Properties

Label 175.2.t.a.114.4
Level $175$
Weight $2$
Character 175.114
Analytic conductor $1.397$
Analytic rank $0$
Dimension $144$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(4,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([3, 20]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.t (of order \(30\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(18\) over \(\Q(\zeta_{30})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 114.4
Character \(\chi\) \(=\) 175.114
Dual form 175.2.t.a.109.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.93770 + 0.203661i) q^{2} +(-0.500958 - 2.35682i) q^{3} +(1.75692 - 0.373445i) q^{4} +(-0.306385 - 2.21498i) q^{5} +(1.45070 + 4.46479i) q^{6} +(-2.52107 - 0.802620i) q^{7} +(0.377701 - 0.122722i) q^{8} +(-2.56301 + 1.14113i) q^{9} +O(q^{10})\) \(q+(-1.93770 + 0.203661i) q^{2} +(-0.500958 - 2.35682i) q^{3} +(1.75692 - 0.373445i) q^{4} +(-0.306385 - 2.21498i) q^{5} +(1.45070 + 4.46479i) q^{6} +(-2.52107 - 0.802620i) q^{7} +(0.377701 - 0.122722i) q^{8} +(-2.56301 + 1.14113i) q^{9} +(1.04479 + 4.22957i) q^{10} +(2.26739 + 1.00951i) q^{11} +(-1.76029 - 3.95367i) q^{12} +(-2.29720 + 3.16183i) q^{13} +(5.04855 + 1.04180i) q^{14} +(-5.06682 + 1.83170i) q^{15} +(-3.98864 + 1.77586i) q^{16} +(-2.30076 - 2.07161i) q^{17} +(4.73395 - 2.73315i) q^{18} +(-5.00961 - 1.06483i) q^{19} +(-1.36546 - 3.77712i) q^{20} +(-0.628681 + 6.34379i) q^{21} +(-4.59912 - 1.49435i) q^{22} +(4.53438 - 0.476582i) q^{23} +(-0.478447 - 0.828694i) q^{24} +(-4.81226 + 1.35727i) q^{25} +(3.80736 - 6.59454i) q^{26} +(-0.275367 - 0.379010i) q^{27} +(-4.72905 - 0.468658i) q^{28} +(-0.797815 + 2.45542i) q^{29} +(9.44495 - 4.58121i) q^{30} +(4.22141 - 4.68835i) q^{31} +(6.67927 - 3.85628i) q^{32} +(1.24336 - 5.84955i) q^{33} +(4.88009 + 3.54559i) q^{34} +(-1.00537 + 5.83003i) q^{35} +(-4.07686 + 2.96201i) q^{36} +(3.31862 + 7.45374i) q^{37} +(9.92401 + 1.04306i) q^{38} +(8.60267 + 3.83016i) q^{39} +(-0.387549 - 0.798998i) q^{40} +(-4.21399 - 3.06164i) q^{41} +(-0.0737844 - 12.4204i) q^{42} -5.80714i q^{43} +(4.36062 + 0.926877i) q^{44} +(3.31284 + 5.32739i) q^{45} +(-8.68922 + 1.84695i) q^{46} +(-1.61989 + 1.45856i) q^{47} +(6.18352 + 8.51089i) q^{48} +(5.71160 + 4.04692i) q^{49} +(9.04830 - 3.61005i) q^{50} +(-3.72984 + 6.46027i) q^{51} +(-2.85523 + 6.41296i) q^{52} +(-1.59789 - 7.51748i) q^{53} +(0.610768 + 0.678327i) q^{54} +(1.54134 - 5.33152i) q^{55} +(-1.05071 + 0.00624181i) q^{56} +12.3402i q^{57} +(1.04586 - 4.92036i) q^{58} +(1.15540 - 10.9929i) q^{59} +(-8.21796 + 5.11033i) q^{60} +(-0.904700 - 8.60765i) q^{61} +(-7.22500 + 9.94436i) q^{62} +(7.37743 - 0.819737i) q^{63} +(-5.09255 + 3.69995i) q^{64} +(7.70721 + 4.11952i) q^{65} +(-1.21794 + 11.5879i) q^{66} +(-6.37162 - 5.73703i) q^{67} +(-4.81588 - 2.78045i) q^{68} +(-3.39475 - 10.4480i) q^{69} +(0.760757 - 11.5016i) q^{70} +(4.36571 - 13.4363i) q^{71} +(-0.828010 + 0.745543i) q^{72} +(-5.00373 + 11.2386i) q^{73} +(-7.94853 - 13.7673i) q^{74} +(5.60958 + 10.6617i) q^{75} -9.19914 q^{76} +(-4.90600 - 4.36489i) q^{77} +(-17.4495 - 5.66968i) q^{78} +(-4.18464 - 4.64751i) q^{79} +(5.15555 + 8.29066i) q^{80} +(-6.38718 + 7.09369i) q^{81} +(8.78899 + 5.07433i) q^{82} +(-4.78601 + 1.55507i) q^{83} +(1.26451 + 11.3803i) q^{84} +(-3.88366 + 5.73084i) q^{85} +(1.18269 + 11.2525i) q^{86} +(6.18666 + 0.650245i) q^{87} +(0.980283 + 0.103032i) q^{88} +(1.45225 + 13.8172i) q^{89} +(-7.50428 - 9.64821i) q^{90} +(8.32916 - 6.12742i) q^{91} +(7.78856 - 2.53066i) q^{92} +(-13.1644 - 7.60044i) q^{93} +(2.84182 - 3.15616i) q^{94} +(-0.823699 + 11.4224i) q^{95} +(-12.4346 - 13.8100i) q^{96} +(4.30851 + 1.39992i) q^{97} +(-11.8916 - 6.67851i) q^{98} -6.96332 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q - 5 q^{2} - 5 q^{3} - 19 q^{4} - 3 q^{5} - 12 q^{6} - 50 q^{8} - 17 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 144 q - 5 q^{2} - 5 q^{3} - 19 q^{4} - 3 q^{5} - 12 q^{6} - 50 q^{8} - 17 q^{9} - q^{10} - 5 q^{12} - 20 q^{13} - 18 q^{14} + 12 q^{15} + 5 q^{16} + 5 q^{17} - 11 q^{19} - 24 q^{20} - 9 q^{21} - 60 q^{22} + 25 q^{23} + 50 q^{24} - 11 q^{25} - 60 q^{26} + 40 q^{27} - 24 q^{29} + 53 q^{30} + 15 q^{31} + 20 q^{33} - 20 q^{34} - 14 q^{35} + 16 q^{36} - 5 q^{37} - 20 q^{38} + 13 q^{39} + 7 q^{40} - 62 q^{41} + 40 q^{42} - 15 q^{44} - 41 q^{45} - 27 q^{46} - 5 q^{47} - 38 q^{49} + 54 q^{50} - 8 q^{51} - 130 q^{52} + 25 q^{53} - 29 q^{54} - 20 q^{55} + 32 q^{56} - 65 q^{58} - 39 q^{59} + 79 q^{60} + 7 q^{61} - 20 q^{62} - 45 q^{63} + 34 q^{64} - 13 q^{65} + 11 q^{66} + 25 q^{67} + 74 q^{69} + 85 q^{70} - 46 q^{71} + 60 q^{72} + 35 q^{73} + 6 q^{74} - 107 q^{75} + 180 q^{76} - 5 q^{77} + 10 q^{78} + 9 q^{79} + 88 q^{80} - 59 q^{81} + 90 q^{83} - 51 q^{84} - 6 q^{85} + 11 q^{86} - 5 q^{87} + 140 q^{88} - 42 q^{89} + 4 q^{90} + 22 q^{91} + 10 q^{92} + 5 q^{94} + 13 q^{95} + 53 q^{96} + 120 q^{97} - 180 q^{98} - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.93770 + 0.203661i −1.37016 + 0.144010i −0.760854 0.648923i \(-0.775220\pi\)
−0.609309 + 0.792933i \(0.708553\pi\)
\(3\) −0.500958 2.35682i −0.289228 1.36071i −0.847386 0.530977i \(-0.821825\pi\)
0.558158 0.829735i \(-0.311508\pi\)
\(4\) 1.75692 0.373445i 0.878460 0.186722i
\(5\) −0.306385 2.21498i −0.137019 0.990568i
\(6\) 1.45070 + 4.46479i 0.592246 + 1.82274i
\(7\) −2.52107 0.802620i −0.952875 0.303362i
\(8\) 0.377701 0.122722i 0.133537 0.0433889i
\(9\) −2.56301 + 1.14113i −0.854338 + 0.380376i
\(10\) 1.04479 + 4.22957i 0.330390 + 1.33751i
\(11\) 2.26739 + 1.00951i 0.683644 + 0.304378i 0.719013 0.694997i \(-0.244594\pi\)
−0.0353694 + 0.999374i \(0.511261\pi\)
\(12\) −1.76029 3.95367i −0.508151 1.14132i
\(13\) −2.29720 + 3.16183i −0.637130 + 0.876934i −0.998458 0.0555046i \(-0.982323\pi\)
0.361329 + 0.932439i \(0.382323\pi\)
\(14\) 5.04855 + 1.04180i 1.34928 + 0.278432i
\(15\) −5.06682 + 1.83170i −1.30825 + 0.472944i
\(16\) −3.98864 + 1.77586i −0.997161 + 0.443965i
\(17\) −2.30076 2.07161i −0.558016 0.502440i 0.341173 0.940001i \(-0.389176\pi\)
−0.899189 + 0.437561i \(0.855842\pi\)
\(18\) 4.73395 2.73315i 1.11580 0.644210i
\(19\) −5.00961 1.06483i −1.14928 0.244288i −0.406392 0.913699i \(-0.633213\pi\)
−0.742892 + 0.669411i \(0.766547\pi\)
\(20\) −1.36546 3.77712i −0.305327 0.844590i
