Properties

Label 175.2.x.a.103.13
Level $175$
Weight $2$
Character 175.103
Analytic conductor $1.397$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(3,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([21, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.x (of order \(60\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 103.13
Character \(\chi\) \(=\) 175.103
Dual form 175.2.x.a.17.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.857433 + 0.0449361i) q^{2} +(-1.95506 - 2.41430i) q^{3} +(-1.25587 - 0.131998i) q^{4} +(-0.521374 + 2.17444i) q^{5} +(-1.56784 - 2.15795i) q^{6} +(-2.09857 - 1.61121i) q^{7} +(-2.76697 - 0.438245i) q^{8} +(-1.38284 + 6.50575i) q^{9} +O(q^{10})\) \(q+(0.857433 + 0.0449361i) q^{2} +(-1.95506 - 2.41430i) q^{3} +(-1.25587 - 0.131998i) q^{4} +(-0.521374 + 2.17444i) q^{5} +(-1.56784 - 2.15795i) q^{6} +(-2.09857 - 1.61121i) q^{7} +(-2.76697 - 0.438245i) q^{8} +(-1.38284 + 6.50575i) q^{9} +(-0.544753 + 1.84100i) q^{10} +(2.41483 - 0.513288i) q^{11} +(2.13662 + 3.29011i) q^{12} +(-3.07959 - 1.56913i) q^{13} +(-1.72698 - 1.47580i) q^{14} +(6.26905 - 2.99240i) q^{15} +(0.117592 + 0.0249949i) q^{16} +(-1.30681 - 3.40436i) q^{17} +(-1.47803 + 5.51610i) q^{18} +(-0.742133 - 7.06093i) q^{19} +(0.941799 - 2.66199i) q^{20} +(0.212895 + 8.21659i) q^{21} +(2.09362 - 0.331597i) q^{22} +(-0.107322 + 2.04783i) q^{23} +(4.35154 + 7.53709i) q^{24} +(-4.45634 - 2.26739i) q^{25} +(-2.57003 - 1.48381i) q^{26} +(10.1063 - 5.14941i) q^{27} +(2.42286 + 2.30048i) q^{28} +(0.594101 - 0.817710i) q^{29} +(5.50976 - 2.28407i) q^{30} +(-1.48256 + 3.32988i) q^{31} +(5.51171 + 1.47686i) q^{32} +(-5.96037 - 4.82661i) q^{33} +(-0.967525 - 2.97773i) q^{34} +(4.59761 - 3.72317i) q^{35} +(2.59541 - 7.98786i) q^{36} +(0.757805 - 0.492125i) q^{37} +(-0.319038 - 6.08762i) q^{38} +(2.23243 + 10.5028i) q^{39} +(2.39556 - 5.78811i) q^{40} +(2.23957 - 0.727680i) q^{41} +(-0.186678 + 7.05474i) q^{42} +(1.54846 + 1.54846i) q^{43} +(-3.10047 + 0.325873i) q^{44} +(-13.4254 - 6.39882i) q^{45} +(-0.184043 + 1.75105i) q^{46} +(-2.51648 - 0.965986i) q^{47} +(-0.169554 - 0.332768i) q^{48} +(1.80801 + 6.76248i) q^{49} +(-3.71912 - 2.14438i) q^{50} +(-5.66425 + 9.81076i) q^{51} +(3.66045 + 2.37712i) q^{52} +(-0.683987 + 0.553882i) q^{53} +(8.89685 - 3.96114i) q^{54} +(-0.142917 + 5.51851i) q^{55} +(5.10058 + 5.37786i) q^{56} +(-15.5963 + 15.5963i) q^{57} +(0.546147 - 0.674435i) q^{58} +(-0.825876 + 0.917228i) q^{59} +(-8.26812 + 2.93057i) q^{60} +(-8.07138 + 7.26750i) q^{61} +(-1.42082 + 2.78852i) q^{62} +(13.3841 - 11.4247i) q^{63} +(4.43089 + 1.43968i) q^{64} +(5.01758 - 5.87826i) q^{65} +(-4.89372 - 4.40633i) q^{66} +(4.72283 - 1.81293i) q^{67} +(1.19182 + 4.44794i) q^{68} +(5.15389 - 3.74452i) q^{69} +(4.10945 - 2.98577i) q^{70} +(-11.9130 - 8.65529i) q^{71} +(6.67739 - 17.3952i) q^{72} +(4.49475 - 6.92130i) q^{73} +(0.671881 - 0.387911i) q^{74} +(3.23826 + 15.1918i) q^{75} +8.96558i q^{76} +(-5.89471 - 2.81362i) q^{77} +(1.44221 + 9.10574i) q^{78} +(-6.17313 - 13.8651i) q^{79} +(-0.115659 + 0.242664i) q^{80} +(-13.9624 - 6.21645i) q^{81} +(1.95298 - 0.523299i) q^{82} +(0.481396 - 3.03941i) q^{83} +(0.817199 - 10.3471i) q^{84} +(8.08390 - 1.06663i) q^{85} +(1.25812 + 1.39728i) q^{86} +(-3.13570 + 0.164335i) q^{87} +(-6.90671 + 0.361965i) q^{88} +(-6.29169 - 6.98763i) q^{89} +(-11.2238 - 6.08984i) q^{90} +(3.93454 + 8.25478i) q^{91} +(0.405091 - 2.55764i) q^{92} +(10.9378 - 2.93077i) q^{93} +(-2.11430 - 0.941349i) q^{94} +(15.7405 + 2.06766i) q^{95} +(-7.21015 - 16.1943i) q^{96} +(2.78673 + 17.5947i) q^{97} +(1.24637 + 5.87961i) q^{98} +16.4201i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9} - 36 q^{10} - 6 q^{11} - 36 q^{12} - 20 q^{14} - 28 q^{15} - 30 q^{16} - 42 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} + 32 q^{22} - 40 q^{23} + 2 q^{25} - 48 q^{26} + 22 q^{28} - 58 q^{30} - 18 q^{31} + 8 q^{32} - 30 q^{33} - 2 q^{35} + 40 q^{36} - 10 q^{37} + 72 q^{38} + 30 q^{39} - 48 q^{40} + 6 q^{42} - 108 q^{43} - 10 q^{44} + 186 q^{45} - 6 q^{46} - 54 q^{47} - 248 q^{50} - 16 q^{51} + 216 q^{52} + 50 q^{53} - 30 q^{54} + 4 q^{56} - 216 q^{57} - 4 q^{58} + 90 q^{59} + 96 q^{60} - 18 q^{61} - 66 q^{63} - 100 q^{64} + 14 q^{65} - 90 q^{66} + 4 q^{67} + 342 q^{68} - 60 q^{70} - 24 q^{71} + 58 q^{72} - 6 q^{73} + 216 q^{75} - 80 q^{77} - 132 q^{78} - 10 q^{79} - 6 q^{80} - 10 q^{81} + 216 q^{82} + 20 q^{84} - 48 q^{85} - 6 q^{86} - 48 q^{87} - 122 q^{88} + 120 q^{89} - 12 q^{91} - 4 q^{92} + 106 q^{93} - 30 q^{94} - 98 q^{95} - 90 q^{96} + 222 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.857433 + 0.0449361i 0.606296 + 0.0317746i 0.353014 0.935618i \(-0.385157\pi\)
0.253282 + 0.967393i \(0.418490\pi\)
\(3\) −1.95506 2.41430i −1.12875 1.39390i −0.908208 0.418519i \(-0.862549\pi\)
−0.220546 0.975377i \(-0.570784\pi\)
\(4\) −1.25587 0.131998i −0.627936 0.0659988i
\(5\) −0.521374 + 2.17444i −0.233165 + 0.972437i
\(6\) −1.56784 2.15795i −0.640069 0.880979i
\(7\) −2.09857 1.61121i −0.793186 0.608980i
\(8\) −2.76697 0.438245i −0.978272 0.154943i
\(9\) −1.38284 + 6.50575i −0.460946 + 2.16858i
\(10\) −0.544753 + 1.84100i −0.172266 + 0.582176i
\(11\) 2.41483 0.513288i 0.728099 0.154762i 0.171074 0.985258i \(-0.445276\pi\)
0.557025 + 0.830496i \(0.311943\pi\)
\(12\) 2.13662 + 3.29011i 0.616790 + 0.949774i
\(13\) −3.07959 1.56913i −0.854124 0.435198i −0.0286171 0.999590i \(-0.509110\pi\)
−0.825506 + 0.564393i \(0.809110\pi\)
\(14\) −1.72698 1.47580i −0.461556 0.394425i
\(15\) 6.26905 2.99240i 1.61866 0.772634i
\(16\) 0.117592 + 0.0249949i 0.0293980 + 0.00624873i
\(17\) −1.30681 3.40436i −0.316949 0.825679i −0.995813 0.0914154i \(-0.970861\pi\)
0.678864 0.734264i \(-0.262472\pi\)
\(18\) −1.47803 + 5.51610i −0.348376 + 1.30016i
\(19\) −0.742133 7.06093i −0.170257 1.61989i −0.662246 0.749286i \(-0.730397\pi\)
0.491989 0.870601i \(-0.336270\pi\)
\(20\) 0.941799 2.66199i 0.210593 0.595240i
\(21\) 0.212895 + 8.21659i 0.0464576 + 1.79301i
\(22\) 2.09362 0.331597i 0.446361 0.0706967i
\(23\) −0.107322 + 2.04783i −0.0223782 + 0.427001i 0.964351 + 0.264627i \(0.0852487\pi\)
−0.986729 + 0.162375i \(0.948085\pi\)
\(24\) 4.35154 + 7.53709i 0.888254 + 1.53850i
\(25\) −4.45634 2.26739i −0.891268 0.453477i
\(26\) −2.57003 1.48381i −0.504024 0.290998i
\(27\) 10.1063 5.14941i 1.94496 0.991005i
