Properties

Label 175.2.t.a.9.15
Level $175$
Weight $2$
Character 175.9
Analytic conductor $1.397$
Analytic rank $0$
Dimension $144$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(4,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([3, 20]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.t (of order \(30\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(18\) over \(\Q(\zeta_{30})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 9.15
Character \(\chi\) \(=\) 175.9
Dual form 175.2.t.a.39.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.792476 + 1.77993i) q^{2} +(-1.79059 - 1.61225i) q^{3} +(-1.20187 + 1.33481i) q^{4} +(2.07142 - 0.842152i) q^{5} +(1.45070 - 4.46479i) q^{6} +(2.52107 + 0.802620i) q^{7} +(0.377701 + 0.122722i) q^{8} +(0.293262 + 2.79020i) q^{9} +O(q^{10})\) \(q+(0.792476 + 1.77993i) q^{2} +(-1.79059 - 1.61225i) q^{3} +(-1.20187 + 1.33481i) q^{4} +(2.07142 - 0.842152i) q^{5} +(1.45070 - 4.46479i) q^{6} +(2.52107 + 0.802620i) q^{7} +(0.377701 + 0.122722i) q^{8} +(0.293262 + 2.79020i) q^{9} +(3.14052 + 3.01960i) q^{10} +(-0.259436 + 2.46837i) q^{11} +(4.30412 - 0.452381i) q^{12} +(-2.29720 - 3.16183i) q^{13} +(0.569281 + 5.12339i) q^{14} +(-5.06682 - 1.83170i) q^{15} +(0.456383 + 4.34220i) q^{16} +(-0.643690 - 3.02832i) q^{17} +(-4.73395 + 2.73315i) q^{18} +(3.42697 + 3.80604i) q^{19} +(-1.36546 + 3.77712i) q^{20} +(-3.22017 - 5.50177i) q^{21} +(-4.59912 + 1.49435i) q^{22} +(-1.85446 - 4.16518i) q^{23} +(-0.478447 - 0.828694i) q^{24} +(3.58156 - 3.48890i) q^{25} +(3.80736 - 6.59454i) q^{26} +(-0.275367 + 0.379010i) q^{27} +(-4.10135 + 2.40052i) q^{28} +(-0.797815 - 2.45542i) q^{29} +(-0.755029 - 10.4702i) q^{30} +(-6.17093 + 1.31167i) q^{31} +(-6.67927 + 3.85628i) q^{32} +(4.44418 - 4.00156i) q^{33} +(4.88009 - 3.54559i) q^{34} +(5.89813 - 0.460563i) q^{35} +(-4.07686 - 2.96201i) q^{36} +(-8.11444 + 0.852862i) q^{37} +(-4.05869 + 9.11597i) q^{38} +(-0.984323 + 9.36521i) q^{39} +(0.885727 - 0.0638719i) q^{40} +(-4.21399 + 3.06164i) q^{41} +(7.24085 - 10.0917i) q^{42} +5.80714i q^{43} +(-2.98301 - 3.31296i) q^{44} +(2.95724 + 5.53270i) q^{45} +(5.94411 - 6.60161i) q^{46} +(-0.453202 + 2.13215i) q^{47} +(6.18352 - 8.51089i) q^{48} +(5.71160 + 4.04692i) q^{49} +(9.04830 + 3.61005i) q^{50} +(-3.72984 + 6.46027i) q^{51} +(6.98140 + 0.733775i) q^{52} +(-5.71138 - 5.14255i) q^{53} +(-0.892832 - 0.189777i) q^{54} +(1.54134 + 5.33152i) q^{55} +(0.853711 + 0.612542i) q^{56} -12.3402i q^{57} +(3.73823 - 3.36592i) q^{58} +(-10.0978 - 4.49584i) q^{59} +(8.53466 - 4.56179i) q^{60} +(7.90679 - 3.52033i) q^{61} +(-7.22500 - 9.94436i) q^{62} +(-1.50013 + 7.26967i) q^{63} +(-5.09255 - 3.69995i) q^{64} +(-7.42122 - 4.61488i) q^{65} +(10.6444 + 4.73919i) q^{66} +(-1.78260 - 8.38650i) q^{67} +(4.81588 + 2.78045i) q^{68} +(-3.39475 + 10.4480i) q^{69} +(5.49389 + 10.1333i) q^{70} +(4.36571 + 13.4363i) q^{71} +(-0.231655 + 1.08985i) q^{72} +(12.2347 + 1.28592i) q^{73} +(-7.94853 - 13.7673i) q^{74} +(-12.0381 + 0.472808i) q^{75} -9.19914 q^{76} +(-2.63522 + 6.01471i) q^{77} +(-17.4495 + 5.66968i) q^{78} +(6.11718 + 1.30025i) q^{79} +(4.60215 + 8.61017i) q^{80} +(9.33690 - 1.98462i) q^{81} +(-8.78899 - 5.07433i) q^{82} +(-4.78601 - 1.55507i) q^{83} +(11.2141 + 2.31409i) q^{84} +(-3.88366 - 5.73084i) q^{85} +(-10.3363 + 4.60202i) q^{86} +(-2.53020 + 5.68293i) q^{87} +(-0.400913 + 0.900466i) q^{88} +(-12.6922 + 5.65094i) q^{89} +(-7.50428 + 9.64821i) q^{90} +(-3.25367 - 9.81498i) q^{91} +(7.78856 + 2.53066i) q^{92} +(13.1644 + 7.60044i) q^{93} +(-4.15423 + 0.883008i) q^{94} +(10.3040 + 4.99787i) q^{95} +(18.1771 + 3.86367i) q^{96} +(4.30851 - 1.39992i) q^{97} +(-2.67694 + 13.3733i) q^{98} -6.96332 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 5 q^{2} - 5 q^{3} - 19 q^{4} - 3 q^{5} - 12 q^{6} - 50 q^{8} - 17 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 144 q - 5 q^{2} - 5 q^{3} - 19 q^{4} - 3 q^{5} - 12 q^{6} - 50 q^{8} - 17 q^{9} - q^{10} - 5 q^{12} - 20 q^{13} - 18 q^{14} + 12 q^{15} + 5 q^{16} + 5 q^{17} - 11 q^{19} - 24 q^{20} - 9 q^{21} - 60 q^{22} + 25 q^{23} + 50 q^{24} - 11 q^{25} - 60 q^{26} + 40 q^{27} - 24 q^{29} + 53 q^{30} + 15 q^{31} + 20 q^{33} - 20 q^{34} - 14 q^{35} + 16 q^{36} - 5 q^{37} - 20 q^{38} + 13 q^{39} + 7 q^{40} - 62 q^{41} + 40 q^{42} - 15 q^{44} - 41 q^{45} - 27 q^{46} - 5 q^{47} - 38 q^{49} + 54 q^{50} - 8 q^{51} - 130 q^{52} + 25 q^{53} - 29 q^{54} - 20 q^{55} + 32 q^{56} - 65 q^{58} - 39 q^{59} + 79 q^{60} + 7 q^{61} - 20 q^{62} - 45 q^{63} + 34 q^{64} - 13 q^{65} + 11 q^{66} + 25 q^{67} + 74 q^{69} + 85 q^{70} - 46 q^{71} + 60 q^{72} + 35 q^{73} + 6 q^{74} - 107 q^{75} + 180 q^{76} - 5 q^{77} + 10 q^{78} + 9 q^{79} + 88 q^{80} - 59 q^{81} + 90 q^{83} - 51 q^{84} - 6 q^{85} + 11 q^{86} - 5 q^{87} + 140 q^{88} - 42 q^{89} + 4 q^{90} + 22 q^{91} + 10 q^{92} + 5 q^{94} + 13 q^{95} + 53 q^{96} + 120 q^{97} - 180 q^{98} - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
<
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.792476 + 1.77993i 0.560365 + 1.25860i 0.942411 + 0.334457i \(0.108553\pi\)
−0.382046 + 0.924143i \(0.624780\pi\)
\(3\) −1.79059 1.61225i −1.03380 0.930835i −0.0361464 0.999347i \(-0.511508\pi\)
−0.997650 + 0.0685118i \(0.978175\pi\)
\(4\) −1.20187 + 1.33481i −0.600936 + 0.667407i
\(5\) 2.07142 0.842152i 0.926367 0.376622i
\(6\) 1.45070 4.46479i 0.592246 1.82274i
\(7\) 2.52107 + 0.802620i 0.952875 + 0.303362i
\(8\) 0.377701 + 0.122722i 0.133537 + 0.0433889i
\(9\) 0.293262 + 2.79020i 0.0977539 + 0.930066i
\(10\) 3.14052 + 3.01960i 0.993121 + 0.954880i
\(11\) −0.259436 + 2.46837i −0.0782230 + 0.744242i 0.883168 + 0.469056i \(0.155406\pi\)
−0.961391 + 0.275185i \(0.911261\pi\)
\(12\) 4.30412 0.452381i 1.24249 0.130591i
\(13\) −2.29720 3.16183i −0.637130 0.876934i 0.361329 0.932439i \(-0.382323\pi\)
−0.998458 + 0.0555046i \(0.982323\pi\)
\(14\) 0.569281 + 5.12339i 0.152147 + 1.36928i
\(15\) −5.06682 1.83170i −1.30825 0.472944i
\(16\) 0.456383 + 4.34220i 0.114096 + 1.08555i
\(17\) −0.643690 3.02832i −0.156118 0.734476i −0.984651 0.174536i \(-0.944158\pi\)
0.828533 0.559940i \(-0.189176\pi\)
\(18\) −4.73395 + 2.73315i −1.11580 + 0.644210i
\(19\) 3.42697 + 3.80604i 0.786202 + 0.873166i 0.994482 0.104904i \(-0.0334534\pi\)
−0.208281 + 0.978069i \(0.566787\pi\)