\(21\) −0.628681 + 6.34379i −0.137190 + 1.38433i
\(22\) −4.59912 1.49435i −0.980537 0.318596i
\(23\) 4.53438 0.476582i 0.945483 0.0993743i 0.380778 0.924667i \(-0.375656\pi\)
0.564706 + 0.825292i \(0.308990\pi\)
\(24\) −0.478447 0.828694i −0.0976625 0.169156i
\(25\) −4.81226 + 1.35727i −0.962451 + 0.271454i
\(26\) 3.80736 6.59454i 0.746684 1.29330i
\(27\) −0.275367 0.379010i −0.0529943 0.0729405i
\(28\) −4.72905 0.468658i −0.893707 0.0885680i
\(29\) −0.797815 + 2.45542i −0.148151 + 0.455960i −0.997403 0.0720270i \(-0.977053\pi\)
0.849252 + 0.527987i \(0.177053\pi\)
\(30\) 9.44495 4.58121i 1.72440 0.836411i
\(31\) 4.22141 4.68835i 0.758187 0.842053i −0.233280 0.972410i \(-0.574946\pi\)
0.991467 + 0.130357i \(0.0416124\pi\)
\(32\) 6.67927 3.85628i 1.18074 0.681700i
\(33\) 1.24336 5.84955i 0.216441 1.01828i
\(34\) 4.88009 + 3.54559i 0.836929 + 0.608064i
\(35\) −1.00537 + 5.83003i −0.169938 + 0.985455i
\(36\) −4.07686 + 2.96201i −0.679476 + 0.493669i
\(37\) 3.31862 + 7.45374i 0.545578 + 1.22539i 0.950411 + 0.310997i \(0.100663\pi\)
−0.404833 + 0.914391i \(0.632670\pi\)
\(38\) 9.92401 + 1.04306i 1.60989 + 0.169206i
\(39\) 8.60267 + 3.83016i 1.37753 + 0.613316i
\(40\) −0.387549 0.798998i −0.0612769 0.126333i
\(41\) −4.21399 3.06164i −0.658114 0.478148i 0.207911 0.978148i \(-0.433333\pi\)
−0.866026 + 0.500000i \(0.833333\pi\)
\(42\) −0.0737844 12.4204i −0.0113852 1.91651i
\(43\) 5.80714i 0.885580i −0.896625 0.442790i \(-0.853989\pi\)
0.896625 0.442790i \(-0.146011\pi\)
\(44\) 4.36062 + 0.926877i 0.657387 + 0.139732i
\(45\) 3.31284 + 5.32739i 0.493849 + 0.794161i
\(46\) −8.68922 + 1.84695i −1.28116 + 0.272318i
\(47\) −1.61989 + 1.45856i −0.236286 + 0.212753i −0.778764 0.627317i \(-0.784153\pi\)
0.542478 + 0.840070i \(0.317486\pi\)
\(48\) 6.18352 + 8.51089i 0.892515 + 1.22844i
\(49\) 5.71160 + 4.04692i 0.815943 + 0.578132i
\(50\) 9.04830 3.61005i 1.27962 0.510539i
\(51\) −3.72984 + 6.46027i −0.522282 + 0.904618i
\(52\) −2.85523 + 6.41296i −0.395950 + 0.889317i
\(53\) −1.59789 7.51748i −0.219487 1.03260i −0.940529 0.339713i \(-0.889670\pi\)
0.721042 0.692891i \(-0.243663\pi\)
\(54\) 0.610768 + 0.678327i 0.0831150 + 0.0923086i
\(55\) 1.54134 5.33152i 0.207835 0.718901i
\(56\) −1.05071 + 0.00624181i −0.140407 + 0.000834097i
\(57\) 12.3402i 1.63450i
\(58\) 1.04586 4.92036i 0.137328 0.646075i
\(59\) 1.15540 10.9929i 0.150420 1.43115i −0.615460 0.788168i \(-0.711030\pi\)
0.765880 0.642983i \(-0.222304\pi\)
\(60\) −8.21796 + 5.11033i −1.06093 + 0.659741i
\(61\) −0.904700 8.60765i −0.115835 1.10210i −0.885818 0.464032i \(-0.846402\pi\)
0.769983 0.638064i \(-0.220264\pi\)
\(62\) −7.22500 + 9.94436i −0.917576 + 1.26294i
\(63\) 7.37743 0.819737i 0.929469 0.103277i
\(64\) −5.09255 + 3.69995i −0.636568 + 0.462494i
\(65\) 7.70721 + 4.11952i 0.955962 + 0.510964i
\(66\) −1.21794 + 11.5879i −0.149918 + 1.42637i
\(67\) −6.37162 5.73703i −0.778417 0.700890i 0.180813 0.983518i \(-0.442127\pi\)
−0.959230 + 0.282628i \(0.908794\pi\)
\(68\) −4.81588 2.78045i −0.584011 0.337179i
\(69\) −3.39475 10.4480i −0.408680 1.25779i
\(70\) 0.760757 11.5016i 0.0909279 1.37471i
\(71\) 4.36571 13.4363i 0.518114 1.59459i −0.259428 0.965762i \(-0.583534\pi\)
0.777543 0.628830i \(-0.216466\pi\)
\(72\) −0.828010 + 0.745543i −0.0975819 + 0.0878631i
\(73\) −5.00373 + 11.2386i −0.585642 + 1.31537i 0.341224 + 0.939982i \(0.389159\pi\)
−0.926866 + 0.375392i \(0.877508\pi\)
\(74\) −7.94853 13.7673i −0.923998 1.60041i
\(75\) 5.60958 + 10.6617i 0.647739 + 1.23111i
\(76\) −9.19914 −1.05521
\(77\) −4.90600 4.36489i −0.559091 0.497426i
\(78\) −17.4495 5.66968i −1.97576 0.641965i
\(79\) −4.18464 4.64751i −0.470809 0.522886i 0.460233 0.887798i \(-0.347766\pi\)
−0.931042 + 0.364912i \(0.881099\pi\)
\(80\) 5.15555 + 8.29066i 0.576408 + 0.926924i
\(81\) −6.38718 + 7.09369i −0.709687 + 0.788187i
\(82\) 8.78899 + 5.07433i 0.970582 + 0.560366i
\(83\) −4.78601 + 1.55507i −0.525332 + 0.170691i −0.559664 0.828720i \(-0.689070\pi\)
0.0343315 + 0.999410i \(0.489070\pi\)
\(84\) 1.26451 + 11.3803i 0.137970 + 1.24169i
\(85\) −3.88366 + 5.73084i −0.421242 + 0.621597i
\(86\) 1.18269 + 11.2525i 0.127532 + 1.21339i
\(87\) 6.18666 + 0.650245i 0.663280 + 0.0697135i
\(88\) 0.980283 + 0.103032i 0.104499 + 0.0109832i
\(89\) 1.45225 + 13.8172i 0.153938 + 1.46463i 0.749867 + 0.661588i \(0.230117\pi\)
−0.595929 + 0.803037i \(0.703216\pi\)
\(90\) −7.50428 9.64821i −0.791020 1.01701i
\(91\) 8.32916 6.12742i 0.873134 0.642328i
\(92\) 7.78856 2.53066i 0.812014 0.263839i
\(93\) −13.1644 7.60044i −1.36508 0.788129i
\(94\) 2.84182 3.15616i 0.293111 0.325533i
\(95\) −0.823699 + 11.4224i −0.0845097 + 1.17192i
\(96\) −12.4346 13.8100i −1.26910 1.40948i
\(97\) 4.30851 + 1.39992i 0.437463 + 0.142140i 0.519465 0.854492i \(-0.326131\pi\)
−0.0820021 + 0.996632i \(0.526131\pi\)
\(98\) −11.8916 6.67851i −1.20123 0.674631i
\(99\) −6.96332 −0.699840
\(100\) −7.94788 + 4.18173i −0.794788 + 0.418173i
\(101\) −5.70073 9.87396i −0.567244 0.982495i −0.996837 0.0794728i \(-0.974676\pi\)
0.429593 0.903023i \(-0.358657\pi\)
\(102\) 5.91161 13.2777i 0.585337 1.31469i
\(103\) 1.13579 1.02267i 0.111913 0.100767i −0.611274 0.791419i \(-0.709343\pi\)
0.723188 + 0.690652i \(0.242676\pi\)
\(104\) −0.479628 + 1.47614i −0.0470314 + 0.144748i
\(105\) 14.2440 0.551125i 1.39007 0.0537843i
\(106\) 4.62725 + 14.2412i 0.449438 + 1.38323i
\(107\) −7.85780 4.53670i −0.759642 0.438580i 0.0695249 0.997580i \(-0.477852\pi\)
−0.829167 + 0.559000i \(0.811185\pi\)
\(108\) −0.625336 0.563055i −0.0601730 0.0541800i
\(109\) −0.397371 + 3.78073i −0.0380612 + 0.362129i 0.958870 + 0.283846i \(0.0916104\pi\)
−0.996931 + 0.0782828i \(0.975056\pi\)
\(110\) −1.90084 + 10.6448i −0.181238 + 1.01494i
\(111\) 15.9046 11.5554i 1.50960 1.09679i
\(112\) 11.4810 1.27570i 1.08485 0.120542i
\(113\) 7.52234 10.3536i 0.707643 0.973986i −0.292202 0.956357i \(-0.594388\pi\)
0.999845 0.0176298i \(-0.00561202\pi\)
\(114\) −2.51321 23.9116i −0.235384 2.23953i
\(115\) −2.44488 9.89753i −0.227987 0.922950i
\(116\) −0.484732 + 4.61192i −0.0450062 + 0.428206i
\(117\) 2.27971 10.7252i 0.210760 0.991546i
\(118\) 21.5362i 1.98257i
\(119\) 4.13766 + 7.06932i 0.379299 + 0.648043i
\(120\) −1.68895 + 1.31365i −0.154179 + 0.119919i
\(121\) −3.23849 3.59670i −0.294408 0.326973i
\(122\) 3.50608 + 16.4948i 0.317426 + 1.49337i
