Properties

Label 175.2.x.a.103.5
Level $175$
Weight $2$
Character 175.103
Analytic conductor $1.397$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(3,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([21, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.x (of order \(60\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 103.5
Character \(\chi\) \(=\) 175.103
Dual form 175.2.x.a.17.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.61811 - 0.0848016i) q^{2} +(1.71909 + 2.12290i) q^{3} +(0.622046 + 0.0653797i) q^{4} +(-2.19051 - 0.449052i) q^{5} +(-2.60166 - 3.58087i) q^{6} +(-0.156130 + 2.64114i) q^{7} +(2.19977 + 0.348409i) q^{8} +(-0.927701 + 4.36449i) q^{9} +O(q^{10})\) \(q+(-1.61811 - 0.0848016i) q^{2} +(1.71909 + 2.12290i) q^{3} +(0.622046 + 0.0653797i) q^{4} +(-2.19051 - 0.449052i) q^{5} +(-2.60166 - 3.58087i) q^{6} +(-0.156130 + 2.64114i) q^{7} +(2.19977 + 0.348409i) q^{8} +(-0.927701 + 4.36449i) q^{9} +(3.50641 + 0.912375i) q^{10} +(-3.84181 + 0.816603i) q^{11} +(0.930561 + 1.43294i) q^{12} +(-0.0865535 - 0.0441012i) q^{13} +(0.476608 - 4.26042i) q^{14} +(-2.81240 - 5.42221i) q^{15} +(-4.75353 - 1.01039i) q^{16} +(-1.20108 - 3.12891i) q^{17} +(1.87124 - 6.98356i) q^{18} +(0.637130 + 6.06189i) q^{19} +(-1.33324 - 0.422546i) q^{20} +(-5.87529 + 4.20892i) q^{21} +(6.28573 - 0.995562i) q^{22} +(-0.274480 + 5.23739i) q^{23} +(3.04197 + 5.26884i) q^{24} +(4.59670 + 1.96731i) q^{25} +(0.136313 + 0.0787005i) q^{26} +(-3.55840 + 1.81310i) q^{27} +(-0.269797 + 1.63270i) q^{28} +(2.51245 - 3.45809i) q^{29} +(4.09097 + 9.01223i) q^{30} +(-0.287036 + 0.644694i) q^{31} +(3.30346 + 0.885159i) q^{32} +(-8.33800 - 6.75198i) q^{33} +(1.67814 + 5.16477i) q^{34} +(1.52801 - 5.71535i) q^{35} +(-0.862422 + 2.65426i) q^{36} +(6.47261 - 4.20336i) q^{37} +(-0.516889 - 9.86284i) q^{38} +(-0.0551709 - 0.259559i) q^{39} +(-4.66217 - 1.75101i) q^{40} +(0.124652 - 0.0405019i) q^{41} +(9.86378 - 6.31226i) q^{42} +(8.25770 + 8.25770i) q^{43} +(-2.44318 + 0.256788i) q^{44} +(3.99203 - 9.14389i) q^{45} +(0.888279 - 8.45141i) q^{46} +(2.52906 + 0.970816i) q^{47} +(-6.02679 - 11.8282i) q^{48} +(-6.95125 - 0.824720i) q^{49} +(-7.27115 - 3.57313i) q^{50} +(4.57761 - 7.92865i) q^{51} +(-0.0509570 - 0.0330918i) q^{52} +(9.13970 - 7.40118i) q^{53} +(5.91164 - 2.63203i) q^{54} +(8.78225 - 0.0636062i) q^{55} +(-1.26365 + 5.75550i) q^{56} +(-11.7735 + 11.7735i) q^{57} +(-4.35867 + 5.38252i) q^{58} +(-3.45304 + 3.83499i) q^{59} +(-1.39494 - 3.55674i) q^{60} +(5.30099 - 4.77304i) q^{61} +(0.519128 - 1.01885i) q^{62} +(-11.3824 - 3.13162i) q^{63} +(3.97346 + 1.29105i) q^{64} +(0.169793 + 0.135471i) q^{65} +(12.9192 + 11.6325i) q^{66} +(-0.521089 + 0.200027i) q^{67} +(-0.542557 - 2.02485i) q^{68} +(-11.5903 + 8.42087i) q^{69} +(-2.95716 + 9.11848i) q^{70} +(0.818370 + 0.594581i) q^{71} +(-3.56136 + 9.27765i) q^{72} +(-1.16213 + 1.78952i) q^{73} +(-10.8299 + 6.25262i) q^{74} +(3.72576 + 13.1403i) q^{75} +3.81243i q^{76} +(-1.55694 - 10.2743i) q^{77} +(0.0672616 + 0.424673i) q^{78} +(-6.28497 - 14.1163i) q^{79} +(9.95896 + 4.34787i) q^{80} +(2.26247 + 1.00731i) q^{81} +(-0.205136 + 0.0549659i) q^{82} +(-1.69214 + 10.6837i) q^{83} +(-3.92988 + 2.23402i) q^{84} +(1.22593 + 7.39326i) q^{85} +(-12.6616 - 14.0621i) q^{86} +(11.6603 - 0.611092i) q^{87} +(-8.73562 + 0.457814i) q^{88} +(-0.671570 - 0.745854i) q^{89} +(-7.23495 + 14.4573i) q^{90} +(0.129991 - 0.221714i) q^{91} +(-0.513159 + 3.23996i) q^{92} +(-1.86207 + 0.498939i) q^{93} +(-4.00998 - 1.78536i) q^{94} +(1.32646 - 13.5648i) q^{95} +(3.79985 + 8.53459i) q^{96} +(1.77133 + 11.1837i) q^{97} +(11.1779 + 1.92397i) q^{98} -17.5251i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9} - 36 q^{10} - 6 q^{11} - 36 q^{12} - 20 q^{14} - 28 q^{15} - 30 q^{16} - 42 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} + 32 q^{22} - 40 q^{23} + 2 q^{25} - 48 q^{26} + 22 q^{28} - 58 q^{30} - 18 q^{31} + 8 q^{32} - 30 q^{33} - 2 q^{35} + 40 q^{36} - 10 q^{37} + 72 q^{38} + 30 q^{39} - 48 q^{40} + 6 q^{42} - 108 q^{43} - 10 q^{44} + 186 q^{45} - 6 q^{46} - 54 q^{47} - 248 q^{50} - 16 q^{51} + 216 q^{52} + 50 q^{53} - 30 q^{54} + 4 q^{56} - 216 q^{57} - 4 q^{58} + 90 q^{59} + 96 q^{60} - 18 q^{61} - 66 q^{63} - 100 q^{64} + 14 q^{65} - 90 q^{66} + 4 q^{67} + 342 q^{68} - 60 q^{70} - 24 q^{71} + 58 q^{72} - 6 q^{73} + 216 q^{75} - 80 q^{77} - 132 q^{78} - 10 q^{79} - 6 q^{80} - 10 q^{81} + 216 q^{82} + 20 q^{84} - 48 q^{85} - 6 q^{86} - 48 q^{87} - 122 q^{88} + 120 q^{89} - 12 q^{91} - 4 q^{92} + 106 q^{93} - 30 q^{94} - 98 q^{95} - 90 q^{96} + 222 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.61811 0.0848016i −1.14418 0.0599638i −0.529192 0.848502i \(-0.677505\pi\)
−0.614985 + 0.788539i \(0.710838\pi\)
\(3\) 1.71909 + 2.12290i 0.992519 + 1.22566i 0.974167 + 0.225827i \(0.0725084\pi\)
0.0183512 + 0.999832i \(0.494158\pi\)
\(4\) 0.622046 + 0.0653797i 0.311023 + 0.0326899i
\(5\) −2.19051 0.449052i −0.979628 0.200822i
\(6\) −2.60166 3.58087i −1.06212 1.46189i
\(7\) −0.156130 + 2.64114i −0.0590114 + 0.998257i
\(8\) 2.19977 + 0.348409i 0.777736 + 0.123181i
\(9\) −0.927701 + 4.36449i −0.309234 + 1.45483i
\(10\) 3.50641 + 0.912375i 1.10883 + 0.288518i
\(11\) −3.84181 + 0.816603i −1.15835 + 0.246215i −0.746722 0.665137i \(-0.768373\pi\)
−0.411629 + 0.911352i \(0.635040\pi\)
\(12\) 0.930561 + 1.43294i 0.268630 + 0.413653i
\(13\) −0.0865535 0.0441012i −0.0240056 0.0122315i 0.441946 0.897041i \(-0.354288\pi\)
−0.465952 + 0.884810i \(0.654288\pi\)
\(14\) 0.476608 4.26042i 0.127379 1.13864i
\(15\) −2.81240 5.42221i −0.726160 1.40001i
\(16\) −4.75353 1.01039i −1.18838 0.252599i
\(17\) −1.20108 3.12891i −0.291304 0.758872i −0.998647 0.0520016i \(-0.983440\pi\)
0.707343 0.706870i \(-0.249893\pi\)
\(18\) 1.87124 6.98356i 0.441055 1.64604i
\(19\) 0.637130 + 6.06189i 0.146168 + 1.39069i 0.784116 + 0.620614i \(0.213117\pi\)
−0.637948 + 0.770079i \(0.720217\pi\)
\(20\) −1.33324 0.422546i −0.298122 0.0944842i
\(21\) −5.87529 + 4.20892i −1.28209 + 0.918461i
\(22\) 6.28573 0.995562i 1.34012 0.212254i
\(23\) −0.274480 + 5.23739i −0.0572331 + 1.09207i 0.807509 + 0.589856i \(0.200815\pi\)
−0.864742 + 0.502217i \(0.832518\pi\)
\(24\) 3.04197 + 5.26884i 0.620939 + 1.07550i
\(25\) 4.59670 + 1.96731i 0.919341 + 0.393462i
\(26\) 0.136313 + 0.0787005i 0.0267332 + 0.0154344i
