Properties

Label 175.2.x.a.103.12
Level $175$
Weight $2$
Character 175.103
Analytic conductor $1.397$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(3,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(60))
 
chi = DirichletCharacter(H, H._module([21, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.x (of order \(60\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(18\) over \(\Q(\zeta_{60})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{60}]$

Embedding invariants

Embedding label 103.12
Character \(\chi\) \(=\) 175.103
Dual form 175.2.x.a.17.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.776182 + 0.0406780i) q^{2} +(-0.706831 - 0.872864i) q^{3} +(-1.38824 - 0.145910i) q^{4} +(2.15686 - 0.589873i) q^{5} +(-0.513123 - 0.706254i) q^{6} +(2.33503 - 1.24404i) q^{7} +(-2.60695 - 0.412900i) q^{8} +(0.361454 - 1.70051i) q^{9} +O(q^{10})\) \(q+(0.776182 + 0.0406780i) q^{2} +(-0.706831 - 0.872864i) q^{3} +(-1.38824 - 0.145910i) q^{4} +(2.15686 - 0.589873i) q^{5} +(-0.513123 - 0.706254i) q^{6} +(2.33503 - 1.24404i) q^{7} +(-2.60695 - 0.412900i) q^{8} +(0.361454 - 1.70051i) q^{9} +(1.69811 - 0.370112i) q^{10} +(1.29854 - 0.276014i) q^{11} +(0.853891 + 1.31488i) q^{12} +(-1.79077 - 0.912442i) q^{13} +(1.86302 - 0.870614i) q^{14} +(-2.03941 - 1.46571i) q^{15} +(0.724094 + 0.153911i) q^{16} +(0.333224 + 0.868077i) q^{17} +(0.349728 - 1.30520i) q^{18} +(0.550884 + 5.24131i) q^{19} +(-3.08031 + 0.504177i) q^{20} +(-2.73635 - 1.15884i) q^{21} +(1.01913 - 0.161415i) q^{22} +(-0.0599482 + 1.14388i) q^{23} +(1.48227 + 2.56736i) q^{24} +(4.30410 - 2.54455i) q^{25} +(-1.35285 - 0.781066i) q^{26} +(-4.74204 + 2.41619i) q^{27} +(-3.42310 + 1.38631i) q^{28} +(-4.04060 + 5.56140i) q^{29} +(-1.52334 - 1.22061i) q^{30} +(-3.98545 + 8.95147i) q^{31} +(5.65478 + 1.51519i) q^{32} +(-1.15877 - 0.938356i) q^{33} +(0.223331 + 0.687341i) q^{34} +(4.30252 - 4.06058i) q^{35} +(-0.749906 + 2.30797i) q^{36} +(6.42719 - 4.17386i) q^{37} +(0.214381 + 4.09062i) q^{38} +(0.469333 + 2.20804i) q^{39} +(-5.86638 + 0.647200i) q^{40} +(-0.0622653 + 0.0202312i) q^{41} +(-2.07676 - 1.01078i) q^{42} +(-3.34331 - 3.34331i) q^{43} +(-1.84296 + 0.193703i) q^{44} +(-0.223477 - 3.88097i) q^{45} +(-0.0930614 + 0.885420i) q^{46} +(-0.174263 - 0.0668935i) q^{47} +(-0.377469 - 0.740824i) q^{48} +(3.90475 - 5.80972i) q^{49} +(3.44427 - 1.79995i) q^{50} +(0.522180 - 0.904443i) q^{51} +(2.35288 + 1.52798i) q^{52} +(8.68044 - 7.02928i) q^{53} +(-3.77898 + 1.68251i) q^{54} +(2.63796 - 1.36130i) q^{55} +(-6.60097 + 2.27900i) q^{56} +(4.18557 - 4.18557i) q^{57} +(-3.36247 + 4.15230i) q^{58} +(-3.22860 + 3.58572i) q^{59} +(2.61734 + 2.33232i) q^{60} +(-3.39928 + 3.06073i) q^{61} +(-3.45756 + 6.78585i) q^{62} +(-1.27148 - 4.42040i) q^{63} +(2.91943 + 0.948580i) q^{64} +(-4.40066 - 0.911685i) q^{65} +(-0.861248 - 0.775472i) q^{66} +(-7.93020 + 3.04412i) q^{67} +(-0.335933 - 1.25372i) q^{68} +(1.04082 - 0.756203i) q^{69} +(3.50472 - 2.97673i) q^{70} +(8.72491 + 6.33902i) q^{71} +(-1.64443 + 4.28389i) q^{72} +(0.896926 - 1.38114i) q^{73} +(5.15845 - 2.97823i) q^{74} +(-5.26331 - 1.95833i) q^{75} -7.35658i q^{76} +(2.68877 - 2.25993i) q^{77} +(0.274469 + 1.73293i) q^{78} +(-4.24463 - 9.53360i) q^{79} +(1.65256 - 0.0951587i) q^{80} +(0.696236 + 0.309984i) q^{81} +(-0.0491522 + 0.0131703i) q^{82} +(-0.978599 + 6.17863i) q^{83} +(3.62962 + 2.00801i) q^{84} +(1.23077 + 1.67576i) q^{85} +(-2.45902 - 2.73102i) q^{86} +(7.71037 - 0.404083i) q^{87} +(-3.49920 + 0.183385i) q^{88} +(10.5019 + 11.6635i) q^{89} +(-0.0155886 - 3.02143i) q^{90} +(-5.31661 + 0.0971966i) q^{91} +(0.250126 - 1.57923i) q^{92} +(10.6304 - 2.84842i) q^{93} +(-0.132539 - 0.0590102i) q^{94} +(4.27989 + 10.9798i) q^{95} +(-2.67442 - 6.00684i) q^{96} +(-2.72136 - 17.1820i) q^{97} +(3.26713 - 4.35057i) q^{98} -2.30795i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 8 q^{2} - 24 q^{3} - 10 q^{4} - 30 q^{5} - 10 q^{7} - 36 q^{8} - 10 q^{9} - 36 q^{10} - 6 q^{11} - 36 q^{12} - 20 q^{14} - 28 q^{15} - 30 q^{16} - 42 q^{17} - 14 q^{18} - 30 q^{19} - 12 q^{21} + 32 q^{22} - 40 q^{23} + 2 q^{25} - 48 q^{26} + 22 q^{28} - 58 q^{30} - 18 q^{31} + 8 q^{32} - 30 q^{33} - 2 q^{35} + 40 q^{36} - 10 q^{37} + 72 q^{38} + 30 q^{39} - 48 q^{40} + 6 q^{42} - 108 q^{43} - 10 q^{44} + 186 q^{45} - 6 q^{46} - 54 q^{47} - 248 q^{50} - 16 q^{51} + 216 q^{52} + 50 q^{53} - 30 q^{54} + 4 q^{56} - 216 q^{57} - 4 q^{58} + 90 q^{59} + 96 q^{60} - 18 q^{61} - 66 q^{63} - 100 q^{64} + 14 q^{65} - 90 q^{66} + 4 q^{67} + 342 q^{68} - 60 q^{70} - 24 q^{71} + 58 q^{72} - 6 q^{73} + 216 q^{75} - 80 q^{77} - 132 q^{78} - 10 q^{79} - 6 q^{80} - 10 q^{81} + 216 q^{82} + 20 q^{84} - 48 q^{85} - 6 q^{86} - 48 q^{87} - 122 q^{88} + 120 q^{89} - 12 q^{91} - 4 q^{92} + 106 q^{93} - 30 q^{94} - 98 q^{95} - 90 q^{96} + 222 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.776182 + 0.0406780i 0.548844 + 0.0287637i 0.324743 0.945802i \(-0.394722\pi\)
0.224101 + 0.974566i \(0.428056\pi\)
\(3\) −0.706831 0.872864i −0.408089 0.503948i 0.531119 0.847297i \(-0.321772\pi\)
−0.939208 + 0.343349i \(0.888439\pi\)
\(4\) −1.38824 0.145910i −0.694120 0.0729549i
\(5\) 2.15686 0.589873i 0.964578 0.263799i
\(6\) −0.513123 0.706254i −0.209482 0.288327i
\(7\) 2.33503 1.24404i 0.882559 0.470201i
\(8\) −2.60695 0.412900i −0.921695 0.145982i
\(9\) 0.361454 1.70051i 0.120485 0.566836i
\(10\) 1.69811 0.370112i 0.536990 0.117040i
\(11\) 1.29854 0.276014i 0.391525 0.0832213i −0.00794259 0.999968i \(-0.502528\pi\)
0.399468 + 0.916747i \(0.369195\pi\)
\(12\) 0.853891 + 1.31488i 0.246497 + 0.379572i
\(13\) −1.79077 0.912442i −0.496670 0.253066i 0.187666 0.982233i \(-0.439908\pi\)
−0.684336 + 0.729167i \(0.739908\pi\)
\(14\) 1.86302 0.870614i 0.497912 0.232681i
\(15\) −2.03941 1.46571i −0.526575 0.378444i
\(16\) 0.724094 + 0.153911i 0.181023 + 0.0384777i
\(17\) 0.333224 + 0.868077i 0.0808186 + 0.210540i 0.968036 0.250813i \(-0.0806978\pi\)
−0.887217 + 0.461352i \(0.847364\pi\)
\(18\) 0.349728 1.30520i 0.0824316 0.307639i
\(19\) 0.550884 + 5.24131i 0.126382 + 1.20244i 0.855408 + 0.517954i \(0.173306\pi\)
−0.729027 + 0.684485i \(0.760027\pi\)
\(20\) −3.08031 + 0.504177i −0.688778 + 0.112737i
\(21\) −2.73635 1.15884i −0.597120 0.252880i
\(22\) 1.01913 0.161415i 0.217280 0.0344138i
\(23\) −0.0599482 + 1.14388i −0.0125001 + 0.238515i 0.985233 + 0.171219i \(0.0547706\pi\)
−0.997733 + 0.0672962i \(0.978563\pi\)
