) −2.66325 1.35700i −0.117700 0.0599713i
\(513\) −0.0244148 0.0375954i −0.00107794 0.00165988i
\(514\) 0.750870 0.159602i 0.0331194 0.00703976i
\(515\) −17.1188 1.35871i −0.754346 0.0598719i
\(516\) −0.217465 + 1.02309i −0.00957338 + 0.0450392i
\(517\) −9.68824 1.53447i −0.426088 0.0674858i
\(518\) −0.765840 0.0483347i −0.0336491 0.00212371i
\(519\) −0.651886 0.897245i −0.0286146 0.0393847i
\(520\) 0.180315 0.508122i 0.00790733 0.0222826i
\(521\) 15.4005 + 1.61866i 0.674708 + 0.0709147i 0.435685 0.900099i \(-0.356506\pi\)
0.239023 + 0.971014i \(0.423173\pi\)
\(522\) 0.466095 + 0.575580i 0.0204004 + 0.0251924i
\(523\) −19.7096 1.03294i −0.861843 0.0451673i −0.383709 0.923454i \(-0.625353\pi\)
−0.478134 + 0.878287i \(0.658687\pi\)
\(524\) 3.48022 0.152034
\(525\) 0.896213 + 1.13429i 0.0391140 + 0.0495044i
\(526\) −0.477293 −0.0208110
\(527\) −15.2962 0.801639i −0.666312 0.0349199i
\(528\) −0.377717 0.466442i −0.0164380 0.0202993i
\(529\) −8.84171 0.929301i −0.384422 0.0404044i
\(530\) 0.197034 + 0.151397i 0.00855860 + 0.00657627i
\(531\) −18.0774 24.8813i −0.784490 1.07976i
\(532\) 0.200521 0.301679i 0.00869368 0.0130794i
\(533\) 15.2476 + 2.41499i 0.660448 + 0.104605i
\(534\) −0.00685356 + 0.0322435i −0.000296582 + 0.00139531i
\(535\) 20.5824 12.5942i 0.889857 0.544493i
\(536\) −1.30085 + 0.276503i −0.0561880 + 0.0119431i
\(537\) 0.537107 + 0.827073i 0.0231779 + 0.0356908i
\(538\) −0.663472 0.338056i −0.0286043 0.0145746i
\(539\) −5.49395 7.91143i −0.236641 0.340770i
\(540\) 1.77870 + 2.32123i 0.0765429 + 0.0998898i
\(541\) 26.7198 + 5.67947i 1.14877 + 0.244179i 0.742677 0.669650i \(-0.233556\pi\)
0.406098 + 0.913830i \(0.366889\pi\)
\(542\) −0.108404 0.282403i −0.00465636 0.0121302i
\(543\) −0.448267 + 1.67295i −0.0192370 + 0.0717933i
\(544\) 0.205030 + 1.95073i 0.00879058 + 0.0836368i
\(545\) 2.77758 5.81339i 0.118978 0.249018i
\(546\) −0.00726086 + 0.0158508i −0.000310736 + 0.000678352i
\(547\) 10.0134 1.58597i 0.428143 0.0678111i 0.0613554 0.998116i \(-0.480458\pi\)
0.366787 + 0.930305i \(0.380458\pi\)
\(548\) −0.666236 + 12.7125i −0.0284602 + 0.543053i
\(549\) −11.2995 19.5712i −0.482249 0.835280i
\(550\) −0.191796 + 0.172233i −0.00817820 + 0.00734406i
\(551\) −0.392470 0.226593i −0.0167198 0.00965317i
\(552\) −0.0823786 + 0.0419740i −0.00350627 + 0.00178653i
\(553\) −4.02168 + 23.7490i −0.171019 + 1.00991i
\(554\) −0.0891673 + 0.122728i −0.00378836 + 0.00521423i
\(555\) −0.0507687 + 1.89083i −0.00215501 + 0.0802614i
\(556\) 17.5128 39.3343i 0.742706 1.66815i
\(557\) −0.335189 0.0898136i −0.0142024 0.00380552i 0.251711 0.967802i \(-0.419007\pi\)