\(27\) −3.55840 + 1.81310i −0.684814 + 0.348930i
\(28\) −0.269797 + 1.63270i −0.0509868 + 0.308552i
\(29\) 2.51245 3.45809i 0.466550 0.642152i −0.509301 0.860589i \(-0.670096\pi\)
0.975851 + 0.218437i \(0.0700959\pi\)
\(30\) 4.09097 + 9.01223i 0.746905 + 1.64540i
\(31\) −0.287036 + 0.644694i −0.0515533 + 0.115791i −0.937486 0.348024i \(-0.886853\pi\)
0.885932 + 0.463814i \(0.153520\pi\)
\(32\) 3.30346 + 0.885159i 0.583975 + 0.156475i
\(33\) −8.33800 6.75198i −1.45146 1.17537i
\(34\) 1.67814 + 5.16477i 0.287798 + 0.885751i
\(35\) 1.52801 5.71535i 0.258281 0.966070i
\(36\) −0.862422 + 2.65426i −0.143737 + 0.442377i
\(37\) 6.47261 4.20336i 1.06409 0.691029i 0.111033 0.993817i \(-0.464584\pi\)
0.953058 + 0.302788i \(0.0979174\pi\)
\(38\) −0.516889 9.86284i −0.0838505 1.59996i
\(39\) −0.0551709 0.259559i −0.00883442 0.0415627i
\(40\) −4.66217 1.75101i −0.737154 0.276858i
\(41\) 0.124652 0.0405019i 0.0194674 0.00632534i −0.299267 0.954169i \(-0.596742\pi\)
0.318735 + 0.947844i \(0.396742\pi\)
\(42\) 9.86378 6.31226i 1.52202 0.974003i
\(43\) 8.25770 + 8.25770i 1.25929 + 1.25929i 0.951434 + 0.307854i \(0.0996108\pi\)
0.307854 + 0.951434i \(0.400389\pi\)
\(44\) −2.44318 + 0.256788i −0.368323 + 0.0387123i
\(45\) 3.99203 9.14389i 0.595096 1.36309i
\(46\) 0.888279 8.45141i 0.130970 1.24609i
\(47\) 2.52906 + 0.970816i 0.368902 + 0.141608i 0.535755 0.844374i \(-0.320027\pi\)
−0.166853 + 0.985982i \(0.553361\pi\)
\(48\) −6.02679 11.8282i −0.869893 1.70726i
\(49\) −6.95125 0.824720i −0.993035 0.117817i
\(50\) −7.27115 3.57313i −1.02830 0.505317i
\(51\) 4.57761 7.92865i 0.640993 1.11023i
\(52\) −0.0509570 0.0330918i −0.00706646 0.00458901i
\(53\) 9.13970 7.40118i 1.25543 1.01663i 0.256691 0.966493i \(-0.417368\pi\)
0.998742 0.0501369i \(-0.0159658\pi\)
\(54\) 5.91164 2.63203i 0.804472 0.358174i
\(55\) 8.78225 0.0636062i 1.18420 0.00857666i
\(56\) −1.26365 + 5.75550i −0.168862 + 0.769111i
\(57\) −11.7735 + 11.7735i −1.55944 + 1.55944i
\(58\) −4.35867 + 5.38252i −0.572322 + 0.706759i
\(59\) −3.45304 + 3.83499i −0.449548 + 0.499273i −0.924735 0.380611i \(-0.875714\pi\)
0.475188 + 0.879885i \(0.342380\pi\)
\(60\) −1.39494 3.55674i −0.180086 0.459173i
\(61\) 5.30099 4.77304i 0.678723 0.611125i −0.255926 0.966696i \(-0.582380\pi\)
0.934649 + 0.355572i \(0.115714\pi\)
\(62\) 0.519128 1.01885i 0.0659293 0.129394i
\(63\) −11.3824 3.13162i −1.43405 0.394546i
\(64\) 3.97346 + 1.29105i 0.496682 + 0.161382i
\(65\) 0.169793 + 0.135471i 0.0210602 + 0.0168032i
\(66\) 12.9192 + 11.6325i 1.59025 + 1.43187i
\(67\) −0.521089 + 0.200027i −0.0636611 + 0.0244372i −0.389990 0.920819i \(-0.627522\pi\)
0.326329 + 0.945256i \(0.394188\pi\)
\(68\) −0.542557 2.02485i −0.0657947 0.245549i
\(69\) −11.5903 + 8.42087i −1.39531 + 1.01375i
\(70\) −2.95716 + 9.11848i −0.353449 + 1.08987i
\(71\) 0.818370 + 0.594581i 0.0971227 + 0.0705637i 0.635287 0.772276i \(-0.280882\pi\)
−0.538164 + 0.842840i \(0.680882\pi\)
\(72\) −3.56136 + 9.27765i −0.419710 + 1.09338i
\(73\) −1.16213 + 1.78952i −0.136017 + 0.209448i −0.900115 0.435652i \(-0.856518\pi\)
0.764098 + 0.645100i \(0.223184\pi\)
\(74\) −10.8299 + 6.25262i −1.25894 + 0.726852i
\(75\) 3.72576 + 13.1403i 0.430213 + 1.51732i
\(76\) 3.81243i 0.437316i
\(77\) −1.55694 10.2743i −0.177430 1.17086i
\(78\) 0.0672616 + 0.424673i 0.00761588 + 0.0480848i
\(79\) −6.28497 14.1163i −0.707114 1.58820i −0.805184 0.593025i \(-0.797933\pi\)
0.0980696 0.995180i \(-0.468733\pi\)
\(80\) 9.95896 + 4.34787i 1.11345 + 0.486106i
\(81\) 2.26247 + 1.00731i 0.251385 + 0.111924i
\(82\) −0.205136 + 0.0549659i −0.0226534 + 0.00606997i
\(83\) −1.69214 + 10.6837i −0.185736 + 1.17269i 0.701944 + 0.712232i \(0.252316\pi\)
−0.887680 + 0.460461i \(0.847684\pi\)
\(84\) −3.92988 + 2.23402i −0.428785 + 0.243751i
\(85\) 1.22593 + 7.39326i 0.132971 + 0.801912i
\(86\) −12.6616 14.0621i −1.36534 1.51636i
\(87\) 11.6603 0.611092i 1.25012 0.0655159i
\(88\) −8.73562 + 0.457814i −0.931220 + 0.0488032i
\(89\) −0.671570 0.745854i −0.0711863 0.0790604i 0.706500 0.707713i \(-0.250273\pi\)
−0.777686 + 0.628653i \(0.783607\pi\)
\(90\) −7.23495 + 14.4573i −0.762631 + 1.52393i
\(91\) 0.129991 0.221714i 0.0136268 0.0232420i
\(92\) −0.513159 + 3.23996i −0.0535005 + 0.337789i
\(93\) −1.86207 + 0.498939i −0.193087 + 0.0517376i
\(94\) −4.00998 1.78536i −0.413597 0.184145i
\(95\) 1.32646 13.5648i 0.136092 1.39172i
\(96\) 3.79985 + 8.53459i 0.387820 + 0.871058i
\(97\) 1.77133 + 11.1837i 0.179851 + 1.13554i 0.898113 + 0.439764i \(0.144938\pi\)
−0.718262 + 0.695773i \(0.755062\pi\)
\(98\) 11.1779 + 1.92397i 1.12914 + 0.194350i
\(99\) 17.5251i 1.76134i
\(100\) 2.73074 + 1.52429i 0.273074 + 0.152429i
\(101\) −10.1623 + 5.86718i −1.01118 + 0.583807i −0.911538 0.411216i \(-0.865104\pi\)
−0.0996449 + 0.995023i \(0.531771\pi\)
\(102\) −8.07944 + 12.4412i −0.799983 + 1.23187i
\(103\) −3.60931 + 9.40258i −0.355636 + 0.926464i 0.632730 + 0.774372i \(0.281934\pi\)
−0.988366 + 0.152092i \(0.951399\pi\)
\(104\) −0.175032 0.127168i −0.0171633 0.0124699i
\(105\) 14.7599 6.58139i 1.44042 0.642278i
\(106\) −15.4167 + 11.2009i −1.49740 + 1.08792i
\(107\) −0.292999 1.09349i −0.0283253 0.105711i 0.950316 0.311287i \(-0.100760\pi\)
−0.978641 + 0.205576i \(0.934093\pi\)
\(108\) −2.33203 + 0.895182i −0.224400 + 0.0861389i
\(109\) −2.17553 1.95886i −0.208378 0.187624i 0.558333 0.829617i \(-0.311441\pi\)
−0.766711 + 0.641993i \(0.778108\pi\)
\(110\) −14.2160 0.641826i −1.35545 0.0611958i
\(111\) 20.0504 + 6.51476i 1.90310 + 0.618353i
\(112\) 3.41076 12.3970i 0.322287 1.17141i
\(113\) −2.12100 + 4.16270i −0.199527 + 0.391594i −0.968991 0.247097i \(-0.920523\pi\)
0.769464 + 0.638690i \(0.220523\pi\)
\(114\) 20.0493 18.0524i 1.87779 1.69077i
\(115\) 2.95311 11.3493i 0.275379 1.05833i
\(116\) 1.78895 1.98683i 0.166100 0.184473i
\(117\) 0.272775 0.336849i 0.0252181 0.0311417i
\(118\) 5.91261 5.91261i 0.544300 0.544300i
\(119\) 8.45141 2.68369i 0.774739 0.246014i
\(120\) −4.29749 12.9075i −0.392305 1.17829i
\(121\) 4.04370 1.80037i 0.367609 0.163670i
\(122\) −8.98236 + 7.27377i −0.813224 + 0.658536i
\(123\) 0.300270 + 0.194998i 0.0270745 + 0.0175824i
\(124\) −0.220700 + 0.382263i −0.0198194 + 0.0343283i
\(125\) −9.18572 6.37358i −0.821596 0.570070i
\(126\) 18.1524 + 6.03254i 1.61714 + 0.537422i
\(127\) −7.51832 14.7555i −0.667143 1.30934i −0.937971 0.346713i \(-0.887298\pi\)
0.270829 0.962628i \(-0.412702\pi\)