\(28\) 2.42286 + 2.30048i 0.457878 + 0.434750i
\(29\) 0.594101 0.817710i 0.110322 0.151845i −0.750286 0.661114i \(-0.770084\pi\)
0.860608 + 0.509269i \(0.170084\pi\)
\(30\) 5.50976 2.28407i 1.00594 0.417013i
\(31\) −1.48256 + 3.32988i −0.266275 + 0.598063i −0.996355 0.0852978i \(-0.972816\pi\)
0.730081 + 0.683361i \(0.239482\pi\)
\(32\) 5.51171 + 1.47686i 0.974342 + 0.261074i
\(33\) −5.96037 4.82661i −1.03757 0.840205i
\(34\) −0.967525 2.97773i −0.165929 0.510677i
\(35\) 4.59761 3.72317i 0.777138 0.629330i
\(36\) 2.59541 7.98786i 0.432569 1.33131i
\(37\) 0.757805 0.492125i 0.124582 0.0809048i −0.480843 0.876806i \(-0.659669\pi\)
0.605426 + 0.795902i \(0.293003\pi\)
\(38\) −0.319038 6.08762i −0.0517549 0.987542i
\(39\) 2.23243 + 10.5028i 0.357475 + 1.68179i
\(40\) 2.39556 5.78811i 0.378772 0.915181i
\(41\) 2.23957 0.727680i 0.349762 0.113644i −0.128867 0.991662i \(-0.541134\pi\)
0.478629 + 0.878017i \(0.341134\pi\)
\(42\) −0.186678 + 7.05474i −0.0288051 + 1.08857i
\(43\) 1.54846 + 1.54846i 0.236138 + 0.236138i 0.815249 0.579111i \(-0.196600\pi\)
−0.579111 + 0.815249i \(0.696600\pi\)
\(44\) −3.10047 + 0.325873i −0.467414 + 0.0491272i
\(45\) −13.4254 6.39882i −2.00133 0.953880i
\(46\) −0.184043 + 1.75105i −0.0271356 + 0.258178i
\(47\) −2.51648 0.965986i −0.367066 0.140904i 0.167842 0.985814i \(-0.446320\pi\)
−0.534908 + 0.844910i \(0.679654\pi\)
\(48\) −0.169554 0.332768i −0.0244730 0.0480310i
\(49\) 1.80801 + 6.76248i 0.258287 + 0.966068i
\(50\) −3.71912 2.14438i −0.525963 0.303261i
\(51\) −5.66425 + 9.81076i −0.793153 + 1.37378i
\(52\) 3.66045 + 2.37712i 0.507613 + 0.329647i
\(53\) −0.683987 + 0.553882i −0.0939528 + 0.0760815i −0.675146 0.737684i \(-0.735919\pi\)
0.581193 + 0.813766i \(0.302586\pi\)
\(54\) 8.89685 3.96114i 1.21071 0.539042i
\(55\) −0.142917 + 5.51851i −0.0192709 + 0.744115i
\(56\) 5.10058 + 5.37786i 0.681594 + 0.718647i
\(57\) −15.5963 + 15.5963i −2.06578 + 2.06578i
\(58\) 0.546147 0.674435i 0.0717126 0.0885576i
\(59\) −0.825876 + 0.917228i −0.107520 + 0.119413i −0.794502 0.607261i \(-0.792268\pi\)
0.686982 + 0.726674i \(0.258935\pi\)
\(60\) −8.26812 + 2.93057i −1.06741 + 0.378335i
\(61\) −8.07138 + 7.26750i −1.03343 + 0.930508i −0.997627 0.0688502i \(-0.978067\pi\)
−0.0358074 + 0.999359i \(0.511400\pi\)
\(62\) −1.42082 + 2.78852i −0.180445 + 0.354143i
\(63\) 13.3841 11.4247i 1.68624 1.43938i
\(64\) 4.43089 + 1.43968i 0.553861 + 0.179960i
\(65\) 5.01758 5.87826i 0.622354 0.729108i
\(66\) −4.89372 4.40633i −0.602376 0.542382i
\(67\) 4.72283 1.81293i 0.576986 0.221484i −0.0523352 0.998630i \(-0.516666\pi\)
0.629321 + 0.777145i \(0.283333\pi\)
\(68\) 1.19182 + 4.44794i 0.144530 + 0.539392i
\(69\) 5.15389 3.74452i 0.620455 0.450787i
\(70\) 4.10945 2.98577i 0.491173 0.356867i
\(71\) −11.9130 8.65529i −1.41381 1.02719i −0.992754 0.120161i \(-0.961659\pi\)
−0.421057 0.907034i \(-0.638341\pi\)
\(72\) 6.67739 17.3952i 0.786938 2.05004i
\(73\) 4.49475 6.92130i 0.526070 0.810077i −0.471343 0.881950i \(-0.656231\pi\)
0.997414 + 0.0718724i \(0.0228974\pi\)
\(74\) 0.671881 0.387911i 0.0781046 0.0450937i
\(75\) 3.23826 + 15.1918i 0.373922 + 1.75420i
\(76\) 8.96558i 1.02842i
\(77\) −5.89471 2.81362i −0.671765 0.320642i
\(78\) 1.44221 + 9.10574i 0.163298 + 1.03102i
\(79\) −6.17313 13.8651i −0.694531 1.55994i −0.822881 0.568214i \(-0.807635\pi\)
0.128350 0.991729i \(-0.459032\pi\)
\(80\) −0.115659 + 0.242664i −0.0129311 + 0.0271307i
\(81\) −13.9624 6.21645i −1.55138 0.690717i
\(82\) 1.95298 0.523299i 0.215670 0.0577887i
\(83\) 0.481396 3.03941i 0.0528401 0.333619i −0.947080 0.320997i \(-0.895982\pi\)
0.999920 0.0126222i \(-0.00401788\pi\)
\(84\) 0.817199 10.3471i 0.0891638 1.12896i
\(85\) 8.08390 1.06663i 0.876822 0.115693i
\(86\) 1.25812 + 1.39728i 0.135667 + 0.150673i
\(87\) −3.13570 + 0.164335i −0.336182 + 0.0176186i
\(88\) −6.90671 + 0.361965i −0.736258 + 0.0385856i
\(89\) −6.29169 6.98763i −0.666918 0.740687i 0.310831 0.950465i \(-0.399393\pi\)
−0.977749 + 0.209778i \(0.932726\pi\)
\(90\) −11.2238 6.08984i −1.18309 0.641926i
\(91\) 3.93454 + 8.25478i 0.412452 + 0.865337i
\(92\) 0.405091 2.55764i 0.0422336 0.266653i
\(93\) 10.9378 2.93077i 1.13420 0.303907i
\(94\) −2.11430 0.941349i −0.218074 0.0970927i
\(95\) 15.7405 + 2.06766i 1.61494 + 0.212137i
\(96\) −7.21015 16.1943i −0.735883 1.65282i
\(97\) 2.78673 + 17.5947i 0.282949 + 1.78647i 0.562970 + 0.826477i \(0.309659\pi\)
−0.280021 + 0.959994i \(0.590341\pi\)
\(98\) 1.24637 + 5.87961i 0.125902 + 0.593931i
\(99\) 16.4201i 1.65028i
\(100\) 5.29730 + 3.43577i 0.529730 + 0.343577i
\(101\) 12.4991 7.21639i 1.24371 0.718057i 0.273864 0.961769i \(-0.411698\pi\)
0.969848 + 0.243711i \(0.0783649\pi\)
\(102\) −5.29757 + 8.15754i −0.524537 + 0.807717i
\(103\) −5.37411 + 14.0000i −0.529527 + 1.37946i 0.364397 + 0.931244i \(0.381275\pi\)
−0.893923 + 0.448220i \(0.852058\pi\)
\(104\) 7.83346 + 5.69134i 0.768134 + 0.558082i
\(105\) −17.9774 3.82098i −1.75442 0.372890i
\(106\) −0.611362 + 0.444181i −0.0593807 + 0.0431426i
\(107\) −3.11495 11.6252i −0.301134 1.12385i −0.936223 0.351408i \(-0.885703\pi\)
0.635089 0.772439i \(-0.280963\pi\)
\(108\) −13.3719 + 5.13300i −1.28671 + 0.493923i
\(109\) −0.551684 0.496739i −0.0528417 0.0475789i 0.642287 0.766464i \(-0.277986\pi\)
−0.695128 + 0.718886i \(0.744653\pi\)
\(110\) −0.370522 + 4.72533i −0.0353279 + 0.450542i
\(111\) −2.66969 0.867435i −0.253396 0.0823333i
\(112\) −0.206503 0.241919i −0.0195127 0.0228592i
\(113\) 4.37867 8.59362i 0.411911 0.808420i −0.588089 0.808796i \(-0.700120\pi\)
1.00000 0.000375885i \(0.000119648\pi\)
\(114\) −14.0736 + 12.6719i −1.31811 + 1.18683i
\(115\) −4.39691 1.30105i −0.410014 0.121323i
\(116\) −0.854051 + 0.948520i −0.0792967 + 0.0880679i
\(117\) 14.4669 17.8652i 1.33747 1.65163i
\(118\) −0.749350 + 0.749350i −0.0689833 + 0.0689833i
\(119\) −2.74270 + 9.24985i −0.251423 + 0.847932i
\(120\) −18.6577 + 5.53250i −1.70321 + 0.505046i
\(121\) −4.48106 + 1.99510i −0.407369 + 0.181372i
\(122\) −7.24724 + 5.86870i −0.656134 + 0.531327i
\(123\) −6.13532 3.98433i −0.553203 0.359255i
\(124\) 2.30144 3.98620i 0.206675 0.357972i
\(125\) 7.25370 8.50787i 0.648791 0.760967i
\(126\) 11.9894 9.19451i 1.06810 0.819112i
\(127\) −5.04425 9.89989i −0.447605 0.878473i −0.999021 0.0442431i \(-0.985912\pi\)
0.551416 0.834230i \(-0.314088\pi\)