\(24\) 1.48227 + 2.56736i 0.302566 + 0.524060i
\(25\) 4.30410 2.54455i 0.860820 0.508909i
\(26\) −1.35285 0.781066i −0.265315 0.153180i
\(27\) −4.74204 + 2.41619i −0.912607 + 0.464996i
\(28\) −3.42310 + 1.38631i −0.646905 + 0.261989i
\(29\) −4.04060 + 5.56140i −0.750320 + 1.03273i 0.247638 + 0.968853i \(0.420346\pi\)
−0.997958 + 0.0638742i \(0.979654\pi\)
\(30\) −1.52334 1.22061i −0.278122 0.222853i
\(31\) −3.98545 + 8.95147i −0.715808 + 1.60773i 0.0761073 + 0.997100i \(0.475751\pi\)
−0.791915 + 0.610631i \(0.790916\pi\)
\(32\) 5.65478 + 1.51519i 0.999634 + 0.267851i
\(33\) −1.15877 0.938356i −0.201716 0.163347i
\(34\) 0.223331 + 0.687341i 0.0383009 + 0.117878i
\(35\) 4.30252 4.06058i 0.727258 0.686364i
\(36\) −0.749906 + 2.30797i −0.124984 + 0.384662i
\(37\) 6.42719 4.17386i 1.05662 0.686179i 0.105321 0.994438i \(-0.466413\pi\)
0.951302 + 0.308259i \(0.0997464\pi\)
\(38\) 0.214381 + 4.09062i 0.0347771 + 0.663587i
\(39\) 0.469333 + 2.20804i 0.0751534 + 0.353569i
\(40\) −5.86638 + 0.647200i −0.927557 + 0.102331i
\(41\) −0.0622653 + 0.0202312i −0.00972421 + 0.00315959i −0.313875 0.949464i \(-0.601627\pi\)
0.304151 + 0.952624i \(0.401627\pi\)
\(42\) −2.07676 1.01078i −0.320452 0.155967i
\(43\) −3.34331 3.34331i −0.509850 0.509850i 0.404630 0.914480i \(-0.367400\pi\)
−0.914480 + 0.404630i \(0.867400\pi\)
\(44\) −1.84296 + 0.193703i −0.277837 + 0.0292018i
\(45\) −0.223477 3.88097i −0.0333140 0.578541i
\(46\) −0.0930614 + 0.885420i −0.0137212 + 0.130548i
\(47\) −0.174263 0.0668935i −0.0254189 0.00975741i 0.345625 0.938373i \(-0.387667\pi\)
−0.371044 + 0.928615i \(0.621000\pi\)
\(48\) −0.377469 0.740824i −0.0544829 0.106929i
\(49\) 3.90475 5.80972i 0.557822 0.829961i
\(50\) 3.44427 1.79995i 0.487094 0.254551i
\(51\) 0.522180 0.904443i 0.0731199 0.126647i
\(52\) 2.35288 + 1.52798i 0.326286 + 0.211892i
\(53\) 8.68044 7.02928i 1.19235 0.965546i 0.192474 0.981302i \(-0.438349\pi\)
0.999876 + 0.0157564i \(0.00501564\pi\)
\(54\) −3.77898 + 1.68251i −0.514254 + 0.228960i
\(55\) 2.63796 1.36130i 0.355703 0.183557i
\(56\) −6.60097 + 2.27900i −0.882092 + 0.304544i
\(57\) 4.18557 4.18557i 0.554392 0.554392i
\(58\) −3.36247 + 4.15230i −0.441514 + 0.545224i
\(59\) −3.22860 + 3.58572i −0.420327 + 0.466821i −0.915702 0.401859i \(-0.868364\pi\)
0.495374 + 0.868680i \(0.335031\pi\)
\(60\) 2.61734 + 2.33232i 0.337897 + 0.301101i
\(61\) −3.39928 + 3.06073i −0.435233 + 0.391886i −0.857415 0.514625i \(-0.827931\pi\)
0.422182 + 0.906511i \(0.361264\pi\)
\(62\) −3.45756 + 6.78585i −0.439111 + 0.861804i
\(63\) −1.27148 4.42040i −0.160192 0.556919i
\(64\) 2.91943 + 0.948580i 0.364929 + 0.118573i
\(65\) −4.40066 0.911685i −0.545835 0.113081i
\(66\) −0.861248 0.775472i −0.106012 0.0954540i
\(67\) −7.93020 + 3.04412i −0.968829 + 0.371899i −0.790765 0.612120i \(-0.790317\pi\)
−0.178064 + 0.984019i \(0.556983\pi\)
\(68\) −0.335933 1.25372i −0.0407379 0.152036i
\(69\) 1.04082 0.756203i 0.125300 0.0910361i
\(70\) 3.50472 2.97673i 0.418894 0.355788i
\(71\) 8.72491 + 6.33902i 1.03546 + 0.752303i 0.969393 0.245513i \(-0.0789563\pi\)
0.0660625 + 0.997815i \(0.478956\pi\)
\(72\) −1.64443 + 4.28389i −0.193798 + 0.504862i
\(73\) 0.896926 1.38114i 0.104977 0.161651i −0.782278 0.622929i \(-0.785942\pi\)
0.887255 + 0.461279i \(0.152609\pi\)
\(74\) 5.15845 2.97823i 0.599658 0.346213i
\(75\) −5.26331 1.95833i −0.607755 0.226128i
\(76\) 7.35658i 0.843857i
\(77\) 2.68877 2.25993i 0.306414 0.257543i
\(78\) 0.274469 + 1.73293i 0.0310775 + 0.196216i
\(79\) −4.24463 9.53360i −0.477558 1.07261i −0.978333 0.207036i \(-0.933618\pi\)
0.500775 0.865577i \(-0.333048\pi\)
\(80\) 1.65256 0.0951587i 0.184762 0.0106391i
\(81\) 0.696236 + 0.309984i 0.0773596 + 0.0344427i
\(82\) −0.0491522 + 0.0131703i −0.00542796 + 0.00145442i
\(83\) −0.978599 + 6.17863i −0.107415 + 0.678193i 0.873946 + 0.486022i \(0.161553\pi\)
−0.981362 + 0.192170i \(0.938447\pi\)
\(84\) 3.62962 + 2.00801i 0.396024 + 0.219092i
\(85\) 1.23077 + 1.67576i 0.133496 + 0.181762i
\(86\) −2.45902 2.73102i −0.265163 0.294493i
\(87\) 7.71037 0.404083i 0.826638 0.0433223i
\(88\) −3.49920 + 0.183385i −0.373016 + 0.0195489i
\(89\) 10.5019 + 11.6635i 1.11320 + 1.23633i 0.969073 + 0.246773i \(0.0793701\pi\)
0.144125 + 0.989559i \(0.453963\pi\)
\(90\) −0.0155886 3.02143i −0.00164319 0.318487i
\(91\) −5.31661 + 0.0971966i −0.557332 + 0.0101890i
\(92\) 0.250126 1.57923i 0.0260774 0.164646i
\(93\) 10.6304 2.84842i 1.10233 0.295367i
\(94\) −0.132539 0.0590102i −0.0136704 0.00608644i
\(95\) 4.27989 + 10.9798i 0.439107 + 1.12651i
\(96\) −2.67442 6.00684i −0.272957 0.613071i
\(97\) −2.72136 17.1820i −0.276312 1.74457i −0.601461 0.798902i \(-0.705414\pi\)
0.325149 0.945663i \(-0.394586\pi\)
\(98\) 3.26713 4.35057i 0.330030 0.439474i
\(99\) 2.30795i 0.231958i
\(100\) −6.34640 + 2.90443i −0.634640 + 0.290443i
\(101\) −3.07011 + 1.77253i −0.305487 + 0.176373i −0.644905 0.764262i \(-0.723103\pi\)
0.339418 + 0.940636i \(0.389770\pi\)
\(102\) 0.442098 0.680771i 0.0437742 0.0674064i
\(103\) 2.28092 5.94199i 0.224745 0.585482i −0.774123 0.633035i \(-0.781809\pi\)
0.998869 + 0.0475531i \(0.0151423\pi\)
\(104\) 4.29169 + 3.11810i 0.420835 + 0.305755i
\(105\) −6.58549 0.885366i −0.642678 0.0864029i
\(106\) 7.02354 5.10290i 0.682186 0.495637i
\(107\) 2.55108 + 9.52075i 0.246622 + 0.920406i 0.972561 + 0.232647i \(0.0747386\pi\)
−0.725939 + 0.687759i \(0.758595\pi\)
\(108\) 6.93564 2.66234i 0.667382 0.256184i
\(109\) −8.04882 7.24719i −0.770937 0.694155i 0.186609 0.982434i \(-0.440250\pi\)
−0.957546 + 0.288279i \(0.906917\pi\)
\(110\) 2.10292 0.949309i 0.200505 0.0905130i
\(111\) −8.18615 2.65984i −0.776995 0.252461i
\(112\) 1.88225 0.541411i 0.177856 0.0511586i
\(113\) −3.00115 + 5.89008i −0.282324 + 0.554092i −0.988002 0.154440i \(-0.950643\pi\)
0.705678 + 0.708533i \(0.250643\pi\)
\(114\) 3.41903 3.07851i 0.320221 0.288328i
\(115\) 0.545443 + 2.50255i 0.0508628 + 0.233364i
\(116\) 6.42078 7.13100i 0.596154 0.662096i
\(117\) −2.19890 + 2.71541i −0.203288 + 0.251040i
\(118\) −2.65184 + 2.65184i −0.244122 + 0.244122i
\(119\) 1.85801 + 1.61245i 0.170323 + 0.147813i
\(120\) 4.71146 + 4.66309i 0.430095 + 0.425680i
\(121\) −8.43897 + 3.75727i −0.767179 + 0.341570i
\(122\) −2.76297 + 2.23741i −0.250147 + 0.202565i
\(123\) 0.0616702 + 0.0400491i 0.00556061 + 0.00361110i
\(124\) 6.83886 11.8453i 0.614148 1.06374i
\(125\) 7.78239 8.02711i 0.696078 0.717966i
\(126\) −0.807091 3.48276i −0.0719014 0.310269i