−0.265913 + 0.963997i \(0.585673\pi\)
\(558\) 0.305201 + 0.247147i 0.0129202 + 0.0104626i
\(559\) −2.38179 7.33039i −0.100739 0.310042i
\(560\) −11.5023 + 20.6238i −0.486062 + 0.871514i
\(561\) −0.202898 + 0.624456i −0.00856637 + 0.0263646i
\(562\) −0.0403364 + 0.0261948i −0.00170149 + 0.00110496i
\(563\) −0.792034 15.1129i −0.0333803 0.636933i −0.963178 0.268863i \(-0.913352\pi\)
0.929798 0.368070i \(-0.119981\pi\)
\(564\) −0.323704 1.52291i −0.0136304 0.0641259i
\(565\) −22.3302 4.15398i −0.939437 0.174759i
\(566\) 0.0111585 0.00362563i 0.000469029 0.000152397i
\(567\) 12.6029 + 19.8677i 0.529271 + 0.834363i
\(568\) 0.724020 + 0.724020i 0.0303792 + 0.0303792i
\(569\) −8.99190 + 0.945086i −0.376960 + 0.0396201i −0.291114 0.956688i \(-0.594026\pi\)
−0.0858458 + 0.996308i \(0.527359\pi\)
\(570\) 0.000534557 0 0.000328065i 2.23901e−5 0 1.37411e-5i
\(571\) −1.93251 + 18.3867i −0.0808732 + 0.769457i 0.876655 + 0.481119i \(0.159769\pi\)
−0.957529 + 0.288338i \(0.906897\pi\)
\(572\) 4.13201 + 1.58613i 0.172768 + 0.0663194i
\(573\) −1.11061 2.17969i −0.0463963 0.0910579i
\(574\) 0.901151 + 0.303469i 0.0376133 + 0.0126666i
\(575\) −14.0854 24.4716i −0.587403 1.02054i
\(576\) −11.9019 + 20.6147i −0.495914 + 0.858947i
\(577\) −22.1789 14.4031i −0.923318 0.599610i −0.00696286 0.999976i \(-0.502216\pi\)
−0.916355 + 0.400366i \(0.868883\pi\)
\(578\) 0.0601994 0.0487485i 0.00250397 0.00202767i
\(579\) 1.21587 0.541341i 0.0505299 0.0224974i
\(580\) 26.6755 + 12.7453i 1.10764 + 0.529220i
\(581\) −7.60026 + 8.26194i −0.315312 + 0.342763i
\(582\) −0.0480288 + 0.0480288i −0.00199086 + 0.00199086i
\(583\) −2.56824 + 3.17151i −0.106366 + 0.131351i
\(584\) −0.0429899 + 0.0477451i −0.00177893 + 0.00197571i
\(585\) −9.93205 4.12171i −0.410640 0.170412i
\(586\) 0.549060 0.494376i 0.0226815 0.0204225i
\(587\) 8.79450 17.2602i 0.362988 0.712404i −0.635215 0.772336i \(-0.719088\pi\)
0.998202 + 0.0599321i \(0.0190884\pi\)
\(588\) 0.859827 1.26412i 0.0354587 0.0521314i
\(589\) −0.228540 0.0742572i −0.00941683 0.00305971i
\(590\) 0.757558 + 0.411971i 0.0311882 + 0.0169606i
\(591\) 1.08372 + 0.975787i 0.0445783 + 0.0401385i
\(592\) −28.8461 + 11.0730i −1.18557 + 0.455097i
\(593\) 10.6910 + 39.8994i 0.439027 + 1.63847i 0.731242 + 0.682118i \(0.238941\pi\)
−0.292215 + 0.956353i \(0.594392\pi\)
\(594\) 0.0272933 0.0198297i 0.00111986 0.000813623i
\(595\) 25.7750 1.73486i 1.05667 0.0711222i
\(596\) −31.7389 23.0597i −1.30008 0.944560i
\(597\) −0.718205 + 1.87099i −0.0293942 + 0.0765744i