\(123\) −5.10471 + 11.4654i −0.460276 + 1.03380i
\(124\) 5.66584 9.81351i 0.508807 0.881280i
\(125\) 4.48072 + 10.2432i 0.400768 + 0.916179i
\(126\) −14.1283 + 3.09090i −1.25865 + 0.275359i
\(127\) 5.72589 + 7.88102i 0.508091 + 0.699327i 0.983596 0.180386i \(-0.0577346\pi\)
−0.475505 + 0.879713i \(0.657735\pi\)
\(128\) −2.34879 + 2.11486i −0.207605 + 0.186929i
\(129\) −13.6864 + 2.90913i −1.20502 + 0.256135i
\(130\) −15.7733 6.41275i −1.38341 0.562436i
\(131\) 17.4629 + 3.71185i 1.52574 + 0.324306i 0.892999 0.450059i \(-0.148597\pi\)
0.632740 + 0.774365i \(0.281930\pi\)
\(132\) 10.7415i 0.934929i
\(133\) 11.7749 + 6.70532i 1.02102 + 0.581425i
\(134\) 13.5147 + 9.81901i 1.16749 + 0.848233i
\(135\) −0.755130 + 0.726054i −0.0649913 + 0.0624888i
\(136\) −1.12323 0.500095i −0.0963163 0.0428828i
\(137\) −3.22091 0.338532i −0.275181 0.0289227i −0.0340673 0.999420i \(-0.510846\pi\)
−0.241114 + 0.970497i \(0.577513\pi\)
\(138\) 8.70586 + 19.5537i 0.741092 + 1.66452i
\(139\) 6.18949 4.49693i 0.524986 0.381424i −0.293493 0.955961i \(-0.594818\pi\)
0.818479 + 0.574537i \(0.194818\pi\)
\(140\) 0.410842 + 10.6183i 0.0347225 + 0.897413i
\(141\) 4.24906 + 3.08712i 0.357836 + 0.259983i
\(142\) −5.72301 + 26.9246i −0.480264 + 2.25946i
\(143\) −8.40055 + 4.85006i −0.702489 + 0.405582i
\(144\) 8.19646 9.10310i 0.683039 0.758591i
\(145\) 5.68314 + 1.01484i 0.471959 + 0.0842778i
\(146\) 7.40689 22.7961i 0.612999 1.88662i
\(147\) 6.67661 15.4886i 0.550677 1.27748i
\(148\) 8.61411 + 11.8563i 0.708075 + 0.974582i
\(149\) 1.84866 3.20197i 0.151448 0.262315i −0.780312 0.625390i \(-0.784940\pi\)
0.931760 + 0.363075i \(0.118273\pi\)
\(150\) −13.0411 19.5167i −1.06480 1.59354i
\(151\) 1.10361 + 1.91151i 0.0898105 + 0.155556i 0.907431 0.420201i \(-0.138041\pi\)
−0.817620 + 0.575758i \(0.804707\pi\)
\(152\) −2.02281 + 0.212606i −0.164072 + 0.0172446i
\(153\) 8.26085 + 2.68411i 0.667850 + 0.216998i
\(154\) 10.3953 + 7.45870i 0.837679 + 0.601039i
\(155\) −11.6780 7.91389i −0.937997 0.635659i
\(156\) 16.5446 + 3.51665i 1.32462 + 0.281558i
\(157\) 20.8287 12.0255i 1.66231 0.959738i 0.690709 0.723133i \(-0.257299\pi\)
0.971606 0.236605i \(-0.0760347\pi\)
\(158\) 9.05510 + 8.15325i 0.720385 + 0.648638i
\(159\) −16.9169 + 7.53188i −1.34160 + 0.597317i
\(160\) −10.5880 13.6129i −0.837055 1.07620i
\(161\) −11.8140 2.43788i −0.931074 0.192132i
\(162\) 10.9318 15.0463i 0.858880 1.18215i
\(163\) 0.394267 + 0.885537i 0.0308813 + 0.0693606i 0.928328 0.371763i \(-0.121247\pi\)
−0.897446 + 0.441124i \(0.854580\pi\)
\(164\) −8.54699 3.80536i −0.667408 0.297149i
\(165\) −13.3376 0.961805i −1.03833 0.0748764i
\(166\) 8.95715 3.98798i 0.695210 0.309527i
\(167\) 1.74340 0.566466i 0.134908 0.0438344i −0.240785 0.970579i \(-0.577405\pi\)
0.375693 + 0.926744i \(0.377405\pi\)
\(168\) 0.541072 + 2.47321i 0.0417446 + 0.190812i
\(169\) −0.702803 2.16301i −0.0540618 0.166385i
\(170\) 6.35823 11.8956i 0.487654 0.912352i
\(171\) 14.0548 2.98744i 1.07480 0.228455i
\(172\) −2.16865 10.2027i −0.165358 0.777947i
\(173\) 7.79368 0.819149i 0.592543 0.0622788i 0.196489 0.980506i \(-0.437046\pi\)
0.396054 + 0.918227i \(0.370379\pi\)
\(174\) −12.1203 −0.918841
\(175\) 13.2214 + 0.440639i 0.999445 + 0.0333092i
\(176\) −10.8365 −0.816836
\(177\) −26.4871 + 2.78390i −1.99089 + 0.209251i
\(178\) −5.62806 26.4780i −0.421841 1.98461i
\(179\) −10.4544 + 2.22214i −0.781396 + 0.166091i −0.581304 0.813686i \(-0.697457\pi\)
−0.200092 + 0.979777i \(0.564124\pi\)
\(180\) 7.80988 + 8.12264i 0.582114 + 0.605426i
\(181\) −1.89456 5.83087i −0.140822 0.433405i 0.855628 0.517591i \(-0.173171\pi\)
−0.996450 + 0.0841859i \(0.973171\pi\)
\(182\) −14.8915 + 13.5694i −1.10383 + 1.00583i
\(183\) −19.8335 + 6.44429i −1.46613 + 0.476375i
\(184\) 1.65415 0.736475i 0.121946 0.0542937i
\(185\) 15.4931 9.63438i 1.13908 0.708334i
\(186\) 27.0565 + 12.0463i 1.98388 + 0.883280i
\(187\) −3.12541 7.01978i −0.228553 0.513337i
\(188\) −2.30133 + 3.16751i −0.167842 + 0.231014i
\(189\) 0.390018 + 1.17653i 0.0283697 + 0.0855796i
\(190\) −0.730218 22.3010i −0.0529755 1.61789i
\(191\) 19.5821 8.71852i 1.41691 0.630850i 0.451665 0.892188i \(-0.350830\pi\)
0.965247 + 0.261338i \(0.0841637\pi\)
\(192\) 11.2713 + 10.1487i 0.813434 + 0.732420i
\(193\) −1.64900 + 0.952048i −0.118697 + 0.0685299i −0.558173 0.829724i \(-0.688498\pi\)
0.439476 + 0.898254i \(0.355164\pi\)
\(194\) −8.63371 1.83515i −0.619865 0.131756i
\(195\) 5.84799 20.2282i 0.418783 1.44857i
\(196\) 11.5461 + 4.97715i 0.824723 + 0.355511i
\(197\) 3.23369 + 1.05069i 0.230391 + 0.0748586i 0.421937 0.906625i \(-0.361350\pi\)
−0.191546 + 0.981484i \(0.561350\pi\)
\(198\) 13.4929 1.41816i 0.958895 0.100784i
\(199\) 4.13160 + 7.15614i 0.292881 + 0.507286i 0.974490 0.224432i \(-0.0720525\pi\)
−0.681608 + 0.731717i \(0.738719\pi\)
\(200\) −1.65102 + 1.10321i −0.116745 + 0.0780089i
\(201\) −10.3292 + 17.8908i −0.728569 + 1.26192i
\(202\) 13.0573 + 17.9718i 0.918706 + 1.26449i
\(203\) 3.98212 5.54995i 0.279490 0.389530i
\(204\) −4.14047 + 12.7431i −0.289891 + 0.892192i
\(205\) −5.49037 + 10.2719i −0.383464 + 0.717423i
\(206\) −1.99255 + 2.21296i −0.138828 + 0.154184i
\(207\) −11.0778 + 6.39579i −0.769962 + 0.444538i
\(208\) 3.54777 16.6909i 0.245993 1.15731i
\(209\) −10.2838 7.47162i −0.711345 0.516823i
\(210\) −27.4884 + 3.96886i −1.89688 + 0.273877i
\(211\) −18.1583 + 13.1928i −1.25007 + 0.908228i −0.998226 0.0595406i \(-0.981036\pi\)
−0.251842 + 0.967768i \(0.581036\pi\)
\(212\) −5.61472 12.6109i −0.385621 0.866118i
\(213\) −33.8539 3.55819i −2.31963 0.243803i
\(214\) 16.1500 + 7.19046i 1.10399 + 0.491530i
\(215\) −12.8627 + 1.77922i −0.877228 + 0.121342i
\(216\) −0.150519 0.109359i −0.0102415 0.00744091i
\(217\) −14.4054 + 8.43148i −0.977905 + 0.572366i
\(218\) 7.40687i 0.501656i
\(219\) 28.9940 + 6.16285i 1.95923 + 0.416447i
\(220\) 0.716988 9.94265i 0.0483393 0.670333i
\(221\) 11.8354 2.51569i 0.796135 0.169224i
\(222\) −28.4651 + 25.6301i −1.91045 + 1.72018i
\(223\) 5.23518 + 7.20560i 0.350573 + 0.482523i 0.947492 0.319779i \(-0.103609\pi\)
−0.596919 + 0.802302i \(0.703609\pi\)
\(224\) −19.9340 + 4.36104i −1.33190 + 0.291384i
\(225\) 10.7851 8.97010i 0.719004 0.598006i
\(226\) −12.4674 + 21.5942i −0.829322 + 1.43643i
\(227\) −5.11260 + 11.4831i −0.339335 + 0.762159i 0.660600 + 0.750738i \(0.270302\pi\)