\(20\) −1.36546 + 3.77712i −0.305327 + 0.844590i
\(21\) −3.22017 5.50177i −0.702700 1.20058i
\(22\) −4.59912 + 1.49435i −0.980537 + 0.318596i
\(23\) −1.85446 4.16518i −0.386681 0.868500i −0.997077 0.0764033i \(-0.975656\pi\)
0.610396 0.792096i \(-0.291010\pi\)
\(24\) −0.478447 0.828694i −0.0976625 0.169156i
\(25\) 3.58156 3.48890i 0.716312 0.697780i
\(26\) 3.80736 6.59454i 0.746684 1.29330i
\(27\) −0.275367 + 0.379010i −0.0529943 + 0.0729405i
\(28\) −4.10135 + 2.40052i −0.775083 + 0.453655i
\(29\) −0.797815 2.45542i −0.148151 0.455960i 0.849252 0.527987i \(-0.177053\pi\)
−0.997403 + 0.0720270i \(0.977053\pi\)
\(30\) −0.755029 10.4702i −0.137849 1.91158i
\(31\) −6.17093 + 1.31167i −1.10833 + 0.235583i −0.725492 0.688231i \(-0.758388\pi\)
−0.382841 + 0.923814i \(0.625054\pi\)
\(32\) −6.67927 + 3.85628i −1.18074 + 0.681700i
\(33\) 4.44418 4.00156i 0.773633 0.696582i
\(34\) 4.88009 3.54559i 0.836929 0.608064i
\(35\) 5.89813 0.460563i 0.996965 0.0778494i
\(36\) −4.07686 2.96201i −0.679476 0.493669i
\(37\) −8.11444 + 0.852862i −1.33401 + 0.140210i −0.744537 0.667581i \(-0.767330\pi\)
−0.589469 + 0.807791i \(0.700663\pi\)
\(38\) −4.05869 + 9.11597i −0.658407 + 1.47881i
\(39\) −0.984323 + 9.36521i −0.157618 + 1.49963i
\(40\) 0.885727 0.0638719i 0.140046 0.0100990i
\(41\) −4.21399 + 3.06164i −0.658114 + 0.478148i −0.866026 0.500000i \(-0.833333\pi\)
0.207911 + 0.978148i \(0.433333\pi\)
\(42\) 7.24085 10.0917i 1.11729 1.55718i
\(43\) 5.80714i 0.885580i 0.896625 + 0.442790i \(0.146011\pi\)
−0.896625 + 0.442790i \(0.853989\pi\)
\(44\) −2.98301 3.31296i −0.449705 0.499448i
\(45\) 2.95724 + 5.53270i 0.440839 + 0.824766i
\(46\) 5.94411 6.60161i 0.876412 0.973354i
\(47\) −0.453202 + 2.13215i −0.0661063 + 0.311006i −0.998761 0.0497646i \(-0.984153\pi\)
0.932655 + 0.360770i \(0.117486\pi\)
\(48\) 6.18352 8.51089i 0.892515 1.22844i
\(49\) 5.71160 + 4.04692i 0.815943 + 0.578132i
\(50\) 9.04830 + 3.61005i 1.27962 + 0.510539i
\(51\) −3.72984 + 6.46027i −0.522282 + 0.904618i
\(52\) 6.98140 + 0.733775i 0.968146 + 0.101756i
\(53\) −5.71138 5.14255i −0.784518 0.706384i 0.176064 0.984379i \(-0.443663\pi\)
−0.960582 + 0.277995i \(0.910330\pi\)
\(54\) −0.892832 0.189777i −0.121499 0.0258254i
\(55\) 1.54134 + 5.33152i 0.207835 + 0.718901i
\(56\) 0.853711 + 0.612542i 0.114082 + 0.0818543i
\(57\) 12.3402i 1.63450i
\(58\) 3.73823 3.36592i 0.490854 0.441967i
\(59\) −10.0978 4.49584i −1.31462 0.585308i −0.374843 0.927088i \(-0.622304\pi\)
−0.939780 + 0.341780i \(0.888970\pi\)
\(60\) 8.53466 4.56179i 1.10182 0.588925i
\(61\) 7.90679 3.52033i 1.01236 0.450732i 0.167588 0.985857i \(-0.446402\pi\)
0.844773 + 0.535125i \(0.179736\pi\)
\(62\) −7.22500 9.94436i −0.917576 1.26294i
\(63\) −1.50013 + 7.26967i −0.188999 + 0.915892i
\(64\) −5.09255 3.69995i −0.636568 0.462494i
\(65\) −7.42122 4.61488i −0.920489 0.572406i
\(66\) 10.6444 + 4.73919i 1.31024 + 0.583354i
\(67\) −1.78260 8.38650i −0.217780 1.02457i −0.942158 0.335170i \(-0.891206\pi\)
0.724378 0.689403i \(-0.242127\pi\)
\(68\) 4.81588 + 2.78045i 0.584011 + 0.337179i
\(69\) −3.39475 + 10.4480i −0.408680 + 1.25779i
\(70\) 5.49389 + 10.1333i 0.656646 + 1.21116i
\(71\) 4.36571 + 13.4363i 0.518114 + 1.59459i 0.777543 + 0.628830i \(0.216466\pi\)
−0.259428 + 0.965762i \(0.583534\pi\)
\(72\) −0.231655 + 1.08985i −0.0273008 + 0.128440i
\(73\) 12.2347 + 1.28592i 1.43197 + 0.150506i 0.788532 0.614993i \(-0.210841\pi\)
0.643437 + 0.765499i \(0.277508\pi\)
\(74\) −7.94853 13.7673i −0.923998 1.60041i
\(75\) −12.0381 + 0.472808i −1.39004 + 0.0545952i
\(76\) −9.19914 −1.05521
\(77\) −2.63522 + 6.01471i −0.300311 + 0.685440i
\(78\) −17.4495 + 5.66968i −1.97576 + 0.641965i
\(79\) 6.11718 + 1.30025i 0.688237 + 0.146289i 0.538739 0.842473i \(-0.318901\pi\)
0.149498 + 0.988762i \(0.452234\pi\)
\(80\) 4.60215 + 8.61017i 0.514536 + 0.962646i
\(81\) 9.33690 1.98462i 1.03743 0.220513i
\(82\) −8.78899 5.07433i −0.970582 0.560366i
\(83\) −4.78601 1.55507i −0.525332 0.170691i 0.0343315 0.999410i \(-0.489070\pi\)
−0.559664 + 0.828720i \(0.689070\pi\)
\(84\) 11.2141 + 2.31409i 1.22356 + 0.252487i
\(85\) −3.88366 5.73084i −0.421242 0.621597i
\(86\) −10.3363 + 4.60202i −1.11459 + 0.496248i
\(87\) −2.53020 + 5.68293i −0.271266 + 0.609274i
\(88\) −0.400913 + 0.900466i −0.0427375 + 0.0959900i
\(89\) −12.6922 + 5.65094i −1.34537 + 0.598998i −0.947886 0.318610i \(-0.896784\pi\)
−0.397486 + 0.917608i \(0.630117\pi\)
\(90\) −7.50428 + 9.64821i −0.791020 + 1.01701i
\(91\) −3.25367 9.81498i −0.341077 1.02889i
\(92\) 7.78856 + 2.53066i 0.812014 + 0.263839i
\(93\) 13.1644 + 7.60044i 1.36508 + 0.788129i
\(94\) −4.15423 + 0.883008i −0.428476 + 0.0910753i
\(95\) 10.3040 + 4.99787i 1.05716 + 0.512771i
\(96\) 18.1771 + 3.86367i 1.85519 + 0.394334i
\(97\) 4.30851 1.39992i 0.437463 0.142140i −0.0820021 0.996632i \(-0.526131\pi\)
0.519465 + 0.854492i \(0.326131\pi\)
\(98\) −2.67694 + 13.3733i −0.270411 + 1.35091i
\(99\) −6.96332 −0.699840
\(100\) 0.352460 + 8.97393i 0.0352460 + 0.897393i
\(101\) −5.70073 9.87396i −0.567244 0.982495i −0.996837 0.0794728i \(-0.974676\pi\)
0.429593 0.903023i \(-0.358657\pi\)
\(102\) −14.4546 1.51924i −1.43122 0.150427i
\(103\) 0.317764 1.49496i 0.0313103 0.147303i −0.959716 0.280973i \(-0.909343\pi\)
0.991026 + 0.133670i \(0.0426762\pi\)
\(104\) −0.479628 1.47614i −0.0470314 0.144748i
\(105\) −11.3037 8.68459i −1.10312 0.847529i
\(106\) 4.62725 14.2412i 0.449438 1.38323i
\(107\) 7.85780 + 4.53670i 0.759642 + 0.438580i 0.829167 0.559000i \(-0.188815\pi\)
−0.0695249 + 0.997580i \(0.522148\pi\)
\(108\) −0.174952 0.823085i −0.0168348 0.0792014i
\(109\) 3.47290 + 1.54623i 0.332643 + 0.148102i 0.566260 0.824226i \(-0.308390\pi\)
−0.233617 + 0.972329i \(0.575056\pi\)
\(110\) −8.26825 + 6.96858i −0.788347 + 0.664428i
\(111\) 15.9046 + 11.5554i 1.50960 + 1.09679i
\(112\) −2.33456 + 11.3133i −0.220595 + 1.06901i
\(113\) 7.52234 + 10.3536i 0.707643 + 0.973986i 0.999845 + 0.0176298i \(0.00561202\pi\)
−0.292202 + 0.956357i \(0.594388\pi\)
\(114\) 21.9647 9.77931i 2.05718 0.915917i
\(115\) −7.34907 7.06610i −0.685305 0.658917i
\(116\) 4.23640 + 1.88617i 0.393340 + 0.175126i
\(117\) 8.14845 7.33690i 0.753324 0.678296i
\(118\) 21.5362i 1.98257i
\(119\) 0.807804 8.15125i 0.0740512 0.747224i
\(120\) −1.68895 1.31365i −0.154179 0.119919i
\(121\) 4.73408 + 1.00626i 0.430371 + 0.0914781i