\(598\) 0.185468 0.285596i 0.00758436 0.0116789i
\(599\) −2.44181 + 1.40978i −0.0997698 + 0.0576021i −0.549055 0.835786i \(-0.685012\pi\)
0.449285 + 0.893389i \(0.351679\pi\)
\(600\) −0.0728887 0.0372606i −0.00297567 0.00152116i
\(601\) 33.6982i 1.37458i 0.726384 + 0.687289i \(0.241199\pi\)
−0.726384 + 0.687289i \(0.758801\pi\)
\(602\) −0.0692596 0.469668i −0.00282281 0.0191422i
\(603\) 4.14929 + 26.1976i 0.168972 + 1.06685i
\(604\) −7.41788 16.6608i −0.301829 0.677920i
\(605\) 13.2145 + 15.4930i 0.537245 + 0.629879i
\(606\) 0.0147509 + 0.00656754i 0.000599215 + 0.000266788i
\(607\) 32.6488 8.74821i 1.32517 0.355079i 0.474259 0.880385i \(-0.342716\pi\)
0.850913 + 0.525306i \(0.176049\pi\)
\(608\) −0.00481385 + 0.0303934i −0.000195227 + 0.00123262i
\(609\) −1.64611 0.973944i −0.0667036 0.0394662i
\(610\) 0.521964 + 0.359246i 0.0211337 + 0.0145455i
\(611\) 7.67696 + 8.52613i 0.310577 + 0.344930i
\(612\) 26.0414 1.36477i 1.05266 0.0551676i
\(613\) 5.90313 0.309370i 0.238425 0.0124953i 0.0672508 0.997736i \(-0.478577\pi\)
0.171174 + 0.985241i \(0.445244\pi\)
\(614\) 0.522769 + 0.580594i 0.0210973 + 0.0234309i
\(615\) 0.667185 2.24690i 0.0269035 0.0906039i
\(616\) 0.469414 + 0.277736i 0.0189132 + 0.0111903i
\(617\) −0.740149 + 4.67312i −0.0297973 + 0.188133i −0.998097 0.0616571i \(-0.980361\pi\)
0.968300 + 0.249790i \(0.0803615\pi\)
\(618\) −0.0303733 + 0.00813851i −0.00122180 + 0.000327379i
\(619\) −0.987941 0.439860i −0.0397087 0.0176795i 0.386786 0.922169i \(-0.373585\pi\)
−0.426495 + 0.904490i \(0.640252\pi\)
\(620\) 15.2407 + 3.66967i 0.612081 + 0.147377i
\(621\) 1.50302 + 3.37583i 0.0603140 + 0.135467i
\(622\) −0.0502765 0.317433i −0.00201590 0.0127279i
\(623\) 3.10747 + 21.0726i 0.124498 + 0.844257i
\(624\) 0.702018i 0.0281032i
\(625\) 10.2290 22.8116i 0.409160 0.912463i
\(626\) −0.789090 + 0.455581i −0.0315384 + 0.0182087i
\(627\) −0.00561025 + 0.00863903i −0.000224052 + 0.000345010i
\(628\) 13.2232 34.4475i 0.527661 1.37460i
\(629\) 27.3460 + 19.8680i 1.09036 + 0.792191i
\(630\) −0.560784 0.352453i −0.0223422 0.0140421i
\(631\) −17.6839 + 12.8481i −0.703983 + 0.511474i −0.881227 0.472693i \(-0.843282\pi\)
0.177244 + 0.984167i \(0.443282\pi\)
\(632\) −0.353022 1.31749i −0.0140424 0.0524071i
\(633\) −0.972685 + 0.373379i −0.0386608 + 0.0148405i
\(634\) 0.127410 + 0.114721i 0.00506012 + 0.00455615i
\(635\) 34.3458 32.5497i 1.36297 1.29169i
\(636\) −0.616047 0.200166i −0.0244279 0.00793709i
\(637\) −0.829543 + 11.2353i −0.0328677 + 0.445161i
\(638\) 0.154838 0.303886i 0.00613008 0.0120310i
\(639\) 15.1760 13.6646i 0.600355 0.540562i