\(127\) −8.39463 16.4754i −0.744903 1.46195i −0.881927 0.471387i \(-0.843754\pi\)
0.137023 0.990568i \(-0.456246\pi\)
\(128\) −8.70343 3.34093i −0.769281 0.295299i
\(129\) −0.555099 + 5.28141i −0.0488737 + 0.465003i
\(130\) −3.37863 0.886644i −0.296325 0.0777638i
\(131\) 16.6657 1.75164i 1.45609 0.153041i 0.656836 0.754033i \(-0.271894\pi\)
0.799255 + 0.600992i \(0.205228\pi\)
\(132\) 1.47174 + 1.47174i 0.128098 + 0.128098i
\(133\) 7.80671 + 11.5533i 0.676928 + 1.00180i
\(134\) −6.27911 + 2.04021i −0.542433 + 0.176247i
\(135\) −8.80268 + 8.00859i −0.757614 + 0.689270i
\(136\) −0.510268 2.40062i −0.0437551 0.205852i
\(137\) −0.172842 3.29801i −0.0147669 0.281768i −0.996025 0.0890717i \(-0.971610\pi\)
0.981258 0.192697i \(-0.0617234\pi\)
\(138\) 0.838630 0.544613i 0.0713889 0.0463605i
\(139\) −2.66592 + 8.20486i −0.226120 + 0.695927i 0.772055 + 0.635555i \(0.219229\pi\)
−0.998176 + 0.0603721i \(0.980771\pi\)
\(140\) −6.56540 + 5.00928i −0.554878 + 0.423362i
\(141\) 0.0647859 + 0.199391i 0.00545596 + 0.0167917i
\(142\) 6.51426 + 5.27514i 0.546665 + 0.442680i
\(143\) −2.57723 0.690568i −0.215519 0.0577482i
\(144\) 0.523454 1.17570i 0.0436211 0.0979747i
\(145\) −5.43449 + 14.3786i −0.451309 + 1.19408i
\(146\) 0.752360 1.03553i 0.0622658 0.0857015i
\(147\) −7.83110 + 0.698176i −0.645898 + 0.0575846i
\(148\) −9.53148 + 4.85653i −0.783483 + 0.399205i
\(149\) −0.0342344 0.0197652i −0.00280459 0.00161923i 0.498597 0.866834i \(-0.333849\pi\)
−0.501402 + 0.865215i \(0.667182\pi\)
\(150\) −4.00563 1.73412i −0.327058 0.141590i
\(151\) 4.89690 + 8.48169i 0.398504 + 0.690230i 0.993542 0.113468i \(-0.0361960\pi\)
−0.595037 + 0.803698i \(0.702863\pi\)
\(152\) 0.728012 13.8913i 0.0590496 1.12673i
\(153\) 1.59662 0.252879i 0.129079 0.0204441i
\(154\) 2.17890 1.64475i 0.175581 0.132537i
\(155\) −3.31584 + 21.6580i −0.266334 + 1.73961i
\(156\) −0.329372 3.13377i −0.0263709 0.250902i
\(157\) −3.40702 + 12.7152i −0.271910 + 1.01478i 0.685974 + 0.727626i \(0.259376\pi\)
−0.957884 + 0.287156i \(0.907290\pi\)
\(158\) −2.90680 7.57247i −0.231253 0.602434i
\(159\) −12.2712 2.60832i −0.973170 0.206854i
\(160\) 13.0904 0.0675377i 1.03488 0.00533933i
\(161\) 1.28304 + 2.74557i 0.101118 + 0.216381i
\(162\) 0.527797 + 0.268926i 0.0414676 + 0.0211288i
\(163\) 1.90187 + 2.92862i 0.148966 + 0.229387i 0.905274 0.424828i \(-0.139666\pi\)
−0.756308 + 0.654216i \(0.772999\pi\)
\(164\) 0.0893911 0.0190007i 0.00698027 0.00148370i
\(165\) −3.05282 1.34037i −0.237662 0.104348i
\(166\) −1.01091 + 4.75594i −0.0784615 + 0.369132i
\(167\) −18.9176 2.99626i −1.46389 0.231857i −0.626910 0.779092i \(-0.715681\pi\)
−0.836979 + 0.547235i \(0.815681\pi\)
\(168\) 6.65503 + 4.15088i 0.513447 + 0.320247i
\(169\) −5.26691 7.24928i −0.405147 0.557637i
\(170\) 0.887137 + 1.35076i 0.0680403 + 0.103599i
\(171\) 9.11202 + 0.957712i 0.696813 + 0.0732380i
\(172\) 4.15350 + 5.12914i 0.316701 + 0.391093i
\(173\) −4.95159 0.259502i −0.376462 0.0197296i −0.136833 0.990594i \(-0.543692\pi\)
−0.239629 + 0.970865i \(0.577026\pi\)
\(174\) 6.00109 0.454941
\(175\) 6.88471 11.2961i 0.520435 0.853901i
\(176\) 0.982748 0.0740774
\(177\) 5.41192 + 0.283626i 0.406785 + 0.0213187i
\(178\) 7.67694 + 9.48023i 0.575411 + 0.710573i
\(179\) −20.1419 2.11700i −1.50548 0.158232i −0.684424 0.729085i \(-0.739946\pi\)
−0.821052 + 0.570853i \(0.806613\pi\)
\(180\) −0.256033 + 5.42033i −0.0190835 + 0.404007i
\(181\) 2.67679 + 3.68429i 0.198965 + 0.273851i 0.896828 0.442380i \(-0.145866\pi\)
−0.697863 + 0.716231i \(0.745866\pi\)
\(182\) −4.13061 0.140827i −0.306181 0.0104388i
\(183\) 5.07431 + 0.803693i 0.375104 + 0.0594107i
\(184\) 0.628589 2.95728i 0.0463402 0.218014i
\(185\) 11.4005 12.7937i 0.838182 0.940609i
\(186\) 8.36704 1.77847i 0.613501 0.130404i
\(187\) 0.672306 + 1.03526i 0.0491639 + 0.0757058i
\(188\) 0.232159 + 0.118291i 0.0169319 + 0.00862725i
\(189\) −8.06700 + 11.5412i −0.586788 + 0.839495i
\(190\) 2.87534 + 8.69645i 0.208599 + 0.630907i
\(191\) 15.1405 + 3.21821i 1.09553 + 0.232861i 0.720016 0.693957i \(-0.244134\pi\)
0.375510 + 0.926818i \(0.377468\pi\)
\(192\) −1.23556 3.21875i −0.0891690 0.232293i
\(193\) −2.02940 + 7.57383i −0.146080 + 0.545176i 0.853625 + 0.520887i \(0.174399\pi\)
−0.999705 + 0.0242890i \(0.992268\pi\)
\(194\) −1.41334 13.4470i −0.101472 0.965442i
\(195\) 2.31475 + 4.48558i 0.165763 + 0.321219i
\(196\) −6.26843 + 7.49555i −0.447745 + 0.535396i
\(197\) −16.1577 + 2.55912i −1.15119 + 0.182330i −0.702718 0.711469i \(-0.748030\pi\)
−0.448469 + 0.893799i \(0.648030\pi\)
\(198\) 0.0938827 1.79139i 0.00667196 0.127308i
\(199\) −13.6561 23.6530i −0.968053 1.67672i −0.701179 0.712985i \(-0.747343\pi\)
−0.266874 0.963731i \(-0.585991\pi\)
\(200\) −12.2712 + 4.85634i −0.867706 + 0.343395i
\(201\) 8.26242 + 4.77031i 0.582786 + 0.336472i
\(202\) −2.45507 + 1.25092i −0.172738 + 0.0880144i
\(203\) −2.51634 + 18.0127i −0.176613 + 1.26424i
\(204\) −0.856878 + 1.17939i −0.0599935 + 0.0825739i
\(205\) −0.122364 + 0.0803646i −0.00854626 + 0.00561291i
\(206\) 2.01212 4.51928i 0.140191 0.314873i
\(207\) 1.92351 + 0.515402i 0.133693 + 0.0358229i
\(208\) −1.15625 0.936312i −0.0801715 0.0649216i
\(209\) 2.16202 + 6.65402i 0.149550 + 0.460268i
\(210\) −5.07553 0.955090i −0.350245 0.0659075i
\(211\) 4.53761 13.9653i 0.312382 0.961413i −0.664437 0.747345i \(-0.731328\pi\)
0.976819 0.214068i \(-0.0686715\pi\)
\(212\) −13.0762 + 8.49176i −0.898075 + 0.583216i
\(213\) −0.633938 12.0963i −0.0434367 0.828823i
\(214\) 1.59282 + 7.49361i 0.108883 + 0.512253i
\(215\) −9.18319 5.23893i −0.626288 0.357292i
\(216\) 13.3599 4.34090i 0.909027 0.295361i
\(217\) 1.82978 + 25.8600i 0.124214 + 1.75549i
\(218\) −5.95255 5.95255i −0.403158 0.403158i
\(219\) −1.83953 + 0.193342i −0.124304 + 0.0130648i
\(220\) −3.86075 + 1.50490i −0.260292 + 0.101461i
\(221\) 0.195344 1.85857i 0.0131402 0.125021i
\(222\) −6.24575 2.39752i −0.419187 0.160911i
\(223\) 9.81559 + 19.2642i 0.657301 + 1.29003i 0.943346 + 0.331809i \(0.107659\pi\)
−0.286046 + 0.958216i \(0.592341\pi\)
\(224\) 15.0891 3.49672i 1.00818 0.233634i
\(225\) −2.77129 8.23890i −0.184753 0.549260i
\(226\) −2.56903 + 4.44970i −0.170890 + 0.295989i
\(227\) −7.88440 5.12019i −0.523306 0.339839i 0.255801 0.966729i \(-0.417661\pi\)
−0.779107 + 0.626891i \(0.784327\pi\)
\(228\) −6.42129 + 5.19986i −0.425260 + 0.344369i
\(229\) −2.84380 + 1.26614i −0.187923 + 0.0836689i −0.498541 0.866866i \(-0.666131\pi\)