\(122\) 12.5319 + 11.2838i 1.13458 + 1.02158i
\(123\) 12.4817 + 1.31188i 1.12543 + 0.118288i
\(124\) 5.66584 9.81351i 0.508807 0.881280i
\(125\) 4.48072 10.2432i 0.400768 0.916179i
\(126\) −14.1283 + 3.09090i −1.25865 + 0.275359i
\(127\) 5.72589 7.88102i 0.508091 0.699327i −0.475505 0.879713i \(-0.657735\pi\)
0.983596 + 0.180386i \(0.0577346\pi\)
\(128\) −0.657126 + 3.09154i −0.0580823 + 0.273256i
\(129\) 9.36258 10.3982i 0.824329 0.915510i
\(130\) 2.33303 16.8664i 0.204620 1.47928i
\(131\) −11.9460 13.2674i −1.04373 1.15918i −0.986989 0.160786i \(-0.948597\pi\)
−0.0567371 0.998389i \(-0.518070\pi\)
\(132\) 10.7415i 0.934929i
\(133\) 5.58484 + 12.3459i 0.484267 + 1.07052i
\(134\) 13.5147 9.81901i 1.16749 0.848233i
\(135\) −0.251216 + 1.01699i −0.0216212 + 0.0875285i
\(136\) 0.128521 1.22279i 0.0110206 0.104854i
\(137\) 1.31728 2.95866i 0.112543 0.252775i −0.848489 0.529213i \(-0.822487\pi\)
0.961032 + 0.276438i \(0.0891539\pi\)
\(138\) −21.2869 + 2.23735i −1.81206 + 0.190456i
\(139\) 6.18949 + 4.49693i 0.524986 + 0.381424i 0.818479 0.574537i \(-0.194818\pi\)
−0.293493 + 0.955961i \(0.594818\pi\)
\(140\) −6.47403 + 8.42644i −0.547155 + 0.712164i
\(141\) 4.24906 3.08712i 0.357836 0.259983i
\(142\) −20.4559 + 18.4186i −1.71662 + 1.54565i
\(143\) 8.40055 4.85006i 0.702489 0.405582i
\(144\) −11.9817 + 2.54680i −0.998479 + 0.212233i
\(145\) −3.72045 4.41433i −0.308966 0.366590i
\(146\) 7.40689 + 22.7961i 0.612999 + 1.88662i
\(147\) −3.70246 16.4549i −0.305374 1.35718i
\(148\) 8.61411 11.8563i 0.708075 0.974582i
\(149\) 1.84866 3.20197i 0.151448 0.262315i −0.780312 0.625390i \(-0.784940\pi\)
0.931760 + 0.363075i \(0.118273\pi\)
\(150\) −10.3815 21.0523i −0.847643 1.71891i
\(151\) 1.10361 + 1.91151i 0.0898105 + 0.155556i 0.907431 0.420201i \(-0.138041\pi\)
−0.817620 + 0.575758i \(0.804707\pi\)
\(152\) 0.827284 + 1.85811i 0.0671016 + 0.150713i
\(153\) 8.26085 2.68411i 0.667850 0.216998i
\(154\) −12.7941 + 0.0760043i −1.03098 + 0.00612460i
\(155\) −11.6780 + 7.91389i −0.937997 + 0.635659i
\(156\) −11.3178 12.5697i −0.906148 1.00638i
\(157\) −20.8287 + 12.0255i −1.66231 + 0.959738i −0.690709 + 0.723133i \(0.742701\pi\)
−0.971606 + 0.236605i \(0.923965\pi\)
\(158\) 2.53337 + 11.9186i 0.201544 + 0.948191i
\(159\) 1.93564 + 18.4164i 0.153506 + 1.46051i
\(160\) −10.5880 + 13.6129i −0.837055 + 1.07620i
\(161\) −1.33216 11.9891i −0.104989 0.944876i
\(162\) 10.9318 + 15.0463i 0.858880 + 1.18215i
\(163\) −0.964031 + 0.101324i −0.0755087 + 0.00793629i −0.142207 0.989837i \(-0.545420\pi\)
0.0666988 + 0.997773i \(0.478753\pi\)
\(164\) 0.977952 9.30459i 0.0763652 0.726567i
\(165\) 5.83584 12.0316i 0.454320 0.936658i
\(166\) −1.02488 9.75111i −0.0795463 0.756833i
\(167\) 1.74340 + 0.566466i 0.134908 + 0.0438344i 0.375693 0.926744i \(-0.377405\pi\)
−0.240785 + 0.970579i \(0.577405\pi\)
\(168\) −0.541072 2.47321i −0.0417446 0.190812i
\(169\) −0.702803 + 2.16301i −0.0540618 + 0.166385i
\(170\) 7.12279 11.4542i 0.546293 0.878497i
\(171\) −9.61460 + 10.6781i −0.735247 + 0.816575i
\(172\) −7.75145 6.97944i −0.591043 0.532177i
\(173\) −3.18744 7.15910i −0.242336 0.544297i 0.750899 0.660417i \(-0.229621\pi\)
−0.993235 + 0.116121i \(0.962954\pi\)
\(174\) −12.1203 −0.918841
\(175\) 11.8296 5.92114i 0.894236 0.447596i
\(176\) −10.8365 −0.816836
\(177\) 10.8326 + 24.3304i 0.814228 + 1.82879i
\(178\) −20.1165 18.1130i −1.50780 1.35763i
\(179\) 7.15162 7.94267i 0.534537 0.593663i −0.414021 0.910267i \(-0.635876\pi\)
0.948558 + 0.316604i \(0.102543\pi\)
\(180\) −10.9393 2.70223i −0.815371 0.201412i
\(181\) −1.89456 + 5.83087i −0.140822 + 0.433405i −0.996450 0.0841859i \(-0.973171\pi\)
0.855628 + 0.517591i \(0.173171\pi\)
\(182\) 14.8915 13.5694i 1.10383 1.00583i
\(183\) −19.8335 6.44429i −1.46613 0.476375i
\(184\) −0.189269 1.80077i −0.0139531 0.132755i
\(185\) −16.0902 + 8.60023i −1.18297 + 0.632301i
\(186\) −3.09582 + 29.4548i −0.226997 + 2.15973i
\(187\) 7.64202 0.803208i 0.558840 0.0587364i
\(188\) −2.30133 3.16751i −0.167842 0.231014i
\(189\) −0.998420 + 0.734496i −0.0726244 + 0.0534267i
\(190\) −0.730218 + 22.3010i −0.0529755 + 1.61789i
\(191\) −2.24060 21.3179i −0.162124 1.54251i −0.708949 0.705260i \(-0.750830\pi\)
0.546825 0.837247i \(-0.315836\pi\)
\(192\) 3.15340 + 14.8356i 0.227577 + 1.07066i
\(193\) 1.64900 0.952048i 0.118697 0.0685299i −0.439476 0.898254i \(-0.644836\pi\)
0.558173 + 0.829724i \(0.311502\pi\)
\(194\) 5.90615 + 6.55944i 0.424037 + 0.470940i
\(195\) 5.84799 + 20.2282i 0.418783 + 1.44857i
\(196\) −12.2665 + 2.76004i −0.876179 + 0.197146i
\(197\) 3.23369 1.05069i 0.230391 0.0748586i −0.191546 0.981484i \(-0.561350\pi\)
0.421937 + 0.906625i \(0.361350\pi\)
\(198\) −5.51827 12.3942i −0.392166 0.880820i
\(199\) 4.13160 + 7.15614i 0.292881 + 0.507286i 0.974490 0.224432i \(-0.0720525\pi\)
−0.681608 + 0.731717i \(0.738719\pi\)
\(200\) 1.78092 0.878223i 0.125930 0.0620997i
\(201\) −10.3292 + 17.8908i −0.728569 + 1.26192i
\(202\) 13.0573 17.9718i 0.918706 1.26449i
\(203\) −0.0405779 6.83064i −0.00284801 0.479417i
\(204\) −4.14047 12.7431i −0.289891 0.892192i
\(205\) −6.15057 + 9.89076i −0.429574 + 0.690801i
\(206\) 2.91275 0.619125i 0.202941 0.0431365i
\(207\) 11.0778 6.39579i 0.769962 0.444538i
\(208\) 12.6809 11.4179i 0.879261 0.791690i
\(209\) −10.2838 + 7.47162i −0.711345 + 0.516823i
\(210\) 6.50009 27.0021i 0.448549 1.86332i
\(211\) −18.1583 13.1928i −1.25007 0.908228i −0.251842 0.967768i \(-0.581036\pi\)
−0.998226 + 0.0595406i \(0.981036\pi\)
\(212\) 13.7287 1.44294i 0.942891 0.0991018i
\(213\) 13.8455 31.0975i 0.948677 2.13076i
\(214\) −1.84790 + 17.5816i −0.126320 + 1.20185i
\(215\) 4.89050 + 12.0290i 0.333529 + 0.820373i
\(216\) −0.150519 + 0.109359i −0.0102415 + 0.00744091i
\(217\) −16.6101 1.64609i −1.12757 0.111744i
\(218\) 7.40687i 0.501656i
\(219\) −19.8342 22.0281i −1.34027 1.48852i
\(220\) −8.96908 4.35039i −0.604695 0.293304i
\(221\) −8.09635 + 8.99191i −0.544620 + 0.604861i
\(222\) −7.96376 + 37.4665i −0.534493 + 2.51459i
\(223\) 5.23518 7.20560i 0.350573 0.482523i −0.596919 0.802302i \(-0.703609\pi\)
0.947492 + 0.319779i \(0.103609\pi\)
\(224\) −19.9340 + 4.36104i −1.33190 + 0.291384i
\(225\) 10.7851 + 8.97010i 0.719004 + 0.598006i
\(226\) −12.4674 + 21.5942i −0.829322 + 1.43643i
\(227\) 12.5009 + 1.31390i 0.829717 + 0.0872067i 0.509858 0.860259i \(-0.329698\pi\)