\(640\) 0.211750 2.66791i 0.00837015 0.105458i
\(641\) −14.7391 + 16.3694i −0.582159 + 0.646553i −0.960226 0.279225i \(-0.909922\pi\)
0.378066 + 0.925779i \(0.376589\pi\)
\(642\) 0.0278059 0.0343375i 0.00109741 0.00135519i
\(643\) 7.57933 7.57933i 0.298899 0.298899i −0.541683 0.840583i \(-0.682213\pi\)
0.840583 + 0.541683i \(0.182213\pi\)
\(644\) −20.2165 + 21.9766i −0.796643 + 0.865999i
\(645\) −1.15078 + 0.212494i −0.0453117 + 0.00836694i
\(646\) 0.0102391 0.00455874i 0.000402852 0.000179361i
\(647\) −26.9950 + 21.8601i −1.06128 + 0.859410i −0.990422 0.138077i \(-0.955908\pi\)
−0.0708609 + 0.997486i \(0.522575\pi\)
\(648\) −1.11736 0.725621i −0.0438940 0.0285051i
\(649\) −7.08130 + 12.2652i −0.277965 + 0.481450i
\(650\) 0.301117 0.0153802i 0.0118108 0.000603262i
\(651\) −0.961146 0.323673i −0.0376703 0.0126857i
\(652\) −3.13647 6.15566i −0.122834 0.241074i
\(653\) −15.4967 5.94863i −0.606433 0.232788i 0.0357231 0.999362i \(-0.488627\pi\)
−0.642156 + 0.766574i \(0.721960\pi\)
\(654\) 0.00123317 0.0117329i 4.82209e−5 0.000458791i
\(655\) 1.48768 + 3.59833i 0.0581285 + 0.140598i
\(656\) 38.0779 4.00215i 1.48669 0.156258i
\(657\) 0.906067 + 0.906067i 0.0353490 + 0.0353490i
\(658\) 0.378538 + 0.596741i 0.0147569 + 0.0232634i
\(659\) −23.7349 + 7.71192i −0.924579 + 0.300414i −0.732344 0.680935i \(-0.761574\pi\)
−0.192235 + 0.981349i \(0.561574\pi\)
\(660\) 0.321036 0.590340i 0.0124963 0.0229789i
\(661\) −0.637712 3.00020i −0.0248041 0.116694i 0.964004 0.265889i \(-0.0856653\pi\)
−0.988808 + 0.149194i \(0.952332\pi\)
\(662\) 0.00465979 + 0.0889140i 0.000181108 + 0.00345574i
\(663\) 0.644081 0.418271i 0.0250140 0.0162443i
\(664\) 0.196439 0.604578i 0.00762333 0.0234622i
\(665\) 0.397633 + 0.0783683i 0.0154195 + 0.00303899i
\(666\) −0.267808 0.824229i −0.0103774 0.0319382i
\(667\) 29.0325 + 23.5101i 1.12414 + 0.910314i
\(668\) −25.5754 6.85292i −0.989543 0.265147i
\(669\) 1.11701 2.50884i 0.0431859 0.0969972i
\(670\) −0.420831 0.613184i −0.0162581 0.0236894i
\(671\) −6.11692 + 8.41922i −0.236141 + 0.325020i
\(672\) −0.0216841 + 0.128050i −0.000836484 + 0.00493965i
\(673\) 8.48294 4.32228i 0.326993 0.166611i −0.282785 0.959183i \(-0.591258\pi\)
0.609779 + 0.792572i \(0.291258\pi\)
\(674\) −0.693099 0.400161i −0.0266972 0.0154136i
\(675\) −1.63967 + 2.83131i −0.0631110 + 0.108977i
\(676\) 10.4025 + 18.0176i 0.400095 + 0.692985i
\(677\) −0.545808 + 10.4146i −0.0209771 + 0.400267i 0.967881 + 0.251408i \(0.0808935\pi\)
−0.988858 + 0.148859i \(0.952440\pi\)
\(678\) −0.0410781 + 0.00650613i −0.00157760 + 0.000249867i