−0.999935 + 0.0114208i \(0.996365\pi\)
\(228\) 4.60838 + 21.6807i 0.305198 + 1.43584i
\(229\) −11.0658 12.2899i −0.731251 0.812137i 0.256767 0.966473i \(-0.417343\pi\)
−0.988018 + 0.154337i \(0.950676\pi\)
\(230\) 6.75320 + 18.6806i 0.445293 + 1.23176i
\(231\) −7.82957 + 13.7492i −0.515148 + 0.904631i
\(232\) 1.02532i 0.0673158i
\(233\) 1.21215 5.70270i 0.0794104 0.373597i −0.920440 0.390884i \(-0.872170\pi\)
0.999851 + 0.0172869i \(0.00550286\pi\)
\(234\) −2.23310 + 21.2466i −0.145983 + 1.38893i
\(235\) 3.72699 + 3.14115i 0.243122 + 0.204906i
\(236\) −2.07529 19.7451i −0.135090 1.28530i
\(237\) −8.85703 + 12.1907i −0.575326 + 0.791868i
\(238\) −9.45730 12.8556i −0.613025 0.833302i
\(239\) −3.29768 + 2.39590i −0.213309 + 0.154978i −0.689310 0.724467i \(-0.742086\pi\)
0.476001 + 0.879445i \(0.342086\pi\)
\(240\) 16.9569 16.3040i 1.09456 1.05242i
\(241\) −2.37867 + 22.6315i −0.153224 + 1.45783i 0.599968 + 0.800024i \(0.295180\pi\)
−0.753191 + 0.657801i \(0.771487\pi\)
\(242\) 7.00773 + 6.30979i 0.450474 + 0.405609i
\(243\) 18.7011 + 10.7971i 1.19968 + 0.692634i
\(244\) −4.80397 14.7851i −0.307542 0.946518i
\(245\) 7.21390 13.8910i 0.460879 0.887463i
\(246\) 7.55637 23.2561i 0.481776 1.48276i
\(247\) 14.8749 13.3934i 0.946468 0.852203i
\(248\) 1.01906 2.28885i 0.0647106 0.145342i
\(249\) 6.06260 + 10.5007i 0.384202 + 0.665457i
\(250\) −10.7684 18.9357i −0.681057 1.19760i
\(251\) 2.64599 0.167014 0.0835068 0.996507i \(-0.473388\pi\)
0.0835068 + 0.996507i \(0.473388\pi\)
\(252\) 12.6554 4.19527i 0.797217 0.264277i
\(253\) 10.7623 + 3.49689i 0.676621 + 0.219848i
\(254\) −12.7001 14.1049i −0.796877 0.885022i
\(255\) 15.4521 + 6.28218i 0.967649 + 0.393406i
\(256\) 12.5445 13.9321i 0.784033 0.870757i
\(257\) 1.72089 + 0.993558i 0.107346 + 0.0619765i 0.552712 0.833372i \(-0.313593\pi\)
−0.445366 + 0.895349i \(0.646926\pi\)
\(258\) 25.9277 8.42441i 1.61419 0.524481i
\(259\) −2.38396 21.4550i −0.148132 1.33315i
\(260\) 15.0794 + 4.35945i 0.935182 + 0.270362i
\(261\) −0.757138 7.20369i −0.0468657 0.445897i
\(262\) −34.5938 3.63596i −2.13721 0.224630i
\(263\) 29.2703 + 3.07643i 1.80488 + 0.189701i 0.946369 0.323089i \(-0.104721\pi\)
0.858514 + 0.512789i \(0.171388\pi\)
\(264\) −0.248253 2.36197i −0.0152789 0.145369i
\(265\) −16.1615 + 5.84253i −0.992792 + 0.358904i
\(266\) −24.1820 10.5948i −1.48269 0.649610i
\(267\) 31.8373 10.3446i 1.94841 0.633077i
\(268\) −13.3369 7.70005i −0.814679 0.470355i
\(269\) −16.0029 + 17.7731i −0.975716 + 1.08364i 0.0207615 + 0.999784i \(0.493391\pi\)
−0.996478 + 0.0838581i \(0.973276\pi\)
\(270\) 1.31535 1.56067i 0.0800496 0.0949792i
\(271\) 8.07573 + 8.96901i 0.490566 + 0.544829i 0.936698 0.350139i \(-0.113865\pi\)
−0.446132 + 0.894967i \(0.647199\pi\)
\(272\) 12.8558 + 4.17710i 0.779497 + 0.253274i
\(273\) −18.6138 16.5608i −1.12656 1.00230i
\(274\) 6.31012 0.381208
\(275\) −12.2814 1.78055i −0.740598 0.107371i
\(276\) −9.86605 17.0885i −0.593866 1.02861i
\(277\) 7.59132 17.0504i 0.456118 1.02446i −0.528371 0.849013i \(-0.677197\pi\)
0.984489 0.175444i \(-0.0561362\pi\)
\(278\) −11.0775 + 9.97426i −0.664387 + 0.598217i
\(279\) −5.46952 + 16.8335i −0.327452 + 1.00779i
\(280\) 0.335747 + 2.32539i 0.0200647 + 0.138968i
\(281\) 2.07291 + 6.37978i 0.123660 + 0.380585i 0.993655 0.112475i \(-0.0358780\pi\)
−0.869995 + 0.493061i \(0.835878\pi\)
\(282\) −8.86214 5.11656i −0.527733 0.304687i
\(283\) 6.62608 + 5.96615i 0.393880 + 0.354651i 0.842146 0.539249i \(-0.181292\pi\)
−0.448267 + 0.893900i \(0.647958\pi\)
\(284\) 2.65249 25.2368i 0.157397 1.49753i
\(285\) 27.3333 3.78085i 1.61908 0.223958i
\(286\) 15.2900 11.1088i 0.904116 0.656879i
\(287\) 8.16643 + 11.1008i 0.482049 + 0.655262i
\(288\) −12.7186 + 17.5056i −0.749448 + 1.03153i
\(289\) −0.775072 7.37431i −0.0455924 0.433783i
\(290\) −11.2189 0.809024i −0.658798 0.0475075i
\(291\) 1.14098 10.8557i 0.0668853 0.636371i
\(292\) −4.59417 + 21.6139i −0.268853 + 1.26486i
\(293\) 21.1628i 1.23634i −0.786043 0.618171i \(-0.787874\pi\)
0.786043 0.618171i \(-0.212126\pi\)
\(294\) −9.78287 + 31.3720i −0.570548 + 1.82965i
\(295\) −24.7030 + 0.808866i −1.43826 + 0.0470940i
\(296\) 2.16819 + 2.40801i 0.126023 + 0.139963i
\(297\) −0.241751 1.13735i −0.0140278 0.0659956i
\(298\) −2.93003 + 6.58096i −0.169732 + 0.381225i
\(299\) −8.90952 + 15.4317i −0.515251 + 0.892441i
\(300\) 13.8371 + 16.6369i 0.798887 + 0.960530i
\(301\) −4.66093 + 14.6402i −0.268651 + 0.843848i
\(302\) −2.52777 3.47917i −0.145457 0.200204i
\(303\) −20.4153 + 18.3820i −1.17283 + 1.05602i
\(304\) 21.8725 4.64915i 1.25448 0.266647i
\(305\) −18.7886 + 4.64114i −1.07583 + 0.265751i
\(306\) −16.5537 3.51860i −0.946313 0.201145i
\(307\) 20.4087i 1.16479i −0.812907 0.582393i \(-0.802116\pi\)
0.812907 0.582393i \(-0.197884\pi\)
\(308\) −10.2495 5.83664i −0.584019 0.332573i
\(309\) −2.97925 2.16455i −0.169483 0.123137i
\(310\) 24.2402 + 12.9564i 1.37675 + 0.735876i
\(311\) −2.62585 1.16910i −0.148898 0.0662937i 0.330935 0.943654i \(-0.392636\pi\)
−0.479833 + 0.877360i \(0.659303\pi\)
\(312\) 3.71928 + 0.390912i 0.210563 + 0.0221310i
\(313\) −1.66346 3.73620i −0.0940244 0.211182i 0.860410 0.509602i \(-0.170207\pi\)
−0.954435 + 0.298419i \(0.903541\pi\)
\(314\) −37.9108 + 27.5438i −2.13943 + 1.55439i
\(315\) −4.07603 16.0897i −0.229658 0.906551i
\(316\) −9.08766 6.60257i −0.511221 0.371424i
\(317\) −0.712202 + 3.35065i −0.0400012 + 0.188191i −0.993612 0.112852i \(-0.964001\pi\)
0.953611 + 0.301043i \(0.0973348\pi\)
\(318\) 31.2459 18.0398i 1.75218 1.01162i
\(319\) −4.28772 + 4.76200i −0.240066 + 0.266621i
\(320\) 9.75559 + 10.1463i 0.545354 + 0.567194i
\(321\) −6.75577 + 20.7921i −0.377071 + 1.16050i
\(322\) 23.3885 + 2.31785i 1.30339 + 0.129169i
\(323\) 9.32001 + 12.8279i 0.518579 + 0.713763i
\(324\) −8.57267 + 14.8483i −0.476259 + 0.824905i
\(325\) 6.76328 18.3335i 0.375159 1.01696i
\(326\) −0.944320 1.63561i −0.0523011 0.0905881i
\(327\) 9.10958 0.957455i 0.503761 0.0529474i
\(328\) −1.96736 0.639233i −0.108629 0.0352957i
\(329\) 5.25454 2.37697i 0.289692 0.131047i
\(330\) 26.0401 0.852650i 1.43346 0.0469368i
\(331\) −26.3412 5.59900i −1.44784 0.307749i −0.584101 0.811681i \(-0.698553\pi\)
−0.863743 + 0.503932i \(0.831886\pi\)
\(332\) −7.82789 + 4.51944i −0.429612 + 0.248036i
\(333\) −17.0113 15.3171i −0.932215 0.839370i