0.310618 + 0.950535i \(0.399464\pi\)
\(230\) 0.321565 + 1.96462i 0.0212033 + 0.129543i
\(231\) −3.87312 0.749537i −0.254833 0.0493159i
\(232\) 12.8299 12.8299i 0.842326 0.842326i
\(233\) 18.3487 22.6587i 1.20206 1.48442i 0.370640 0.928777i \(-0.379138\pi\)
0.831420 0.555644i \(-0.187528\pi\)
\(234\) −1.81720 + 2.01821i −0.118794 + 0.131934i
\(235\) −0.415321 0.0414867i −0.0270925 0.00270629i
\(236\) 5.00526 4.50675i 0.325814 0.293365i
\(237\) −5.32129 + 10.4436i −0.345655 + 0.678386i
\(238\) 1.37656 + 1.32713i 0.0892292 + 0.0860252i
\(239\) 3.05660 + 0.993150i 0.197715 + 0.0642416i 0.406201 0.913784i \(-0.366853\pi\)
−0.208485 + 0.978025i \(0.566853\pi\)
\(240\) −1.25114 1.37520i −0.0807607 0.0887686i
\(241\) −19.9300 17.9451i −1.28381 1.15594i −0.979074 0.203506i \(-0.934766\pi\)
−0.304733 0.952438i \(-0.598567\pi\)
\(242\) −6.70302 + 2.57305i −0.430886 + 0.165402i
\(243\) 3.91085 + 14.5955i 0.250881 + 0.936301i
\(244\) 5.16561 3.75303i 0.330694 0.240263i
\(245\) 4.99501 14.8341i 0.319120 0.947714i
\(246\) 0.0462382 + 0.0335940i 0.00294804 + 0.00214188i
\(247\) 3.79589 9.88862i 0.241527 0.629198i
\(248\) 14.0859 21.6904i 0.894457 1.37734i
\(249\) 6.08480 3.51306i 0.385609 0.222631i
\(250\) 6.36708 5.91393i 0.402689 0.374030i
\(251\) 13.7541i 0.868150i −0.900877 0.434075i \(-0.857075\pi\)
0.900877 0.434075i \(-0.142925\pi\)
\(252\) 1.12014 + 6.32210i 0.0705625 + 0.398255i
\(253\) 0.237881 + 1.50192i 0.0149555 + 0.0944250i
\(254\) −5.84558 13.1294i −0.366784 0.823811i
\(255\) 0.592764 2.25878i 0.0371203 0.141450i
\(256\) −12.2281 5.44431i −0.764257 0.340269i
\(257\) 8.92621 2.39177i 0.556802 0.149195i 0.0305651 0.999533i \(-0.490269\pi\)
0.526237 + 0.850338i \(0.323603\pi\)
\(258\) −0.645695 + 4.07676i −0.0401992 + 0.253808i
\(259\) 9.81526 17.7418i 0.609890 1.10242i
\(260\) 5.97615 + 1.90774i 0.370625 + 0.118313i
\(261\) 7.99672 + 8.88126i 0.494985 + 0.549736i
\(262\) 13.0069 0.681663i 0.803569 0.0421133i
\(263\) 8.38032 0.439194i 0.516752 0.0270819i 0.207822 0.978167i \(-0.433362\pi\)
0.308930 + 0.951085i \(0.400029\pi\)
\(264\) 2.63341 + 2.92470i 0.162075 + 0.180003i
\(265\) 14.5761 20.2815i 0.895404 1.24588i
\(266\) 5.58947 + 9.28504i 0.342712 + 0.569303i
\(267\) 2.75761 17.4109i 0.168763 1.06553i
\(268\) 11.4532 3.06887i 0.699615 0.187461i
\(269\) 4.02317 + 1.79123i 0.245297 + 0.109213i 0.525703 0.850668i \(-0.323802\pi\)
−0.280406 + 0.959882i \(0.590469\pi\)
\(270\) −7.15826 + 5.85805i −0.435638 + 0.356510i
\(271\) −1.39604 3.13556i −0.0848035 0.190472i 0.866166 0.499756i \(-0.166577\pi\)
−0.950970 + 0.309285i \(0.899910\pi\)
\(272\) 0.107679 + 0.679856i 0.00652898 + 0.0412223i
\(273\) 3.84278 + 4.57197i 0.232576 + 0.276708i
\(274\) 2.56689i 0.155072i
\(275\) 4.88673 4.49219i 0.294681 0.270889i
\(276\) −1.55525 + 0.897924i −0.0936150 + 0.0540487i
\(277\) 4.19321 6.45697i 0.251945 0.387962i −0.689956 0.723851i \(-0.742370\pi\)
0.941901 + 0.335889i \(0.109037\pi\)
\(278\) −2.40300 + 6.26003i −0.144122 + 0.375451i
\(279\) 13.7815 + 10.0128i 0.825076 + 0.599453i
\(280\) −12.8931 + 8.80922i −0.770508 + 0.526452i
\(281\) 19.6291 14.2614i 1.17097 0.850761i 0.179847 0.983695i \(-0.442440\pi\)
0.991125 + 0.132934i \(0.0424398\pi\)
\(282\) 0.0421749 + 0.157399i 0.00251148 + 0.00937296i
\(283\) −6.76781 + 2.59792i −0.402304 + 0.154430i −0.551103 0.834437i \(-0.685793\pi\)
0.148798 + 0.988868i \(0.452459\pi\)
\(284\) −11.1873 10.0731i −0.663846 0.597730i
\(285\) 6.55874 11.4966i 0.388506 0.681003i
\(286\) −1.97231 0.640843i −0.116625 0.0378939i
\(287\) −0.120223 + 0.124701i −0.00709655 + 0.00736086i
\(288\) 4.62055 9.06833i 0.272268 0.534357i
\(289\) 11.9909 10.7967i 0.705350 0.635100i
\(290\) −4.80305 + 10.9394i −0.282045 + 0.642382i
\(291\) −13.0740 + 14.5201i −0.766410 + 0.851185i
\(292\) −1.44667 + 1.78649i −0.0846599 + 0.104546i
\(293\) −22.0206 + 22.0206i −1.28645 + 1.28645i −0.349529 + 0.936925i \(0.613658\pi\)
−0.936925 + 0.349529i \(0.886342\pi\)
\(294\) −6.10676 + 0.223359i −0.356154 + 0.0130265i
\(295\) −4.84852 + 9.63836i −0.282291 + 0.561167i
\(296\) −18.4787 + 8.22726i −1.07405 + 0.478200i
\(297\) −5.49084 + 4.44640i −0.318611 + 0.258006i
\(298\) −0.0257681 0.0167340i −0.00149271 0.000969375i
\(299\) 1.15108 1.99372i 0.0665684 0.115300i
\(300\) 7.02100 + 3.48660i 0.405358 + 0.201299i
\(301\) −11.9659 3.64755i −0.689705 0.210241i
\(302\) 3.45587 + 6.78253i 0.198863 + 0.390291i
\(303\) 3.71722 + 1.42691i 0.213549 + 0.0819738i
\(304\) −0.407803 + 3.87999i −0.0233891 + 0.222533i
\(305\) −5.52634 + 8.60671i −0.316437 + 0.492819i
\(306\) 1.24955 0.131333i 0.0714322 0.00750783i
\(307\) −2.33566 2.33566i −0.133303 0.133303i 0.637307 0.770610i \(-0.280048\pi\)
−0.770610 + 0.637307i \(0.780048\pi\)
\(308\) −4.06240 + 2.74501i −0.231477 + 0.156412i
\(309\) −6.79877 + 2.20905i −0.386768 + 0.125669i
\(310\) −3.45470 + 16.6757i −0.196214 + 0.947114i
\(311\) 1.28441 + 6.04267i 0.0728321 + 0.342648i 0.999443 0.0333736i \(-0.0106251\pi\)
−0.926611 + 0.376022i \(0.877292\pi\)
\(312\) −0.311828 5.95003i −0.0176538 0.336854i
\(313\) 9.39345 6.10018i 0.530949 0.344802i −0.251158 0.967946i \(-0.580811\pi\)
0.782107 + 0.623144i \(0.214145\pi\)
\(314\) −3.16170 + 9.73071i −0.178425 + 0.549136i
\(315\) −5.34989 8.78418i −0.301432 0.494933i
\(316\) 4.50152 + 13.8542i 0.253230 + 0.779362i
\(317\) 6.98886 + 5.65947i 0.392534 + 0.317867i 0.805187 0.593021i \(-0.202065\pi\)
−0.412654 + 0.910888i \(0.635398\pi\)
\(318\) −9.41859 2.52370i −0.528168 0.141522i
\(319\) −3.71186 + 8.33698i −0.207824 + 0.466781i
\(320\) 6.85635 + 0.323864i 0.383281 + 0.0181045i
\(321\) 6.50714 8.95630i 0.363193 0.499892i
\(322\) 0.884192 + 2.18326i 0.0492741 + 0.121668i
\(323\) −4.36630 + 2.22474i −0.242947 + 0.123788i
\(324\) −0.921313 0.531920i −0.0511840 0.0295511i
\(325\) −10.0294 + 0.629452i −0.556331 + 0.0349157i
\(326\) 1.35707 + 2.35051i 0.0751610 + 0.130183i
\(327\) −0.636653 + 12.1481i −0.0352070 + 0.671790i
\(328\) 0.170676 0.0270324i 0.00942401 0.00149262i
\(329\) −0.490129 + 0.0605914i −0.0270217 + 0.00334051i
\(330\) −2.31502 1.16456i −0.127438 0.0641068i
\(331\) 0.755353 + 7.18671i 0.0415180 + 0.395017i 0.995471 + 0.0950622i \(0.0303050\pi\)
−0.953953 + 0.299955i \(0.903028\pi\)
\(332\) 2.26005 8.43463i 0.124036 0.462910i
\(333\) −4.77456 12.4381i −0.261644 0.681606i
\(334\) −14.5616 3.09517i −0.796777 0.169360i
\(335\) −15.3087 + 11.2436i −0.836404 + 0.614301i