\(128\) −12.7057 4.87725i −1.12303 0.431092i
\(129\) −3.33454 + 31.7260i −0.293590 + 2.79332i
\(130\) −0.263256 0.233606i −0.0230890 0.0204886i
\(131\) −0.400325 + 0.0420758i −0.0349765 + 0.00367618i −0.122001 0.992530i \(-0.538931\pi\)
0.0870240 + 0.996206i \(0.472264\pi\)
\(132\) −4.74518 4.74518i −0.413015 0.413015i
\(133\) −16.1098 + 0.736311i −1.39690 + 0.0638462i
\(134\) 0.860142 0.279477i 0.0743049 0.0241431i
\(135\) 8.60890 2.37370i 0.740936 0.204296i
\(136\) −1.55195 7.30134i −0.133078 0.626085i
\(137\) 0.662940 + 12.6497i 0.0566388 + 1.08073i 0.868120 + 0.496354i \(0.165328\pi\)
−0.811481 + 0.584378i \(0.801338\pi\)
\(138\) 19.4685 12.6430i 1.65727 1.07625i
\(139\) 4.44619 13.6840i 0.377121 1.16066i −0.564915 0.825149i \(-0.691091\pi\)
0.942036 0.335511i \(-0.108909\pi\)
\(140\) 1.32416 3.45531i 0.111912 0.292027i
\(141\) 2.28674 + 7.03788i 0.192579 + 0.592696i
\(142\) −1.27379 1.03150i −0.106894 0.0865612i
\(143\) 0.368536 + 0.0987488i 0.0308185 + 0.00825779i
\(144\) 8.81972 19.8094i 0.734976 1.65078i
\(145\) −7.05642 + 6.44678i −0.586004 + 0.535376i
\(146\) 2.03221 2.79710i 0.168187 0.231489i
\(147\) −10.1990 16.1746i −0.841202 1.33406i
\(148\) 4.30108 2.19151i 0.353547 0.180141i
\(149\) 9.24670 + 5.33859i 0.757519 + 0.437354i 0.828404 0.560131i \(-0.189249\pi\)
−0.0708851 + 0.997484i \(0.522582\pi\)
\(150\) −4.91436 21.5785i −0.401256 1.76188i
\(151\) −10.4396 18.0820i −0.849565 1.47149i −0.881597 0.472003i \(-0.843531\pi\)
0.0320315 0.999487i \(-0.489802\pi\)
\(152\) −0.710479 + 13.5567i −0.0576274 + 1.09960i
\(153\) 14.7703 2.33939i 1.19411 0.189128i
\(154\) 1.64803 + 16.7569i 0.132802 + 1.35031i
\(155\) 0.918259 1.28332i 0.0737563 0.103079i
\(156\) −0.0173490 0.165065i −0.00138903 0.0132157i
\(157\) 3.09395 11.5468i 0.246924 0.921533i −0.725483 0.688241i \(-0.758383\pi\)
0.972407 0.233293i \(-0.0749500\pi\)
\(158\) 8.97269 + 23.3747i 0.713829 + 1.85959i
\(159\) 31.4240 + 6.67937i 2.49208 + 0.529709i
\(160\) −6.83879 3.42238i −0.540654 0.270563i
\(161\) −13.7898 1.54265i −1.08679 0.121578i
\(162\) −3.57550 1.82181i −0.280918 0.143135i
\(163\) 7.89827 + 12.1623i 0.618640 + 0.952622i 0.999607 + 0.0280333i \(0.00892443\pi\)
−0.380967 + 0.924589i \(0.624409\pi\)
\(164\) 0.0801874 0.0170444i 0.00626159 0.00133094i
\(165\) 15.2325 + 18.5345i 1.18585 + 1.44291i
\(166\) 3.64407 17.1440i 0.282834 1.33063i
\(167\) 1.65219 + 0.261681i 0.127850 + 0.0202495i 0.220032 0.975493i \(-0.429384\pi\)
−0.0921813 + 0.995742i \(0.529384\pi\)
\(168\) −14.3907 + 7.21164i −1.11027 + 0.556390i
\(169\) −7.63566 10.5096i −0.587359 0.808430i
\(170\) −1.35673 12.0671i −0.104056 0.925502i
\(171\) −27.0481 2.84287i −2.06842 0.217400i
\(172\) 4.59679 + 5.67656i 0.350502 + 0.432834i
\(173\) −0.280864 0.0147195i −0.0213537 0.00111910i 0.0416561 0.999132i \(-0.486737\pi\)
−0.0630098 + 0.998013i \(0.520070\pi\)
\(174\) −18.9195 −1.43429
\(175\) −5.91362 + 11.8334i −0.447028 + 0.894520i
\(176\) 19.0873 1.43876
\(177\) −14.0774 0.737766i −1.05812 0.0554539i
\(178\) 1.02343 + 1.26383i 0.0767090 + 0.0947277i
\(179\) 13.0417 + 1.37074i 0.974782 + 0.102454i 0.578506 0.815678i \(-0.303636\pi\)
0.396275 + 0.918132i \(0.370303\pi\)
\(180\) 3.08105 5.42693i 0.229648 0.404499i
\(181\) 13.5383 + 18.6338i 1.00629 + 1.38504i 0.921384 + 0.388653i \(0.127060\pi\)
0.0849076 + 0.996389i \(0.472940\pi\)
\(182\) −0.229142 + 0.347735i −0.0169851 + 0.0257758i
\(183\) 19.2456 + 3.04820i 1.42268 + 0.225330i
\(184\) −2.42855 + 11.4254i −0.179035 + 0.842294i
\(185\) −16.0659 + 6.30099i −1.18119 + 0.463258i
\(186\) 3.05534 0.649432i 0.224028 0.0476187i
\(187\) 7.16938 + 11.0399i 0.524277 + 0.807316i
\(188\) 1.50972 + 0.769242i 0.110108 + 0.0561027i
\(189\) −4.23307 9.68131i −0.307910 0.704212i
\(190\) −3.29667 + 21.8368i −0.239166 + 1.58421i
\(191\) −3.95786 0.841270i −0.286381 0.0608722i 0.0624813 0.998046i \(-0.480099\pi\)
−0.348862 + 0.937174i \(0.613432\pi\)
\(192\) 4.08996 + 10.6547i 0.295167 + 0.768937i
\(193\) 0.795745 2.96976i 0.0572790 0.213768i −0.931355 0.364114i \(-0.881372\pi\)
0.988634 + 0.150346i \(0.0480386\pi\)
\(194\) −1.91781 18.2467i −0.137691 1.31004i
\(195\) 0.00429733 + 0.593342i 0.000307738 + 0.0424901i
\(196\) −4.27008 0.967485i −0.305006 0.0691061i
\(197\) 12.4561 1.97286i 0.887464 0.140560i 0.303973 0.952681i \(-0.401687\pi\)
0.583490 + 0.812120i \(0.301687\pi\)
\(198\) −1.48616 + 28.3576i −0.105617 + 2.01529i
\(199\) −2.17496 3.76715i −0.154179 0.267046i 0.778581 0.627545i \(-0.215940\pi\)
−0.932760 + 0.360498i \(0.882607\pi\)
\(200\) 9.42626 + 5.92916i 0.666537 + 0.419255i
\(201\) −1.32044 0.762355i −0.0931365 0.0537724i
\(202\) 16.9412 8.63198i 1.19198 0.607344i
\(203\) 8.74104 + 7.17565i 0.613501 + 0.503632i
\(204\) 3.36586 4.63270i 0.235657 0.324354i
\(205\) −0.291240 + 0.0327448i −0.0203411 + 0.00228700i
\(206\) 6.63762 14.9083i 0.462465 1.03871i
\(207\) −22.6039 6.05670i −1.57108 0.420970i
\(208\) 0.366875 + 0.297090i 0.0254382 + 0.0205995i
\(209\) −7.39789 22.7684i −0.511723 1.57492i
\(210\) −24.4413 + 9.39775i −1.68661 + 0.648506i
\(211\) 2.05986 6.33961i 0.141807 0.436437i −0.854780 0.518991i \(-0.826308\pi\)
0.996587 + 0.0825543i \(0.0263078\pi\)
\(212\) 6.16920 4.00633i 0.423703 0.275156i
\(213\) 0.144617 + 2.75946i 0.00990900 + 0.189075i
\(214\) 0.381375 + 1.79423i 0.0260703 + 0.122651i
\(215\) −14.3805 21.7967i −0.980740 1.48653i
\(216\) −8.45936 + 2.74861i −0.575586 + 0.187019i
\(217\) −1.65791 0.858760i −0.112547 0.0582964i
\(218\) 3.35413 + 3.35413i 0.227171 + 0.227171i
\(219\) −5.79680 + 0.609268i −0.391711 + 0.0411705i
\(220\) 5.46712 + 0.534615i 0.368593 + 0.0360437i
\(221\) −0.0340314 + 0.323787i −0.00228920 + 0.0217803i
\(222\) −31.8912 12.2419i −2.14040 0.821622i
\(223\) −6.99626 13.7309i −0.468504 0.919491i −0.997486 0.0708583i \(-0.977426\pi\)
0.528982 0.848633i \(-0.322574\pi\)
\(224\) −2.85360 + 8.58670i −0.190664 + 0.573723i
\(225\) −12.8507 + 18.2372i −0.856711 + 1.21581i
\(226\) 3.78502 6.55584i 0.251776 0.436088i
\(227\) −11.1124 7.21647i −0.737556 0.478974i 0.120382 0.992728i \(-0.461588\pi\)
−0.857938 + 0.513753i \(0.828255\pi\)
\(228\) −8.09342 + 6.55393i −0.536000 + 0.434044i
\(229\) −3.78909 + 1.68701i −0.250390 + 0.111481i −0.528094 0.849186i \(-0.677093\pi\)
0.277704 + 0.960667i \(0.410426\pi\)
\(230\) −5.74091 + 18.1140i −0.378544 + 1.19440i
\(231\) 19.1347 20.9677i 1.25897 1.37957i