0.319859 + 0.947465i \(0.396365\pi\)
\(228\) 16.4719 + 14.8313i 1.09088 + 0.982230i
\(229\) 16.1762 + 3.43837i 1.06896 + 0.227214i 0.708607 0.705604i \(-0.249324\pi\)
0.360350 + 0.932817i \(0.382657\pi\)
\(230\) 6.75320 18.6806i 0.445293 1.23176i
\(231\) 14.4158 6.52123i 0.948492 0.429065i
\(232\) 1.02532i 0.0673158i
\(233\) 4.33261 3.90110i 0.283839 0.255570i −0.514896 0.857253i \(-0.672170\pi\)
0.798735 + 0.601683i \(0.205503\pi\)
\(234\) 19.5166 + 8.68936i 1.27584 + 0.568041i
\(235\) 0.856822 + 4.79824i 0.0558929 + 0.313003i
\(236\) 18.1374 8.07529i 1.18064 0.525656i
\(237\) −8.85703 12.1907i −0.575326 0.791868i
\(238\) 15.1488 5.02184i 0.981953 0.325517i
\(239\) −3.29768 2.39590i −0.213309 0.154978i 0.476001 0.879445i \(-0.342086\pi\)
−0.689310 + 0.724467i \(0.742086\pi\)
\(240\) 5.64121 22.8371i 0.364138 1.47413i
\(241\) 20.7888 + 9.25578i 1.33913 + 0.596217i 0.946268 0.323382i \(-0.104820\pi\)
0.392857 + 0.919599i \(0.371487\pi\)
\(242\) 1.96057 + 9.22377i 0.126030 + 0.592926i
\(243\) −18.7011 10.7971i −1.19968 0.692634i
\(244\) −4.80397 + 14.7851i −0.307542 + 0.946518i
\(245\) 15.2393 + 3.57284i 0.973600 + 0.228260i
\(246\) 7.55637 + 23.2561i 0.481776 + 1.48276i
\(247\) 4.16159 19.5788i 0.264796 1.24577i
\(248\) −2.49174 0.261892i −0.158225 0.0166302i
\(249\) 6.06260 + 10.5007i 0.384202 + 0.665457i
\(250\) 21.7830 0.142112i 1.37768 0.00898793i
\(251\) 2.64599 0.167014 0.0835068 0.996507i \(-0.473388\pi\)
0.0835068 + 0.996507i \(0.473388\pi\)
\(252\) −7.90068 10.7396i −0.497696 0.676532i
\(253\) 10.7623 3.49689i 0.676621 0.219848i
\(254\) 18.5653 + 3.94617i 1.16489 + 0.247605i
\(255\) −2.28553 + 16.5230i −0.143125 + 1.03471i
\(256\) −18.3378 + 3.89783i −1.14611 + 0.243614i
\(257\) −1.72089 0.993558i −0.107346 0.0619765i 0.445366 0.895349i \(-0.353074\pi\)
−0.552712 + 0.833372i \(0.686407\pi\)
\(258\) 25.9277 + 8.42441i 1.61419 + 0.524481i
\(259\) −21.1416 4.36268i −1.31368 0.271084i
\(260\) 15.0794 4.35945i 0.935182 0.270362i
\(261\) 6.61714 2.94614i 0.409591 0.182362i
\(262\) 14.1481 31.7771i 0.874071 1.96320i
\(263\) −11.9709 + 26.8870i −0.738156 + 1.65793i 0.0148314 + 0.999890i \(0.495279\pi\)
−0.752987 + 0.658035i \(0.771388\pi\)
\(264\) 2.16965 0.965991i 0.133533 0.0594526i
\(265\) −16.1615 5.84253i −0.992792 0.358904i
\(266\) −17.5489 + 19.7244i −1.07599 + 1.20938i
\(267\) 31.8373 + 10.3446i 1.94841 + 0.633077i
\(268\) 13.3369 + 7.70005i 0.814679 + 0.470355i
\(269\) 23.3934 4.97242i 1.42632 0.303174i 0.570862 0.821046i \(-0.306609\pi\)
0.855458 + 0.517872i \(0.173276\pi\)
\(270\) −2.00925 + 0.358792i −0.122279 + 0.0218354i
\(271\) −11.8053 2.50929i −0.717118 0.152428i −0.165120 0.986273i \(-0.552801\pi\)
−0.551998 + 0.833845i \(0.686135\pi\)
\(272\) 12.8558 4.17710i 0.779497 0.253274i
\(273\) −9.99826 + 22.8203i −0.605122 + 1.38115i
\(274\) 6.31012 0.381208
\(275\) 7.68272 + 9.74576i 0.463285 + 0.587692i
\(276\) −9.86605 17.0885i −0.593866 1.02861i
\(277\) −18.5617 1.95092i −1.11527 0.117219i −0.471082 0.882090i \(-0.656136\pi\)
−0.644184 + 0.764871i \(0.722803\pi\)
\(278\) −3.09919 + 14.5806i −0.185877 + 0.874484i
\(279\) −5.46952 16.8335i −0.327452 1.00779i
\(280\) 2.28425 + 0.549877i 0.136510 + 0.0328614i
\(281\) 2.07291 6.37978i 0.123660 0.380585i −0.869995 0.493061i \(-0.835878\pi\)
0.993655 + 0.112475i \(0.0358780\pi\)
\(282\) 8.86214 + 5.11656i 0.527733 + 0.304687i
\(283\) 1.85380 + 8.72143i 0.110197 + 0.518435i 0.998273 + 0.0587397i \(0.0187082\pi\)
−0.888077 + 0.459696i \(0.847958\pi\)
\(284\) −23.1820 10.3213i −1.37560 0.612455i
\(285\) −10.3923 25.5617i −0.615588 1.51415i
\(286\) 15.2900 + 11.1088i 0.904116 + 0.656879i
\(287\) −13.0811 + 4.33639i −0.772153 + 0.255969i
\(288\) −12.7186 17.5056i −0.749448 1.03153i
\(289\) 6.77388 3.01592i 0.398463 0.177407i
\(290\) 4.90883 10.1204i 0.288256 0.594290i
\(291\) −9.97178 4.43972i −0.584556 0.260261i
\(292\) −16.4211 + 14.7856i −0.960971 + 0.865262i
\(293\) 21.1628i 1.23634i 0.786043 + 0.618171i \(0.212126\pi\)
−0.786043 + 0.618171i \(0.787874\pi\)
\(294\) 26.3545 19.6303i 1.53703 1.14486i
\(295\) −24.7030 0.808866i −1.43826 0.0470940i
\(296\) −3.16949 0.673697i −0.184223 0.0391578i
\(297\) −0.864096 0.778036i −0.0501400 0.0451462i
\(298\) 7.16430 + 0.752998i 0.415017 + 0.0436200i
\(299\) −8.90952 + 15.4317i −0.515251 + 0.892441i
\(300\) 13.8371 16.6369i 0.798887 0.960530i
\(301\) −4.66093 + 14.6402i −0.268651 + 0.843848i
\(302\) −2.52777 + 3.47917i −0.145457 + 0.200204i
\(303\) −5.71165 + 26.8712i −0.328126 + 1.54371i
\(304\) −14.9626 + 16.6176i −0.858162 + 0.953085i
\(305\) 13.4136 13.9508i 0.768062 0.798821i
\(306\) 11.3241 + 12.5766i 0.647353 + 0.718958i
\(307\) 20.4087i 1.16479i 0.812907 + 0.582393i \(0.197884\pi\)
−0.812907 + 0.582393i \(0.802116\pi\)
\(308\) −4.86132 10.7464i −0.277000 0.612335i
\(309\) −2.97925 + 2.16455i −0.169483 + 0.123137i
\(310\) −23.3407 14.5144i −1.32566 0.824362i
\(311\) 0.300451 2.85860i 0.0170370 0.162096i −0.982695 0.185229i \(-0.940697\pi\)
0.999732 + 0.0231326i \(0.00736399\pi\)
\(312\) −1.52110 + 3.41645i −0.0861153 + 0.193418i
\(313\) 4.06737 0.427498i 0.229901 0.0241636i 0.0111228 0.999938i \(-0.496459\pi\)
0.218779 + 0.975775i \(0.429793\pi\)
\(314\) −37.9108 27.5438i −2.13943 1.55439i
\(315\) 3.01476 + 16.3219i 0.169862 + 0.919633i
\(316\) −9.08766 + 6.60257i −0.511221 + 0.371424i
\(317\) −2.54564 + 2.29211i −0.142978 + 0.128738i −0.737516 0.675329i \(-0.764001\pi\)
0.594539 + 0.804067i \(0.297335\pi\)
\(318\) −31.2459 + 18.0398i −1.75218 + 1.01162i
\(319\) 6.26787 1.33228i 0.350934 0.0745932i
\(320\) −13.6647 3.37545i −0.763881 0.188694i
\(321\) −6.75577 20.7921i −0.377071 1.16050i
\(322\) 20.2841 11.8723i 1.13039 0.661615i
\(323\) 9.32001 12.8279i 0.518579 0.713763i
\(324\) −8.57267 + 14.8483i −0.476259 + 0.824905i
\(325\) −19.2589 3.30956i −1.06829 0.183581i
\(326\) −0.944320 1.63561i −0.0523011 0.0905881i
\(327\) −3.72561 8.36785i −0.206027 0.462743i
\(328\) −1.96736 + 0.639233i −0.108629 + 0.0352957i
\(329\) −2.85386 + 5.01155i −0.157338 + 0.276296i
\(330\) 26.0401 + 0.852650i 1.43346 + 0.0469368i
\(331\) 18.0195 + 20.0127i 0.990440 + 1.10000i 0.994987 + 0.100006i \(0.0318861\pi\)
−0.00454674 + 0.999990i \(0.501447\pi\)
\(332\) 7.82789 4.51944i 0.429612 0.248036i
\(333\) −4.75931 22.3908i −0.260808 1.22701i