\(128\) −6.91980 2.65626i −0.611629 0.234783i
\(129\) 0.711112 6.76578i 0.0626100 0.595694i
\(130\) 4.56638 4.81474i 0.400498 0.422281i
\(131\) 14.2099 1.49352i 1.24153 0.130490i 0.539098 0.842243i \(-0.318765\pi\)
0.702430 + 0.711753i \(0.252099\pi\)
\(132\) 6.84836 + 6.84836i 0.596073 + 0.596073i
\(133\) −9.81921 + 16.0136i −0.851433 + 1.38855i
\(134\) 4.13098 1.34224i 0.356862 0.115952i
\(135\) 5.92791 + 24.6602i 0.510193 + 2.12242i
\(136\) 2.12397 + 9.99248i 0.182129 + 0.856848i
\(137\) 0.0912401 + 1.74096i 0.00779517 + 0.148741i 0.999754 + 0.0221797i \(0.00706059\pi\)
−0.991959 + 0.126561i \(0.959606\pi\)
\(138\) 4.58737 2.97907i 0.390503 0.253596i
\(139\) 3.24021 9.97233i 0.274831 0.845842i −0.714433 0.699703i \(-0.753315\pi\)
0.989264 0.146138i \(-0.0466845\pi\)
\(140\) −6.26546 + 4.06895i −0.529528 + 0.343889i
\(141\) 2.58769 + 7.96409i 0.217923 + 0.670697i
\(142\) −9.82565 7.95666i −0.824550 0.667708i
\(143\) −8.24209 2.20846i −0.689238 0.184681i
\(144\) −0.325221 + 0.730459i −0.0271018 + 0.0608716i
\(145\) 1.46831 + 1.71817i 0.121936 + 0.142686i
\(146\) 4.16496 5.73258i 0.344695 0.474431i
\(147\) 12.7919 17.5861i 1.05506 1.45048i
\(148\) −1.01667 + 0.518017i −0.0835694 + 0.0425808i
\(149\) 10.5057 + 6.06545i 0.860658 + 0.496901i 0.864233 0.503092i \(-0.167804\pi\)
−0.00357448 + 0.999994i \(0.501138\pi\)
\(150\) 2.09393 + 13.1715i 0.170969 + 1.07545i
\(151\) 2.51055 + 4.34839i 0.204305 + 0.353867i 0.949911 0.312520i \(-0.101173\pi\)
−0.745606 + 0.666387i \(0.767840\pi\)
\(152\) −1.04096 + 19.8626i −0.0844326 + 1.61107i
\(153\) 23.9550 3.79410i 1.93665 0.306735i
\(154\) −4.92788 2.67738i −0.397100 0.215749i
\(155\) −6.46763 4.95983i −0.519493 0.398383i
\(156\) −1.41731 13.4848i −0.113476 1.07965i
\(157\) −1.23630 + 4.61392i −0.0986672 + 0.368231i −0.997550 0.0699583i \(-0.977713\pi\)
0.898883 + 0.438189i \(0.144380\pi\)
\(158\) −4.67000 12.1658i −0.371525 0.967856i
\(159\) 2.67447 + 0.568476i 0.212099 + 0.0450831i
\(160\) −6.08500 + 11.2149i −0.481061 + 0.886613i
\(161\) 3.52470 4.12459i 0.277785 0.325064i
\(162\) −11.6925 5.95761i −0.918646 0.468074i
\(163\) 0.608954 + 0.937707i 0.0476969 + 0.0734469i 0.861715 0.507393i \(-0.169391\pi\)
−0.814018 + 0.580840i \(0.802724\pi\)
\(164\) −2.90866 + 0.618255i −0.227128 + 0.0482776i
\(165\) 13.6027 10.4440i 1.05897 0.813062i
\(166\) 0.549344 2.58446i 0.0426374 0.200593i
\(167\) −20.0374 3.17362i −1.55054 0.245582i −0.678349 0.734740i \(-0.737304\pi\)
−0.872195 + 0.489158i \(0.837304\pi\)
\(168\) 3.01180 22.8284i 0.232366 1.76125i
\(169\) −0.619519 0.852694i −0.0476553 0.0655919i
\(170\) 6.97933 0.551308i 0.535290 0.0422834i
\(171\) 46.9629 + 4.93599i 3.59134 + 0.377465i
\(172\) −1.74028 2.14906i −0.132695 0.163865i
\(173\) −8.89779 0.466313i −0.676486 0.0354531i −0.289001 0.957329i \(-0.593323\pi\)
−0.387486 + 0.921876i \(0.626656\pi\)
\(174\) −2.69604 −0.204386
\(175\) 5.69872 + 11.9384i 0.430782 + 0.902456i
\(176\) 0.296794 0.0223717
\(177\) 3.82910 + 0.200675i 0.287813 + 0.0150836i
\(178\) −5.08070 6.27414i −0.380815 0.470267i
\(179\) 5.73678 + 0.602960i 0.428787 + 0.0450674i 0.316464 0.948604i \(-0.397504\pi\)
0.112323 + 0.993672i \(0.464171\pi\)
\(180\) 16.0159 + 9.80821i 1.19375 + 0.731061i
\(181\) −3.29233 4.53150i −0.244717 0.336824i 0.668935 0.743321i \(-0.266750\pi\)
−0.913652 + 0.406497i \(0.866750\pi\)
\(182\) 3.00267 + 7.25472i 0.222572 + 0.537756i
\(183\) 33.3259 + 5.27831i 2.46352 + 0.390184i
\(184\) 1.19441 5.61925i 0.0880529 0.414256i
\(185\) 0.674994 + 1.90438i 0.0496265 + 0.140013i
\(186\) 9.51012 2.02144i 0.697316 0.148219i
\(187\) −4.90315 7.55019i −0.358554 0.552124i
\(188\) 3.03287 + 1.54532i 0.221195 + 0.112704i
\(189\) −29.5056 5.47693i −2.14621 0.398388i
\(190\) 13.4035 + 2.48019i 0.972390 + 0.179932i
\(191\) 17.0510 + 3.62431i 1.23377 + 0.262246i 0.778236 0.627972i \(-0.216115\pi\)
0.455535 + 0.890218i \(0.349448\pi\)
\(192\) −5.18683 13.5121i −0.374327 0.975155i
\(193\) −3.72157 + 13.8891i −0.267885 + 0.999759i 0.692576 + 0.721345i \(0.256476\pi\)
−0.960461 + 0.278415i \(0.910191\pi\)
\(194\) 1.59879 + 15.2115i 0.114787 + 1.09212i
\(195\) −24.0015 0.621586i −1.71879 0.0445127i
\(196\) −1.37800 8.73146i −0.0984286 0.623676i
\(197\) 7.84565 1.24263i 0.558979 0.0885336i 0.129449 0.991586i \(-0.458679\pi\)
0.429530 + 0.903052i \(0.358679\pi\)
\(198\) −0.737855 + 14.0791i −0.0524371 + 1.00056i
\(199\) 3.08282 + 5.33960i 0.218535 + 0.378514i 0.954360 0.298657i \(-0.0965388\pi\)
−0.735825 + 0.677172i \(0.763205\pi\)
\(200\) 11.3369 + 8.22676i 0.801639 + 0.581720i
\(201\) −13.6104 7.85795i −0.960001 0.554257i
\(202\) 11.0415 5.62590i 0.776874 0.395837i
\(203\) −2.56427 + 0.758803i −0.179976 + 0.0532575i
\(204\) 8.40857 11.5734i 0.588718 0.810300i
\(205\) 0.414641 + 5.24919i 0.0289598 + 0.366619i
\(206\) −5.23704 + 11.7626i −0.364882 + 0.819539i
\(207\) −13.1742 3.53003i −0.915673 0.245354i
\(208\) −0.322914 0.261491i −0.0223901 0.0181311i
\(209\) −5.41641 16.6700i −0.374661 1.15309i
\(210\) −15.2427 4.08407i −1.05185 0.281828i
\(211\) 5.44934 16.7713i 0.375148 1.15459i −0.568231 0.822869i \(-0.692372\pi\)
0.943379 0.331717i \(-0.107628\pi\)
\(212\) 0.932111 0.605320i 0.0640177 0.0415736i
\(213\) 2.39415 + 45.6831i 0.164045 + 3.13016i
\(214\) −2.14847 10.1078i −0.146867 0.690953i
\(215\) −4.17436 + 2.55970i −0.284689 + 0.174570i
\(216\) −30.2205 + 9.81924i −2.05625 + 0.668115i
\(217\) 8.47638 4.59928i 0.575414 0.312219i
\(218\) −0.450710 0.450710i −0.0305260 0.0305260i
\(219\) −25.4976 + 2.67990i −1.72297 + 0.181091i
\(220\) 0.907915 6.91168i 0.0612116 0.465985i
\(221\) −1.31744 + 12.5346i −0.0886204 + 0.843167i
\(222\) −2.25010 0.863733i −0.151017 0.0579699i
\(223\) 3.91951 + 7.69248i 0.262470 + 0.515126i 0.984203 0.177046i \(-0.0566540\pi\)
−0.721733 + 0.692172i \(0.756654\pi\)
\(224\) −9.18720 11.9798i −0.613846 0.800435i
\(225\) 20.9134 25.8564i 1.39423 1.72376i
\(226\) 4.14058 7.17169i 0.275427 0.477054i
\(227\) 9.15235 + 5.94360i 0.607463 + 0.394491i 0.811398 0.584493i \(-0.198707\pi\)
−0.203936 + 0.978984i \(0.565373\pi\)
\(228\) 21.6456 17.5282i 1.43351 1.16084i
\(229\) −8.95229 + 3.98582i −0.591584 + 0.263390i −0.680618 0.732638i \(-0.738289\pi\)
0.0890341 + 0.996029i \(0.471622\pi\)
\(230\) −3.71159 1.31314i −0.244735 0.0865860i
\(231\) 4.73158 + 19.7324i 0.311315 + 1.29830i
\(232\) −2.00222 + 2.00222i −0.131452 + 0.131452i