\(232\) 6.73164 6.73164i 0.441954 0.441954i
\(233\) 16.2166 20.0258i 1.06238 1.31194i 0.114464 0.993427i \(-0.463485\pi\)
0.947920 0.318508i \(-0.103182\pi\)
\(234\) −0.469946 + 0.521927i −0.0307213 + 0.0341195i
\(235\) −5.10400 3.26227i −0.332948 0.212807i
\(236\) −2.39868 + 2.15978i −0.156141 + 0.140590i
\(237\) 19.1630 37.6096i 1.24477 2.44300i
\(238\) −13.9029 + 3.62582i −0.901191 + 0.235027i
\(239\) −0.618920 0.201099i −0.0400346 0.0130080i 0.288931 0.957350i \(-0.406700\pi\)
−0.328966 + 0.944342i \(0.606700\pi\)
\(240\) 7.89028 + 28.6163i 0.509315 + 1.84717i
\(241\) −0.853202 0.768226i −0.0549596 0.0494858i 0.641193 0.767379i \(-0.278440\pi\)
−0.696153 + 0.717894i \(0.745106\pi\)
\(242\) −6.69582 + 2.57029i −0.430424 + 0.165224i
\(243\) 4.85188 + 18.1075i 0.311248 + 1.16159i
\(244\) 3.60952 2.62247i 0.231076 0.167887i
\(245\) 14.8565 + 4.92803i 0.949145 + 0.314840i
\(246\) −0.469334 0.340991i −0.0299237 0.0217408i
\(247\) 0.212191 0.552776i 0.0135014 0.0351723i
\(248\) −0.856031 + 1.31817i −0.0543580 + 0.0837040i
\(249\) −25.5895 + 14.7741i −1.62167 + 0.936270i
\(250\) 14.3230 + 11.0921i 0.905868 + 0.701527i
\(251\) 13.8492i 0.874153i 0.899424 + 0.437076i \(0.143986\pi\)
−0.899424 + 0.437076i \(0.856014\pi\)
\(252\) −6.87563 2.69219i −0.433124 0.169592i
\(253\) −3.22237 20.3452i −0.202589 1.27909i
\(254\) 10.9142 + 24.5136i 0.684816 + 1.53812i
\(255\) −13.5877 + 15.3122i −0.850894 + 0.958889i
\(256\) 12.5121 + 5.57076i 0.782008 + 0.348172i
\(257\) −0.352213 + 0.0943752i −0.0219704 + 0.00588696i −0.269788 0.962920i \(-0.586953\pi\)
0.247817 + 0.968807i \(0.420287\pi\)
\(258\) 8.08608 51.0535i 0.503417 3.17845i
\(259\) 10.0911 + 17.7513i 0.627031 + 1.10302i
\(260\) 0.0967620 + 0.0953705i 0.00600092 + 0.00591462i
\(261\) 12.7620 + 14.1736i 0.789948 + 0.877327i
\(262\) 0.651338 0.0341352i 0.0402398 0.00210888i
\(263\) 29.7070 1.55688i 1.83181 0.0960011i 0.895049 0.445968i \(-0.147141\pi\)
0.936762 + 0.349967i \(0.113807\pi\)
\(264\) −15.9892 17.7578i −0.984069 1.09292i
\(265\) −23.3441 + 12.1082i −1.43402 + 0.743800i
\(266\) 26.1298 + 0.174703i 1.60212 + 0.0107117i
\(267\) 0.428885 2.70787i 0.0262473 0.165719i
\(268\) −0.337219 + 0.0903576i −0.0205989 + 0.00551947i
\(269\) 18.9335 + 8.42973i 1.15439 + 0.513970i 0.892465 0.451117i \(-0.148974\pi\)
0.261930 + 0.965087i \(0.415641\pi\)
\(270\) −14.1314 + 3.11087i −0.860012 + 0.189321i
\(271\) −2.28034 5.12174i −0.138521 0.311123i 0.830943 0.556358i \(-0.187802\pi\)
−0.969464 + 0.245235i \(0.921135\pi\)
\(272\) 2.54792 + 16.0869i 0.154490 + 0.975413i
\(273\) 0.694145 0.105189i 0.0420116 0.00636635i
\(274\) 20.5248i 1.23995i
\(275\) −19.2662 3.80435i −1.16180 0.229411i
\(276\) −7.76028 + 4.48040i −0.467114 + 0.269688i
\(277\) −3.21957 + 4.95771i −0.193445 + 0.297880i −0.922062 0.387042i \(-0.873497\pi\)
0.728617 + 0.684922i \(0.240164\pi\)
\(278\) −8.35486 + 21.7651i −0.501091 + 1.30539i
\(279\) −2.54748 1.85085i −0.152514 0.110808i
\(280\) 5.35255 12.0401i 0.319876 0.719532i
\(281\) −6.92124 + 5.02858i −0.412887 + 0.299980i −0.774769 0.632244i \(-0.782134\pi\)
0.361883 + 0.932224i \(0.382134\pi\)
\(282\) −3.10338 11.5820i −0.184804 0.689697i
\(283\) 14.0882 5.40796i 0.837458 0.321470i 0.0984291 0.995144i \(-0.468618\pi\)
0.739028 + 0.673674i \(0.235285\pi\)
\(284\) 0.470191 + 0.423361i 0.0279007 + 0.0251219i
\(285\) 31.0770 20.5031i 1.84084 1.21450i
\(286\) −0.587957 0.191039i −0.0347666 0.0112964i
\(287\) 0.0875094 + 0.335547i 0.00516552 + 0.0198067i
\(288\) −6.92789 + 13.5968i −0.408230 + 0.801196i
\(289\) 4.28598 3.85911i 0.252116 0.227007i
\(290\) 11.9648 9.83320i 0.702595 0.577426i
\(291\) −20.6969 + 22.9863i −1.21327 + 1.34748i
\(292\) −0.839898 + 1.03719i −0.0491513 + 0.0606968i
\(293\) −7.80680 + 7.80680i −0.456078 + 0.456078i −0.897366 0.441288i \(-0.854522\pi\)
0.441288 + 0.897366i \(0.354522\pi\)
\(294\) 15.1315 + 27.0372i 0.882489 + 1.57684i
\(295\) 9.28604 6.85000i 0.540654 0.398823i
\(296\) 15.7027 6.99131i 0.912703 0.406362i
\(297\) 12.1901 9.87137i 0.707343 0.572795i
\(298\) −14.5095 9.42256i −0.840511 0.545834i
\(299\) 0.254733 0.441210i 0.0147316 0.0255158i
\(300\) 1.45848 + 8.41749i 0.0842055 + 0.485984i
\(301\) −23.0990 + 20.5205i −1.33141 + 1.18278i
\(302\) 15.3591 + 30.1439i 0.883817 + 1.73459i
\(303\) −29.9253 11.4873i −1.71917 0.659926i
\(304\) 3.09628 29.4592i 0.177584 1.68960i
\(305\) −13.7552 + 8.07498i −0.787623 + 0.462372i
\(306\) −24.0984 + 2.53284i −1.37761 + 0.144793i
\(307\) −8.14095 8.14095i −0.464628 0.464628i 0.435541 0.900169i \(-0.356557\pi\)
−0.900169 + 0.435541i \(0.856557\pi\)
\(308\) −0.296762 6.49286i −0.0169096 0.369965i
\(309\) −26.1655 + 8.50169i −1.48850 + 0.483644i
\(310\) −1.59467 + 1.99868i −0.0905712 + 0.113517i
\(311\) 5.97488 + 28.1096i 0.338804 + 1.59395i 0.736504 + 0.676433i \(0.236475\pi\)
−0.397700 + 0.917516i \(0.630192\pi\)
\(312\) −0.0309306 0.590191i −0.00175110 0.0334130i
\(313\) −7.98245 + 5.18386i −0.451195 + 0.293009i −0.750162 0.661254i \(-0.770025\pi\)
0.298967 + 0.954263i \(0.403358\pi\)
\(314\) −5.98554 + 18.4216i −0.337783 + 1.03959i
\(315\) 23.5270 + 11.9711i 1.32560 + 0.674497i
\(316\) −2.98662 9.19189i −0.168011 0.517084i
\(317\) −6.06620 4.91231i −0.340712 0.275903i 0.443658 0.896196i \(-0.353680\pi\)
−0.784370 + 0.620293i \(0.787014\pi\)
\(318\) −50.2810 13.4728i −2.81962 0.755515i
\(319\) −6.82848 + 15.3370i −0.382322 + 0.858708i
\(320\) −8.12416 4.61236i −0.454154 0.257839i
\(321\) 1.81768 2.50182i 0.101453 0.139638i
\(322\) 22.1827 + 3.66558i 1.23619 + 0.204275i
\(323\) 18.2019 9.27431i 1.01278 0.516036i
\(324\) 1.34150 + 0.774516i 0.0745278 + 0.0430287i
\(325\) −0.311100 0.372998i −0.0172567 0.0206902i
\(326\) −11.7489 20.3497i −0.650711 1.12706i
\(327\) 0.418523 7.98590i 0.0231444 0.441621i
\(328\) 0.288317 0.0456650i 0.0159197 0.00252143i
\(329\) −2.95892 + 6.52804i −0.163131 + 0.359902i
\(330\) −23.0762 31.2826i −1.27030 1.72205i
\(331\) −0.108165 1.02912i −0.00594527 0.0565654i 0.991147 0.132769i \(-0.0423868\pi\)
−0.997092 + 0.0762035i \(0.975720\pi\)
\(332\) −1.75109 + 6.53515i −0.0961035 + 0.358663i
\(333\) 12.3409 + 32.1491i 0.676277 + 1.76176i
\(334\) −2.65124 0.563538i −0.145069 0.0308354i
\(335\) 1.23127 0.204167i 0.0672717 0.0111548i
\(336\) 32.1810 14.0709i 1.75562 0.767629i
\(337\) −1.66773 0.849753i −0.0908472 0.0462890i 0.407977 0.912992i \(-0.366235\pi\)