\(334\) 0.373335 + 3.55204i 0.0204280 + 0.194359i
\(335\) −10.7552 15.8707i −0.587621 0.867111i
\(336\) 22.4201 16.4935i 1.22312 0.899797i
\(337\) 15.3283 + 21.0976i 0.834986 + 1.14926i 0.986974 + 0.160877i \(0.0514323\pi\)
−0.151988 + 0.988382i \(0.548568\pi\)
\(338\) −4.40695 + 0.463190i −0.239707 + 0.0251942i
\(339\) 3.22323 30.6670i 0.175062 1.66560i
\(340\) 12.3173 + 1.70377i 0.667998 + 0.0924001i
\(341\) −1.63673 15.5724i −0.0886339 0.843295i
\(342\) −26.6256 8.65119i −1.43975 0.467803i
\(343\) 11.1512 + 14.7868i 0.602109 + 0.798414i
\(344\) −0.712666 + 2.19336i −0.0384244 + 0.118258i
\(345\) 1.76683 + 24.5010i 0.0951229 + 1.31909i
\(346\) 10.2167 11.3468i 0.549255 0.610010i
\(347\) −18.0885 16.2870i −0.971042 0.874330i 0.0210580 0.999778i \(-0.493297\pi\)
−0.992100 + 0.125448i \(0.959963\pi\)
\(348\) −4.54468 10.2075i −0.243620 0.547180i
\(349\) 28.5904 1.53041 0.765206 0.643786i \(-0.222637\pi\)
0.765206 + 0.643786i \(0.222637\pi\)
\(350\) 19.9139 + 16.3636i 1.06444 + 0.874669i
\(351\) 1.83094 0.0977282
\(352\) −7.78588 17.4874i −0.414989 0.932080i
\(353\) −1.29650 1.16737i −0.0690056 0.0621329i 0.633906 0.773410i \(-0.281451\pi\)
−0.702912 + 0.711277i \(0.748117\pi\)
\(354\) −34.7219 + 38.5626i −1.84545 + 2.04958i
\(355\) 20.3586 + 24.1556i 1.08052 + 1.28204i
\(356\) 7.71147 23.7335i 0.408707 1.25787i
\(357\) −14.5883 + 13.2932i −0.772096 + 0.703548i
\(358\) 19.8049 + 6.43500i 1.04672 + 0.340100i
\(359\) −1.13764 10.8239i −0.0600424 0.571266i −0.982643 0.185508i \(-0.940607\pi\)
0.922600 0.385757i \(-0.126060\pi\)
\(360\) 0.437965 + 2.45262i 0.0230828 + 0.129265i
\(361\) −0.755751 + 7.19049i −0.0397763 + 0.378447i
\(362\) −11.8799 + 1.24863i −0.624395 + 0.0656266i
\(363\) −6.85444 9.43433i −0.359765 0.495174i
\(364\) 17.0117 + 7.45331i 0.891654 + 0.390660i
\(365\) 26.4262 7.63983i 1.38321 0.399887i
\(366\) −4.24717 40.4091i −0.222003 2.11222i
\(367\) 2.59091 + 12.1893i 0.135244 + 0.636275i 0.992588 + 0.121530i \(0.0387800\pi\)
−0.857343 + 0.514745i \(0.827887\pi\)
\(368\) 17.2397 9.95333i 0.898680 0.518853i
\(369\) −9.77838 10.8600i −0.509042 0.565349i
\(370\) −28.0589 21.8239i −1.45871 1.13457i
\(371\) −10.2713 17.5488i −0.533259 0.911089i
\(372\) −25.9670 + 8.43721i −1.34633 + 0.437449i
\(373\) −5.29572 11.8944i −0.274202 0.615868i 0.722981 0.690868i \(-0.242771\pi\)
−0.997184 + 0.0749993i \(0.976105\pi\)
\(374\) 7.48577 + 12.9657i 0.387080 + 0.670442i
\(375\) −24.5378 + 11.1173i −1.26712 + 0.574094i
\(376\) −0.432837 + 0.749696i −0.0223219 + 0.0386626i
\(377\) −5.93088 + 8.16316i −0.305456 + 0.420424i
\(378\) −2.09858 1.19505i −0.107939 0.0614666i
\(379\) 2.26229 + 6.96260i 0.116206 + 0.357645i 0.992197 0.124683i \(-0.0397914\pi\)
−0.875991 + 0.482328i \(0.839791\pi\)
\(380\) −19.0553 + 7.74708i −0.977515 + 0.397417i
\(381\) −22.9589 + 4.88007i −1.17622 + 0.250013i
\(382\) 36.1687 20.8820i 1.85055 1.06842i
\(383\) 5.12036 4.61039i 0.261638 0.235580i −0.527862 0.849330i \(-0.677006\pi\)
0.789501 + 0.613750i \(0.210340\pi\)
\(384\) 6.16098 4.47622i 0.314401 0.228426i
\(385\) −0.393346 + 14.6782i −0.0200468 + 0.748073i
\(386\) 3.00137 + 2.18062i 0.152766 + 0.110991i
\(387\) −16.2031 + 1.70301i −0.823648 + 0.0865689i
\(388\) −3.30964 + 7.43358i −0.168022 + 0.377383i
\(389\) −1.04796 + 9.97067i −0.0531337 + 0.505533i 0.935297 + 0.353863i \(0.115132\pi\)
−0.988431 + 0.151671i \(0.951535\pi\)
\(390\) −31.3705 + 26.4394i −1.58850 + 1.33881i
\(391\) −11.4198 + 8.29697i −0.577524 + 0.419596i
\(392\) 1.66063 + 2.22947i 0.0838743 + 0.112605i
\(393\) 43.0164i 2.16989i
\(394\) 4.43278 + 4.92310i 0.223320 + 0.248022i
\(395\) 13.7663 2.45824i 0.692656 0.123688i
\(396\) 8.36903 9.29474i 0.420559 0.467078i
\(397\) −2.30820 + 10.8592i −0.115845 + 0.545010i 0.881499 + 0.472185i \(0.156535\pi\)
−0.997345 + 0.0728247i \(0.976799\pi\)
\(398\) −9.46324 + 13.0250i −0.474349 + 0.652886i
\(399\) 9.90449 31.1105i 0.495845 1.55747i
\(400\) 16.7841 + 13.9596i 0.839203 + 0.697978i
\(401\) 3.57303 6.18867i 0.178429 0.309048i −0.762914 0.646500i \(-0.776232\pi\)
0.941343 + 0.337453i \(0.109565\pi\)
\(402\) −40.0300 4.20732i −1.99652 0.209842i
\(403\) 18.3232 + 16.4983i 0.912743 + 0.821837i
\(404\) 20.0314 + 4.25782i 0.996602 + 0.211834i
\(405\) 17.6693 11.9741i 0.877994 0.594997i
\(406\) 12.1259 5.48534i 0.601798 0.272233i
\(407\) 20.2507i 1.00379i
\(408\) −2.20158 + 1.98231i −0.108994 + 0.0981391i
\(409\) −3.58156 1.59461i −0.177097 0.0788486i 0.316273 0.948668i \(-0.397568\pi\)
−0.493370 + 0.869820i \(0.664235\pi\)
\(410\) −22.4790 3.10939i −1.11016 0.153562i
\(411\) −7.12881 + 3.17395i −0.351638 + 0.156560i
\(412\) 1.61359 + 2.22091i 0.0794957 + 0.109416i
\(413\) −21.8489 19.4390i −1.07511 0.956532i
\(414\) 20.1630 + 14.6493i 0.990956 + 0.719972i
\(415\) −11.2234 + 0.809349i −0.550937 + 0.0397294i
\(416\) 27.5365 + 12.2601i 1.35009 + 0.601099i
\(417\) −3.83264 18.0312i −0.187685 0.882990i
\(418\) −21.4486 12.3834i −1.04909 0.605690i
\(419\) −7.25128 + 22.3171i −0.354248 + 1.09026i 0.602196 + 0.798348i \(0.294293\pi\)
−0.956444 + 0.291915i \(0.905707\pi\)
\(420\) 25.1779 4.65052i 1.22855 0.226922i
\(421\) −10.2298 31.4841i −0.498571 1.53444i −0.811317 0.584606i \(-0.801249\pi\)
0.312746 0.949837i \(-0.398751\pi\)
\(422\) 9.09220 42.7754i 0.442601 2.08228i
\(423\) −6.08202 0.639246i −0.295718 0.0310812i
\(424\) −1.52609 2.64326i −0.0741133 0.128368i
\(425\) −12.8709 8.60034i −0.624332 0.417178i
\(426\) 66.3235 3.21339
\(427\) 22.7591 2.52886i 1.10139 0.122380i
\(428\) −15.4997 + 5.03617i −0.749208 + 0.243432i
\(429\) −22.8614 4.85935i −1.10376 0.234612i
\(430\) −17.5352 + 18.2375i −0.845623 + 0.879488i
\(431\) 20.2153 4.29689i 0.973736 0.206974i 0.306542 0.951857i \(-0.400828\pi\)
0.667195 + 0.744883i \(0.267495\pi\)
\(432\) −1.77141 1.02272i −0.0852269 0.0492058i
\(433\) −25.2950 8.21886i −1.21560 0.394973i −0.370124 0.928982i \(-0.620685\pi\)
−0.845479 + 0.534009i \(0.820685\pi\)
\(434\) −10.2332 30.8694i −0.491210 1.48178i
\(435\) −0.455220 + 13.9026i −0.0218261 + 0.666576i
\(436\) −6.23791 + 2.77730i −0.298742 + 0.133008i
\(437\) 9.49766 21.3321i 0.454335 1.02045i
\(438\) 23.4903 52.7601i 1.12241 2.52098i
\(439\) 10.7615 4.79134i 0.513620 0.228678i −0.133525 0.991045i \(-0.542630\pi\)
0.647145 + 0.762367i \(0.275963\pi\)
\(440\) −0.0721301 + 2.20287i −0.00343867 + 0.105018i