\(233\) 2.12463 2.62370i 0.139189 0.171884i −0.702785 0.711402i \(-0.748060\pi\)
0.841974 + 0.539518i \(0.181394\pi\)
\(234\) 13.2072 14.6681i 0.863382 0.958883i
\(235\) 3.41250 4.96828i 0.222607 0.324095i
\(236\) 1.15827 1.04291i 0.0753968 0.0678875i
\(237\) −21.4056 + 42.0108i −1.39044 + 2.72890i
\(238\) −2.76733 + 7.80787i −0.179380 + 0.506109i
\(239\) −14.2076 4.61631i −0.919010 0.298604i −0.188949 0.981987i \(-0.560508\pi\)
−0.730061 + 0.683382i \(0.760508\pi\)
\(240\) 0.811984 0.195188i 0.0524134 0.0125993i
\(241\) −19.7392 17.7732i −1.27151 1.14487i −0.982240 0.187627i \(-0.939920\pi\)
−0.289271 0.957247i \(-0.593413\pi\)
\(242\) −3.93186 + 1.50930i −0.252749 + 0.0970214i
\(243\) 3.48192 + 12.9947i 0.223365 + 0.833610i
\(244\) 11.0959 8.06166i 0.710343 0.516095i
\(245\) −15.6472 + 0.405625i −0.999664 + 0.0259144i
\(246\) −5.08159 3.69199i −0.323990 0.235393i
\(247\) −8.79403 + 22.9092i −0.559551 + 1.45768i
\(248\) 5.56149 8.56395i 0.353155 0.543811i
\(249\) −8.27921 + 4.78000i −0.524673 + 0.302920i
\(250\) 6.60187 6.96897i 0.417539 0.440756i
\(251\) 6.13565i 0.387279i −0.981073 0.193639i \(-0.937971\pi\)
0.981073 0.193639i \(-0.0620292\pi\)
\(252\) −18.3168 + 12.5813i −1.15385 + 0.792550i
\(253\) 0.791961 + 5.00024i 0.0497901 + 0.314363i
\(254\) −3.88024 8.71516i −0.243468 0.546838i
\(255\) −18.3797 17.4316i −1.15098 1.09161i
\(256\) −14.3262 6.37841i −0.895384 0.398651i
\(257\) −15.5655 + 4.17077i −0.970951 + 0.260166i −0.709230 0.704978i \(-0.750957\pi\)
−0.261722 + 0.965143i \(0.584290\pi\)
\(258\) 0.913759 5.76925i 0.0568882 0.359178i
\(259\) −2.38323 0.188224i −0.148086 0.0116957i
\(260\) −7.07736 + 6.72004i −0.438919 + 0.416759i
\(261\) 4.49827 + 4.99584i 0.278436 + 0.309234i
\(262\) 12.2512 0.642057i 0.756880 0.0396664i
\(263\) −20.8879 + 1.09469i −1.28800 + 0.0675012i −0.683999 0.729483i \(-0.739761\pi\)
−0.604001 + 0.796984i \(0.706428\pi\)
\(264\) 14.3769 + 15.9672i 0.884839 + 0.982713i
\(265\) −0.847767 1.77607i −0.0520779 0.109103i
\(266\) −9.13890 + 13.2893i −0.560342 + 0.814822i
\(267\) −4.56959 + 28.8512i −0.279654 + 1.76567i
\(268\) −6.17058 + 1.65340i −0.376928 + 0.100998i
\(269\) 20.6897 + 9.21166i 1.26148 + 0.561645i 0.924971 0.380037i \(-0.124089\pi\)
0.336504 + 0.941682i \(0.390755\pi\)
\(270\) 3.97465 + 21.4109i 0.241889 + 1.30302i
\(271\) 4.69544 + 10.5461i 0.285228 + 0.640632i 0.998162 0.0605988i \(-0.0193010\pi\)
−0.712935 + 0.701231i \(0.752634\pi\)
\(272\) −0.0685787 0.432989i −0.00415820 0.0262538i
\(273\) 12.2372 25.6377i 0.740632 1.55167i
\(274\) 1.49686i 0.0904286i
\(275\) −11.9251 3.18797i −0.719112 0.192242i
\(276\) −6.96689 + 4.02234i −0.419357 + 0.242116i
\(277\) 13.8337 21.3021i 0.831189 1.27992i −0.126457 0.991972i \(-0.540360\pi\)
0.957646 0.287947i \(-0.0929728\pi\)
\(278\) 3.22638 8.40500i 0.193505 0.504098i
\(279\) −19.6132 14.2498i −1.17421 0.853114i
\(280\) −14.3531 + 8.28702i −0.857763 + 0.495244i
\(281\) 1.65462 1.20215i 0.0987061 0.0717142i −0.537337 0.843367i \(-0.680570\pi\)
0.636044 + 0.771653i \(0.280570\pi\)
\(282\) 1.86089 + 6.94495i 0.110815 + 0.413566i
\(283\) 19.3529 7.42890i 1.15041 0.441602i 0.292940 0.956131i \(-0.405366\pi\)
0.857473 + 0.514528i \(0.172033\pi\)
\(284\) 13.8187 + 12.4424i 0.819990 + 0.738322i
\(285\) −25.7816 42.0445i −1.52717 2.49050i
\(286\) −6.96780 2.26398i −0.412015 0.133872i
\(287\) −5.87234 2.08132i −0.346633 0.122857i
\(288\) −17.2299 + 33.8156i −1.01528 + 1.99260i
\(289\) 2.75154 2.47750i 0.161855 0.145735i
\(290\) 1.18177 + 1.53919i 0.0693959 + 0.0903845i
\(291\) 37.0306 41.1267i 2.17077 2.41089i
\(292\) −6.55842 + 8.09898i −0.383803 + 0.473957i
\(293\) 12.1262 12.1262i 0.708422 0.708422i −0.257781 0.966203i \(-0.582991\pi\)
0.966203 + 0.257781i \(0.0829914\pi\)
\(294\) 11.7584 14.5041i 0.685765 0.845896i
\(295\) −1.56386 2.27403i −0.0910517 0.132399i
\(296\) −2.31250 + 1.02959i −0.134411 + 0.0598437i
\(297\) 21.7618 17.6224i 1.26275 1.02255i
\(298\) 8.73535 + 5.67280i 0.506025 + 0.328617i
\(299\) 3.54381 6.13806i 0.204944 0.354973i
\(300\) −2.06157 19.5064i −0.119025 1.12620i
\(301\) −0.754663 5.74445i −0.0434981 0.331105i
\(302\) 1.95722 + 3.84127i 0.112626 + 0.221040i
\(303\) −41.8591 16.0682i −2.40474 0.923094i
\(304\) 0.0892185 0.848857i 0.00511703 0.0486853i
\(305\) −11.5945 21.3398i −0.663900 1.22191i
\(306\) 20.7103 2.17674i 1.18393 0.124436i
\(307\) 3.57700 + 3.57700i 0.204150 + 0.204150i 0.801775 0.597625i \(-0.203889\pi\)
−0.597625 + 0.801775i \(0.703889\pi\)
\(308\) 7.03161 + 4.31164i 0.400663 + 0.245679i
\(309\) 44.3069 14.3962i 2.52053 0.818971i
\(310\) −5.32268 4.54335i −0.302308 0.258045i
\(311\) −0.644209 3.03077i −0.0365298 0.171859i 0.956101 0.293037i \(-0.0946660\pi\)
−0.992631 + 0.121178i \(0.961333\pi\)
\(312\) −1.57429 30.0392i −0.0891266 1.70064i
\(313\) −0.292086 + 0.189683i −0.0165097 + 0.0107215i −0.552867 0.833269i \(-0.686466\pi\)
0.536358 + 0.843991i \(0.319800\pi\)
\(314\) −1.26737 + 3.90057i −0.0715220 + 0.220122i
\(315\) 17.8642 + 35.0594i 1.00654 + 1.97538i
\(316\) 5.92251 + 18.2276i 0.333167 + 1.02538i
\(317\) 1.07690 + 0.872053i 0.0604845 + 0.0489794i 0.659086 0.752068i \(-0.270943\pi\)
−0.598601 + 0.801047i \(0.704277\pi\)
\(318\) 2.26763 + 0.607611i 0.127163 + 0.0340731i
\(319\) 1.01493 2.27958i 0.0568253 0.127632i
\(320\) −5.44064 + 8.88407i −0.304141 + 0.496634i
\(321\) −21.9767 + 30.2483i −1.22662 + 1.68830i
\(322\) 3.20754 3.37818i 0.178749 0.188258i
\(323\) −23.0681 + 11.7538i −1.28354 + 0.653999i
\(324\) 16.7144 + 9.65007i 0.928579 + 0.536115i
\(325\) 10.1659 + 13.9752i 0.563901 + 0.775203i
\(326\) 0.480000 + 0.831384i 0.0265847 + 0.0460461i
\(327\) −0.120699 + 2.30308i −0.00667470 + 0.127361i
\(328\) −6.51572 + 1.03199i −0.359771 + 0.0569821i
\(329\) 3.72461 + 6.08177i 0.205344 + 0.335299i
\(330\) 12.1327 8.34374i 0.667885 0.459308i
\(331\) −1.33440 12.6959i −0.0733450 0.697831i −0.967979 0.251031i \(-0.919230\pi\)
0.894634 0.446800i \(-0.147436\pi\)
\(332\) −1.00577 + 3.75357i −0.0551986 + 0.206004i
\(333\) 2.15372 + 5.61062i 0.118023 + 0.307460i
\(334\) −17.0381 3.62157i −0.932286 0.198163i
\(335\) 1.47973 + 11.2147i 0.0808463 + 0.612725i
\(336\) −0.180338 + 0.971525i −0.00983826 + 0.0530011i
\(337\) 2.29665 + 1.17020i 0.125106 + 0.0637448i 0.515423 0.856936i \(-0.327635\pi\)
−0.390317 + 0.920680i \(0.627635\pi\)