−0.498824 + 0.866703i \(0.666235\pi\)
\(338\) 11.4641 + 17.6532i 0.623566 + 0.960207i
\(339\) −12.4832 + 2.65339i −0.677994 + 0.144112i
\(340\) 0.279216 + 4.67910i 0.0151426 + 0.253760i
\(341\) 0.576281 2.71119i 0.0312074 0.146819i
\(342\) 43.5258 + 6.89381i 2.35361 + 0.372774i
\(343\) 3.26350 18.2305i 0.176212 0.984352i
\(344\) 15.2880 + 21.0421i 0.824272 + 1.13451i
\(345\) 29.1702 13.2414i 1.57047 0.712892i
\(346\) 0.453221 + 0.0476355i 0.0243653 + 0.00256090i
\(347\) 1.25122 + 1.54512i 0.0671688 + 0.0829465i 0.809623 0.586950i \(-0.199672\pi\)
−0.742454 + 0.669897i \(0.766338\pi\)
\(348\) 7.29322 + 0.382221i 0.390958 + 0.0204892i
\(349\) −4.37015 −0.233929 −0.116964 0.993136i \(-0.537316\pi\)
−0.116964 + 0.993136i \(0.537316\pi\)
\(350\) 10.5724 18.6462i 0.565118 0.996684i
\(351\) 0.387952 0.0207073
\(352\) −13.4141 0.703003i −0.714974 0.0374702i
\(353\) −11.7526 14.5133i −0.625529 0.772464i 0.361610 0.932330i \(-0.382227\pi\)
−0.987139 + 0.159865i \(0.948894\pi\)
\(354\) 22.7162 + 2.38757i 1.20735 + 0.126898i
\(355\) −1.52565 1.66993i −0.0809733 0.0886306i
\(356\) −0.368984 0.507863i −0.0195561 0.0269167i
\(357\) 20.2260 + 13.3280i 1.07047 + 0.705393i
\(358\) −20.9867 3.32396i −1.10918 0.175677i
\(359\) −3.47497 + 16.3485i −0.183402 + 0.862838i 0.786166 + 0.618016i \(0.212063\pi\)
−0.969568 + 0.244823i \(0.921270\pi\)
\(360\) 11.9673 18.7236i 0.630735 0.986820i
\(361\) −17.7558 + 3.77411i −0.934515 + 0.198637i
\(362\) −20.3262 31.2997i −1.06832 1.64507i
\(363\) 10.7735 + 5.48937i 0.565462 + 0.288117i
\(364\) 0.0953561 0.129418i 0.00499802 0.00678334i
\(365\) 3.34925 3.39812i 0.175308 0.177866i
\(366\) −30.8830 6.56439i −1.61428 0.343126i
\(367\) 3.46192 + 9.01861i 0.180711 + 0.470768i 0.993775 0.111406i \(-0.0355356\pi\)
−0.813064 + 0.582174i \(0.802202\pi\)
\(368\) 6.59659 24.6188i 0.343871 1.28334i
\(369\) 0.0611304 + 0.581617i 0.00318232 + 0.0302778i
\(370\) 26.5307 8.83328i 1.37927 0.459221i
\(371\) 18.1206 + 25.2948i 0.940774 + 1.31324i
\(372\) −1.19091 + 0.188622i −0.0617459 + 0.00977959i
\(373\) −0.257388 + 4.91126i −0.0133271 + 0.254295i 0.983839 + 0.179058i \(0.0573049\pi\)
−0.997166 + 0.0752376i \(0.976028\pi\)
\(374\) −10.6647 18.4717i −0.551456 0.955150i
\(375\) −2.26063 30.4572i −0.116738 1.57280i
\(376\) 5.22511 + 3.01672i 0.269465 + 0.155575i
\(377\) −0.369967 + 0.188508i −0.0190543 + 0.00970865i
\(378\) 6.02858 + 16.0244i 0.310077 + 0.824206i
\(379\) 7.39900 10.1839i 0.380061 0.523109i −0.575540 0.817774i \(-0.695208\pi\)
0.955601 + 0.294665i \(0.0952079\pi\)
\(380\) 1.71198 8.35119i 0.0878227 0.428407i
\(381\) 18.3999 41.3268i 0.942654 2.11723i
\(382\) 6.33292 + 1.69690i 0.324020 + 0.0868210i
\(383\) −13.9353 11.2845i −0.712058 0.576613i 0.203366 0.979103i \(-0.434812\pi\)
−0.915425 + 0.402489i \(0.868145\pi\)
\(384\) −11.4883 35.3574i −0.586260 1.80432i
\(385\) −1.20318 + 23.2051i −0.0613195 + 1.18264i
\(386\) −1.53944 + 4.73792i −0.0783556 + 0.241154i
\(387\) −43.7013 + 28.3800i −2.22146 + 1.44264i
\(388\) 0.370660 + 7.07262i 0.0188174 + 0.359058i
\(389\) −2.47971 11.6661i −0.125726 0.591495i −0.995229 0.0975672i \(-0.968894\pi\)
0.869503 0.493928i \(-0.164439\pi\)
\(390\) 0.0433628 0.960457i 0.00219576 0.0486346i
\(391\) 16.7170 5.43168i 0.845415 0.274692i
\(392\) −15.0038 4.23607i −0.757806 0.213954i
\(393\) −0.777518 0.777518i −0.0392206 0.0392206i
\(394\) −20.3227 + 2.13600i −1.02384 + 0.107610i
\(395\) 7.42838 + 33.7442i 0.373762 + 1.69785i
\(396\) 1.14579 10.9014i 0.0575780 0.547818i
\(397\) 35.0286 + 13.4462i 1.75803 + 0.674846i 0.999737 + 0.0229366i \(0.00730159\pi\)
0.758297 + 0.651909i \(0.226032\pi\)
\(398\) 3.19987 + 6.28010i 0.160395 + 0.314793i
\(399\) −29.2573 32.9337i −1.46470 1.64875i
\(400\) −19.8628 13.9962i −0.993141 0.699808i
\(401\) 0.106730 0.184861i 0.00532982 0.00923152i −0.863348 0.504609i \(-0.831637\pi\)
0.868678 + 0.495377i \(0.164970\pi\)
\(402\) 2.07197 + 1.34555i 0.103340 + 0.0671099i
\(403\) 0.0532758 0.0431419i 0.00265386 0.00214905i
\(404\) −6.70499 + 2.98525i −0.333586 + 0.148522i
\(405\) −4.50363 3.22250i −0.223787 0.160127i
\(406\) −13.5355 12.3522i −0.671754 0.613032i
\(407\) −21.4341 + 21.4341i −1.06245 + 1.06245i
\(408\) 12.8321 15.8463i 0.635283 0.784509i
\(409\) 21.3736 23.7377i 1.05685 1.17376i 0.0725340 0.997366i \(-0.476891\pi\)
0.984320 0.176390i \(-0.0564419\pi\)
\(410\) 0.474035 0.0282871i 0.0234109 0.00139700i
\(411\) −25.7143 + 23.1533i −1.26839 + 1.14207i
\(412\) −2.85990 + 5.61287i −0.140897 + 0.276526i
\(413\) −9.58962 9.71872i −0.471875 0.478227i
\(414\) 36.0620 + 11.7173i 1.77235 + 0.575872i
\(415\) 8.50421 22.6430i 0.417455 1.11150i
\(416\) −0.246889 0.222300i −0.0121047 0.0108992i
\(417\) 36.6932 14.0852i 1.79687 0.689755i
\(418\) 10.0398 + 37.4691i 0.491063 + 1.83267i
\(419\) 8.57555 6.23050i 0.418943 0.304380i −0.358269 0.933618i \(-0.616633\pi\)
0.777212 + 0.629238i \(0.216633\pi\)
\(420\) 9.61164 3.12893i 0.469000 0.152676i
\(421\) 7.12732 + 5.17830i 0.347364 + 0.252375i 0.747762 0.663966i \(-0.231128\pi\)
−0.400398 + 0.916341i \(0.631128\pi\)
\(422\) −3.87070 + 10.0835i −0.188423 + 0.490858i
\(423\) −6.58333 + 10.1374i −0.320093 + 0.492899i
\(424\) 22.6839 13.0965i 1.10163 0.636024i
\(425\) 0.634540 16.7456i 0.0307797 0.812279i
\(426\) 4.47737i 0.216929i
\(427\) 11.7786 + 14.7459i 0.570007 + 0.713603i
\(428\) −0.110767 0.699356i −0.00535413 0.0338047i
\(429\) 0.423913 + 0.952124i 0.0204667 + 0.0459690i
\(430\) 21.4208 + 36.4890i 1.03300 + 1.75966i
\(431\) 5.59847 + 2.49260i 0.269669 + 0.120064i 0.537116 0.843508i \(-0.319514\pi\)
−0.267448 + 0.963572i \(0.586180\pi\)
\(432\) 18.7469 5.02322i 0.901961 0.241680i
\(433\) −5.58866 + 35.2854i −0.268574 + 1.69571i 0.372339 + 0.928097i \(0.378556\pi\)
−0.640913 + 0.767613i \(0.721444\pi\)
\(434\) 2.60986 + 1.53016i 0.125277 + 0.0734501i
\(435\) −25.8165 3.89749i −1.23781 0.186870i
\(436\) −1.22521 1.36074i −0.0586770 0.0651674i
\(437\) −31.9234 + 1.67303i −1.52710 + 0.0800321i
\(438\) 9.43153 0.494285i 0.450656 0.0236179i
\(439\) −17.4485 19.3785i −0.832769 0.924884i 0.165347 0.986235i \(-0.447126\pi\)
−0.998116 + 0.0613516i \(0.980459\pi\)
\(440\) 19.3411 + 2.91990i 0.922049 + 0.139201i
\(441\) 10.0482 29.5736i 0.478484 1.40826i
\(442\) 0.0825241 0.521037i 0.00392527 0.0247832i
\(443\) 32.7161 8.76626i 1.55439 0.416498i 0.623508 0.781817i \(-0.285707\pi\)