\(336\) −1.80301 1.26026i −0.0983624 0.0687531i
\(337\) 9.03950 + 4.60585i 0.492413 + 0.250897i 0.682521 0.730866i \(-0.260884\pi\)
−0.190108 + 0.981763i \(0.560884\pi\)
\(338\) −3.79320 5.84101i −0.206323 0.317709i
\(339\) 7.26254 1.54370i 0.394447 0.0838423i
\(340\) −1.46410 2.50594i −0.0794018 0.135904i
\(341\) −2.70455 + 12.7239i −0.146459 + 0.689038i
\(342\) 7.03363 + 1.11402i 0.380335 + 0.0602392i
\(343\) 1.89023 18.4235i 0.102063 0.994778i
\(344\) 7.33539 + 10.0963i 0.395498 + 0.544356i
\(345\) 1.79885 2.24498i 0.0968468 0.120866i
\(346\) −3.83278 0.402841i −0.206051 0.0216569i
\(347\) −5.04462 6.22958i −0.270809 0.334422i 0.623540 0.781792i \(-0.285694\pi\)
−0.894349 + 0.447370i \(0.852361\pi\)
\(348\) −10.7628 0.564054i −0.576946 0.0302365i
\(349\) 8.82065 0.472158 0.236079 0.971734i \(-0.424138\pi\)
0.236079 + 0.971734i \(0.424138\pi\)
\(350\) 5.80329 8.48774i 0.310199 0.453689i
\(351\) 10.6965 0.570939
\(352\) 7.76119 + 0.406747i 0.413673 + 0.0216797i
\(353\) −10.5951 13.0839i −0.563923 0.696387i 0.412817 0.910814i \(-0.364545\pi\)
−0.976740 + 0.214427i \(0.931211\pi\)
\(354\) 4.18910 + 0.440292i 0.222648 + 0.0234012i
\(355\) 22.5576 + 8.52579i 1.19723 + 0.452502i
\(356\) −12.8773 17.7241i −0.682497 0.939376i
\(357\) 0.0941494 2.76151i 0.00498292 0.146155i
\(358\) −15.5477 2.46251i −0.821720 0.130148i
\(359\) −2.87394 + 13.5208i −0.151681 + 0.713602i 0.834910 + 0.550387i \(0.185520\pi\)
−0.986590 + 0.163215i \(0.947813\pi\)
\(360\) −1.01986 + 10.2098i −0.0537514 + 0.538102i
\(361\) −8.58309 + 1.82439i −0.451742 + 0.0960206i
\(362\) 1.92781 + 2.96857i 0.101323 + 0.156024i
\(363\) 9.24451 + 4.71031i 0.485211 + 0.247227i
\(364\) 7.39491 + 0.640814i 0.387599 + 0.0335878i
\(365\) 1.11984 3.50801i 0.0586153 0.183618i
\(366\) 3.90590 + 0.830225i 0.204165 + 0.0433966i
\(367\) −0.372403 0.970143i −0.0194393 0.0506410i 0.923517 0.383557i \(-0.125301\pi\)
−0.942957 + 0.332916i \(0.891968\pi\)
\(368\) −0.219464 + 0.819049i −0.0114403 + 0.0426959i
\(369\) 0.0118973 + 0.113195i 0.000619350 + 0.00589272i
\(370\) 9.36929 9.46647i 0.487086 0.492138i
\(371\) 11.5244 27.2124i 0.598319 1.41280i
\(372\) −15.1732 + 2.40320i −0.786695 + 0.124600i
\(373\) −1.15167 + 21.9752i −0.0596314 + 1.13783i 0.790912 + 0.611930i \(0.209606\pi\)
−0.850544 + 0.525904i \(0.823727\pi\)
\(374\) 0.479720 + 0.830899i 0.0248057 + 0.0429648i
\(375\) −12.5074 1.11916i −0.645880 0.0577930i
\(376\) 0.426675 + 0.246341i 0.0220041 + 0.0127041i
\(377\) 12.3102 6.27237i 0.634009 0.323044i
\(378\) −6.73093 + 8.62989i −0.346202 + 0.443874i
\(379\) −17.8299 + 24.5408i −0.915862 + 1.26058i 0.0492625 + 0.998786i \(0.484313\pi\)
−0.965125 + 0.261790i \(0.915687\pi\)
\(380\) −4.33944 15.8671i −0.222609 0.813966i
\(381\) −8.44719 + 18.9727i −0.432762 + 0.972000i
\(382\) 11.6209 + 3.11380i 0.594575 + 0.159316i
\(383\) −16.6188 13.4576i −0.849179 0.687652i 0.102504 0.994733i \(-0.467315\pi\)
−0.951683 + 0.307081i \(0.900648\pi\)
\(384\) 3.23567 + 9.95838i 0.165120 + 0.508186i
\(385\) 4.46623 6.46039i 0.227620 0.329252i
\(386\) −1.88327 + 5.79612i −0.0958562 + 0.295015i
\(387\) −6.89379 + 4.47688i −0.350431 + 0.227572i
\(388\) 1.27088 + 24.2498i 0.0645190 + 1.23110i
\(389\) 4.37542 + 20.5847i 0.221842 + 1.04369i 0.938238 + 0.345992i \(0.112457\pi\)
−0.716395 + 0.697695i \(0.754209\pi\)
\(390\) 1.61420 + 3.57579i 0.0817383 + 0.181067i
\(391\) −1.01295 + 0.329128i −0.0512271 + 0.0166447i
\(392\) −12.5783 + 13.5334i −0.635301 + 0.683539i
\(393\) −13.3088 13.3088i −0.671340 0.671340i
\(394\) −12.6454 + 1.32909i −0.637066 + 0.0669583i
\(395\) −14.7787 18.0589i −0.743596 0.908639i
\(396\) −0.336752 + 3.20399i −0.0169224 + 0.161006i
\(397\) 4.78454 + 1.83661i 0.240129 + 0.0921770i 0.475457 0.879739i \(-0.342283\pi\)
−0.235327 + 0.971916i \(0.575616\pi\)
\(398\) −9.63744 18.9145i −0.483081 0.948100i
\(399\) 4.56645 14.9804i 0.228608 0.749960i
\(400\) 3.50821 1.18004i 0.175410 0.0590022i
\(401\) −17.1661 + 29.7326i −0.857235 + 1.48477i 0.0173216 + 0.999850i \(0.494486\pi\)
−0.874556 + 0.484924i \(0.838847\pi\)
\(402\) 6.21910 + 4.03873i 0.310180 + 0.201433i
\(403\) 15.3047 12.3935i 0.762382 0.617364i
\(404\) 4.52068 2.01273i 0.224912 0.100137i
\(405\) 1.68454 + 0.257902i 0.0837053 + 0.0128153i
\(406\) −2.68586 + 13.8788i −0.133297 + 0.688792i
\(407\) 7.19393 7.19393i 0.356590 0.356590i
\(408\) −1.73474 + 2.14223i −0.0858825 + 0.106056i
\(409\) 17.5576 19.4997i 0.868168 0.964198i −0.131464 0.991321i \(-0.541968\pi\)
0.999632 + 0.0271225i \(0.00863443\pi\)
\(410\) −0.0982457 + 0.0574001i −0.00485201 + 0.00283479i
\(411\) −2.75655 + 2.48201i −0.135970 + 0.122428i
\(412\) −4.03345 + 7.91610i −0.198714 + 0.389998i
\(413\) −3.07812 + 12.3893i −0.151464 + 0.609635i
\(414\) 1.47203 + 0.478291i 0.0723462 + 0.0235067i
\(415\) 1.53390 + 13.9037i 0.0752963 + 0.682505i
\(416\) −8.74388 7.87302i −0.428704 0.386007i
\(417\) 9.04608 3.47247i 0.442989 0.170047i
\(418\) 1.40745 + 5.25268i 0.0688407 + 0.256917i
\(419\) 20.8379 15.1396i 1.01800 0.739617i 0.0521248 0.998641i \(-0.483401\pi\)
0.965871 + 0.259023i \(0.0834006\pi\)
\(420\) 9.01305 + 2.18999i 0.439792 + 0.106860i
\(421\) −9.53283 6.92601i −0.464602 0.337553i 0.330732 0.943725i \(-0.392704\pi\)
−0.795334 + 0.606172i \(0.792704\pi\)
\(422\) 4.09009 10.6551i 0.199103 0.518680i
\(423\) −0.176741 + 0.272158i −0.00859345 + 0.0132328i
\(424\) −25.5318 + 14.7408i −1.23994 + 0.715877i
\(425\) 3.64309 + 2.88839i 0.176716 + 0.140107i
\(426\) 9.41470i 0.456144i
\(427\) −4.12978 + 11.3757i −0.199854 + 0.550510i
\(428\) −2.15233 13.5893i −0.104037 0.656864i
\(429\) 1.21890 + 2.73769i 0.0588489 + 0.132177i
\(430\) −6.91472 4.43992i −0.333457 0.214112i
\(431\) −14.2385 6.33937i −0.685842 0.305357i 0.0340723 0.999419i \(-0.489152\pi\)
−0.719914 + 0.694063i \(0.755819\pi\)
\(432\) −3.80556 + 1.01970i −0.183095 + 0.0490602i
\(433\) 0.121416 0.766591i 0.00583489 0.0368400i −0.984599 0.174827i \(-0.944063\pi\)
0.990434 + 0.137987i \(0.0440633\pi\)
\(434\) 0.368312 + 20.1465i 0.0176796 + 0.967063i
\(435\) 16.3918 5.41969i 0.785928 0.259854i
\(436\) 10.1163 + 11.2352i 0.484481 + 0.538070i
\(437\) −6.02845 + 0.315938i −0.288380 + 0.0151134i
\(438\) −1.43567 + 0.0752404i −0.0685991 + 0.00359512i
\(439\) 7.06803 + 7.84984i 0.337339 + 0.374653i 0.887817 0.460197i \(-0.152221\pi\)
−0.550478 + 0.834850i \(0.685555\pi\)
\(440\) −7.43911 + 2.45962i −0.354646 + 0.117258i
\(441\) −8.46810 8.74002i −0.403243 0.416191i