\(334\) −3.26283 + 1.45270i −0.178534 + 0.0794885i
\(335\) −10.7552 + 15.8707i −0.587621 + 0.867111i
\(336\) −8.75809 26.4196i −0.477793 1.44131i
\(337\) 15.3283 21.0976i 0.834986 1.14926i −0.151988 0.988382i \(-0.548568\pi\)
0.986974 0.160877i \(-0.0514323\pi\)
\(338\) 1.80234 + 4.04813i 0.0980345 + 0.220189i
\(339\) −28.1700 12.5421i −1.52998 0.681193i
\(340\) −4.68312 + 11.5190i −0.253978 + 0.624703i
\(341\) 14.3045 6.36877i 0.774632 0.344888i
\(342\) −26.6256 + 8.65119i −1.43975 + 0.467803i
\(343\) −11.1512 14.7868i −0.602109 0.798414i
\(344\) −0.712666 2.19336i −0.0384244 0.118258i
\(345\) −22.1019 + 10.7204i −1.18993 + 0.577167i
\(346\) −14.9350 + 3.17454i −0.802911 + 0.170664i
\(347\) −5.06067 23.8086i −0.271671 1.27811i −0.876362 0.481652i \(-0.840037\pi\)
0.604691 0.796460i \(-0.293297\pi\)
\(348\) 11.1123 1.16795i 0.595682 0.0626087i
\(349\) 28.5904 1.53041 0.765206 0.643786i \(-0.222637\pi\)
0.765206 + 0.643786i \(0.222637\pi\)
\(350\) −25.7089 + 1.83886i −1.37420 + 0.0982910i
\(351\) 1.83094 0.0977282
\(352\) 19.0374 2.00092i 1.01470 0.106649i
\(353\) −0.362725 1.70649i −0.0193059 0.0908270i 0.967440 0.253101i \(-0.0814505\pi\)
−0.986746 + 0.162274i \(0.948117\pi\)
\(354\) 50.7571 10.7888i 2.69771 0.573416i
\(355\) −31.0986 5.55329i −1.65054 0.294738i
\(356\) 7.71147 + 23.7335i 0.408707 + 1.25787i
\(357\) 14.5883 13.2932i 0.772096 0.703548i
\(358\) 19.8049 6.43500i 1.04672 0.340100i
\(359\) 9.94263 4.42674i 0.524752 0.233635i −0.127224 0.991874i \(-0.540607\pi\)
0.651976 + 0.758239i \(0.273940\pi\)
\(360\) 1.90505 + 1.60560i 0.100405 + 0.0846226i
\(361\) 6.60502 + 2.94074i 0.347633 + 0.154776i
\(362\) 4.85862 + 10.9126i 0.255363 + 0.573556i
\(363\) −6.85444 + 9.43433i −0.359765 + 0.495174i
\(364\) 12.3454 13.8759i 0.647076 0.727293i
\(365\) 26.4262 + 7.63983i 1.38321 + 0.399887i
\(366\) 37.1189 16.5264i 1.94024 0.863849i
\(367\) 9.26076 + 8.33843i 0.483408 + 0.435262i 0.874454 0.485109i \(-0.161220\pi\)
−0.391046 + 0.920371i \(0.627887\pi\)
\(368\) −17.2397 + 9.95333i −0.898680 + 0.518853i
\(369\) 14.2942 + 3.03833i 0.744128 + 0.158169i
\(370\) −28.0589 + 21.8239i −1.45871 + 1.13457i
\(371\) −2.00528 + 20.2346i −0.104109 + 1.05053i
\(372\) −25.9670 8.43721i −1.34633 0.437449i
\(373\) 12.9487 1.36096i 0.670459 0.0704680i 0.236818 0.971554i \(-0.423895\pi\)
0.433641 + 0.901086i \(0.357229\pi\)
\(374\) 7.48577 + 12.9657i 0.387080 + 0.670442i
\(375\) 21.8967 15.6917i 1.13074 0.810315i
\(376\) −0.432837 + 0.749696i −0.0223219 + 0.0386626i
\(377\) −5.93088 8.16316i −0.305456 0.420424i
\(378\) −0.995352 2.20033i −0.0511954 0.113173i
\(379\) 2.26229 6.96260i 0.116206 0.357645i −0.875991 0.482328i \(-0.839791\pi\)
0.992197 + 0.124683i \(0.0397914\pi\)
\(380\) 2.81847 + 20.3759i 0.144585 + 1.04526i
\(381\) 15.7057 17.4430i 0.804628 0.893630i
\(382\) −36.1687 + 20.8820i −1.85055 + 1.06842i
\(383\) 1.43254 6.73956i 0.0731993 0.344375i −0.926273 0.376853i \(-0.877006\pi\)
0.999472 + 0.0324772i \(0.0103396\pi\)
\(384\) 6.16098 + 4.47622i 0.314401 + 0.228426i
\(385\) −8.16502 + 12.2040i −0.416128 + 0.621974i
\(386\) 3.00137 2.18062i 0.152766 0.110991i
\(387\) 6.62668 + 14.8838i 0.336853 + 0.756585i
\(388\) 8.09249 + 0.850555i 0.410834 + 0.0431804i
\(389\) 9.15883 + 4.07778i 0.464371 + 0.206751i 0.625566 0.780171i \(-0.284868\pi\)
−0.161195 + 0.986923i \(0.551535\pi\)
\(390\) −7.21197 + 40.3873i −0.365192 + 2.04509i
\(391\) −11.4198 8.29697i −0.577524 0.419596i
\(392\) 2.65392 + 0.827584i 0.134043 + 0.0417993i
\(393\) 43.0164i 2.16989i
\(394\) −6.47992 1.37735i −0.326454 0.0693898i
\(395\) −9.01203 + 10.6928i −0.453445 + 0.538014i
\(396\) −12.2340 + 2.60042i −0.614782 + 0.130676i
\(397\) −8.25028 + 7.42859i −0.414070 + 0.372830i −0.849674 0.527308i \(-0.823201\pi\)
0.435604 + 0.900138i \(0.356535\pi\)
\(398\) −9.46324 13.0250i −0.474349 0.652886i
\(399\) 9.90449 31.1105i 0.495845 1.55747i
\(400\) 16.7841 13.9596i 0.839203 0.697978i
\(401\) 3.57303 6.18867i 0.178429 0.309048i −0.762914 0.646500i \(-0.776232\pi\)
0.941343 + 0.337453i \(0.109565\pi\)
\(402\) 16.3714 36.7707i 0.816529 1.83395i
\(403\) 5.12633 + 24.1175i 0.255361 + 1.20138i
\(404\) −13.7031 15.2188i −0.681755 0.757165i
\(405\) 17.6693 + 11.9741i 0.877994 + 0.594997i
\(406\) −6.58586 + 11.5652i −0.326851 + 0.573969i
\(407\) 20.2507i 1.00379i
\(408\) −0.615942 + 2.89778i −0.0304937 + 0.143462i
\(409\) 0.409804 3.89903i 0.0202635 0.192795i −0.979707 0.200434i \(-0.935765\pi\)
0.999971 + 0.00763899i \(0.00243159\pi\)
\(410\) 8.54671 21.0221i 0.422092 1.03821i
\(411\) 0.815683 + 7.76071i 0.0402347 + 0.382808i
\(412\) 1.61359 2.22091i 0.0794957 0.109416i
\(413\) −11.7359 + 26.7865i −0.577488 + 1.31808i
\(414\) 20.1630 14.6493i 0.990956 0.719972i
\(415\) 4.91080 + 10.1245i 0.241062 + 0.496990i
\(416\) −3.15075 + 29.9774i −0.154478 + 1.46976i
\(417\) −13.6991 12.3347i −0.670849 0.604035i
\(418\) 21.4486 + 12.3834i 1.04909 + 0.605690i
\(419\) −7.25128 22.3171i −0.354248 1.09026i −0.956444 0.291915i \(-0.905707\pi\)
0.602196 0.798348i \(-0.294293\pi\)
\(420\) 24.8197 6.28762i 1.21108 0.306805i
\(421\) −10.2298 + 31.4841i −0.498571 + 1.53444i 0.312746 + 0.949837i \(0.398751\pi\)
−0.811317 + 0.584606i \(0.801249\pi\)
\(422\) 32.4985 29.2618i 1.58200 1.42444i
\(423\) 2.48741 5.58681i 0.120942 0.271640i
\(424\) −1.52609 2.64326i −0.0741133 0.128368i
\(425\) 13.8836 + 6.84638i 0.673452 + 0.332098i
\(426\) 66.3235 3.21339
\(427\) −4.62786 + 22.4266i −0.223958 + 1.08530i
\(428\) −15.4997 5.03617i −0.749208 0.243432i
\(429\) 15.6390 + 17.3689i 0.755060 + 0.838579i
\(430\) 24.5617 6.06722i 1.18447 0.292587i
\(431\) −13.8289 + 15.3585i −0.666113 + 0.739793i −0.977603 0.210456i \(-0.932505\pi\)
0.311490 + 0.950249i \(0.399172\pi\)
\(432\) 1.77141 + 1.02272i 0.0852269 + 0.0492058i
\(433\) −25.2950 + 8.21886i −1.21560 + 0.394973i −0.845479 0.534009i \(-0.820685\pi\)
−0.370124 + 0.928982i \(0.620685\pi\)
\(434\) 26.1963 19.2715i 1.25746 0.925063i
\(435\) −0.455220 13.9026i −0.0218261 0.666576i
\(436\) 0.713746 + 6.79084i 0.0341822 + 0.325222i
\(437\) −23.2230 2.44083i −1.11091 0.116761i
\(438\) −57.4368 6.03685i −2.74444 0.288452i
\(439\) −1.23134 11.7154i −0.0587687 0.559147i −0.983802 0.179260i \(-0.942630\pi\)
0.925033 0.379887i \(-0.124037\pi\)
\(440\) −0.0721301 2.20287i −0.00343867 0.105018i