0.930882 + 0.365319i \(0.119040\pi\)
\(444\) 12.0463 + 5.36337i 0.571693 + 0.254534i
\(445\) 1.13616 + 1.93537i 0.0538590 + 0.0917456i
\(446\) 10.1563 + 22.8115i 0.480915 + 1.08015i
\(447\) 4.56264 + 28.8074i 0.215805 + 1.36254i
\(448\) −4.03023 + 10.2929i −0.190410 + 0.486293i
\(449\) 17.8247i 0.841199i −0.907246 0.420600i \(-0.861820\pi\)
0.907246 0.420600i \(-0.138180\pi\)
\(450\) 22.3403 28.4201i 1.05313 1.33973i
\(451\) −0.445816 + 0.257392i −0.0209927 + 0.0121201i
\(452\) −1.59152 + 2.45072i −0.0748586 + 0.115272i
\(453\) 20.4396 53.2469i 0.960335 2.50176i
\(454\) 17.3691 + 12.6194i 0.815173 + 0.592258i
\(455\) −0.384309 + 0.427296i −0.0180167 + 0.0200319i
\(456\) −30.0010 + 21.7970i −1.40493 + 1.02074i
\(457\) −2.20826 8.24133i −0.103298 0.385513i 0.894849 0.446370i \(-0.147283\pi\)
−0.998147 + 0.0608568i \(0.980617\pi\)
\(458\) 6.27422 2.40845i 0.293175 0.112539i
\(459\) 9.94691 + 8.95624i 0.464282 + 0.418042i
\(460\) 2.57899 6.86674i 0.120246 0.320163i
\(461\) −25.2246 8.19596i −1.17483 0.381724i −0.344384 0.938829i \(-0.611912\pi\)
−0.830442 + 0.557105i \(0.811912\pi\)
\(462\) −32.7402 + 32.3053i −1.52321 + 1.50298i
\(463\) −10.3899 + 20.3912i −0.482857 + 0.947661i 0.513142 + 0.858304i \(0.328481\pi\)
−0.996000 + 0.0893575i \(0.971519\pi\)
\(464\) −15.4371 + 13.8996i −0.716647 + 0.645272i
\(465\) 4.30293 0.256769i 0.199544 0.0119074i
\(466\) −27.9385 + 31.0288i −1.29422 + 1.43738i
\(467\) −5.61149 + 6.92961i −0.259669 + 0.320664i −0.890262 0.455450i \(-0.849479\pi\)
0.630593 + 0.776114i \(0.282812\pi\)
\(468\) 0.191702 0.191702i 0.00886142 0.00886142i
\(469\) −0.446943 1.40750i −0.0206379 0.0649922i
\(470\) 7.98219 + 5.71154i 0.368191 + 0.263453i
\(471\) 29.8315 13.2818i 1.37456 0.611994i
\(472\) −8.93204 + 7.23302i −0.411130 + 0.332927i
\(473\) −38.4678 24.9813i −1.76875 1.14864i
\(474\) −34.1972 + 59.2314i −1.57073 + 2.72059i
\(475\) −8.99691 + 29.1182i −0.412807 + 1.33603i
\(476\) 5.43263 1.11683i 0.249004 0.0511899i
\(477\) 23.8235 + 46.7562i 1.09080 + 2.14082i
\(478\) 0.984427 + 0.377886i 0.0450266 + 0.0172841i
\(479\) −0.250187 + 2.38037i −0.0114314 + 0.108762i −0.998750 0.0499911i \(-0.984081\pi\)
0.987318 + 0.158753i \(0.0507474\pi\)
\(480\) −4.49114 20.4015i −0.204992 0.931196i
\(481\) −0.745601 + 0.0783658i −0.0339965 + 0.00357317i
\(482\) 1.31543 + 1.31543i 0.0599161 + 0.0599161i
\(483\) −20.4311 31.9265i −0.929648 1.45270i
\(484\) 2.63308 0.855538i 0.119685 0.0388881i
\(485\) 1.14196 25.2936i 0.0518535 1.14852i
\(486\) −6.31534 29.7113i −0.286470 1.34773i
\(487\) −0.253617 4.83930i −0.0114925 0.219290i −0.998338 0.0576252i \(-0.981647\pi\)
0.986846 0.161664i \(-0.0516862\pi\)
\(488\) 13.3239 8.65266i 0.603146 0.391688i
\(489\) −12.2414 + 37.6753i −0.553577 + 1.70374i
\(490\) −23.6215 9.23395i −1.06711 0.417147i
\(491\) −9.20020 28.3153i −0.415199 1.27785i −0.912073 0.410029i \(-0.865519\pi\)
0.496874 0.867823i \(-0.334481\pi\)
\(492\) 0.174033 + 0.140929i 0.00784602 + 0.00635358i
\(493\) −13.8377 3.70780i −0.623218 0.166991i
\(494\) −0.390225 + 0.876459i −0.0175570 + 0.0394337i
\(495\) −7.86969 + 38.3890i −0.353716 + 1.72546i
\(496\) 2.01583 2.77456i 0.0905136 0.124581i
\(497\) −1.69814 + 2.06860i −0.0761721 + 0.0927893i
\(498\) 42.6595 21.7361i 1.91162 0.974018i
\(499\) 33.6862 + 19.4488i 1.50800 + 0.870646i 0.999957 + 0.00931623i \(0.00296549\pi\)
0.508046 + 0.861330i \(0.330368\pi\)
\(500\) −5.29724 4.56522i −0.236900 0.204163i
\(501\) 2.28474 + 3.95729i 0.102075 + 0.176799i
\(502\) 1.17443 22.4095i 0.0524175 1.00019i
\(503\) −37.4880 + 5.93752i −1.67151 + 0.264741i −0.919120 0.393979i \(-0.871098\pi\)
−0.752389 + 0.658719i \(0.771098\pi\)
\(504\) −23.9475 10.8546i −1.06671 0.483501i
\(505\) 24.8952 8.28877i 1.10782 0.368845i
\(506\) 3.48884 + 33.1941i 0.155098 + 1.47566i
\(507\) 9.18442 34.2767i 0.407894 1.52228i
\(508\) −3.71203 9.67017i −0.164695 0.429044i
\(509\) −10.1538 2.15825i −0.450057 0.0956626i −0.0226937 0.999742i \(-0.507224\pi\)
−0.427364 + 0.904080i \(0.640558\pi\)
\(510\) 23.2849 23.6246i 1.03107 1.04612i
\(511\) −4.54494 3.34875i −0.201056 0.148140i
\(512\) 4.47894 + 2.28214i 0.197943 + 0.100857i
\(513\) −13.2579 20.4155i −0.585353 0.901364i
\(514\) 0.577923 0.122841i 0.0254911 0.00541830i
\(515\) 12.1285 18.9757i 0.534446 0.836170i
\(516\) −4.14848 + 19.5171i −0.182627 + 0.859191i
\(517\) −10.5090 1.66446i −0.462184 0.0732027i
\(518\) −14.8232 29.5794i −0.651293 1.29964i
\(519\) −0.451584 0.621552i −0.0198223 0.0272831i
\(520\) 0.326306 + 0.357163i 0.0143095 + 0.0156626i
\(521\) −11.9577 1.25680i −0.523874 0.0550614i −0.161099 0.986938i \(-0.551504\pi\)
−0.362775 + 0.931877i \(0.618171\pi\)
\(522\) −19.4484 24.0168i −0.851233 1.05119i
\(523\) −23.9442 1.25486i −1.04701 0.0548713i −0.478935 0.877850i \(-0.658977\pi\)
−0.568071 + 0.822979i \(0.692310\pi\)
\(524\) −0.251771 −0.0109987
\(525\) −35.2872 + 7.78865i −1.54006 + 0.339925i
\(526\) −48.2012 −2.10167
\(527\) 2.36194 + 0.123784i 0.102888 + 0.00539212i
\(528\) 32.8128 + 40.5204i 1.42799 + 1.76343i
\(529\) −4.48096 0.470968i −0.194824 0.0204769i
\(530\) 38.8002 17.6128i 1.68537 0.765050i
\(531\) −13.5344 18.6285i −0.587342 0.808407i
\(532\) −10.0692 0.595233i −0.436554 0.0258066i
\(533\) −0.0125753 0.00199173i −0.000544695 8.62712e-5i
\(534\) −0.923615 + 4.34527i −0.0399687 + 0.188038i
\(535\) 0.150786 + 2.52687i 0.00651905 + 0.109246i
\(536\) −1.21597 + 0.258462i −0.0525217 + 0.0111638i
\(537\) 19.5099 + 30.0427i 0.841916 + 1.29644i
\(538\) −29.9216 15.2458i −1.29001 0.657294i
\(539\) 27.3789 2.50799i 1.17929 0.108027i
\(540\) 5.51033 0.913707i 0.237127 0.0393197i
\(541\) 18.7246 + 3.98003i 0.805031 + 0.171115i 0.592008 0.805932i \(-0.298336\pi\)
0.213024 + 0.977047i \(0.431669\pi\)
\(542\) 3.25552 + 8.48091i 0.139836 + 0.364286i
\(543\) −16.2843 + 60.7737i −0.698825 + 2.60805i
\(544\) −1.19812 11.3994i −0.0513690 0.488744i
\(545\) 3.88590 + 5.26783i 0.166454 + 0.225649i
\(546\) −1.13212 + 0.111343i −0.0484504 + 0.00476506i
\(547\) −12.3236 + 1.95187i −0.526919 + 0.0834558i −0.414226 0.910174i \(-0.635948\pi\)
−0.112693 + 0.993630i \(0.535948\pi\)
\(548\) −0.414651 + 7.91201i −0.0177130 + 0.337984i
\(549\) 15.9141 + 27.5641i 0.679199 + 1.17641i
\(550\) 30.8522 + 7.78967i 1.31554 + 0.332153i
\(551\) 22.5633 + 13.0269i 0.961230 + 0.554967i
\(552\) −28.4300 + 14.4858i −1.21006 + 0.616556i