\(442\) 0.227225 1.43464i 0.0108080 0.0682391i
\(443\) 26.2546 7.03490i 1.24739 0.334238i 0.426064 0.904693i \(-0.359900\pi\)
0.821329 + 0.570455i \(0.193233\pi\)
\(444\) 10.9762 + 4.88694i 0.520909 + 0.231924i
\(445\) 29.5311 + 18.9618i 1.39991 + 0.898878i
\(446\) 6.83506 + 15.3518i 0.323650 + 0.726929i
\(447\) 0.00694557 + 0.0438526i 0.000328514 + 0.00207416i
\(448\) 7.99703 1.41691i 0.377824 0.0669426i
\(449\) 39.0168i 1.84131i 0.390372 + 0.920657i \(0.372346\pi\)
−0.390372 + 0.920657i \(0.627654\pi\)
\(450\) −1.81588 6.50762i −0.0856016 0.306772i
\(451\) −0.0752701 + 0.0434572i −0.00354433 + 0.00204632i
\(452\) 5.02573 7.73894i 0.236390 0.364009i
\(453\) 3.94207 10.2694i 0.185215 0.482501i
\(454\) −5.91145 4.29492i −0.277438 0.201571i
\(455\) −11.4099 + 3.34576i −0.534902 + 0.156852i
\(456\) −12.6398 + 9.18334i −0.591912 + 0.430049i
\(457\) −5.95677 22.2310i −0.278646 1.03992i −0.953359 0.301840i \(-0.902399\pi\)
0.674713 0.738080i \(-0.264268\pi\)
\(458\) −2.25881 + 0.867075i −0.105547 + 0.0405158i
\(459\) −3.67760 3.31133i −0.171656 0.154560i
\(460\) −0.392059 3.55372i −0.0182798 0.165693i
\(461\) −23.0880 7.50175i −1.07532 0.349391i −0.282760 0.959191i \(-0.591250\pi\)
−0.792556 + 0.609799i \(0.791250\pi\)
\(462\) −2.97576 0.739328i −0.138445 0.0343967i
\(463\) 2.79874 5.49284i 0.130069 0.255274i −0.816783 0.576945i \(-0.804245\pi\)
0.946851 + 0.321671i \(0.104245\pi\)
\(464\) −3.78173 + 3.40509i −0.175563 + 0.158077i
\(465\) 21.2482 12.4143i 0.985362 0.575697i
\(466\) 15.1636 16.8409i 0.702441 0.780140i
\(467\) 18.4601 22.7963i 0.854231 1.05489i −0.143637 0.989630i \(-0.545880\pi\)
0.997868 0.0652571i \(-0.0207868\pi\)
\(468\) 3.44880 3.44880i 0.159421 0.159421i
\(469\) −14.7303 + 16.9736i −0.680182 + 0.783767i
\(470\) −0.320677 0.0490956i −0.0147917 0.00226461i
\(471\) 13.5068 6.01362i 0.622361 0.277093i
\(472\) 9.89733 8.01470i 0.455561 0.368906i
\(473\) −5.26423 3.41863i −0.242050 0.157189i
\(474\) −4.55512 + 7.88970i −0.209224 + 0.362386i
\(475\) 15.7078 + 21.1574i 0.720725 + 0.970768i
\(476\) −2.34409 2.50956i −0.107441 0.115026i
\(477\) −8.81577 17.3019i −0.403646 0.792200i
\(478\) 2.33208 + 0.895202i 0.106667 + 0.0409456i
\(479\) 0.950688 9.04519i 0.0434380 0.413285i −0.951098 0.308890i \(-0.900043\pi\)
0.994536 0.104395i \(-0.0332908\pi\)
\(480\) −9.31162 11.3784i −0.425015 0.519349i
\(481\) −15.3180 + 1.60999i −0.698441 + 0.0734091i
\(482\) −14.7394 14.7394i −0.671360 0.671360i
\(483\) 1.48961 3.06058i 0.0677798 0.139261i
\(484\) 12.2635 3.98466i 0.557433 0.181121i
\(485\) −16.0048 35.4539i −0.726739 1.60988i
\(486\) 2.44182 + 11.4878i 0.110763 + 0.521099i
\(487\) −0.0277991 0.530438i −0.00125970 0.0240364i 0.997927 0.0643504i \(-0.0204975\pi\)
−0.999187 + 0.0403139i \(0.987164\pi\)
\(488\) 10.1255 6.57559i 0.458361 0.297663i
\(489\) 1.21199 3.73011i 0.0548080 0.168682i
\(490\) 4.48046 11.3108i 0.202407 0.510968i
\(491\) 1.98288 + 6.10267i 0.0894861 + 0.275410i 0.985777 0.168056i \(-0.0537489\pi\)
−0.896291 + 0.443466i \(0.853749\pi\)
\(492\) −0.0797694 0.0645960i −0.00359628 0.00291221i
\(493\) −6.17415 1.65436i −0.278070 0.0745086i
\(494\) 3.34855 7.52097i 0.150658 0.338384i
\(495\) −1.36140 4.97793i −0.0611902 0.223741i
\(496\) −4.26357 + 5.86830i −0.191440 + 0.263494i
\(497\) 28.2589 + 3.94772i 1.26758 + 0.177079i
\(498\) 4.86582 2.47926i 0.218043 0.111098i
\(499\) 5.43364 + 3.13711i 0.243243 + 0.140437i 0.616666 0.787225i \(-0.288483\pi\)
−0.373423 + 0.927661i \(0.621816\pi\)
\(500\) −11.9751 + 10.0080i −0.535541 + 0.447572i
\(501\) 10.7562 + 18.6303i 0.480553 + 0.832343i
\(502\) 0.559489 10.6757i 0.0249712 0.476479i
\(503\) −4.92568 + 0.780151i −0.219625 + 0.0347852i −0.265277 0.964172i \(-0.585463\pi\)
0.0456521 + 0.998957i \(0.485463\pi\)
\(504\) 1.48951 + 12.0488i 0.0663480 + 0.536695i
\(505\) −5.57623 + 5.63407i −0.248139 + 0.250713i
\(506\) 0.123544 + 1.17544i 0.00549220 + 0.0522548i
\(507\) −2.60482 + 9.72131i −0.115684 + 0.431739i
\(508\) 9.24984 + 24.0966i 0.410395 + 1.06912i
\(509\) −22.1320 4.70429i −0.980982 0.208514i −0.310609 0.950538i \(-0.600533\pi\)
−0.670374 + 0.742024i \(0.733866\pi\)
\(510\) 0.551976 1.72911i 0.0244419 0.0765663i
\(511\) 0.376159 4.34082i 0.0166403 0.192027i
\(512\) 7.34327 + 3.74158i 0.324530 + 0.165356i
\(513\) −15.2763 23.5235i −0.674467 1.03859i
\(514\) 7.02566 1.49335i 0.309889 0.0658688i
\(515\) 1.41460 14.1615i 0.0623348 0.624030i
\(516\) 1.54122 7.25087i 0.0678484 0.319202i
\(517\) −0.244752 0.0387649i −0.0107642 0.00170488i
\(518\) 8.34013 13.3716i 0.366444 0.587513i
\(519\) 3.27343 + 4.50548i 0.143687 + 0.197769i
\(520\) 11.0959 + 4.19375i 0.486586 + 0.183908i
\(521\) 30.6917 + 3.22582i 1.34463 + 0.141326i 0.749339 0.662187i \(-0.230372\pi\)
0.595287 + 0.803513i \(0.297038\pi\)
\(522\) 5.84564 + 7.21877i 0.255857 + 0.315957i
\(523\) −30.5923 1.60327i −1.33771 0.0701062i −0.629990 0.776603i \(-0.716941\pi\)
−0.707716 + 0.706497i \(0.750274\pi\)
\(524\) −23.3916 −1.02187
\(525\) −14.7262 + 1.97499i −0.642706 + 0.0861955i
\(526\) 6.52252 0.284395
\(527\) −9.09861 0.476838i −0.396342 0.0207714i
\(528\) −0.694637 0.857805i −0.0302302 0.0373312i
\(529\) 21.5691 + 2.26701i 0.937789 + 0.0985656i
\(530\) 12.1387 15.1492i 0.527273 0.658041i
\(531\) 4.93056 + 6.78633i 0.213968 + 0.294502i
\(532\) −9.15184 17.1778i −0.396783 0.744754i
\(533\) 0.129963 + 0.0205840i 0.00562930 + 0.000891594i
\(534\) 2.84865 13.4018i 0.123273 0.579954i
\(535\) 11.1183 + 19.0301i 0.480688 + 0.822744i
\(536\) 21.9306 4.66148i 0.947256 0.201345i
\(537\) 12.3891 + 19.0775i 0.534628 + 0.823254i
\(538\) 3.04985 + 1.55398i 0.131488 + 0.0669966i
\(539\) 3.46693 8.62194i 0.149331 0.371373i
\(540\) 13.3888 9.83344i 0.576161 0.423164i
\(541\) −38.7310 8.23253i −1.66518 0.353944i −0.723463 0.690363i \(-0.757451\pi\)
−0.941712 + 0.336419i \(0.890784\pi\)
\(542\) −0.956035 2.49056i −0.0410652 0.106979i
\(543\) 1.32384 4.94065i 0.0568115 0.212023i
\(544\) 0.569001 + 5.41369i 0.0243957 + 0.232110i
\(545\) −21.6351 10.8834i −0.926747 0.466194i
\(546\) 2.79672 + 3.70500i 0.119689 + 0.158559i
\(547\) 37.0235 5.86395i 1.58301 0.250724i 0.697932 0.716164i \(-0.254104\pi\)
0.885079 + 0.465440i \(0.154104\pi\)
\(548\) −0.241267 + 4.60365i −0.0103064 + 0.196658i
\(549\) 3.97611 + 6.88682i 0.169696 + 0.293922i
\(550\) 3.97573 3.28798i 0.169525 0.140200i
\(551\) −31.3750 18.1143i −1.33662 0.771697i
\(552\) −3.02561 + 1.54162i −0.128778 + 0.0656159i