\(441\) −19.2570 3.85466i −0.916998 0.183555i
\(442\) −22.4211 + 7.28507i −1.06646 + 0.346515i
\(443\) −0.871479 0.503149i −0.0414052 0.0239053i 0.479154 0.877731i \(-0.340943\pi\)
−0.520560 + 0.853825i \(0.674277\pi\)
\(444\) 23.6279 26.2414i 1.12133 1.24536i
\(445\) 30.1600 7.45010i 1.42972 0.353168i
\(446\) −11.6117 12.8961i −0.549831 0.610649i
\(447\) −8.47257 2.75290i −0.400739 0.130208i
\(448\) 15.8083 5.24046i 0.746873 0.247589i
\(449\) 29.0408 1.37052 0.685261 0.728298i \(-0.259688\pi\)
0.685261 + 0.728298i \(0.259688\pi\)
\(450\) −19.0714 + 19.5779i −0.899034 + 0.922910i
\(451\) −6.46400 11.1960i −0.304378 0.527198i
\(452\) 9.34965 20.9996i 0.439770 0.987740i
\(453\) 3.95222 3.55860i 0.185692 0.167198i
\(454\) 7.56804 23.2920i 0.355186 1.09315i
\(455\) −16.1240 16.5716i −0.755906 0.776887i
\(456\) 1.51442 + 4.66090i 0.0709191 + 0.218267i
\(457\) 11.1386 + 6.43087i 0.521041 + 0.300823i 0.737361 0.675499i \(-0.236072\pi\)
−0.216319 + 0.976323i \(0.569405\pi\)
\(458\) 23.9453 + 21.5604i 1.11889 + 1.00745i
\(459\) −0.151609 + 1.44246i −0.00707650 + 0.0673284i
\(460\) −7.99164 16.4761i −0.372612 0.768204i
\(461\) −9.56290 + 6.94785i −0.445389 + 0.323594i −0.787772 0.615966i \(-0.788766\pi\)
0.342384 + 0.939560i \(0.388766\pi\)
\(462\) 12.3712 28.2364i 0.575561 1.31368i
\(463\) −20.4731 + 28.1788i −0.951465 + 1.30958i −0.000592125 1.00000i \(0.500188\pi\)
−0.950873 + 0.309580i \(0.899812\pi\)
\(464\) −1.17828 11.2106i −0.0547004 0.520439i
\(465\) −12.8015 + 31.4874i −0.593654 + 1.46019i
\(466\) −1.18736 + 11.2970i −0.0550036 + 0.523324i
\(467\) 4.91443 23.1206i 0.227412 1.06989i −0.705199 0.709010i \(-0.749142\pi\)
0.932611 0.360882i \(-0.117524\pi\)
\(468\) 19.6947i 0.910387i
\(469\) 11.4586 + 19.5774i 0.529111 + 0.904002i
\(470\) −7.86152 5.32757i −0.362625 0.245743i
\(471\) −38.7762 43.0654i −1.78671 1.98435i
\(472\) −0.912678 4.29381i −0.0420094 0.197639i
\(473\) 5.86235 13.1670i 0.269551 0.605421i
\(474\) 14.6795 25.4257i 0.674253 1.16784i
\(475\) 25.5528 1.67518i 1.17244 0.0768626i
\(476\) 9.90953 + 10.8750i 0.454203 + 0.498456i
\(477\) 12.6738 + 17.4440i 0.580294 + 0.798706i
\(478\) 5.90197 5.31416i 0.269950 0.243064i
\(479\) 9.90164 2.10466i 0.452418 0.0961643i 0.0239333 0.999714i \(-0.492381\pi\)
0.428484 + 0.903549i \(0.359048\pi\)
\(480\) −26.7791 + 31.7735i −1.22229 + 1.45026i
\(481\) −31.1910 6.62985i −1.42219 0.302295i
\(482\) 44.3376i 2.01952i
\(483\) 0.172661 + 29.0648i 0.00785636 + 1.32249i
\(484\) −7.03293 5.10972i −0.319678 0.232260i
\(485\) 1.78073 9.97216i 0.0808588 0.452813i
\(486\) −38.4361 17.1129i −1.74350 0.776256i
\(487\) −11.8899 1.24968i −0.538783 0.0566284i −0.168771 0.985655i \(-0.553980\pi\)
−0.370012 + 0.929027i \(0.620646\pi\)
\(488\) −1.39806 3.14009i −0.0632870 0.142145i
\(489\) 1.88954 1.37283i 0.0854480 0.0620816i
\(490\) −11.1494 + 28.3858i −0.503676 + 1.28234i
\(491\) 0.443578 + 0.322278i 0.0200184 + 0.0145442i 0.597749 0.801683i \(-0.296062\pi\)
−0.577731 + 0.816227i \(0.696062\pi\)
\(492\) −4.68688 + 22.0501i −0.211301 + 0.994093i
\(493\) 6.92226 3.99657i 0.311763 0.179996i
\(494\) −26.0954 + 28.9819i −1.17409 + 1.30396i
\(495\) 2.13345 + 15.4236i 0.0958917 + 0.693240i
\(496\) −8.51185 + 26.1968i −0.382193 + 1.17627i
\(497\) −21.7905 + 30.3698i −0.977437 + 1.36227i
\(498\) −13.8861 19.1126i −0.622252 0.856456i
\(499\) −20.0243 + 34.6832i −0.896412 + 1.55263i −0.0643647 + 0.997926i \(0.520502\pi\)
−0.832047 + 0.554705i \(0.812831\pi\)
\(500\) 11.6975 + 16.3232i 0.523130 + 0.729994i
\(501\) −2.20843 3.82511i −0.0986654 0.170893i
\(502\) −5.12715 + 0.538885i −0.228836 + 0.0240516i
\(503\) −11.8433 3.84812i −0.528066 0.171579i 0.0328365 0.999461i \(-0.489546\pi\)
−0.560903 + 0.827882i \(0.689546\pi\)
\(504\) 2.68586 1.21499i 0.119638 0.0541200i
\(505\) −20.1240 + 15.6522i −0.895505 + 0.696515i
\(506\) −21.5664 4.58407i −0.958741 0.203787i
\(507\) −4.74574 + 2.73996i −0.210766 + 0.121686i
\(508\) 13.0031 + 11.7080i 0.576917 + 0.519459i
\(509\) 11.7881 5.24840i 0.522498 0.232631i −0.128501 0.991709i \(-0.541017\pi\)
0.651000 + 0.759078i \(0.274350\pi\)
\(510\) −31.2210 9.02601i −1.38249 0.399679i
\(511\) 21.6351 24.3171i 0.957079 1.07573i
\(512\) −17.7546 + 24.4372i −0.784652 + 1.07998i
\(513\) 0.975901 + 2.19191i 0.0430871 + 0.0967752i
\(514\) −3.53693 1.57474i −0.156007 0.0694589i
\(515\) −2.61319 2.20243i −0.115151 0.0970506i
\(516\) −22.9595 + 10.2222i −1.01073 + 0.450008i
\(517\) −5.14536 + 1.67183i −0.226292 + 0.0735269i
\(518\) 8.98894 + 41.0879i 0.394951 + 1.80530i
\(519\) −5.83490 17.9580i −0.256124 0.788267i
\(520\) 3.41658 + 0.610098i 0.149827 + 0.0267546i
\(521\) 38.3716 8.15613i 1.68109 0.357327i 0.734212 0.678921i \(-0.237552\pi\)
0.946878 + 0.321594i \(0.104219\pi\)
\(522\) 2.93422 + 13.8044i 0.128427 + 0.604202i
\(523\) 7.66514 0.805639i 0.335173 0.0352281i 0.0645529 0.997914i \(-0.479438\pi\)
0.270620 + 0.962686i \(0.412771\pi\)
\(524\) 32.0670 1.40085
\(525\) −5.58487 31.3813i −0.243744 1.36959i
\(526\) −57.3437 −2.50030
\(527\) −19.4249 + 2.04164i −0.846161 + 0.0889351i
\(528\) 5.42866 + 25.5398i 0.236252 + 1.11148i
\(529\) −2.16393 + 0.459958i −0.0940841 + 0.0199982i
\(530\) 30.1262 14.6125i 1.30860 0.634728i
\(531\) 9.58297 + 29.4934i 0.415866 + 1.27990i
\(532\) 23.1917 + 7.38341i 1.00549 + 0.320112i
\(533\) 19.3608 6.29070i 0.838608 0.272480i
\(534\) −59.5844 + 26.5287i −2.57847 + 1.14801i
\(535\) −7.64119 + 18.7948i −0.330358 + 0.812572i
\(536\) −3.11062 1.38494i −0.134359 0.0598203i
\(537\) 10.4744 + 23.5259i 0.452003 + 1.01522i
\(538\) 27.3893 37.6981i 1.18083 1.62528i
\(539\) 8.86503 + 14.9419i 0.381844 + 0.643591i
\(540\) −1.05556 + 1.55762i −0.0454241 + 0.0670292i
\(541\) 17.4699 7.77812i 0.751091 0.334407i 0.00476580 0.999989i \(-0.498483\pi\)
0.746325 + 0.665581i \(0.231816\pi\)
\(542\) −17.4750 15.7346i −0.750616 0.675858i
\(543\) −12.7932 + 7.38617i −0.549009 + 0.316971i
\(544\) −23.3561 4.96449i −1.00138 0.212851i
\(545\) 8.49599 0.278190i 0.363928 0.0119163i
\(546\) 39.4408 + 28.2990i 1.68791 + 1.21108i
\(547\) −17.8957 5.81466i −0.765164 0.248617i −0.0996705 0.995020i \(-0.531779\pi\)
−0.665494 + 0.746404i \(0.731779\pi\)
\(548\) −5.78531 + 0.608060i −0.247136 + 0.0259751i
\(549\) 12.1412 + 21.0291i 0.518173 + 0.897501i