\(679\) −18.2786 + 39.9031i −0.701469 + 1.53134i
\(680\) −1.28604 + 0.697159i −0.0493174 + 0.0267348i
\(681\) 0.141342 + 1.34478i 0.00541625 + 0.0515322i
\(682\) 0.0468065 0.174684i 0.00179231 0.00668901i
\(683\) 3.42318 + 8.91768i 0.130984 + 0.341226i 0.983350 0.181720i \(-0.0581664\pi\)
−0.852366 + 0.522946i \(0.824833\pi\)
\(684\) 0.400168 + 0.0850583i 0.0153008 + 0.00325228i
\(685\) −13.4288 + 4.74536i −0.513087 + 0.181311i
\(686\) −0.165923 + 0.673790i −0.00633497 + 0.0257254i
\(687\) 1.43803 + 0.732711i 0.0548641 + 0.0279546i
\(688\) −10.4113 16.0320i −0.396927 0.611215i
\(689\) 4.66898 0.992421i 0.177874 0.0378082i
\(690\) −0.0392926 0.0336041i −0.00149584 0.00127929i
\(691\) 4.86605 22.8929i 0.185113 0.870889i −0.783321 0.621618i \(-0.786476\pi\)
0.968434 0.249271i \(-0.0801910\pi\)
\(692\) 20.0338 + 3.17305i 0.761572 + 0.120621i
\(693\) 6.02165 9.05942i 0.228744 0.344139i
\(694\) −0.577980 0.795521i −0.0219398 0.0301976i
\(695\) 48.1554 + 1.29297i 1.82664 + 0.0490450i
\(696\) 0.107713 + 0.0113211i 0.00408287 + 0.000429127i
\(697\) −26.3592 32.5508i −0.998424 1.23295i
\(698\) 0.625429 + 0.0327774i 0.0236728 + 0.00124064i
\(699\) −0.132618 −0.00501608
\(700\) −26.2591 3.07886i −0.992499 0.116370i
\(701\) 24.9909 0.943892 0.471946 0.881628i \(-0.343552\pi\)
0.471946 + 0.881628i \(0.343552\pi\)
\(702\) −0.0394054 0.00206515i −0.00148726 7.79440e-5i
\(703\) 0.333723 + 0.412113i 0.0125866 + 0.0155431i
\(704\) 10.9015 + 1.14580i 0.410867 + 0.0431839i
\(705\) 1.43622 0.985683i 0.0540911 0.0371230i
\(706\) −0.634328 0.873078i −0.0238733 0.0328587i
\(707\) 10.4131 + 0.657204i 0.391624 + 0.0247167i
\(708\) −2.22027 0.351657i −0.0834430 0.0132161i
\(709\) −10.0976 + 47.5054i −0.379223 + 1.78410i 0.211658 + 0.977344i \(0.432114\pi\)
−0.590881 + 0.806759i \(0.701220\pi\)
\(710\) −0.219471 + 0.528858i −0.00823661 + 0.0198477i
\(711\) −26.6090 + 5.65593i −0.997917 + 0.212114i
\(712\) −0.656930 1.01158i −0.0246195 0.0379107i
\(713\) 17.6500 + 8.99310i 0.660996 + 0.336794i
\(714\) 0.0434165 0.0187778i 0.00162482 0.000702741i
\(715\) 0.126340 + 4.95026i 0.00472487 + 0.185129i
\(716\) −17.6420 3.74992i −0.659312 0.140141i
\(717\) −1.00781 2.62542i −0.0376372 0.0980482i
\(718\) −0.0435259 + 0.162441i −0.00162437 + 0.00606224i
\(719\) −0.622106 5.91894i −0.0232006 0.220739i −0.999979 0.00648680i \(-0.997935\pi\)
0.976778 0.214252i \(-0.0687315\pi\)
\(720\) −26.4393 3.49864i −0.985333 0.130387i
\(721\) −16.5649 + 11.7671i −0.616909 + 0.438231i
\(722\) −0.702956 + 0.111337i −0.0261613 + 0.00414354i
\(723\) 0.0783480 1.49497i 0.00291379 0.0555985i