\(441\) −9.61673 + 17.1233i −0.457939 + 0.815396i
\(442\) −22.4211 7.28507i −1.06646 0.346515i
\(443\) 0.871479 + 0.503149i 0.0414052 + 0.0239053i 0.520560 0.853825i \(-0.325723\pi\)
−0.479154 + 0.877731i \(0.659057\pi\)
\(444\) −34.5397 + 7.34163i −1.63918 + 0.348419i
\(445\) −21.5320 + 22.3942i −1.02071 + 1.06159i
\(446\) 16.9742 + 3.60798i 0.803753 + 0.170843i
\(447\) −8.47257 + 2.75290i −0.400739 + 0.130208i
\(448\) −9.86902 13.4152i −0.466267 0.633810i
\(449\) 29.0408 1.37052 0.685261 0.728298i \(-0.259688\pi\)
0.685261 + 0.728298i \(0.259688\pi\)
\(450\) −7.41924 + 26.3052i −0.349747 + 1.24004i
\(451\) −6.46400 11.1960i −0.304378 0.527198i
\(452\) −22.8611 2.40279i −1.07529 0.113018i
\(453\) 1.10572 5.20203i 0.0519515 0.244412i
\(454\) 7.56804 + 23.2920i 0.355186 + 1.09315i
\(455\) −15.0054 17.5909i −0.703465 0.824672i
\(456\) 1.51442 4.66090i 0.0709191 0.218267i
\(457\) −11.1386 6.43087i −0.521041 0.300823i 0.216319 0.976323i \(-0.430595\pi\)
−0.737361 + 0.675499i \(0.763928\pi\)
\(458\) 6.69923 + 31.5174i 0.313035 + 1.47271i
\(459\) 1.32501 + 0.589934i 0.0618464 + 0.0275358i
\(460\) 18.2646 1.31710i 0.851590 0.0614102i
\(461\) −9.56290 6.94785i −0.445389 0.323594i 0.342384 0.939560i \(-0.388766\pi\)
−0.787772 + 0.615966i \(0.788766\pi\)
\(462\) 23.0315 + 20.4913i 1.07152 + 0.953339i
\(463\) −20.4731 28.1788i −0.951465 1.30958i −0.950873 0.309580i \(-0.899812\pi\)
−0.000592125 1.00000i \(-0.500188\pi\)
\(464\) 10.2978 4.58488i 0.478064 0.212848i
\(465\) 33.6696 + 4.65732i 1.56139 + 0.215978i
\(466\) 10.3772 + 4.62022i 0.480714 + 0.214028i
\(467\) 17.5658 15.8163i 0.812847 0.731891i −0.153773 0.988106i \(-0.549142\pi\)
0.966620 + 0.256215i \(0.0824757\pi\)
\(468\) 19.6947i 0.910387i
\(469\) 2.23710 22.5737i 0.103299 1.04236i
\(470\) −7.86152 + 5.32757i −0.362625 + 0.245743i
\(471\) 56.6838 + 12.0485i 2.61185 + 0.555166i
\(472\) −3.26221 2.93731i −0.150155 0.135201i
\(473\) −14.3342 1.50658i −0.659086 0.0692727i
\(474\) 14.6795 25.4257i 0.674253 1.16784i
\(475\) 25.5528 + 1.67518i 1.17244 + 0.0768626i
\(476\) 9.90953 + 10.8750i 0.454203 + 0.498456i
\(477\) 12.6738 17.4440i 0.580294 0.798706i
\(478\) 1.65121 7.76833i 0.0755246 0.355315i
\(479\) −6.77351 + 7.52274i −0.309490 + 0.343723i −0.877744 0.479130i \(-0.840952\pi\)
0.568254 + 0.822853i \(0.307619\pi\)
\(480\) 40.9062 7.30463i 1.86711 0.333409i
\(481\) 21.3371 + 23.6973i 0.972889 + 1.08050i
\(482\) 44.3376i 2.01952i
\(483\) −16.9442 + 23.6154i −0.770986 + 1.07454i
\(484\) −7.03293 + 5.10972i −0.319678 + 0.232260i
\(485\) 7.74578 6.52824i 0.351718 0.296432i
\(486\) 4.39789 41.8431i 0.199492 1.89804i
\(487\) 4.86270 10.9218i 0.220350 0.494914i −0.769217 0.638988i \(-0.779354\pi\)
0.989567 + 0.144074i \(0.0460202\pi\)
\(488\) 3.41842 0.359291i 0.154745 0.0162643i
\(489\) 1.88954 + 1.37283i 0.0854480 + 0.0620816i
\(490\) 5.71734 + 29.9562i 0.258283 + 1.35328i
\(491\) 0.443578 0.322278i 0.0200184 0.0145442i −0.577731 0.816227i \(-0.696062\pi\)
0.597749 + 0.801683i \(0.296062\pi\)
\(492\) −16.7525 + 15.0840i −0.755260 + 0.680039i
\(493\) −6.92226 + 3.99657i −0.311763 + 0.179996i
\(494\) 38.1468 8.10835i 1.71631 0.364812i
\(495\) −14.4240 + 5.86418i −0.648309 + 0.263575i
\(496\) −8.51185 26.1968i −0.382193 1.17627i
\(497\) 0.222045 + 37.3778i 0.00996010 + 1.67662i
\(498\) −13.8861 + 19.1126i −0.622252 + 0.856456i
\(499\) −20.0243 + 34.6832i −0.896412 + 1.55263i −0.0643647 + 0.997926i \(0.520502\pi\)
−0.832047 + 0.554705i \(0.812831\pi\)
\(500\) 8.28751 + 18.2920i 0.370629 + 0.818041i
\(501\) −2.20843 3.82511i −0.0986654 0.170893i
\(502\) 2.09689 + 4.70968i 0.0935886 + 0.210203i
\(503\) −11.8433 + 3.84812i −0.528066 + 0.171579i −0.560903 0.827882i \(-0.689546\pi\)
0.0328365 + 0.999461i \(0.489546\pi\)
\(504\) −1.45875 + 2.56166i −0.0649780 + 0.114105i
\(505\) −20.1240 15.6522i −0.895505 0.696515i
\(506\) 14.7531 + 16.3850i 0.655855 + 0.728401i
\(507\) 4.74574 2.73996i 0.210766 0.121686i
\(508\) 3.63790 + 17.1150i 0.161406 + 0.759354i
\(509\) −1.34880 12.8330i −0.0597846 0.568812i −0.982881 0.184243i \(-0.941017\pi\)
0.923096 0.384569i \(-0.125650\pi\)
\(510\) −31.2210 + 9.02601i −1.38249 + 0.399679i
\(511\) 29.8126 + 13.0618i 1.31883 + 0.577818i
\(512\) −17.7546 24.4372i −0.784652 1.07998i
\(513\) −2.38620 + 0.250800i −0.105353 + 0.0110731i
\(514\) 0.404698 3.85044i 0.0178504 0.169836i
\(515\) −0.600764 3.36430i −0.0264728 0.148249i
\(516\) 2.62704 + 24.9946i 0.115649 + 1.10033i
\(517\) −5.14536 1.67183i −0.226292 0.0735269i
\(518\) −8.98894 41.0879i −0.394951 1.80530i
\(519\) −5.83490 + 17.9580i −0.256124 + 0.788267i
\(520\) −2.23665 2.65379i −0.0980835 0.116377i
\(521\) −26.2492 + 29.1527i −1.15000 + 1.27720i −0.194930 + 0.980817i \(0.562448\pi\)
−0.955068 + 0.296386i \(0.904219\pi\)
\(522\) 10.4879 + 9.44331i 0.459041 + 0.413322i
\(523\) −3.13487 7.04103i −0.137078 0.307883i 0.831943 0.554862i \(-0.187229\pi\)
−0.969021 + 0.246979i \(0.920562\pi\)
\(524\) 32.0670 1.40085
\(525\) −30.7284 8.47003i −1.34110 0.369662i
\(526\) −57.3437 −2.50030
\(527\) 7.94433 + 17.8433i 0.346061 + 0.777265i
\(528\) 19.4038 + 17.4713i 0.844442 + 0.760339i
\(529\) 1.48030 1.64404i 0.0643610 0.0714801i
\(530\) −2.40829 33.3964i −0.104610 1.45065i
\(531\) 9.58297 29.4934i 0.415866 1.27990i
\(532\) −23.1917 7.38341i −1.00549 0.320112i
\(533\) 19.3608 + 6.29070i 0.838608 + 0.272480i
\(534\) 6.81768 + 64.8659i 0.295030 + 2.80702i
\(535\) 20.0974 + 2.77995i 0.868887 + 0.120188i
\(536\) 0.355920 3.38635i 0.0153734 0.146268i
\(537\) −25.6112 + 2.69185i −1.10520 + 0.116162i
\(538\) 27.3893 + 37.6981i 1.18083 + 1.62528i
\(539\) −11.4711 + 13.0484i −0.494095 + 0.562036i
\(540\) −1.05556 1.55762i −0.0454241 0.0670292i
\(541\) −1.99892 19.0185i −0.0859403 0.817668i −0.949573 0.313546i \(-0.898483\pi\)
0.863633 0.504122i \(-0.168184\pi\)
\(542\) −4.88903 23.0011i −0.210002 0.987981i
\(543\) 12.7932 7.38617i 0.549009 0.316971i
\(544\) 15.9774 + 17.7447i 0.685026 + 0.760799i
\(545\) 8.49599 + 0.278190i 0.363928 + 0.0119163i
\(546\) −48.5420 + 0.288367i −2.07740 + 0.0123410i
\(547\) −17.8957 + 5.81466i −0.765164 + 0.248617i −0.665494 0.746404i \(-0.731779\pi\)
−0.0996705 + 0.995020i \(0.531779\pi\)
\(548\) 2.36606 + 5.31425i 0.101073 + 0.227014i
\(549\) 12.1412 + 21.0291i 0.518173 + 0.897501i