\(338\) −0.492879 0.758967i −0.0268091 0.0412823i
\(339\) −29.3081 + 6.22963i −1.59180 + 0.338347i
\(340\) −10.2931 + 0.272502i −0.558224 + 0.0147785i
\(341\) −1.87094 + 8.80206i −0.101317 + 0.476658i
\(342\) 40.0457 + 6.34261i 2.16542 + 0.342969i
\(343\) 7.10152 17.1046i 0.383446 0.923563i
\(344\) −3.60594 4.96315i −0.194419 0.267595i
\(345\) 5.45511 + 13.1591i 0.293693 + 0.708461i
\(346\) −7.60830 0.799664i −0.409025 0.0429902i
\(347\) 3.91924 + 4.83986i 0.210396 + 0.259818i 0.871409 0.490557i \(-0.163207\pi\)
−0.661013 + 0.750374i \(0.729873\pi\)
\(348\) 3.95973 + 0.207521i 0.212264 + 0.0111243i
\(349\) −6.37223 −0.341098 −0.170549 0.985349i \(-0.554554\pi\)
−0.170549 + 0.985349i \(0.554554\pi\)
\(350\) 4.34980 + 10.4924i 0.232507 + 0.560844i
\(351\) −39.2033 −2.09252
\(352\) 14.0679 + 0.737268i 0.749822 + 0.0392965i
\(353\) 0.415853 + 0.513536i 0.0221336 + 0.0273328i 0.788093 0.615557i \(-0.211069\pi\)
−0.765959 + 0.642889i \(0.777735\pi\)
\(354\) 3.27418 + 0.344130i 0.174021 + 0.0182903i
\(355\) 25.0315 21.3914i 1.32853 1.13534i
\(356\) 6.97921 + 9.60606i 0.369897 + 0.509120i
\(357\) 27.6940 11.4623i 1.46572 0.606650i
\(358\) 4.89181 + 0.774787i 0.258540 + 0.0409488i
\(359\) −3.89736 + 18.3356i −0.205695 + 0.967717i 0.747243 + 0.664551i \(0.231377\pi\)
−0.952938 + 0.303166i \(0.901956\pi\)
\(360\) 34.3433 + 23.5889i 1.81005 + 1.24325i
\(361\) −30.7211 + 6.52997i −1.61690 + 0.343683i
\(362\) −2.61932 4.03340i −0.137669 0.211991i
\(363\) 13.5775 + 6.91808i 0.712633 + 0.363105i
\(364\) −3.85167 10.8863i −0.201882 0.570597i
\(365\) 12.7065 + 13.3821i 0.665088 + 0.700452i
\(366\) 28.3376 + 6.02334i 1.48123 + 0.314845i
\(367\) −11.1627 29.0797i −0.582686 1.51795i −0.834969 0.550296i \(-0.814515\pi\)
0.252283 0.967654i \(-0.418819\pi\)
\(368\) −0.0638055 + 0.238125i −0.00332609 + 0.0124131i
\(369\) 1.63714 + 15.5763i 0.0852260 + 0.810871i
\(370\) 0.493186 + 1.66321i 0.0256395 + 0.0864661i
\(371\) 2.32782 0.0603148i 0.120854 0.00313139i
\(372\) −14.1233 + 2.23692i −0.732260 + 0.115979i
\(373\) −0.422082 + 8.05381i −0.0218546 + 0.417010i 0.965693 + 0.259688i \(0.0836196\pi\)
−0.987547 + 0.157323i \(0.949714\pi\)
\(374\) −3.86484 6.69411i −0.199846 0.346144i
\(375\) −34.7219 0.879210i −1.79303 0.0454022i
\(376\) 6.53969 + 3.77569i 0.337259 + 0.194716i
\(377\) −3.11268 + 1.58599i −0.160311 + 0.0816826i
\(378\) −25.0529 6.02197i −1.28858 0.309737i
\(379\) −8.68157 + 11.9492i −0.445942 + 0.613787i −0.971520 0.236959i \(-0.923849\pi\)
0.525577 + 0.850746i \(0.323849\pi\)
\(380\) −19.4951 4.67442i −1.00008 0.239793i
\(381\) −14.0395 + 31.5332i −0.719264 + 1.61549i
\(382\) 14.4573 + 3.87381i 0.739698 + 0.198201i
\(383\) 19.3346 + 15.6568i 0.987950 + 0.800026i 0.979808 0.199941i \(-0.0640749\pi\)
0.00814217 + 0.999967i \(0.497408\pi\)
\(384\) 7.11561 + 21.8996i 0.363117 + 1.11756i
\(385\) 9.19139 11.3507i 0.468437 0.578486i
\(386\) −3.81512 + 11.7417i −0.194185 + 0.597639i
\(387\) −12.2152 + 7.93263i −0.620932 + 0.403238i
\(388\) −1.17732 22.4645i −0.0597692 1.14046i
\(389\) 5.93602 + 27.9268i 0.300968 + 1.41594i 0.825427 + 0.564508i \(0.190934\pi\)
−0.524459 + 0.851436i \(0.675732\pi\)
\(390\) −20.5518 1.61150i −1.04068 0.0816017i
\(391\) 7.11180 2.31076i 0.359659 0.116860i
\(392\) −2.03909 19.5039i −0.102990 0.985097i
\(393\) −31.3871 31.3871i −1.58327 1.58327i
\(394\) 6.78295 0.712917i 0.341720 0.0359162i
\(395\) 33.3672 6.19419i 1.67889 0.311663i
\(396\) 2.16741 20.6215i 0.108916 1.03627i
\(397\) −7.23706 2.77805i −0.363218 0.139426i 0.169913 0.985459i \(-0.445651\pi\)
−0.533131 + 0.846033i \(0.678985\pi\)
\(398\) 2.40337 + 4.71688i 0.120470 + 0.236436i
\(399\) 57.8587 7.60104i 2.89656 0.380528i
\(400\) −0.467356 0.378012i −0.0233678 0.0189006i
\(401\) 18.2018 31.5265i 0.908956 1.57436i 0.0934398 0.995625i \(-0.470214\pi\)
0.815517 0.578734i \(-0.196453\pi\)
\(402\) −11.3169 7.34926i −0.564434 0.366548i
\(403\) 9.79066 7.92832i 0.487707 0.394938i
\(404\) −16.6499 + 7.41300i −0.828362 + 0.368811i
\(405\) 20.7969 27.1192i 1.03341 1.34756i
\(406\) −2.23278 + 0.535394i −0.110811 + 0.0265712i
\(407\) 1.57737 1.57737i 0.0781873 0.0781873i
\(408\) 19.9723 24.6638i 0.988778 1.22104i
\(409\) −7.87770 + 8.74907i −0.389527 + 0.432614i −0.905732 0.423852i \(-0.860678\pi\)
0.516204 + 0.856465i \(0.327344\pi\)
\(410\) 0.119649 + 4.51946i 0.00590902 + 0.223200i
\(411\) 4.02483 3.62397i 0.198530 0.178757i
\(412\) 8.59716 16.8729i 0.423552 0.831267i
\(413\) 3.21101 0.594211i 0.158003 0.0292392i
\(414\) −11.1374 3.61876i −0.547373 0.177852i
\(415\) 6.35802 + 2.63143i 0.312103 + 0.129172i
\(416\) −14.6564 13.1967i −0.718590 0.647021i
\(417\) −30.4110 + 11.6737i −1.48923 + 0.571662i
\(418\) −3.89512 14.5368i −0.190517 0.711018i
\(419\) 4.95298 3.59855i 0.241969 0.175801i −0.460191 0.887820i \(-0.652219\pi\)
0.702160 + 0.712019i \(0.252219\pi\)
\(420\) 22.0730 + 7.17165i 1.07705 + 0.349940i
\(421\) −19.6842 14.3014i −0.959351 0.697009i −0.00635102 0.999980i \(-0.502022\pi\)
−0.953000 + 0.302971i \(0.902022\pi\)
\(422\) 5.42608 14.1354i 0.264137 0.688101i
\(423\) 9.76435 15.0358i 0.474759 0.731065i
\(424\) 2.13531 1.23282i 0.103700 0.0598711i
\(425\) −1.89541 + 18.1340i −0.0919407 + 0.879630i
\(426\) 39.2778i 1.90301i
\(427\) 28.6478 2.24670i 1.38637 0.108725i
\(428\) 2.37749 + 15.0109i 0.114920 + 0.725578i
\(429\) 10.7819 + 24.2165i 0.520555 + 1.16919i
\(430\) −3.69425 + 2.00719i −0.178153 + 0.0967955i
\(431\) 2.01719 + 0.898112i 0.0971648 + 0.0432605i 0.454743 0.890622i \(-0.349731\pi\)
−0.357579 + 0.933883i \(0.616398\pi\)
\(432\) 1.31713 0.352923i 0.0633703 0.0169800i
\(433\) −4.68698 + 29.5924i −0.225242 + 1.42212i 0.572887 + 0.819635i \(0.305824\pi\)
−0.798129 + 0.602487i \(0.794176\pi\)
\(434\) 7.47459 3.56267i 0.358792 0.171014i
\(435\) 1.27753 6.90406i 0.0612531 0.331024i
\(436\) 0.627277 + 0.696661i 0.0300411 + 0.0333640i
\(437\) 14.5392 0.761967i 0.695504 0.0364498i
\(438\) −21.9829 + 1.15207i −1.05038 + 0.0550482i
\(439\) −3.48497 3.87046i −0.166329 0.184727i 0.654218 0.756306i \(-0.272998\pi\)
−0.820547 + 0.571579i \(0.806331\pi\)
\(440\) 2.81391 15.2069i 0.134148 0.724961i
\(441\) −46.4952 + 2.41104i −2.21406 + 0.114811i
\(442\) −1.69287 + 10.6884i −0.0805216 + 0.508393i
\(443\) −34.0081 + 9.11243i −1.61577 + 0.432945i −0.949756 0.312992i \(-0.898669\pi\)
−0.666016 + 0.745937i \(0.732002\pi\)