\(553\) −21.7715 16.9808i −0.925817 0.722097i
\(554\) 3.51735 4.84122i 0.149438 0.205684i
\(555\) −19.2254 0.908122i −0.816071 0.0385476i
\(556\) 4.89811 11.0013i 0.207726 0.466560i
\(557\) 5.81572 + 1.55832i 0.246420 + 0.0660280i 0.379915 0.925021i \(-0.375953\pi\)
−0.133495 + 0.991050i \(0.542620\pi\)
\(558\) 10.2896 + 8.33239i 0.435595 + 0.352738i
\(559\) 2.93652 + 9.03767i 0.124201 + 0.382253i
\(560\) 3.74040 2.27804i 0.158061 0.0962647i
\(561\) 0.428435 1.31859i 0.0180885 0.0556708i
\(562\) 15.8159 10.2709i 0.667152 0.433253i
\(563\) 1.58169 + 30.1805i 0.0666604 + 1.27196i 0.803260 + 0.595628i \(0.203097\pi\)
−0.736600 + 0.676329i \(0.763570\pi\)
\(564\) −0.0608453 0.286255i −0.00256205 0.0120535i
\(565\) −2.99866 + 14.4744i −0.126154 + 0.608942i
\(566\) −5.35873 + 1.74116i −0.225244 + 0.0731863i
\(567\) 2.01137 0.142319i 0.0844694 0.00597682i
\(568\) −20.1280 20.1280i −0.844552 0.844552i
\(569\) −4.95634 + 0.520932i −0.207781 + 0.0218386i −0.207847 0.978161i \(-0.566646\pi\)
6.62580e−5 1.00000i \(0.499979\pi\)
\(570\) 5.55844 8.65670i 0.232817 0.362589i
\(571\) 0.255295 2.42897i 0.0106837 0.101649i −0.987880 0.155216i \(-0.950393\pi\)
0.998564 + 0.0535674i \(0.0170592\pi\)
\(572\) 3.47706 + 1.33472i 0.145383 + 0.0558073i
\(573\) −7.89270 15.4903i −0.329722 0.647117i
\(574\) −0.0983877 + 0.0919002i −0.00410662 + 0.00383584i
\(575\) 2.65263 + 5.07591i 0.110622 + 0.211680i
\(576\) 2.66831 4.62165i 0.111180 0.192569i
\(577\) 20.3829 + 13.2368i 0.848553 + 0.551057i 0.894081 0.447906i \(-0.147830\pi\)
−0.0455274 + 0.998963i \(0.514497\pi\)
\(578\) 9.74635 7.89244i 0.405395 0.328282i
\(579\) 8.04537 3.58203i 0.334354 0.148864i
\(580\) 9.64235 19.1680i 0.400377 0.795908i
\(581\) 5.40137 + 15.6447i 0.224087 + 0.649052i
\(582\) −10.7384 + 10.7384i −0.445123 + 0.445123i
\(583\) 9.33174 11.5237i 0.386481 0.477264i
\(584\) −2.90851 + 3.23023i −0.120355 + 0.133668i
\(585\) −3.14097 + 7.15383i −0.129863 + 0.295774i
\(586\) −17.9877 + 16.1962i −0.743066 + 0.669060i
\(587\) −4.09368 + 8.03430i −0.168964 + 0.331611i −0.959926 0.280255i \(-0.909581\pi\)
0.790961 + 0.611866i \(0.209581\pi\)
\(588\) 10.9733 + 0.173399i 0.452532 + 0.00715085i
\(589\) −49.1130 15.9578i −2.02366 0.657528i
\(590\) −4.15540 + 7.28390i −0.171075 + 0.299873i
\(591\) 13.6545 + 12.2946i 0.561671 + 0.505731i
\(592\) 5.29629 2.03306i 0.217676 0.0835581i
\(593\) 6.63849 + 24.7752i 0.272610 + 1.01740i 0.957426 + 0.288679i \(0.0932160\pi\)
−0.684816 + 0.728716i \(0.740117\pi\)
\(594\) −4.44277 + 3.22786i −0.182289 + 0.132441i
\(595\) 4.95860 + 2.38184i 0.203283 + 0.0976458i
\(596\) 0.0446416 + 0.0324340i 0.00182859 + 0.00132855i
\(597\) −10.9933 + 28.6386i −0.449926 + 1.17210i
\(598\) 0.974545 1.50067i 0.0398521 0.0613669i
\(599\) 23.1803 13.3832i 0.947123 0.546822i 0.0549370 0.998490i \(-0.482504\pi\)
0.892186 + 0.451668i \(0.149171\pi\)
\(600\) 12.9126 + 7.27848i 0.527155 + 0.297143i
\(601\) 3.83116i 0.156276i 0.996943 + 0.0781382i \(0.0248975\pi\)
−0.996943 + 0.0781382i \(0.975102\pi\)
\(602\) −9.13938 3.31791i −0.372493 0.135228i
\(603\) 2.31015 + 14.5857i 0.0940764 + 0.593975i
\(604\) −5.56051 12.4891i −0.226254 0.508175i
\(605\) −15.9854 + 13.0818i −0.649898 + 0.531852i
\(606\) 2.82720 + 1.25875i 0.114847 + 0.0511332i
\(607\) −32.5210 + 8.71399i −1.31999 + 0.353690i −0.848974 0.528435i \(-0.822779\pi\)
−0.471015 + 0.882125i \(0.656112\pi\)
\(608\) −4.82648 + 30.4732i −0.195740 + 1.23585i
\(609\) 17.5013 10.5355i 0.709187 0.426921i
\(610\) −4.63955 + 6.45557i −0.187850 + 0.261379i
\(611\) 0.251029 + 0.278796i 0.0101555 + 0.0112789i
\(612\) −2.25339 + 0.118095i −0.0910877 + 0.00477370i
\(613\) −44.3520 + 2.32439i −1.79136 + 0.0938813i −0.918825 0.394666i \(-0.870860\pi\)
−0.872537 + 0.488547i \(0.837527\pi\)
\(614\) −1.71789 1.90791i −0.0693284 0.0769970i
\(615\) 0.156638 + 0.0500028i 0.00631625 + 0.00201631i
\(616\) −7.94261 + 4.78134i −0.320017 + 0.192646i
\(617\) −5.46815 + 34.5246i −0.220140 + 1.38991i 0.591762 + 0.806112i \(0.298432\pi\)
−0.811902 + 0.583794i \(0.801568\pi\)
\(618\) −5.36695 + 1.43807i −0.215890 + 0.0578476i
\(619\) 12.2138 + 5.43792i 0.490913 + 0.218568i 0.637237 0.770668i \(-0.280077\pi\)
−0.146324 + 0.989237i \(0.546744\pi\)
\(620\) 7.76329 29.5826i 0.311781 1.18807i
\(621\) −2.47955 5.56917i −0.0995011 0.223483i
\(622\) 0.751132 + 4.74246i 0.0301176 + 0.190155i
\(623\) 39.0321 + 14.1700i 1.56379 + 0.567709i
\(624\) 1.67106i 0.0668960i
\(625\) 12.0506 21.9040i 0.482022 0.876159i
\(626\) 7.53917 4.35274i 0.301326 0.173971i
\(627\) 4.27987 6.59042i 0.170921 0.263196i
\(628\) 6.58503 17.1546i 0.262771 0.684543i
\(629\) 5.76493 + 4.18846i 0.229863 + 0.167005i
\(630\) −3.79517 7.03575i −0.151203 0.280311i
\(631\) 11.1996 8.13699i 0.445849 0.323928i −0.342106 0.939662i \(-0.611140\pi\)
0.787955 + 0.615733i \(0.211140\pi\)
\(632\) 7.12911 + 26.6062i 0.283581 + 1.05834i
\(633\) −15.3972 + 5.91041i −0.611982 + 0.234918i
\(634\) 5.19442 + 4.67707i 0.206297 + 0.185750i
\(635\) −27.8244 30.5834i −1.10418 1.21366i
\(636\) 16.6548 + 5.41147i 0.660405 + 0.214579i
\(637\) −12.2935 + 6.84101i −0.487088 + 0.271051i
\(638\) −3.22021 + 6.32003i −0.127489 + 0.250212i
\(639\) 13.9332 12.5455i 0.551189 0.496293i
\(640\) −20.7428 2.07201i −0.819931 0.0819035i
\(641\) −1.56927 + 1.74285i −0.0619824 + 0.0688384i −0.773339 0.633993i \(-0.781415\pi\)
0.711356 + 0.702832i \(0.248081\pi\)
\(642\) 5.41505 6.68703i 0.213715 0.263916i
\(643\) −16.5284 + 16.5284i −0.651816 + 0.651816i −0.953430 0.301614i \(-0.902475\pi\)
0.301614 + 0.953430i \(0.402475\pi\)
\(644\) −1.38057 3.99872i −0.0544020 0.157572i
\(645\) 1.91809 + 11.7187i 0.0755247 + 0.461424i
\(646\) −3.47954 + 1.54919i −0.136901 + 0.0609521i
\(647\) −9.11290 + 7.37948i −0.358265 + 0.290117i −0.791507 0.611161i \(-0.790703\pi\)
0.433242 + 0.901278i \(0.357370\pi\)
\(648\) −1.68706 1.09559i −0.0662739 0.0430388i
\(649\) −3.20276 + 5.54735i −0.125719 + 0.217752i
\(650\) −7.81024 + 0.0805937i −0.306343 + 0.00316115i
\(651\) 21.2789 19.8758i 0.833986 0.778994i
\(652\) −2.21293 4.34313i −0.0866652 0.170090i
\(653\) −19.4319 7.45920i −0.760429 0.291901i −0.0529133 0.998599i \(-0.516851\pi\)
−0.707515 + 0.706698i \(0.750184\pi\)
\(654\) −0.988318 + 9.40322i −0.0386463 + 0.367695i
\(655\) 34.9124 13.6087i 1.36414 0.531736i
\(656\) −0.0481998 + 0.00506600i −0.00188188 + 0.000197794i
\(657\) −2.02445 2.02445i −0.0789813 0.0789813i