\(550\) −11.2584 + 21.3980i −0.480060 + 0.912413i
\(551\) 6.61134 11.4512i 0.281653 0.487837i
\(552\) −2.56440 + 3.52959i −0.109148 + 0.150229i
\(553\) 14.3783 + 8.18779i 0.611426 + 0.348180i
\(554\) −11.2372 34.5846i −0.477424 1.46936i
\(555\) 42.6766 + 10.5420i 1.81152 + 0.447481i
\(556\) −13.4415 + 2.85709i −0.570048 + 0.121167i
\(557\) −2.99630 + 1.72991i −0.126957 + 0.0732988i −0.562134 0.827046i \(-0.690019\pi\)
0.435176 + 0.900345i \(0.356686\pi\)
\(558\) 25.6279 23.0755i 1.08492 0.976863i
\(559\) 18.3612 13.3402i 0.776596 0.564230i
\(560\) 4.69166 + 25.4006i 0.198259 + 1.07337i
\(561\) −14.9787 10.8826i −0.632400 0.459466i
\(562\) 12.9983 1.36618i 0.548300 0.0576286i
\(563\) 13.0064 29.2128i 0.548153 1.23117i −0.400919 0.916114i \(-0.631309\pi\)
0.949072 0.315059i \(-0.102024\pi\)
\(564\) −0.986092 + 9.38204i −0.0415220 + 0.395055i
\(565\) 24.3013 + 15.1117i 1.02236 + 0.635755i
\(566\) −14.0545 + 10.2112i −0.590753 + 0.429207i
\(567\) 25.1319 + 2.49062i 1.05544 + 0.104596i
\(568\) 5.61066i 0.235418i
\(569\) −0.584954 0.649657i −0.0245226 0.0272351i 0.730759 0.682636i \(-0.239166\pi\)
−0.755281 + 0.655401i \(0.772500\pi\)
\(570\) 37.2624 38.7547i 1.56075 1.62326i
\(571\) −4.90001 + 5.44201i −0.205059 + 0.227741i −0.836898 0.547358i \(-0.815634\pi\)
0.631839 + 0.775099i \(0.282300\pi\)
\(572\) −3.62246 + 17.0423i −0.151463 + 0.712575i
\(573\) −30.3578 + 41.7839i −1.26822 + 1.74555i
\(574\) −18.0849 19.8470i −0.754850 0.828396i
\(575\) −21.1737 8.44781i −0.883006 0.352298i
\(576\) 8.83015 15.2943i 0.367923 0.637261i
\(577\) 22.7546 + 2.39160i 0.947286 + 0.0995638i 0.565556 0.824710i \(-0.308662\pi\)
0.381730 + 0.924274i \(0.375328\pi\)
\(578\) 10.7363 + 9.66698i 0.446570 + 0.402093i
\(579\) −4.48761 0.953872i −0.186499 0.0396416i
\(580\) 10.3638 + 0.339349i 0.430334 + 0.0140907i
\(581\) −10.8177 7.76178i −0.448795 0.322013i
\(582\) 21.2675i 0.881564i
\(583\) 14.1755 12.7636i 0.587087 0.528616i
\(584\) 4.46326 + 1.98717i 0.184691 + 0.0822297i
\(585\) 10.7001 22.0600i 0.442394 0.912070i
\(586\) −37.6683 + 16.7710i −1.55606 + 0.692803i
\(587\) 15.5422 + 21.3920i 0.641496 + 0.882943i 0.998694 0.0510854i \(-0.0162681\pi\)
−0.357199 + 0.934028i \(0.616268\pi\)
\(588\) 26.4142 + 14.8346i 1.08930 + 0.611769i
\(589\) −26.1399 18.9918i −1.07708 0.782542i
\(590\) −18.1368 44.6106i −0.746680 1.83659i
\(591\) −7.48419 3.33218i −0.307858 0.137067i
\(592\) −7.40659 34.8452i −0.304409 1.43213i
\(593\) −7.97900 4.60668i −0.327658 0.189174i 0.327143 0.944975i \(-0.393914\pi\)
−0.654801 + 0.755801i \(0.727248\pi\)
\(594\) 0.700074 2.15461i 0.0287244 0.0884045i
\(595\) −5.19130 17.5650i −0.212822 0.720093i
\(596\) 2.05218 + 6.31597i 0.0840607 + 0.258712i
\(597\) 4.13952 19.4749i 0.169419 0.797054i
\(598\) −34.5280 3.62904i −1.41196 0.148402i
\(599\) −6.03999 10.4616i −0.246787 0.427448i 0.715845 0.698259i \(-0.246042\pi\)
−0.962633 + 0.270811i \(0.912708\pi\)
\(600\) −4.60482 1.29876i −0.187991 0.0530218i
\(601\) −18.7934 −0.766597 −0.383299 0.923624i \(-0.625212\pi\)
−0.383299 + 0.923624i \(0.625212\pi\)
\(602\) −29.7522 + 3.30589i −1.21261 + 0.134738i
\(603\) 22.8772 7.43326i 0.931632 0.302706i
\(604\) −3.87791 0.824275i −0.157790 0.0335393i
\(605\) 10.6537 1.90243i 0.433134 0.0773448i
\(606\) −52.3552 + 11.1284i −2.12679 + 0.452062i
\(607\) 3.61582 + 2.08760i 0.146762 + 0.0847329i 0.571583 0.820544i \(-0.306330\pi\)
−0.424821 + 0.905277i \(0.639663\pi\)
\(608\) −37.5668 12.2062i −1.52354 0.495027i
\(609\) −10.9401 + 12.2963i −0.443313 + 0.498270i
\(610\) 35.4614 + 12.8196i 1.43579 + 0.519052i
\(611\) 7.78259 3.46503i 0.314850 0.140180i
\(612\) −6.34569 + 14.2527i −0.256509 + 0.576129i
\(613\) −9.06313 + 20.3561i −0.366056 + 0.822176i 0.632798 + 0.774317i \(0.281907\pi\)
−0.998854 + 0.0478591i \(0.984760\pi\)
\(614\) −36.3261 + 16.1734i −1.46600 + 0.652706i
\(615\) 26.9595 7.79401i 1.08711 0.314285i
\(616\) −1.73346 + 1.94836i −0.0698432 + 0.0785016i
\(617\) 25.9217 + 8.42248i 1.04357 + 0.339076i 0.780142 0.625603i \(-0.215147\pi\)
0.263428 + 0.964679i \(0.415147\pi\)
\(618\) −6.21373 3.58750i −0.249953 0.144310i
\(619\) 18.5773 3.94873i 0.746685 0.158713i 0.181171 0.983452i \(-0.442011\pi\)
0.565514 + 0.824739i \(0.308678\pi\)
\(620\) 3.47185 25.0994i 0.139433 1.00802i
\(621\) 2.08930 + 0.444094i 0.0838407 + 0.0178209i
\(622\) 5.32621 1.73059i 0.213562 0.0693904i
\(623\) −36.5335 + 4.05939i −1.46369 + 0.162636i
\(624\) −41.1148 −1.64591
\(625\) 0.655127 24.9914i 0.0262051 0.999657i
\(626\) 3.98421 + 6.90086i 0.159241 + 0.275814i
\(627\) 30.4602 + 3.20149i 1.21646 + 0.127855i
\(628\) 8.98170 42.2556i 0.358409 1.68618i
\(629\) 7.80592 + 24.0242i 0.311242 + 0.957906i
\(630\) −26.6627 + 18.3007i −1.06227 + 0.729119i
\(631\) −10.1285 + 31.1724i −0.403210 + 1.24095i 0.519170 + 0.854671i \(0.326241\pi\)
−0.922380 + 0.386283i \(0.873759\pi\)
\(632\) 2.15089 + 1.24182i 0.0855580 + 0.0493969i
\(633\) 11.2439 + 52.8986i 0.446906 + 2.10253i
\(634\) −6.09715 2.71463i −0.242149 0.107812i
\(635\) 5.22371 21.1470i 0.207297 0.839192i
\(636\) −26.9088 19.5504i −1.06700 0.775224i
\(637\) −0.325029 27.3557i −0.0128781 1.08387i
\(638\) 7.33850 + 10.1006i 0.290534 + 0.399886i
\(639\) −36.2096 + 16.1215i −1.43243 + 0.637758i
\(640\) 1.24236 + 6.95727i 0.0491086 + 0.275010i
\(641\) 35.9058 + 15.9863i 1.41820 + 0.631421i 0.965538 0.260263i \(-0.0838093\pi\)
0.452658 + 0.891684i \(0.350476\pi\)
\(642\) 31.6548 28.5021i 1.24931 1.12489i
\(643\) 28.8706i 1.13854i −0.822149 0.569272i \(-0.807225\pi\)
0.822149 0.569272i \(-0.192775\pi\)
\(644\) 17.6044 + 12.6312i 0.693709 + 0.497740i
\(645\) 10.6370 29.4237i 0.418830 1.15856i
\(646\) 30.2186 + 6.42317i 1.18894 + 0.252716i
\(647\) −3.87554 3.48955i −0.152363 0.137188i 0.589424 0.807824i \(-0.299355\pi\)
−0.741787 + 0.670636i \(0.766021\pi\)
\(648\) 3.77011 + 0.396255i 0.148104 + 0.0155664i
\(649\) 13.7171 23.7588i 0.538444 0.932613i
\(650\) −9.37142 36.9022i −0.367577 1.44742i
\(651\) 27.0880 + 29.7272i 1.06166 + 1.16510i
\(652\) 1.02339 1.40858i 0.0400792 0.0551643i
\(653\) 4.81049 22.6316i 0.188249 0.885642i −0.778047 0.628207i \(-0.783789\pi\)
0.966296 0.257435i \(-0.0828774\pi\)
\(654\) 11.9417 13.2626i 0.466959 0.518611i
\(655\) −35.9183 17.4219i −1.40344 0.680732i
\(656\) −15.2174 16.9007i −0.594141 0.659861i
\(657\) 34.5145i 1.34654i