\(550\) 24.1604 + 0.948924i 1.03020 + 0.0404623i
\(551\) 6.61134 11.4512i 0.281653 0.487837i
\(552\) −2.56440 3.52959i −0.109148 0.150229i
\(553\) 6.81959 + 15.0754i 0.289998 + 0.641071i
\(554\) −11.2372 + 34.5846i −0.477424 + 1.46936i
\(555\) −30.4679 31.6881i −1.29329 1.34508i
\(556\) 9.19508 10.2122i 0.389958 0.433092i
\(557\) 2.99630 1.72991i 0.126957 0.0732988i −0.435176 0.900345i \(-0.643314\pi\)
0.562134 + 0.827046i \(0.309981\pi\)
\(558\) 7.17000 33.7322i 0.303530 1.42800i
\(559\) 18.3612 + 13.3402i 0.776596 + 0.564230i
\(560\) −6.34325 25.0393i −0.268051 1.05810i
\(561\) −14.9787 + 10.8826i −0.632400 + 0.459466i
\(562\) −5.31600 11.9399i −0.224242 0.503656i
\(563\) −31.8022 3.34255i −1.34030 0.140872i −0.592918 0.805263i \(-0.702024\pi\)
−0.747385 + 0.664391i \(0.768691\pi\)
\(564\) 8.61813 + 3.83704i 0.362889 + 0.161568i
\(565\) −25.2378 13.4896i −1.06176 0.567513i
\(566\) −14.0545 10.2112i −0.590753 0.429207i
\(567\) 21.7961 12.7572i 0.915349 0.535752i
\(568\) 5.61066i 0.235418i
\(569\) 0.855097 + 0.181756i 0.0358475 + 0.00761963i 0.225801 0.974174i \(-0.427500\pi\)
−0.189953 + 0.981793i \(0.560834\pi\)
\(570\) −52.1938 + 12.8929i −2.18616 + 0.540023i
\(571\) 7.16292 1.52253i 0.299759 0.0637158i −0.0555769 0.998454i \(-0.517700\pi\)
0.355336 + 0.934739i \(0.384366\pi\)
\(572\) −12.9479 + 11.6583i −0.541377 + 0.487458i
\(573\) −30.3578 41.7839i −1.26822 1.74555i
\(574\) −18.0849 19.8470i −0.754850 0.828396i
\(575\) −21.1737 + 8.44781i −0.883006 + 0.352298i
\(576\) 8.83015 15.2943i 0.367923 0.637261i
\(577\) −9.30611 + 20.9019i −0.387418 + 0.870156i 0.609580 + 0.792725i \(0.291338\pi\)
−0.996998 + 0.0774306i \(0.975328\pi\)
\(578\) 3.00372 + 14.1314i 0.124938 + 0.587788i
\(579\) 3.06988 + 3.40945i 0.127580 + 0.141692i
\(580\) 10.3638 0.339349i 0.430334 0.0140907i
\(581\) 13.3140 0.0790927i 0.552357 0.00328132i
\(582\) 21.2675i 0.881564i
\(583\) 3.96591 18.6581i 0.164251 0.772741i
\(584\) −0.510689 + 4.85888i −0.0211325 + 0.201062i
\(585\) −24.4546 1.76348i −1.01107 0.0729109i
\(586\) 4.31003 + 41.0072i 0.178046 + 1.69399i
\(587\) 15.5422 21.3920i 0.641496 0.882943i −0.357199 0.934028i \(-0.616268\pi\)
0.998694 + 0.0510854i \(0.0162681\pi\)
\(588\) 5.94614 29.7055i 0.245214 1.22503i
\(589\) −26.1399 + 18.9918i −1.07708 + 0.782542i
\(590\) 47.7023 6.59837i 1.96387 0.271651i
\(591\) 0.856346 8.14759i 0.0352254 0.335147i
\(592\) −26.4736 23.8369i −1.08806 0.979691i
\(593\) 7.97900 + 4.60668i 0.327658 + 0.189174i 0.654801 0.755801i \(-0.272752\pi\)
−0.327143 + 0.944975i \(0.606086\pi\)
\(594\) 0.700074 + 2.15461i 0.0287244 + 0.0884045i
\(595\) 14.3907 11.3308i 0.589960 0.464516i
\(596\) 2.05218 6.31597i 0.0840607 0.258712i
\(597\) 14.7960 13.3224i 0.605560 0.545248i
\(598\) 14.1212 31.7167i 0.577457 1.29699i
\(599\) −6.03999 10.4616i −0.246787 0.427448i 0.715845 0.698259i \(-0.246042\pi\)
−0.962633 + 0.270811i \(0.912708\pi\)
\(600\) 3.42717 + 3.33851i 0.139914 + 0.136294i
\(601\) −18.7934 −0.766597 −0.383299 0.923624i \(-0.625212\pi\)
−0.383299 + 0.923624i \(0.625212\pi\)
\(602\) 6.04985 29.3176i 0.246574 1.19490i
\(603\) 22.8772 + 7.43326i 0.931632 + 0.302706i
\(604\) 2.65280 + 2.94623i 0.107941 + 0.119880i
\(605\) −6.97440 + 8.27515i −0.283549 + 0.336433i
\(606\) 35.8151 39.7767i 1.45489 1.61582i
\(607\) −3.61582 2.08760i −0.146762 0.0847329i 0.424821 0.905277i \(-0.360337\pi\)
−0.571583 + 0.820544i \(0.693670\pi\)
\(608\) −37.5668 + 12.2062i −1.52354 + 0.495027i
\(609\) −15.0751 6.60485i −0.610875 0.267642i
\(610\) 35.4614 12.8196i 1.43579 0.519052i
\(611\) −0.890489 8.47244i −0.0360253 0.342758i
\(612\) 15.5160 + 1.63080i 0.627197 + 0.0659211i
\(613\) 22.1605 + 2.32916i 0.895054 + 0.0940740i 0.540874 0.841103i \(-0.318093\pi\)
0.354180 + 0.935177i \(0.384760\pi\)
\(614\) 4.15645 + 39.5460i 0.167741 + 1.59595i
\(615\) 26.9595 + 7.79401i 1.08711 + 0.314285i
\(616\) −2.38867 1.04655i −0.0962422 0.0421665i
\(617\) 25.9217 8.42248i 1.04357 0.339076i 0.263428 0.964679i \(-0.415147\pi\)
0.780142 + 0.625603i \(0.215147\pi\)
\(618\) 6.21373 + 3.58750i 0.249953 + 0.144310i
\(619\) −12.7084 + 14.1141i −0.510792 + 0.567292i −0.942280 0.334827i \(-0.891322\pi\)
0.431488 + 0.902119i \(0.357989\pi\)
\(620\) −23.4726 9.54299i −0.942684 0.383256i
\(621\) −1.42925 1.58734i −0.0573537 0.0636977i
\(622\) 5.32621 + 1.73059i 0.213562 + 0.0693904i
\(623\) 7.42877 35.9999i 0.297627 1.44230i
\(624\) −41.1148 −1.64591
\(625\) 21.3156 13.0631i 0.852625 0.522523i
\(626\) 3.98421 + 6.90086i 0.159241 + 0.275814i
\(627\) −12.4575 + 27.9800i −0.497505 + 1.11742i
\(628\) 32.1036 28.9062i 1.28107 1.15348i
\(629\) 7.80592 24.0242i 0.311242 0.957906i
\(630\) 11.1750 + 30.3469i 0.445222 + 1.20905i
\(631\) −10.1285 31.1724i −0.403210 1.24095i −0.922380 0.386283i \(-0.873759\pi\)
0.519170 0.854671i \(-0.326241\pi\)
\(632\) −2.15089 1.24182i −0.0855580 0.0493969i
\(633\) 40.1895 + 36.1868i 1.59739 + 1.43830i
\(634\) 0.697640 6.63760i 0.0277068 0.263613i
\(635\) 15.7020 15.0974i 0.623113 0.599120i
\(636\) −26.9088 + 19.5504i −1.06700 + 0.775224i
\(637\) −25.9164 + 8.76251i −1.02685 + 0.347183i
\(638\) 7.33850 10.1006i 0.290534 0.399886i
\(639\) 4.14312 + 39.4192i 0.163899 + 1.55940i
\(640\) 5.40399 + 4.55455i 0.213612 + 0.180034i
\(641\) −4.10837 + 39.0885i −0.162271 + 1.54390i 0.545892 + 0.837855i \(0.316191\pi\)
−0.708163 + 0.706049i \(0.750476\pi\)
\(642\) 8.85614 41.6649i 0.349524 1.64438i
\(643\) 28.8706i 1.13854i 0.822149 + 0.569272i \(0.192775\pi\)
−0.822149 + 0.569272i \(0.807225\pi\)
\(644\) −21.6667 + 0.128712i −0.853786 + 0.00507198i
\(645\) 10.6370 + 29.4237i 0.418830 + 1.15856i
\(646\) −20.6719 22.9585i −0.813327 0.903291i
\(647\) −1.08427 5.10109i −0.0426271 0.200545i 0.951681 0.307089i \(-0.0993548\pi\)
−0.994308 + 0.106544i \(0.966021\pi\)
\(648\) −1.54189 + 3.46314i −0.0605711 + 0.136045i
\(649\) 13.7171 23.7588i 0.538444 0.932613i
\(650\) −9.37142 + 36.9022i −0.367577 + 1.44742i
\(651\) 27.0880 + 29.7272i 1.06166 + 1.16510i
\(652\) 1.02339 + 1.40858i 0.0400792 + 0.0551643i
\(653\) 17.1943 15.4818i 0.672864 0.605849i −0.260202 0.965554i \(-0.583789\pi\)
0.933066 + 0.359705i \(0.117123\pi\)
\(654\) −17.4567 + 3.71053i −0.682609 + 0.145093i
\(655\) 2.87131 39.8171i 0.112191 1.55578i
\(656\) 22.2451 + 4.72835i 0.868527 + 0.184611i
\(657\) 34.5145i 1.34654i