\(724\) −15.8380 27.4323i −0.588615 1.01951i
\(725\) −1.77493 + 33.0290i −0.0659193 + 1.22667i
\(726\) 0.0322913 + 0.0186434i 0.00119844 + 0.000691921i
\(727\) 9.26956 4.72308i 0.343789 0.175169i −0.273567 0.961853i \(-0.588204\pi\)
0.617356 + 0.786684i \(0.288204\pi\)
\(728\) −0.222253 0.597984i −0.00823726 0.0221628i
\(729\) −15.4924 + 21.3235i −0.573793 + 0.789759i
\(730\) −0.0338592 0.0120155i −0.00125319 0.000444713i
\(731\) −8.50572 + 19.1042i −0.314595 + 0.706593i
\(732\) −1.59552 0.427518i −0.0589720 0.0158015i
\(733\) 29.7961 + 24.1284i 1.10054 + 0.891202i 0.994663 0.103177i \(-0.0329007\pi\)
0.105880 + 0.994379i \(0.466234\pi\)
\(734\) 0.379860 + 1.16909i 0.0140209 + 0.0431519i
\(735\) 1.67457 + 0.348637i 0.0617675 + 0.0128597i
\(736\) 0.783879 2.41253i 0.0288942 0.0889271i
\(737\) 10.2438 6.65238i 0.377334 0.245043i
\(738\) 0.0562037 + 1.07243i 0.00206889 + 0.0394767i
\(739\) 6.02962 + 28.3671i 0.221803 + 1.04350i 0.938276 + 0.345887i \(0.112422\pi\)
−0.716473 + 0.697615i \(0.754245\pi\)
\(740\) −23.7963 25.1094i −0.874768 0.923039i
\(741\) 0.0114586 0.00372314i 0.000420944 0.000136773i
\(742\) 0.293752 0.0122536i 0.0107840 0.000449845i
\(743\) −26.0302 26.0302i −0.954956 0.954956i 0.0440723 0.999028i \(-0.485967\pi\)
−0.999028 + 0.0440723i \(0.985967\pi\)
\(744\) 0.0571151 0.00600303i 0.00209394 0.000220082i
\(745\) 10.2749 42.6733i 0.376443 1.56343i
\(746\) 0.147768 1.40592i 0.00541018 0.0514744i
\(747\) −11.8364 4.54355i −0.433069 0.166240i
\(748\) −5.45172 10.6996i −0.199335 0.391216i
\(749\) 9.11191 27.0578i 0.332942 0.988669i
\(750\) 0.00368248 0.0456290i 0.000134465 0.00166614i
\(751\) 3.63171 6.29030i 0.132523 0.229536i −0.792126 0.610358i \(-0.791026\pi\)
0.924648 + 0.380822i \(0.124359\pi\)
\(752\) 23.8641 + 15.4975i 0.870235 + 0.565137i
\(753\) 2.08760 1.69051i 0.0760764 0.0616055i
\(754\) −0.364429 + 0.162254i −0.0132717 + 0.00590895i
\(755\) 14.0554 14.7916i 0.511527 0.538322i
\(756\) 3.37667 + 0.755476i 0.122808 + 0.0274764i
\(757\) −19.0809 + 19.0809i −0.693507 + 0.693507i −0.963002 0.269495i \(-0.913143\pi\)
0.269495 + 0.963002i \(0.413143\pi\)
\(758\) 0.0900982 0.111262i 0.00327252 0.00404122i
\(759\) 0.568187 0.631035i 0.0206239 0.0229051i
\(760\) −0.0223192 + 0.00534270i −0.000809602 + 0.000193800i
\(761\) 4.12455 3.71376i 0.149515 0.134624i −0.590979 0.806687i \(-0.701258\pi\)
0.740494 + 0.672063i \(0.234592\pi\)
\(762\) 0.0393365 0.0772023i 0.00142501 0.00279674i
\(763\) −1.89438 7.38417i −0.0685810 0.267325i
\(764\) 42.5511 + 13.8257i 1.53944 + 0.500196i