\(658\) −11.1818 1.10814i −0.435913 0.0431997i
\(659\) 2.56376 1.86268i 0.0998698 0.0725596i −0.536730 0.843754i \(-0.680340\pi\)
0.636599 + 0.771195i \(0.280340\pi\)
\(660\) 9.04600 + 22.2502i 0.352115 + 0.866088i
\(661\) −0.812074 + 7.72636i −0.0315860 + 0.300521i 0.967312 + 0.253589i \(0.0816110\pi\)
−0.998898 + 0.0469319i \(0.985056\pi\)
\(662\) −21.3411 + 47.9330i −0.829447 + 1.86297i
\(663\) 28.9945 3.04744i 1.12605 0.118353i
\(664\) −1.61684 1.17470i −0.0627454 0.0455872i
\(665\) 21.9656 + 20.8702i 0.851791 + 0.809310i
\(666\) 36.0824 26.2154i 1.39816 1.01583i
\(667\) −8.74776 + 7.87652i −0.338715 + 0.304980i
\(668\) −2.85147 + 1.64630i −0.110327 + 0.0636972i
\(669\) −20.9913 + 4.46184i −0.811571 + 0.172505i
\(670\) 19.7255 31.7207i 0.762064 1.22548i
\(671\) 6.63817 + 20.4302i 0.256264 + 0.788699i
\(672\) 42.7248 + 24.3299i 1.64814 + 0.938546i
\(673\) −1.93901 + 2.66881i −0.0747432 + 0.102875i −0.844752 0.535158i \(-0.820252\pi\)
0.770009 + 0.638034i \(0.220252\pi\)
\(674\) −25.4049 + 44.0027i −0.978562 + 1.69492i
\(675\) 0.336086 + 2.31817i 0.0129359 + 0.0892265i
\(676\) −2.04253 3.53777i −0.0785589 0.136068i
\(677\) 6.65071 + 14.9377i 0.255608 + 0.574104i 0.995079 0.0990838i \(-0.0315912\pi\)
−0.739471 + 0.673188i \(0.764925\pi\)
\(678\) 57.1394 18.5657i 2.19443 0.713012i
\(679\) 11.9857 0.0712016i 0.459967 0.00273247i
\(680\) −0.763558 2.64115i −0.0292811 0.101284i
\(681\) −20.2657 22.5073i −0.776583 0.862483i
\(682\) 26.4208 15.2541i 1.01170 0.584108i
\(683\) −8.14026 38.2969i −0.311478 1.46539i −0.803759 0.594955i \(-0.797170\pi\)
0.492281 0.870436i \(-0.336163\pi\)
\(684\) −2.69775 25.6674i −0.103151 0.981418i
\(685\) 0.236998 7.23797i 0.00905522 0.276549i
\(686\) −17.4825 + 31.5666i −0.667483 + 1.20522i
\(687\) −23.4215 32.2369i −0.893585 1.22991i
\(688\) −25.2157 + 2.65028i −0.961341 + 0.101041i
\(689\) −3.13966 + 29.8719i −0.119612 + 1.13803i
\(690\) −42.2100 + 22.5613i −1.60691 + 0.858895i
\(691\) −3.74529 35.6340i −0.142478 1.35558i −0.799025 0.601298i \(-0.794650\pi\)
0.656547 0.754285i \(-0.272016\pi\)
\(692\) 13.3870 + 4.34969i 0.508896 + 0.165350i
\(693\) −17.5550 5.58890i −0.666861 0.212305i
\(694\) 14.6550 45.1033i 0.556295 1.71210i
\(695\) 16.6081 + 4.10253i 0.629982 + 0.155618i
\(696\) −1.65308 + 1.83593i −0.0626599 + 0.0695909i
\(697\) 11.9841 + 10.7906i 0.453931 + 0.408722i
\(698\) 22.6572 + 50.8890i 0.857589 + 1.92618i
\(699\) −14.0475 −0.531325
\(700\) −6.31408 + 22.9068i −0.238650 + 0.865796i
\(701\) 4.06365 0.153482 0.0767409 0.997051i \(-0.475549\pi\)
0.0767409 + 0.997051i \(0.475549\pi\)
\(702\) 1.45097 + 3.25894i 0.0547635 + 0.123001i
\(703\) −31.0540 27.9611i −1.17122 1.05457i
\(704\) 10.4540 11.6104i 0.394002 0.437583i
\(705\) 6.20176 9.97309i 0.233572 0.375608i
\(706\) 1.05040 3.23279i 0.0395322 0.121668i
\(707\) −6.44692 29.4685i −0.242461 1.10828i
\(708\) −45.4960 14.7825i −1.70984 0.555562i
\(709\) −3.10511 29.5431i −0.116615 1.10952i −0.883727 0.468003i \(-0.844974\pi\)
0.767112 0.641513i \(-0.221693\pi\)
\(710\) −26.8615 + 55.3796i −1.00809 + 2.07836i
\(711\) −1.83401 + 17.4495i −0.0687808 + 0.654406i
\(712\) −5.48735 + 0.576744i −0.205647 + 0.0216144i
\(713\) 16.9071 + 23.2706i 0.633175 + 0.871491i
\(714\) −35.2218 15.4317i −1.31814 0.577517i
\(715\) 13.3166 17.1210i 0.498011 0.640291i
\(716\) 2.00667 + 19.0922i 0.0749927 + 0.713507i
\(717\) 2.04198 + 9.60677i 0.0762592 + 0.358771i
\(718\) 18.3643 10.6026i 0.685350 0.395687i
\(719\) 8.36849 + 9.29415i 0.312092 + 0.346613i 0.878700 0.477374i \(-0.158411\pi\)
−0.566608 + 0.823987i \(0.691745\pi\)
\(720\) −22.6744 + 15.3659i −0.845026 + 0.572655i
\(721\) 2.00099 3.51387i 0.0745209 0.130863i
\(722\) −13.3975 + 4.35310i −0.498603 + 0.162006i
\(723\) −22.3016 50.0901i −0.829404 1.86287i
\(724\) −5.50610 9.53685i −0.204633 0.354434i
\(725\) −11.4241 6.01074i −0.424282 0.223233i
\(726\) 11.3605 19.6769i 0.421626 0.730278i
\(727\) 21.7358 29.9167i 0.806135 1.10955i −0.185773 0.982593i \(-0.559479\pi\)
0.991908 0.126957i \(-0.0405211\pi\)
\(728\) −0.0243945 4.10642i −0.000904119 0.152194i
\(729\) 7.22919 + 22.2491i 0.267748 + 0.824043i
\(730\) 34.5405 + 40.9825i 1.27840 + 1.51683i
\(731\) 17.5859 3.73800i 0.650437 0.138255i
\(732\) 32.4392 18.7288i 1.19899 0.692236i
\(733\) −24.2089 + 21.7978i −0.894177 + 0.805120i −0.981580 0.191053i \(-0.938810\pi\)
0.0874030 + 0.996173i \(0.472143\pi\)
\(734\) −19.6428 + 14.2713i −0.725030 + 0.526765i
\(735\) −21.5269 30.9670i −0.794032 1.14224i
\(736\) 28.4485 + 20.6690i 1.04863 + 0.761871i
\(737\) 21.1635 2.22437i 0.779566 0.0819357i
\(738\) 11.5809 26.0111i 0.426299 0.957483i
\(739\) 2.60085 24.7454i 0.0956737 0.910274i −0.836428 0.548077i \(-0.815360\pi\)
0.932102 0.362197i \(-0.117973\pi\)
\(740\) 7.85862 31.8138i 0.288889 1.16950i
\(741\) −39.0176 + 28.3480i −1.43335 + 1.04139i
\(742\) 23.0959 32.1892i 0.847877 1.18170i
\(743\) 37.2111i 1.36514i −0.730819 0.682572i \(-0.760862\pi\)
0.730819 0.682572i \(-0.239138\pi\)
\(744\) 4.03944 + 4.48625i 0.148093 + 0.164474i
\(745\) 1.13280 8.18947i 0.0415026 0.300039i
\(746\) 16.9745 18.8520i 0.621479 0.690222i
\(747\) 2.93539 13.8099i 0.107400 0.505279i
\(748\) −8.11259 + 11.1660i −0.296626 + 0.408270i
\(749\) 16.1688 + 17.7442i 0.590796 + 0.648358i
\(750\) −39.2336 34.8653i −1.43261 1.27310i
\(751\) −2.82557 + 4.89402i −0.103106 + 0.178585i −0.912963 0.408042i \(-0.866212\pi\)
0.809857 + 0.586628i \(0.199545\pi\)
\(752\) −9.46504 0.994816i −0.345154 0.0362772i
\(753\) −4.73788 4.26601i −0.172658 0.155462i
\(754\) −19.2299 4.08745i −0.700313 0.148856i
\(755\) 3.89582 + 3.03013i 0.141783 + 0.110278i
\(756\) 0.219558 2.21548i 0.00798523 0.0805761i
\(757\) 38.6504i 1.40477i 0.711796 + 0.702386i \(0.247882\pi\)
−0.711796 + 0.702386i \(0.752118\pi\)
\(758\) −10.6001 + 9.54440i −0.385014 + 0.346668i
\(759\) −24.9087 11.0901i −0.904130 0.402545i
\(760\) 3.27846 + 3.15223i 0.118922 + 0.114343i
\(761\) −1.22835 + 0.546899i −0.0445278 + 0.0198251i −0.428880 0.903362i \(-0.641092\pi\)
0.384352 + 0.923187i \(0.374425\pi\)
\(762\) −26.8806 36.9979i −0.973780 1.34029i
\(763\) 7.51438 + 6.68558i 0.272039 + 0.242034i
\(764\) 31.1483 + 22.6306i 1.12691 + 0.818745i
\(765\) 14.8512 12.5168i 0.536948 0.452546i
\(766\) 12.2639 + 5.46026i 0.443114 + 0.197287i
\(767\) 8.98167 + 42.2554i 0.324309 +