\(553\) 38.2643 14.3955i 1.62716 0.612160i
\(554\) 5.63005 7.74910i 0.239198 0.329228i
\(555\) −40.9951 23.2743i −1.74015 0.987940i
\(556\) 3.66039 8.22138i 0.155235 0.348664i
\(557\) 21.9963 + 5.89390i 0.932014 + 0.249732i 0.692713 0.721213i \(-0.256415\pi\)
0.239301 + 0.970946i \(0.423082\pi\)
\(558\) 3.96515 + 3.21091i 0.167858 + 0.135929i
\(559\) −0.350558 1.07891i −0.0148270 0.0456329i
\(560\) −13.0382 + 25.6242i −0.550965 + 1.08282i
\(561\) −11.1118 + 34.1985i −0.469139 + 1.44386i
\(562\) 11.6258 7.54986i 0.490403 0.318472i
\(563\) 1.52735 + 29.1436i 0.0643701 + 1.22826i 0.819654 + 0.572858i \(0.194165\pi\)
−0.755284 + 0.655397i \(0.772501\pi\)
\(564\) 0.962327 + 4.52739i 0.0405213 + 0.190638i
\(565\) 6.51535 8.16601i 0.274103 0.343547i
\(566\) −23.2549 + 7.55597i −0.977476 + 0.317601i
\(567\) −3.01370 + 5.81822i −0.126563 + 0.244342i
\(568\) 1.59307 + 1.59307i 0.0668436 + 0.0668436i
\(569\) −1.57943 + 0.166005i −0.0662130 + 0.00695927i −0.137577 0.990491i \(-0.543931\pi\)
0.0713640 + 0.997450i \(0.477265\pi\)
\(570\) −52.0247 + 30.5410i −2.17907 + 1.27922i
\(571\) −0.375690 + 3.57445i −0.0157221 + 0.149586i −0.999567 0.0294394i \(-0.990628\pi\)
0.983844 + 0.179025i \(0.0572945\pi\)
\(572\) 0.222790 + 0.0855211i 0.00931532 + 0.00357582i
\(573\) −5.01800 9.84838i −0.209630 0.411422i
\(574\) −0.113145 0.550374i −0.00472258 0.0229722i
\(575\) −11.5653 + 23.5348i −0.482305 + 0.981468i
\(576\) −9.32098 + 16.1444i −0.388374 + 0.672683i
\(577\) 18.7335 + 12.1657i 0.779887 + 0.506465i 0.872131 0.489272i \(-0.162737\pi\)
−0.0922444 + 0.995736i \(0.529404\pi\)
\(578\) −7.26245 + 5.88101i −0.302078 + 0.244618i
\(579\) 7.67247 3.41601i 0.318857 0.141964i
\(580\) −4.81091 + 3.54885i −0.199762 + 0.147358i
\(581\) −27.9531 6.13722i −1.15969 0.254615i
\(582\) 35.4392 35.4392i 1.46900 1.46900i
\(583\) −29.0692 + 35.8975i −1.20392 + 1.48672i
\(584\) −3.17991 + 3.53164i −0.131585 + 0.146140i
\(585\) −0.748781 + 0.615383i −0.0309583 + 0.0254429i
\(586\) 13.2943 11.9702i 0.549182 0.494486i
\(587\) 19.7026 38.6684i 0.813211 1.59602i 0.0102788 0.999947i \(-0.496728\pi\)
0.802933 0.596070i \(-0.203272\pi\)
\(588\) −5.28678 10.7282i −0.218023 0.442422i
\(589\) −4.09095 1.32923i −0.168565 0.0547699i
\(590\) −15.6067 + 10.2966i −0.642519 + 0.423904i
\(591\) 25.6015 + 23.0517i 1.05310 + 0.948218i
\(592\) −35.0148 + 13.4409i −1.43910 + 0.552419i
\(593\) −3.34701 12.4912i −0.137445 0.512953i −0.999976 0.00694789i \(-0.997788\pi\)
0.862531 0.506005i \(-0.168878\pi\)
\(594\) −20.5621 + 14.9392i −0.843673 + 0.612964i
\(595\) −19.7180 + 2.08355i −0.808361 + 0.0854171i
\(596\) 5.40284 + 3.92539i 0.221309 + 0.160790i
\(597\) 4.25833 11.0933i 0.174282 0.454019i
\(598\) −0.449601 + 0.692325i −0.0183855 + 0.0283113i
\(599\) −19.9444 + 11.5149i −0.814905 + 0.470485i −0.848656 0.528945i \(-0.822588\pi\)
0.0337516 + 0.999430i \(0.489255\pi\)
\(600\) 3.61759 + 30.2038i 0.147687 + 1.23307i
\(601\) 14.0409i 0.572740i −0.958119 0.286370i \(-0.907551\pi\)
0.958119 0.286370i \(-0.0924486\pi\)
\(602\) 39.1169 31.2456i 1.59429 1.27347i
\(603\) −0.389602 2.45985i −0.0158658 0.100173i
\(604\) −5.31174 11.9304i −0.216132 0.485440i
\(605\) −9.66624 + 2.12791i −0.392988 + 0.0865117i
\(606\) 47.4483 + 21.1254i 1.92746 + 0.858159i
\(607\) 38.2415 10.2468i 1.55218 0.415904i 0.622000 0.783017i \(-0.286320\pi\)
0.930176 + 0.367113i \(0.119654\pi\)
\(608\) −3.26100 + 20.5892i −0.132251 + 0.835001i
\(609\) −0.206542 + 30.8920i −0.00836952 + 1.25181i
\(610\) 22.9423 11.8997i 0.928906 0.481807i
\(611\) −0.176085 0.195562i −0.00712364 0.00791160i
\(612\) 9.34078 0.489529i 0.377579 0.0197881i
\(613\) −3.87544 + 0.203103i −0.156527 + 0.00820325i −0.130439 0.991456i \(-0.541639\pi\)
−0.0260887 + 0.999660i \(0.508305\pi\)
\(614\) 12.4826 + 13.8633i 0.503756 + 0.559478i
\(615\) −0.570182 0.561982i −0.0229920 0.0226613i
\(616\) 0.154736 23.1435i 0.00623450 0.932477i
\(617\) −4.36290 + 27.5463i −0.175644 + 1.10897i 0.729536 + 0.683943i \(0.239736\pi\)
−0.905180 + 0.425029i \(0.860264\pi\)
\(618\) 43.0597 11.5378i 1.73211 0.464118i
\(619\) −24.6623 10.9803i −0.991260 0.441337i −0.153958 0.988077i \(-0.549202\pi\)
−0.837302 + 0.546740i \(0.815869\pi\)
\(620\) 0.655102 0.738248i 0.0263095 0.0296487i
\(621\) −8.51918 19.1344i −0.341863 0.767837i
\(622\) −7.28427 45.9911i −0.292073 1.84408i
\(623\) 2.07476 1.65726i 0.0831234 0.0663968i
\(624\) 1.28957i 0.0516239i
\(625\) 17.2594 + 18.0863i 0.690376 + 0.723451i
\(626\) 13.3561 7.71114i 0.533816 0.308199i
\(627\) 35.6174 54.8460i 1.42242 2.19034i
\(628\) 2.67950 6.98035i 0.106924 0.278546i
\(629\) −20.9260 15.2037i −0.834376 0.606209i
\(630\) −37.0542 21.3657i −1.47627 0.851232i
\(631\) 8.70119 6.32178i 0.346389 0.251666i −0.400964 0.916094i \(-0.631325\pi\)
0.747353 + 0.664428i \(0.231325\pi\)
\(632\) −8.90724 33.2423i −0.354311 1.32231i
\(633\) 16.9995 6.52549i 0.675668 0.259365i
\(634\) 9.39921 + 8.46309i 0.373290 + 0.336112i
\(635\) 9.84298 + 35.6983i 0.390607 + 1.41664i
\(636\) 19.1105 + 6.20937i 0.757780 + 0.246217i
\(637\) 0.565284 + 0.377941i 0.0223974 + 0.0149746i
\(638\) 12.3498 24.2379i 0.488935 0.959589i
\(639\) −3.35424 + 3.02018i −0.132692 + 0.119476i
\(640\) 25.6418 + 16.3892i 1.01358 + 0.647840i
\(641\) 20.1580 22.3877i 0.796191 0.884260i −0.199219 0.979955i \(-0.563841\pi\)
0.995411 + 0.0956947i \(0.0305073\pi\)
\(642\) −3.15336 + 3.89407i −0.124453 + 0.153687i
\(643\) 20.4056 20.4056i 0.804720 0.804720i −0.179110 0.983829i \(-0.557322\pi\)
0.983829 + 0.179110i \(0.0573217\pi\)
\(644\) −8.47706 1.86118i −0.334043 0.0733407i
\(645\) 21.5510 67.9990i 0.848570 2.67746i
\(646\) −30.2391 + 13.4633i −1.18974 + 0.529707i
\(647\) −14.8771 + 12.0473i −0.584880 + 0.473627i −0.875504 0.483211i \(-0.839471\pi\)
0.290624 + 0.956837i \(0.406137\pi\)
\(648\) 4.62594 + 3.00412i 0.181724 + 0.118013i
\(649\) 10.1343 17.5531i 0.397805 0.689019i
\(650\) 0.471764 + 0.629933i 0.0185041 + 0.0247080i
\(651\) −1.02704 4.99588i −0.0402531 0.195804i
\(652\) 4.11792 + 8.08188i 0.161270 + 0.316511i
\(653\) −11.2686 4.32563i −0.440976 0.169275i 0.127742 0.991807i \(-0.459227\pi\)
−0.568718 + 0.822533i \(0.692560\pi\)
\(654\) −1.35443 + 12.8866i −0.0529625 + 0.503905i
\(655\) 0.895811 + 0.0875989i 0.0350022 + 0.00342277i
\(656\) −0.633461 + 0.0665794i −0.0247325 + 0.00259949i
\(657\) −6.73225 6.73225i −0.262650 0.262650i