\(444\) 3.23829 + 1.44178i 0.153682 + 0.0684239i
\(445\) 18.4745 10.0377i 0.875774 0.475833i
\(446\) 3.01505 + 6.77191i 0.142767 + 0.320659i
\(447\) −5.89541 37.2221i −0.278843 1.76055i
\(448\) −6.97891 10.1604i −0.329722 0.480032i
\(449\) 11.0263i 0.520361i 0.965560 + 0.260181i \(0.0837821\pi\)
−0.965560 + 0.260181i \(0.916218\pi\)
\(450\) 19.0938 21.2303i 0.900088 1.00081i
\(451\) 5.03467 2.90677i 0.237073 0.136874i
\(452\) −6.63339 + 10.2145i −0.312008 + 0.480451i
\(453\) 5.59005 14.5626i 0.262643 0.684210i
\(454\) 7.58044 + 5.50751i 0.355768 + 0.258480i
\(455\) −20.0009 + 4.25158i −0.937655 + 0.199317i
\(456\) 49.9894 36.3194i 2.34097 1.70081i
\(457\) 1.28162 + 4.78308i 0.0599518 + 0.223743i 0.989401 0.145206i \(-0.0463844\pi\)
−0.929450 + 0.368949i \(0.879718\pi\)
\(458\) −7.85509 + 3.01529i −0.367044 + 0.140895i
\(459\) −30.7375 27.6762i −1.43470 1.29181i
\(460\) 5.35023 + 2.21433i 0.249456 + 0.103244i
\(461\) 9.15490 + 2.97461i 0.426386 + 0.138541i 0.514346 0.857583i \(-0.328035\pi\)
−0.0879597 + 0.996124i \(0.528035\pi\)
\(462\) 3.17032 + 17.1318i 0.147496 + 0.797044i
\(463\) 9.49875 18.6423i 0.441444 0.866383i −0.557891 0.829914i \(-0.688389\pi\)
0.999335 0.0364685i \(-0.0116109\pi\)
\(464\) 0.0903001 0.0813066i 0.00419208 0.00377456i
\(465\) 0.670100 + 25.3116i 0.0310752 + 1.17380i
\(466\) 1.93962 2.15417i 0.0898513 0.0997900i
\(467\) −0.189940 + 0.234556i −0.00878937 + 0.0108540i −0.781522 0.623878i \(-0.785556\pi\)
0.772732 + 0.634732i \(0.218890\pi\)
\(468\) −20.5268 + 20.5268i −0.948850 + 0.948850i
\(469\) −12.8322 3.80492i −0.592536 0.175695i
\(470\) 3.14924 4.10662i 0.145264 0.189424i
\(471\) 13.5564 6.03570i 0.624647 0.278111i
\(472\) 2.68715 2.17601i 0.123686 0.100159i
\(473\) 4.53408 + 2.94447i 0.208477 + 0.135387i
\(474\) −20.2416 + 35.0596i −0.929730 + 1.61034i
\(475\) −12.7026 + 33.1486i −0.582838 + 1.52096i
\(476\) 4.66544 11.2546i 0.213840 0.515854i
\(477\) −2.65757 5.21578i −0.121682 0.238814i
\(478\) −11.9746 4.59661i −0.547704 0.210244i
\(479\) −1.64916 + 15.6907i −0.0753519 + 0.716926i 0.889998 + 0.455965i \(0.150706\pi\)
−0.965350 + 0.260960i \(0.915961\pi\)
\(480\) 38.9726 7.23475i 1.77885 0.330219i
\(481\) −3.10593 + 0.326447i −0.141618 + 0.0148847i
\(482\) −16.1263 16.1263i −0.734535 0.734535i
\(483\) −16.8490 0.445848i −0.766656 0.0202868i
\(484\) 5.89098 1.91410i 0.267772 0.0870044i
\(485\) −39.7115 3.11385i −1.80320 0.141393i
\(486\) 2.40158 + 11.2985i 0.108938 + 0.512512i
\(487\) −0.370620 7.07185i −0.0167944 0.320456i −0.994089 0.108570i \(-0.965373\pi\)
0.977294 0.211886i \(-0.0679605\pi\)
\(488\) 25.5182 16.5717i 1.15516 0.750167i
\(489\) 1.07336 3.30347i 0.0485391 0.149388i
\(490\) −13.4347 0.355329i −0.606916 0.0160521i
\(491\) −6.72096 20.6850i −0.303313 0.933500i −0.980301 0.197507i \(-0.936715\pi\)
0.676989 0.735993i \(-0.263285\pi\)
\(492\) 7.17926 + 5.81365i 0.323666 + 0.262100i
\(493\) −3.56016 0.953942i −0.160342 0.0429634i
\(494\) −8.56974 + 19.2480i −0.385571 + 0.866006i
\(495\) −35.7044 8.56099i −1.60479 0.384788i
\(496\) −0.257567 + 0.354510i −0.0115651 + 0.0159180i
\(497\) 11.0548 + 37.3581i 0.495875 + 1.67574i
\(498\) −7.31366 + 3.72649i −0.327733 + 0.166988i
\(499\) 3.54008 + 2.04386i 0.158476 + 0.0914959i 0.577141 0.816645i \(-0.304168\pi\)
−0.418665 + 0.908141i \(0.637502\pi\)
\(500\) −10.2327 + 9.72732i −0.457622 + 0.435019i
\(501\) 31.5123 + 54.5810i 1.40787 + 2.43850i
\(502\) 0.275713 5.26091i 0.0123057 0.234806i
\(503\) 37.4748 5.93543i 1.67092 0.264648i 0.752020 0.659140i \(-0.229079\pi\)
0.918899 + 0.394492i \(0.129079\pi\)
\(504\) −42.0403 + 25.7464i −1.87262 + 1.14684i
\(505\) 9.17484 + 30.9410i 0.408275 + 1.37686i
\(506\) 0.454361 + 4.32296i 0.0201988 + 0.192179i
\(507\) −0.847462 + 3.16277i −0.0376371 + 0.140464i
\(508\) 5.02817 + 13.0988i 0.223089 + 0.581167i
\(509\) 28.4939 + 6.05656i 1.26297 + 0.268452i 0.790263 0.612768i \(-0.209944\pi\)
0.472706 + 0.881220i \(0.343277\pi\)
\(510\) −14.9760 15.7723i −0.663150 0.698411i
\(511\) −20.5842 + 7.28288i −0.910592 + 0.322176i
\(512\) 1.21138 + 0.617229i 0.0535360 + 0.0272779i
\(513\) −43.8598 67.5382i −1.93646 2.98188i
\(514\) −13.5338 + 2.87670i −0.596951 + 0.126886i
\(515\) −27.6402 18.9849i −1.21797 0.836575i
\(516\) −1.78613 + 8.40309i −0.0786301 + 0.369926i
\(517\) −6.57270 1.04101i −0.289067 0.0457837i
\(518\) −2.03500 0.268482i −0.0894126 0.0117964i
\(519\) 16.2699 + 22.3936i 0.714169 + 0.982969i
\(520\) −16.4596 + 14.0660i −0.721802 + 0.616837i
\(521\) −10.3649 1.08939i −0.454093 0.0477271i −0.125278 0.992122i \(-0.539982\pi\)
−0.328815 + 0.944395i \(0.606649\pi\)
\(522\) 3.63247 + 4.48573i 0.158989 + 0.196335i
\(523\) −13.4776 0.706329i −0.589333 0.0308856i −0.244661 0.969609i \(-0.578677\pi\)
−0.344672 + 0.938723i \(0.612010\pi\)
\(524\) −18.0430 −0.788212
\(525\) 17.6814 37.0986i 0.771681 1.61912i
\(526\) −17.9591 −0.783055
\(527\) 13.2735 + 0.695636i 0.578204 + 0.0303024i
\(528\) −0.580250 0.716549i −0.0252521 0.0311838i
\(529\) 18.6919 + 1.96460i 0.812692 + 0.0854174i
\(530\) −0.647094 1.56095i −0.0281080 0.0678034i
\(531\) −4.82520 6.64132i −0.209396 0.288209i
\(532\) 14.4454 18.8149i 0.626289 0.815730i
\(533\) −8.03876 1.27322i −0.348198 0.0551491i
\(534\) −5.21458 + 24.5327i −0.225657 + 1.06163i
\(535\) 26.9022 0.712212i 1.16308 0.0307916i
\(536\) −13.8624 + 2.94655i −0.598767 + 0.127272i
\(537\) −9.76003 15.0291i −0.421176 0.648555i
\(538\) 17.3261 + 8.82810i 0.746982 + 0.380606i
\(539\) 7.83714 + 15.4022i 0.337569 + 0.663420i
\(540\) −4.18961 31.7526i −0.180292 1.36641i
\(541\) 11.0515 + 2.34907i 0.475141 + 0.100994i 0.439257 0.898362i \(-0.355242\pi\)
0.0358843 + 0.999356i \(0.488575\pi\)
\(542\) 3.55212 + 9.25359i 0.152577 + 0.397476i
\(543\) −4.50370 + 16.8080i −0.193272 + 0.721301i
\(544\) −2.17501 20.6938i −0.0932528 0.887241i
\(545\) 1.36776 0.940615i 0.0585884 0.0402915i
\(546\) 11.6447 21.4327i 0.498346 0.917237i
\(547\) −30.3524 + 4.80735i −1.29778 + 0.205547i −0.766826 0.641856i \(-0.778165\pi\)
−0.530950 + 0.847403i \(0.678165\pi\)
\(548\) 0.115217 2.19847i 0.00492183 0.0939141i
\(549\) −36.1191 62.5602i −1.54153 2.67000i
\(550\) −10.0817 3.26934i −0.429887 0.139405i
\(551\) −6.21469 3.58806i −0.264755 0.152856i
\(552\) −15.9017 + 8.10230i −0.676820 + 0.344857i
\(553\) −9.38478 + 39.0431i −0.399081 + 1.66028i