\(658\) −0.382894 + 0.0270925i −0.0149268 + 0.00105618i
\(659\) 30.5370 9.92209i 1.18955 0.386510i 0.353646 0.935379i \(-0.384942\pi\)
0.835908 + 0.548870i \(0.184942\pi\)
\(660\) 4.04247 + 2.30620i 0.157353 + 0.0897686i
\(661\) 2.10304 + 9.89402i 0.0817988 + 0.384833i 0.999935 0.0114328i \(-0.00363925\pi\)
−0.918136 + 0.396266i \(0.870306\pi\)
\(662\) 0.293951 + 5.60892i 0.0114247 + 0.217997i
\(663\) −1.76035 + 1.14319i −0.0683665 + 0.0443977i
\(664\) 5.10231 15.7033i 0.198008 0.609406i
\(665\) 23.6530 + 20.3139i 0.917223 + 0.787741i
\(666\) −3.19997 9.84849i −0.123996 0.381621i
\(667\) −6.11935 4.95535i −0.236942 0.191872i
\(668\) 25.8250 + 6.91979i 0.999199 + 0.267735i
\(669\) 9.87704 22.1842i 0.381868 0.857691i
\(670\) −12.3397 + 8.10432i −0.476725 + 0.313097i
\(671\) −3.56931 + 4.91273i −0.137792 + 0.189654i
\(672\) −13.7176 10.6991i −0.529167 0.412727i
\(673\) 10.0639 5.12781i 0.387935 0.197663i −0.249135 0.968469i \(-0.580146\pi\)
0.637070 + 0.770806i \(0.280146\pi\)
\(674\) 6.82894 + 3.94269i 0.263041 + 0.151867i
\(675\) −14.2621 + 22.4659i −0.548949 + 0.864712i
\(676\) 6.25399 + 10.8322i 0.240538 + 0.416624i
\(677\) −1.27981 + 24.4201i −0.0491869 + 0.938542i 0.856908 + 0.515469i \(0.172382\pi\)
−0.906095 + 0.423074i \(0.860951\pi\)
\(678\) 5.69985 0.902768i 0.218901 0.0346706i
\(679\) −27.7294 36.7350i −1.06416 1.40976i
\(680\) −2.51664 4.87681i −0.0965086 0.187017i
\(681\) 1.10371 + 10.5011i 0.0422943 + 0.402404i
\(682\) −2.61681 + 9.76605i −0.100203 + 0.373961i
\(683\) −5.90842 15.3920i −0.226079 0.588957i 0.772881 0.634552i \(-0.218815\pi\)
−0.998960 + 0.0455944i \(0.985482\pi\)
\(684\) −12.5099 2.65907i −0.478329 0.101672i
\(685\) −2.31820 7.01141i −0.0885740 0.267892i
\(686\) 2.21659 14.2231i 0.0846299 0.543042i
\(687\) 3.11525 + 1.58730i 0.118854 + 0.0605593i
\(688\) −1.90630 2.93544i −0.0726770 0.111913i
\(689\) −21.9585 + 4.66741i −0.836550 + 0.177814i
\(690\) 1.48756 1.66934i 0.0566303 0.0635506i
\(691\) 5.84621 27.5043i 0.222400 1.04631i −0.715287 0.698831i \(-0.753704\pi\)
0.937687 0.347480i \(-0.112963\pi\)
\(692\) 6.83613 + 1.08274i 0.259870 + 0.0411594i
\(693\) −2.87117 5.38914i −0.109067 0.204716i
\(694\) −3.66214 5.04050i −0.139013 0.191335i
\(695\) −0.910198 + 19.2693i −0.0345258 + 0.730926i
\(696\) −20.2674 2.13019i −0.768233 0.0807445i
\(697\) −0.0383106 0.0473096i −0.00145112 0.00179198i
\(698\) 6.84643 + 0.358806i 0.259141 + 0.0135810i
\(699\) −32.7474 −1.23862
\(700\) −11.2058 + 14.6771i −0.423541 + 0.554741i
\(701\) −35.1051 −1.32590 −0.662951 0.748663i \(-0.730696\pi\)
−0.662951 + 0.748663i \(0.730696\pi\)
\(702\) 8.30246 + 0.435113i 0.313356 + 0.0164223i
\(703\) 25.4172 + 31.3876i 0.958627 + 1.18381i
\(704\) 4.05282 + 0.425969i 0.152747 + 0.0160543i
\(705\) 0.257349 + 0.391842i 0.00969234 + 0.0147576i
\(706\) −7.69154 10.5865i −0.289475 0.398428i
\(707\) −4.96372 + 7.95823i −0.186680 + 0.299300i
\(708\) −7.47165 1.18339i −0.280802 0.0444746i
\(709\) −10.9224 + 51.3859i −0.410200 + 1.92984i −0.0447789 + 0.998997i \(0.514258\pi\)
−0.365421 + 0.930842i \(0.619075\pi\)
\(710\) 17.1620 + 7.53517i 0.644079 + 0.282790i
\(711\) −17.7462 + 3.77207i −0.665534 + 0.141464i
\(712\) −22.5620 34.7425i −0.845548 1.30203i
\(713\) −10.0005 5.09550i −0.374521 0.190828i
\(714\) 0.185410 2.13961i 0.00693879 0.0800728i
\(715\) −5.96608 + 0.0307811i −0.223119 + 0.00115115i
\(716\) 27.6529 + 5.87780i 1.03344 + 0.219664i
\(717\) −1.29362 3.36999i −0.0483110 0.125854i
\(718\) −2.78070 + 10.3777i −0.103775 + 0.387293i
\(719\) −0.289532 2.75471i −0.0107977 0.102733i 0.987796 0.155756i \(-0.0497812\pi\)
−0.998593 + 0.0530223i \(0.983115\pi\)
\(720\) 0.435506 2.84458i 0.0162303 0.106011i
\(721\) −2.06603 16.7123i −0.0769430 0.622398i
\(722\) −6.73625 + 1.06692i −0.250697 + 0.0397066i
\(723\) −1.57644 + 30.0803i −0.0586286 + 1.11870i
\(724\) −3.17846 5.50525i −0.118126 0.204601i
\(725\) −3.23988 + 34.2183i −0.120326 + 1.27084i
\(726\) 6.98382 + 4.03211i 0.259194 + 0.149646i
\(727\) 5.31536 2.70831i 0.197136 0.100446i −0.352636 0.935761i \(-0.614715\pi\)
0.549772 + 0.835315i \(0.314715\pi\)
\(728\) 13.9003 + 1.94184i 0.515178 + 0.0719695i
\(729\) 11.3195 15.5799i 0.419239 0.577033i
\(730\) 1.01190 2.67730i 0.0374522 0.0990914i
\(731\) 1.78818 4.01632i 0.0661383 0.148549i
\(732\) −6.92710 1.85611i −0.256033 0.0686038i
\(733\) 23.4127 + 18.9592i 0.864768 + 0.700275i 0.955306 0.295618i \(-0.0955255\pi\)
−0.0905384 + 0.995893i \(0.528859\pi\)
\(734\) −0.249589 0.768156i −0.00921250 0.0283532i
\(735\) −16.4788 + 6.12522i −0.607828 + 0.225932i
\(736\) −2.07219 + 6.37755i −0.0763820 + 0.235080i
\(737\) −9.45749 + 6.14177i −0.348371 + 0.226235i
\(738\) 0.00462993 + 0.0883442i 0.000170430 + 0.00325200i
\(739\) −9.39272 44.1893i −0.345517 1.62553i −0.716989 0.697084i \(-0.754480\pi\)
0.371472 0.928444i \(-0.378853\pi\)
\(740\) −17.6933 + 16.0972i −0.650420 + 0.591746i
\(741\) −11.3145 + 3.67629i −0.415648 + 0.135052i
\(742\) 10.0520 20.6530i 0.369021 0.758194i
\(743\) 23.4363 + 23.4363i 0.859793 + 0.859793i 0.991313 0.131520i \(-0.0419858\pi\)
−0.131520 + 0.991313i \(0.541986\pi\)
\(744\) −28.8891 + 3.03637i −1.05913 + 0.111319i
\(745\) −0.0854978 0.0224369i −0.00313240 0.000822026i
\(746\) −1.78782 + 17.0099i −0.0654566 + 0.622778i
\(747\) 10.1531 + 3.89741i 0.371482 + 0.142599i
\(748\) −0.782267 1.53529i −0.0286025 0.0561356i
\(749\) 17.8010 + 19.0576i 0.650434 + 0.696351i
\(750\) −9.66250 1.37745i −0.352825 0.0502972i
\(751\) 19.3994 33.6008i 0.707894 1.22611i −0.257742 0.966214i \(-0.582979\pi\)
0.965637 0.259895i \(-0.0836881\pi\)
\(752\) −0.115887 0.0752582i −0.00422598 0.00274438i
\(753\) −12.0054 + 9.72182i −0.437503 + 0.354283i
\(754\) 9.81013 4.36775i 0.357264 0.159064i
\(755\) 15.5651 + 15.4053i 0.566470 + 0.560655i
\(756\) 12.8829 14.8448i 0.468546 0.539901i
\(757\) 2.63808 2.63808i 0.0958825 0.0958825i −0.657538 0.753421i \(-0.728402\pi\)
0.753421 + 0.657538i \(0.228402\pi\)
\(758\) −14.8376 + 18.3229i −0.538924 + 0.665516i
\(759\) 1.14283 1.26924i 0.0414821 0.0460706i
\(760\) −6.62387 30.3910i −0.240273 1.10240i
\(761\) 29.5054 26.5668i 1.06957 0.963044i 0.0701640 0.997535i \(-0.477648\pi\)
0.999405 + 0.0344912i \(0.0109811\pi\)
\(762\) −7.32833 + 14.3827i −0.265477 + 0.521029i
\(763\) −27.8100 6.90941i −1.00679 0.250138i
\(764\) −20.5490 6.67679i −0.743438 0.241558i
\(765\) 3.29452 1.48723i 0.119113 0.0537708i
\(766\) −12.3518 11.1216i −0.446287 0.401839i