\(658\) 5.34145 10.3122i 0.208232 0.402010i
\(659\) 15.5052 5.03793i 0.603995 0.196250i 0.00897383 0.999960i \(-0.497144\pi\)
0.595022 + 0.803710i \(0.297144\pi\)
\(660\) 8.26356 + 12.5252i 0.321658 + 0.487544i
\(661\) −2.91594 13.7184i −0.113417 0.533585i −0.997769 0.0667642i \(-0.978732\pi\)
0.884352 0.466821i \(-0.154601\pi\)
\(662\) 0.0877515 + 1.67440i 0.00341056 + 0.0650774i
\(663\) −0.745871 + 0.484374i −0.0289672 + 0.0188115i
\(664\) −7.44463 + 22.9122i −0.288908 + 0.889166i
\(665\) 35.6193 + 5.62123i 1.38126 + 0.217982i
\(666\) −17.2426 53.0674i −0.668138 2.05632i
\(667\) 17.4218 + 14.1079i 0.674574 + 0.546259i
\(668\) 1.01063 + 0.270798i 0.0391025 + 0.0104775i
\(669\) 17.1222 38.4571i 0.661983 1.48684i
\(670\) −2.00965 + 0.225950i −0.0776396 + 0.00872921i
\(671\) −16.4678 + 22.6659i −0.635731 + 0.875008i
\(672\) −23.1343 + 8.70342i −0.892426 + 0.335742i
\(673\) −0.252552 + 0.128682i −0.00973515 + 0.00496031i −0.458851 0.888513i \(-0.651739\pi\)
0.449116 + 0.893473i \(0.351739\pi\)
\(674\) 2.62652 + 1.51642i 0.101170 + 0.0584103i
\(675\) −19.9238 + 1.33379i −0.766869 + 0.0513377i
\(676\) −4.06262 7.03667i −0.156255 0.270641i
\(677\) 1.75299 33.4491i 0.0673729 1.28555i −0.730578 0.682829i \(-0.760749\pi\)
0.797951 0.602723i \(-0.205917\pi\)
\(678\) 20.4242 3.23488i 0.784387 0.124235i
\(679\) −29.8144 + 2.93222i −1.14417 + 0.112528i
\(680\) 0.120883 + 16.6906i 0.00463566 + 0.640055i
\(681\) −3.78337 35.9963i −0.144979 1.37938i
\(682\) −1.16240 + 4.33814i −0.0445106 + 0.166116i
\(683\) −8.10815 21.1225i −0.310250 0.808228i −0.996709 0.0810601i \(-0.974169\pi\)
0.686460 0.727168i \(-0.259164\pi\)
\(684\) −16.6393 3.53680i −0.636221 0.135233i
\(685\) 4.22817 28.0069i 0.161550 1.07009i
\(686\) −6.82667 + 29.2221i −0.260644 + 1.11571i
\(687\) −10.0951 5.14374i −0.385154 0.196246i
\(688\) −30.9097 47.5968i −1.17842 1.81461i
\(689\) −1.11747 + 0.237526i −0.0425724 + 0.00904903i
\(690\) −48.3235 + 18.9523i −1.83964 + 0.721503i
\(691\) −5.91700 + 27.8373i −0.225093 + 1.05898i 0.709897 + 0.704306i \(0.248742\pi\)
−0.934990 + 0.354674i \(0.884592\pi\)
\(692\) −0.173748 0.0275190i −0.00660492 0.00104612i
\(693\) 46.2863 + 2.73619i 1.75827 + 0.103939i
\(694\) −1.89358 2.60628i −0.0718792 0.0989332i
\(695\) −15.8843 + 27.9784i −0.602525 + 1.06128i
\(696\) 25.8629 + 2.71830i 0.980332 + 0.103037i
\(697\) −0.276443 0.341379i −0.0104710 0.0129307i
\(698\) 7.07139 + 0.370596i 0.267656 + 0.0140273i
\(699\) 70.3907 2.66242
\(700\) −4.45221 + 6.97429i −0.168278 + 0.263603i
\(701\) 29.7376 1.12317 0.561587 0.827418i \(-0.310191\pi\)
0.561587 + 0.827418i \(0.310191\pi\)
\(702\) −0.627749 0.0328989i −0.0236928 0.00124169i
\(703\) 29.6042 + 36.5582i 1.11654 + 1.37882i
\(704\) −16.3196 1.71525i −0.615067 0.0646461i
\(705\) −1.84878 16.4434i −0.0696289 0.619296i
\(706\) 17.7863 + 24.4807i 0.669396 + 0.921345i
\(707\) −13.9094 27.7560i −0.523118 1.04387i
\(708\) −8.70856 1.37930i −0.327288 0.0518373i
\(709\) −1.79995 + 8.46811i −0.0675986 + 0.318026i −0.998935 0.0461328i \(-0.985310\pi\)
0.931337 + 0.364159i \(0.118644\pi\)
\(710\) 2.32706 + 2.83151i 0.0873331 + 0.106265i
\(711\) 67.4409 14.3350i 2.52923 0.537605i
\(712\) −1.21744 1.87469i −0.0456254 0.0702569i
\(713\) −3.29773 1.68028i −0.123501 0.0629269i
\(714\) −31.5976 23.2814i −1.18251 0.871283i
\(715\) −0.762939 0.381802i −0.0285323 0.0142786i
\(716\) 8.02292 + 1.70532i 0.299830 + 0.0637309i
\(717\) −0.637066 1.65961i −0.0237917 0.0619794i
\(718\) 7.00926 26.1589i 0.261583 0.976242i
\(719\) −2.82649 26.8922i −0.105410 1.00291i −0.911551 0.411187i \(-0.865114\pi\)
0.806141 0.591724i \(-0.201552\pi\)
\(720\) −28.2152 + 39.4323i −1.05152 + 1.46955i
\(721\) −24.2700 11.0007i −0.903863 0.409689i
\(722\) 29.0509 4.60121i 1.08116 0.171239i
\(723\) 0.164137 3.13192i 0.00610431 0.116477i
\(724\) 7.20316 + 12.4762i 0.267703 + 0.463676i
\(725\) 18.3521 10.9531i 0.681581 0.406786i
\(726\) −16.9672 9.79602i −0.629712 0.363565i
\(727\) −15.5218 + 7.90873i −0.575670 + 0.293318i −0.717484 0.696575i \(-0.754706\pi\)
0.141814 + 0.989893i \(0.454706\pi\)
\(728\) 0.363198 0.442430i 0.0134610 0.0163976i
\(729\) −25.7325 + 35.4177i −0.953055 + 1.31177i
\(730\) −5.70763 + 5.21452i −0.211249 + 0.192998i
\(731\) 15.9195 35.7557i 0.588803 1.32247i
\(732\) 11.7724 + 3.15439i 0.435119 + 0.116590i
\(733\) 35.6797 + 28.8928i 1.31786 + 1.06718i 0.992584 + 0.121562i \(0.0387902\pi\)
0.325275 + 0.945619i \(0.394543\pi\)
\(734\) −4.83698 14.8867i −0.178536 0.549477i
\(735\) 15.0779 + 40.0106i 0.556157 + 1.47581i
\(736\) −5.54266 + 17.0586i −0.204305 + 0.628787i
\(737\) 1.83858 1.19399i 0.0677251 0.0439812i
\(738\) −0.0495937 0.946304i −0.00182557 0.0348339i
\(739\) −5.11747 24.0758i −0.188249 0.885642i −0.966296 0.257435i \(-0.917123\pi\)
0.778046 0.628207i \(-0.216211\pi\)
\(740\) −10.4057 + 2.86913i −0.382520 + 0.105471i
\(741\) 1.53827 0.499813i 0.0565096 0.0183611i
\(742\) −27.1761 42.4664i −0.997665 1.55899i
\(743\) −10.2323 10.2323i −0.375388 0.375388i 0.494047 0.869435i \(-0.335517\pi\)
−0.869435 + 0.494047i \(0.835517\pi\)
\(744\) −4.26995 + 0.448790i −0.156544 + 0.0164534i
\(745\) −17.8577 15.8465i −0.654257 0.580571i
\(746\) 0.832965 7.92513i 0.0304970 0.290160i
\(747\) −45.0593 17.2966i −1.64863 0.632851i
\(748\) 3.73790 + 7.33605i 0.136671 + 0.268233i
\(749\) 2.93380 0.603126i 0.107199 0.0220377i
\(750\) 1.07513 + 49.4748i 0.0392581 + 1.80656i
\(751\) 5.60583 9.70959i 0.204560 0.354308i −0.745433 0.666581i \(-0.767757\pi\)
0.949992 + 0.312273i \(0.101090\pi\)
\(752\) −11.0411 7.17016i −0.402627 0.261469i
\(753\) −29.4005 + 23.8080i −1.07141 + 0.867613i
\(754\) 0.614634 0.273653i 0.0223836 0.00996584i
\(755\) 14.7484 + 44.2968i 0.536750 + 1.61212i
\(756\) −2.00020 6.29898i −0.0727467 0.229092i
\(757\) −34.2009 + 34.2009i −1.24305 + 1.24305i −0.284326 + 0.958728i \(0.591770\pi\)
−0.958728 + 0.284326i \(0.908230\pi\)
\(758\) −12.8360 + 15.8511i −0.466225 + 0.575740i
\(759\) 37.6514 41.8161i 1.36666 1.51783i
\(760\) 7.64399 29.3772i 0.277277 1.06562i
\(761\) 12.7666 11.4951i 0.462789 0.416697i −0.404472 0.914550i \(-0.632545\pi\)
0.867261 + 0.497853i \(0.165878\pi\)
\(762\) −33.2776 + 65.3109i −1.20552 + 2.36597i
\(763\) 5.51328 5.44005i 0.199594 0.196943i
\(764\) −2.40697 0.782073i −0.0870812 0.0282944i
\(765\) −33.4051 1.50818i −1.20776 0.0545282i
\(766\) 21.5918 + 19.4414i 0.780145