\(554\) 12.8187 17.6435i 0.544616 0.749600i
\(555\) 3.27809 5.35281i 0.139147 0.227214i
\(556\) −5.38561 + 12.0963i −0.228401 + 0.512996i
\(557\) 3.01658 + 0.808291i 0.127817 + 0.0342484i 0.322160 0.946685i \(-0.395591\pi\)
−0.194344 + 0.980934i \(0.562258\pi\)
\(558\) −16.1767 13.0996i −0.684813 0.554550i
\(559\) −2.33889 7.19835i −0.0989244 0.304458i
\(560\) 0.633702 0.322897i 0.0267788 0.0136449i
\(561\) −8.64245 + 26.5987i −0.364885 + 1.12300i
\(562\) 1.47274 0.956410i 0.0621239 0.0403437i
\(563\) 1.54206 + 29.4243i 0.0649902 + 1.24009i 0.815315 + 0.579018i \(0.196564\pi\)
−0.750325 + 0.661070i \(0.770103\pi\)
\(564\) −2.19857 10.3435i −0.0925764 0.435538i
\(565\) 16.4034 + 14.0016i 0.690094 + 0.589053i
\(566\) 16.9277 5.50014i 0.711523 0.231188i
\(567\) 19.2851 + 35.5420i 0.809897 + 1.49262i
\(568\) 29.1698 + 29.1698i 1.22394 + 1.22394i
\(569\) 7.94274 0.834815i 0.332977 0.0349973i 0.0634350 0.997986i \(-0.479794\pi\)
0.269542 + 0.962989i \(0.413128\pi\)
\(570\) −20.2167 37.2089i −0.846782 1.55851i
\(571\) −3.24397 + 30.8643i −0.135756 + 1.29163i 0.688426 + 0.725307i \(0.258302\pi\)
−0.824182 + 0.566325i \(0.808365\pi\)
\(572\) 10.0595 + 3.86148i 0.420609 + 0.161457i
\(573\) −24.5856 48.2521i −1.02708 2.01576i
\(574\) −4.94161 2.04847i −0.206259 0.0855017i
\(575\) 5.12148 8.88247i 0.213580 0.370425i
\(576\) −15.4934 + 26.8354i −0.645559 + 1.11814i
\(577\) 27.5508 + 17.8917i 1.14695 + 0.744840i 0.970887 0.239538i \(-0.0769959\pi\)
0.176067 + 0.984378i \(0.443663\pi\)
\(578\) 2.47059 2.00064i 0.102763 0.0832157i
\(579\) 40.8083 18.1690i 1.69594 0.755079i
\(580\) −1.61722 2.35161i −0.0671512 0.0976454i
\(581\) −5.90738 + 5.60280i −0.245079 + 0.232443i
\(582\) 33.5993 33.5993i 1.39274 1.39274i
\(583\) −1.36741 + 1.68861i −0.0566324 + 0.0699352i
\(584\) −15.4701 + 17.1812i −0.640156 + 0.710965i
\(585\) 31.3040 + 40.7718i 1.29426 + 1.68571i
\(586\) 10.9423 9.85252i 0.452023 0.407004i
\(587\) 17.4894 34.3249i 0.721865 1.41674i −0.179534 0.983752i \(-0.557459\pi\)
0.901399 0.432989i \(-0.142541\pi\)
\(588\) −18.3863 + 20.3974i −0.758237 + 0.841176i
\(589\) 24.6123 + 7.99701i 1.01413 + 0.329511i
\(590\) −1.23872 2.02010i −0.0509974 0.0831664i
\(591\) −18.3388 16.5123i −0.754357 0.679226i
\(592\) 0.101412 0.0389286i 0.00416802 0.00159995i
\(593\) 5.96985 + 22.2798i 0.245153 + 0.914922i 0.973307 + 0.229508i \(0.0737118\pi\)
−0.728154 + 0.685413i \(0.759622\pi\)
\(594\) 19.4512 14.1321i 0.798092 0.579848i
\(595\) −18.6832 10.7864i −0.765938 0.442201i
\(596\) −12.3932 9.00416i −0.507644 0.368825i
\(597\) 6.86429 17.8821i 0.280937 0.731865i
\(598\) 3.31440 5.10373i 0.135536 0.208707i
\(599\) 15.2982 8.83240i 0.625066 0.360882i −0.153773 0.988106i \(-0.549142\pi\)
0.778839 + 0.627224i \(0.215809\pi\)
\(600\) −2.30245 43.4544i −0.0939970 1.77402i
\(601\) 22.6811i 0.925181i −0.886572 0.462591i \(-0.846920\pi\)
0.886572 0.462591i \(-0.153080\pi\)
\(602\) −0.388939 4.95939i −0.0158520 0.202130i
\(603\) 5.26352 + 33.2325i 0.214347 + 1.35333i
\(604\) −2.57895 5.79241i −0.104936 0.235690i
\(605\) −2.00190 10.7840i −0.0813889 0.438430i
\(606\) −35.1693 15.6584i −1.42865 0.636078i
\(607\) −13.6007 + 3.64430i −0.552036 + 0.147917i −0.524045 0.851691i \(-0.675578\pi\)
−0.0279907 + 0.999608i \(0.508911\pi\)
\(608\) 6.33757 40.0138i 0.257022 1.62277i
\(609\) 6.84527 + 4.70740i 0.277384 + 0.190753i
\(610\) −8.98259 18.8184i −0.363694 0.761936i
\(611\) 6.23396 + 6.92351i 0.252199 + 0.280095i
\(612\) −30.5853 + 1.60291i −1.23634 + 0.0647937i
\(613\) 12.3464 0.647050i 0.498668 0.0261341i 0.198656 0.980069i \(-0.436342\pi\)
0.300013 + 0.953935i \(0.403009\pi\)
\(614\) 2.90630 + 3.22777i 0.117289 + 0.130262i
\(615\) 11.8625 11.2635i 0.478340 0.454190i
\(616\) 15.0774 + 10.3685i 0.607487 + 0.417761i
\(617\) 4.15259 26.2184i 0.167177 1.05551i −0.751277 0.659987i \(-0.770562\pi\)
0.918454 0.395527i \(-0.129438\pi\)
\(618\) 38.6371 10.3528i 1.55421 0.416450i
\(619\) −36.0574 16.0538i −1.44927 0.645255i −0.476952 0.878929i \(-0.658259\pi\)
−0.972315 + 0.233674i \(0.924925\pi\)
\(620\) 7.46784 + 7.08263i 0.299916 + 0.284445i
\(621\) 9.46048 + 21.2486i 0.379636 + 0.852676i
\(622\) −0.416175 2.62763i −0.0166871 0.105358i
\(623\) 1.94503 + 24.8013i 0.0779261 + 0.993642i
\(624\) 1.29084i 0.0516750i
\(625\) 14.7179 + 20.2085i 0.588717 + 0.808339i
\(626\) −0.258967 + 0.149515i −0.0103504 + 0.00597581i
\(627\) −29.6570 + 45.6677i −1.18438 + 1.82379i
\(628\) 2.16166 5.63131i 0.0862595 0.224714i
\(629\) −2.66568 1.93673i −0.106288 0.0772225i
\(630\) 13.7419 + 30.8639i 0.547492 + 1.22965i
\(631\) −2.56712 + 1.86512i −0.102195 + 0.0742493i −0.637709 0.770277i \(-0.720118\pi\)
0.535514 + 0.844526i \(0.320118\pi\)
\(632\) 11.0046 + 41.0696i 0.437738 + 1.63366i
\(633\) −51.1448 + 19.6326i −2.03282 + 0.780327i
\(634\) 0.884179 + 0.796119i 0.0351152 + 0.0316179i
\(635\) 24.1566 5.80685i 0.958626 0.230438i
\(636\) −3.28376 1.06696i −0.130209 0.0423076i
\(637\) 5.04327 23.6626i 0.199821 0.937548i
\(638\) 0.972672 1.90898i 0.0385085 0.0755771i
\(639\) 72.7829 65.5340i 2.87925 2.59249i
\(640\) 9.38367 13.6617i 0.370922 0.540028i
\(641\) −3.26561 + 3.62683i −0.128984 + 0.143251i −0.804177 0.594390i \(-0.797394\pi\)
0.675193 + 0.737641i \(0.264060\pi\)
\(642\) −20.2028 + 24.9483i −0.797339 + 0.984632i
\(643\) −0.430113 + 0.430113i −0.0169620 + 0.0169620i −0.715537 0.698575i \(-0.753818\pi\)
0.698575 + 0.715537i \(0.253818\pi\)
\(644\) −4.97101 + 4.71471i −0.195885 + 0.185786i
\(645\) 14.3410 + 5.07377i 0.564676 + 0.199779i
\(646\) −20.3075 + 9.04149i −0.798989 + 0.355733i
\(647\) −12.6557 + 10.2484i −0.497547 + 0.402905i −0.844979 0.534800i \(-0.820387\pi\)
0.347432 + 0.937705i \(0.387054\pi\)
\(648\) 35.9092 + 23.3197i 1.41065 + 0.916084i
\(649\) −1.52355 + 2.63886i −0.0598045 + 0.103584i
\(650\) 8.08855 + 12.4396i 0.317259 + 0.487921i
\(651\) −27.6758 11.4726i −1.08470 0.449648i
\(652\) −0.640993 1.25802i −0.0251032 0.0492679i
\(653\) 44.1941 + 16.9645i 1.72945 + 0.663873i 0.999801 0.0199493i \(-0.00635048\pi\)
0.729648 + 0.683823i \(0.239684\pi\)
\(654\) −0.206983 + 1.96931i −0.00809369 + 0.0770063i
\(655\) −4.16111 + 31.6773i −0.162588 + 1.23773i
\(656\) 0.281543 0.0295914i 0.0109924 0.00115535i
\(657\) 38.8127 + 38.8127i 1.51423 + 1.51423i
\(658\) 2.92031 + 5.38207i 0.113846 + 0.209815i