\(658\) −9.69763 + 5.67601i −0.378053 + 0.221274i
\(659\) 2.56376 + 1.86268i 0.0998698 + 0.0725596i 0.636599 0.771195i \(-0.280340\pi\)
−0.536730 + 0.843754i \(0.680340\pi\)
\(660\) −23.7922 + 3.29103i −0.926111 + 0.128103i
\(661\) 7.09726 + 3.15991i 0.276052 + 0.122906i 0.540093 0.841605i \(-0.318389\pi\)
−0.264042 + 0.964511i \(0.585056\pi\)
\(662\) 52.1817 + 5.48452i 2.02810 + 0.213162i
\(663\) −11.8581 26.6337i −0.460529 1.03437i
\(664\) −1.61684 + 1.17470i −0.0627454 + 0.0455872i
\(665\) 11.2445 28.1357i 0.436042 1.09105i
\(666\) 36.0824 + 26.2154i 1.39816 + 1.01583i
\(667\) −2.44738 + 11.5140i −0.0947631 + 0.445825i
\(668\) 2.85147 1.64630i 0.110327 0.0636972i
\(669\) 14.3597 15.9481i 0.555179 0.616588i
\(670\) 17.6082 32.9432i 0.680264 1.27271i
\(671\) 6.63817 20.4302i 0.256264 0.788699i
\(672\) 20.2643 + 44.7963i 0.781712 + 1.72805i
\(673\) −1.93901 2.66881i −0.0747432 0.102875i 0.770009 0.638034i \(-0.220252\pi\)
−0.844752 + 0.535158i \(0.820252\pi\)
\(674\) −25.4049 + 44.0027i −0.978562 + 1.69492i
\(675\) 1.83955 + 1.45015i 0.0708045 + 0.0558161i
\(676\) −2.04253 3.53777i −0.0785589 0.136068i
\(677\) −16.2618 + 1.70919i −0.624993 + 0.0656894i −0.411730 0.911306i \(-0.635075\pi\)
−0.213262 + 0.976995i \(0.568409\pi\)
\(678\) 57.1394 + 18.5657i 2.19443 + 0.713012i
\(679\) −9.73845 6.98739i −0.373727 0.268151i
\(680\) −0.763558 + 2.64115i −0.0292811 + 0.101284i
\(681\) 29.6248 + 6.29694i 1.13522 + 0.241299i
\(682\) −26.4208 + 15.2541i −1.01170 + 0.584108i
\(683\) −29.0960 26.1981i −1.11333 1.00244i −0.999960 0.00889049i \(-0.997170\pi\)
−0.113366 0.993553i \(-0.536163\pi\)
\(684\) 23.5775 10.4974i 0.901509 0.401378i
\(685\) 0.236998 + 7.23797i 0.00905522 + 0.276549i
\(686\) 24.6192 + 26.3814i 0.939967 + 1.00725i
\(687\) −23.4215 + 32.2369i −0.893585 + 1.22991i
\(688\) 10.3127 + 23.1626i 0.393166 + 0.883066i
\(689\) 27.4397 + 12.2169i 1.04537 + 0.465428i
\(690\) 40.6437 25.2742i 1.54728 0.962174i
\(691\) 32.7326 14.5735i 1.24521 0.554402i 0.324956 0.945729i \(-0.394650\pi\)
0.920252 + 0.391327i \(0.127984\pi\)
\(692\) 13.3870 4.34969i 0.508896 0.165350i
\(693\) 17.5550 + 5.58890i 0.666861 + 0.212305i
\(694\) 14.6550 + 45.1033i 0.556295 + 1.71210i
\(695\) −11.8570 12.3318i −0.449760 0.467772i
\(696\) 2.41651 0.513644i 0.0915974 0.0194696i
\(697\) 3.35283 + 15.7738i 0.126998 + 0.597477i
\(698\) −55.3998 + 5.82275i −2.09691 + 0.220394i
\(699\) −14.0475 −0.531325
\(700\) 23.3935 4.16330i 0.884192 0.157358i
\(701\) 4.06365 0.153482 0.0767409 0.997051i \(-0.475549\pi\)
0.0767409 + 0.997051i \(0.475549\pi\)
\(702\) −3.54781 + 0.372890i −0.133904 + 0.0140738i
\(703\) −8.68806 40.8741i −0.327677 1.54160i
\(704\) −15.2819 + 3.24827i −0.575959 + 0.122424i
\(705\) 5.53607 10.3574i 0.208500 0.390083i
\(706\) 1.05040 + 3.23279i 0.0395322 + 0.121668i
\(707\) 6.44692 + 29.4685i 0.242461 + 1.10828i
\(708\) −45.4960 + 14.7825i −1.70984 + 0.555562i
\(709\) 27.1377 12.0825i 1.01918 0.453767i 0.172011 0.985095i \(-0.444974\pi\)
0.847166 + 0.531328i \(0.178307\pi\)
\(710\) 61.3909 + 4.42705i 2.30396 + 0.166144i
\(711\) 16.0287 + 7.13643i 0.601123 + 0.267637i
\(712\) 2.24420 + 5.04056i 0.0841050 + 0.188903i
\(713\) 16.9071 23.2706i 0.633175 0.871491i
\(714\) −25.5605 + 28.7293i −0.956579 + 1.07517i
\(715\) 13.3166 + 17.1210i 0.498011 + 0.640291i
\(716\) −17.5376 + 7.80825i −0.655412 + 0.291808i
\(717\) 7.29872 + 6.57179i 0.272576 + 0.245428i
\(718\) −18.3643 + 10.6026i −0.685350 + 0.395687i
\(719\) −12.2332 2.60025i −0.456222 0.0969730i −0.0259321 0.999664i \(-0.508255\pi\)
−0.430290 + 0.902691i \(0.641589\pi\)
\(720\) −22.6744 15.3659i −0.845026 0.572655i
\(721\) −3.68424 + 1.66662i −0.137208 + 0.0620683i
\(722\) −13.3975 4.35310i −0.498603 0.162006i
\(723\) 54.5301 5.73135i 2.02800 0.213151i
\(724\) −5.50610 9.53685i −0.204633 0.354434i
\(725\) 0.506620 12.8990i 0.0188154 0.479056i
\(726\) 11.3605 19.6769i 0.421626 0.730278i
\(727\) 21.7358 + 29.9167i 0.806135 + 1.10955i 0.991908 + 0.126957i \(0.0405211\pi\)
−0.185773 + 0.982593i \(0.559479\pi\)
\(728\) 2.39396 3.33650i 0.0887260 0.123659i
\(729\) 7.22919 22.2491i 0.267748 0.824043i
\(730\) −52.7621 9.42174i −1.95281 0.348714i
\(731\) −12.0301 + 13.3608i −0.444951 + 0.494168i
\(732\) −32.4392 + 18.7288i −1.19899 + 0.692236i
\(733\) −6.77300 + 31.8644i −0.250166 + 1.17694i 0.656246 + 0.754547i \(0.272143\pi\)
−0.906413 + 0.422393i \(0.861190\pi\)
\(734\) −19.6428 14.2713i −0.725030 0.526765i
\(735\) −36.3524 10.0431i −1.34088 0.370445i
\(736\) 28.4485 20.6690i 1.04863 0.761871i
\(737\) −8.65537 19.4403i −0.318825 0.716092i
\(738\) −28.3167 2.97621i −1.04235 0.109556i
\(739\) −22.7306 10.1203i −0.836157 0.372281i −0.0564346 0.998406i \(-0.517973\pi\)
−0.779723 + 0.626125i \(0.784640\pi\)
\(740\) 23.6222 22.7126i 0.868370 0.834933i
\(741\) −39.0176 28.3480i −1.43335 1.04139i
\(742\) −0.235348 39.6170i −0.00863988 1.45439i
\(743\) 37.2111i 1.36514i 0.730819 + 0.682572i \(0.239138\pi\)
−0.730819 + 0.682572i \(0.760862\pi\)
\(744\) −5.90493 1.25513i −0.216485 0.0460153i
\(745\) −7.65869 3.11370i −0.280593 0.114077i
\(746\) −24.8136 + 5.27429i −0.908489 + 0.193105i
\(747\) 10.4921 9.44710i 0.383885 0.345651i
\(748\) −8.11259 11.1660i −0.296626 0.408270i
\(749\) 16.1688 + 17.7442i 0.590796 + 0.648358i
\(750\) −39.2336 + 34.8653i −1.43261 + 1.27310i
\(751\) −2.82557 + 4.89402i −0.103106 + 0.178585i −0.912963 0.408042i \(-0.866212\pi\)
0.809857 + 0.586628i \(0.199545\pi\)
\(752\) 3.87098 8.69437i 0.141160 0.317051i
\(753\) −1.32553 6.23613i −0.0483050 0.227257i
\(754\) 13.1548 + 14.6099i 0.479070 + 0.532061i
\(755\) 3.89582 3.03013i 0.141783 0.110278i
\(756\) 1.12460 + 1.92141i 0.0409012 + 0.0698810i
\(757\) 38.6504i 1.40477i −0.711796 0.702386i \(-0.752118\pi\)
0.711796 0.702386i \(-0.247882\pi\)
\(758\) −2.96563 + 13.9522i −0.107716 + 0.506766i
\(759\) 2.85008 27.1167i 0.103451 0.984272i
\(760\) 1.09068 + 4.41535i 0.0395630 + 0.160161i
\(761\) 0.140549 + 1.33724i 0.00509490 + 0.0484748i 0.996774 0.0802600i \(-0.0255751\pi\)
−0.991679 + 0.128735i \(0.958908\pi\)
\(762\) −26.8806 + 36.9979i −0.973780 + 1.34029i
\(763\) 4.03629 9.21256i 0.146124 0.333517i
\(764\) 31.1483 22.6306i 1.12691 0.818745i
\(765\) 3.41425 19.1200i 0.123443 0.691284i
\(766\) −1.40325 + 13.3510i −0.0507014 + 0.482392i
\(767\) 32.1034 + 28.9061i