\(659\) −12.4558 + 4.04712i −0.485208 + 0.157654i −0.541398 0.840767i \(-0.682105\pi\)
0.0561901 + 0.998420i \(0.482105\pi\)
\(660\) −18.4619 + 11.3208i −0.718627 + 0.440660i
\(661\) −6.32141 29.7399i −0.245874 1.15675i −0.911769 0.410702i \(-0.865284\pi\)
0.665895 0.746045i \(-0.268050\pi\)
\(662\) −0.573649 10.9459i −0.0222955 0.425423i
\(663\) 32.8379 21.3252i 1.27532 0.828201i
\(664\) −2.66402 + 8.19900i −0.103384 + 0.318183i
\(665\) −29.7011 29.7003i −1.15176 1.15173i
\(666\) 1.59455 + 4.90751i 0.0617874 + 0.190162i
\(667\) 1.61077 + 1.30438i 0.0623692 + 0.0505056i
\(668\) 24.7456 + 6.63055i 0.957434 + 0.256544i
\(669\) 10.9090 24.5021i 0.421768 0.947307i
\(670\) 0.764823 + 9.68235i 0.0295477 + 0.374062i
\(671\) −15.7607 + 21.6927i −0.608435 + 0.837439i
\(672\) −10.9613 + 45.6019i −0.422842 + 1.75913i
\(673\) 12.8773 6.56131i 0.496383 0.252920i −0.187830 0.982201i \(-0.560146\pi\)
0.684214 + 0.729282i \(0.260146\pi\)
\(674\) 1.91663 + 1.10657i 0.0738260 + 0.0426235i
\(675\) −56.7127 + 0.0326626i −2.18287 + 0.00125719i
\(676\) 0.665483 + 1.15265i 0.0255955 + 0.0443327i
\(677\) 1.01318 19.3326i 0.0389397 0.743014i −0.907484 0.420086i \(-0.862000\pi\)
0.946424 0.322927i \(-0.104667\pi\)
\(678\) −25.4097 + 4.02450i −0.975853 + 0.154560i
\(679\) 22.5006 41.4137i 0.863493 1.58931i
\(680\) −22.8354 0.591385i −0.875697 0.0226786i
\(681\) −3.54376 33.7166i −0.135797 1.29202i
\(682\) −1.99973 + 7.46310i −0.0765737 + 0.285777i
\(683\) −15.9677 41.5972i −0.610986 1.59167i −0.793567 0.608483i \(-0.791778\pi\)
0.182581 0.983191i \(-0.441555\pi\)
\(684\) −58.3278 12.3980i −2.23022 0.474048i
\(685\) −3.83318 0.709297i −0.146458 0.0271008i
\(686\) 6.85769 14.3470i 0.261828 0.547769i
\(687\) 27.1252 + 13.8210i 1.03489 + 0.527303i
\(688\) 0.143383 + 0.220790i 0.00546642 + 0.00841755i
\(689\) 2.97551 0.632464i 0.113358 0.0240950i
\(690\) 4.08607 + 11.5282i 0.155554 + 0.438869i
\(691\) −0.621449 + 2.92369i −0.0236410 + 0.111222i −0.988386 0.151964i \(-0.951440\pi\)
0.964745 + 0.263187i \(0.0847735\pi\)
\(692\) 11.1129 + 1.76012i 0.422450 + 0.0669096i
\(693\) 26.4562 34.4587i 1.00499 1.30898i
\(694\) 3.14300 + 4.32597i 0.119307 + 0.164212i
\(695\) 19.9948 + 12.2449i 0.758447 + 0.464477i
\(696\) 8.74841 + 0.919495i 0.331608 + 0.0348534i
\(697\) −5.40398 6.67336i −0.204690 0.252772i
\(698\) −5.46376 0.286343i −0.206806 0.0108383i
\(699\) −10.4882 −0.396698
\(700\) −5.58103 15.7453i −0.210943 0.595116i
\(701\) −27.5603 −1.04094 −0.520469 0.853880i \(-0.674243\pi\)
−0.520469 + 0.853880i \(0.674243\pi\)
\(702\) −33.6142 1.76164i −1.26868 0.0664889i
\(703\) −4.03725 4.98559i −0.152268 0.188035i
\(704\) 11.4388 + 1.20227i 0.431117 + 0.0453122i
\(705\) −18.6666 + 1.47450i −0.703023 + 0.0555328i
\(706\) 0.333490 + 0.459010i 0.0125511 + 0.0172751i
\(707\) −37.8575 4.99463i −1.42378 0.187842i
\(708\) −4.78237 0.757453i −0.179733 0.0284668i
\(709\) −5.72110 + 26.9157i −0.214861 + 1.01084i 0.730020 + 0.683425i \(0.239511\pi\)
−0.944881 + 0.327414i \(0.893823\pi\)
\(710\) 22.4241 17.2169i 0.841560 0.646137i
\(711\) 98.7391 20.9877i 3.70301 0.787098i
\(712\) 14.3466 + 22.0919i 0.537663 + 0.827928i
\(713\) −6.65990 3.39339i −0.249415 0.127083i
\(714\) 24.2608 8.58370i 0.907939 0.321237i
\(715\) 9.09937 16.7705i 0.340297 0.627180i
\(716\) −7.12508 1.51448i −0.266277 0.0565989i
\(717\) 16.6315 + 43.3264i 0.621113 + 1.61805i
\(718\) −4.16565 + 15.5464i −0.155461 + 0.580188i
\(719\) 0.249681 + 2.37555i 0.00931152 + 0.0885932i 0.998191 0.0601281i \(-0.0191509\pi\)
−0.988879 + 0.148721i \(0.952484\pi\)
\(720\) −1.41877 1.08802i −0.0528746 0.0405479i
\(721\) 33.8349 20.7213i 1.26008 0.771700i
\(722\) −26.6347 + 4.21852i −0.991241 + 0.156997i
\(723\) −4.31861 + 82.4039i −0.160611 + 3.06464i
\(724\) 3.53660 + 6.12557i 0.131437 + 0.227655i
\(725\) −4.50158 + 2.29694i −0.167185 + 0.0853061i
\(726\) 11.3309 + 6.54190i 0.420530 + 0.242793i
\(727\) −42.2271 + 21.5158i −1.56612 + 0.797976i −0.999659 0.0261149i \(-0.991686\pi\)
−0.566457 + 0.824091i \(0.691686\pi\)
\(728\) −7.26914 24.5650i −0.269412 0.910441i
\(729\) −2.38496 + 3.28261i −0.0883317 + 0.121578i
\(730\) 10.2936 + 12.0452i 0.380984 + 0.445815i
\(731\) 3.24798 7.29507i 0.120131 0.269818i
\(732\) −41.1564 11.0278i −1.52118 0.407600i
\(733\) −9.63660 7.80357i −0.355936 0.288231i 0.434629 0.900610i \(-0.356880\pi\)
−0.790565 + 0.612378i \(0.790213\pi\)
\(734\) −8.26450 25.4355i −0.305048 0.938842i
\(735\) 31.5705 + 36.9840i 1.16450 + 1.36418i
\(736\) −3.61588 + 11.1285i −0.133283 + 0.410203i
\(737\) 10.4743 6.80208i 0.385825 0.250558i
\(738\) 0.703795 + 13.4292i 0.0259071 + 0.494336i
\(739\) −0.663245 3.12032i −0.0243979 0.114783i 0.964264 0.264945i \(-0.0853538\pi\)
−0.988661 + 0.150162i \(0.952020\pi\)
\(740\) −0.596332 2.48076i −0.0219216 0.0911944i
\(741\) 72.5025 23.5575i 2.66345 0.865407i
\(742\) 1.99866 + 0.0528872i 0.0733729 + 0.00194155i
\(743\) −14.5667 14.5667i −0.534401 0.534401i 0.387478 0.921879i \(-0.373346\pi\)
−0.921879 + 0.387478i \(0.873346\pi\)
\(744\) −31.5490 + 3.31593i −1.15664 + 0.121568i
\(745\) −18.6663 + 19.6815i −0.683881 + 0.721076i
\(746\) −0.723814 + 6.88663i −0.0265007 + 0.252138i
\(747\) 19.1080 + 7.33486i 0.699124 + 0.268369i
\(748\) 5.16112 + 10.1293i 0.188709 + 0.370363i
\(749\) −12.1936 + 29.4151i −0.445545 + 1.07480i
\(750\) −29.7322 2.31413i −1.08567 0.0845002i
\(751\) −5.27493 + 9.13644i −0.192485 + 0.333394i −0.946073 0.323953i \(-0.894988\pi\)
0.753588 + 0.657347i \(0.228321\pi\)
\(752\) −0.271773 0.176491i −0.00991054 0.00643598i
\(753\) −14.8133 + 11.9956i −0.539826 + 0.437143i
\(754\) −2.74018 + 1.22001i −0.0997915 + 0.0444300i
\(755\) −10.7642 + 3.19188i −0.391751 + 0.116165i
\(756\) 36.3323 + 10.7730i 1.32139 + 0.391810i
\(757\) 18.5968 18.5968i 0.675912 0.675912i −0.283161 0.959072i \(-0.591383\pi\)
0.959072 + 0.283161i \(0.0913830\pi\)
\(758\) −7.98081 + 9.85548i −0.289876 + 0.357967i
\(759\) 10.5237 11.6878i 0.381988 0.424240i
\(760\) −42.6472 12.6193i −1.54698 0.457751i
\(761\) 26.9997 24.3106i 0.978737 0.881259i −0.0142005 0.999899i \(-0.504520\pi\)
0.992937 + 0.118641i \(0.0378537\pi\)
\(762\) −13.4549 + 26.4067i −0.487419 + 0.956614i
\(763\) 0.357399 + 1.93132i 0.0129387 + 0.0699185i
\(764\) −20.9355 6.80237i −0.757421 0.246101i
\(765\) −4.23949 + 54.0668i −0.153279 + 1.95479i
\(766\) 15.8745 + 14.2935i 0.573570 + 0.516445i