Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [175,2,Mod(4,175)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(175, base_ring=CyclotomicField(30))
chi = DirichletCharacter(H, H._module([3, 20]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("175.4");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 175 = 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 175.t (of order \(30\), degree \(8\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.39738203537\) |
Analytic rank: | \(0\) |
Dimension: | \(144\) |
Relative dimension: | \(18\) over \(\Q(\zeta_{30})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{30}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4.1 | −0.561630 | − | 2.64226i | −0.981775 | − | 2.20510i | −4.83903 | + | 2.15447i | 2.14180 | − | 0.642423i | −5.27506 | + | 3.83256i | −2.42948 | − | 1.04767i | 5.23487 | + | 7.20518i | −1.89120 | + | 2.10039i | −2.90035 | − | 5.29838i |
4.2 | −0.500096 | − | 2.35277i | 0.932348 | + | 2.09409i | −3.45832 | + | 1.53974i | 0.169836 | + | 2.22961i | 4.46063 | − | 3.24084i | −0.802852 | + | 2.52100i | 2.52452 | + | 3.47470i | −1.50854 | + | 1.67540i | 5.16081 | − | 1.51460i |
4.3 | −0.482008 | − | 2.26767i | 0.709985 | + | 1.59465i | −3.08291 | + | 1.37260i | −1.11212 | − | 1.93989i | 3.27393 | − | 2.37865i | 1.21596 | − | 2.34978i | 1.87323 | + | 2.57828i | −0.0314466 | + | 0.0349249i | −3.86299 | + | 3.45697i |
4.4 | −0.369436 | − | 1.73806i | −0.0553691 | − | 0.124361i | −1.05727 | + | 0.470728i | 2.20183 | − | 0.389777i | −0.195691 | + | 0.142178i | 1.92211 | + | 1.81810i | −0.880110 | − | 1.21137i | 1.99499 | − | 2.21566i | −1.49089 | − | 3.68292i |
4.5 | −0.335784 | − | 1.57974i | −1.11543 | − | 2.50529i | −0.555728 | + | 0.247426i | −1.59383 | − | 1.56835i | −3.58316 | + | 2.60332i | 2.23049 | + | 1.42300i | −1.32111 | − | 1.81835i | −3.02490 | + | 3.35950i | −1.94240 | + | 3.04445i |
4.6 | −0.330614 | − | 1.55542i | −0.597202 | − | 1.34134i | −0.482928 | + | 0.215013i | −1.77722 | + | 1.35701i | −1.88890 | + | 1.37236i | −2.59765 | − | 0.502201i | −1.37525 | − | 1.89288i | 0.564855 | − | 0.627335i | 2.69830 | + | 2.31568i |
4.7 | −0.175806 | − | 0.827100i | 0.253333 | + | 0.568996i | 1.17390 | − | 0.522655i | −0.0289171 | − | 2.23588i | 0.426079 | − | 0.309565i | −2.63834 | + | 0.197839i | −1.63270 | − | 2.24722i | 1.74781 | − | 1.94114i | −1.84421 | + | 0.416998i |
4.8 | −0.147876 | − | 0.695704i | 0.986806 | + | 2.21640i | 1.36495 | − | 0.607717i | −1.89164 | + | 1.19235i | 1.39603 | − | 1.01428i | 2.10313 | − | 1.60526i | −1.46076 | − | 2.01056i | −1.93126 | + | 2.14488i | 1.10925 | + | 1.13970i |
4.9 | −0.0662594 | − | 0.311726i | 1.14522 | + | 2.57220i | 1.73431 | − | 0.772164i | 2.09734 | + | 0.775343i | 0.725939 | − | 0.527426i | −2.42570 | − | 1.05639i | −0.730260 | − | 1.00512i | −3.29729 | + | 3.66201i | 0.102726 | − | 0.705170i |
4.10 | −0.0586647 | − | 0.275996i | −1.26264 | − | 2.83593i | 1.75436 | − | 0.781091i | 1.62491 | + | 1.53612i | −0.708633 | + | 0.514852i | 1.20265 | − | 2.35661i | −0.650198 | − | 0.894920i | −4.44086 | + | 4.93208i | 0.328639 | − | 0.538584i |
4.11 | 0.0169101 | + | 0.0795555i | −0.239789 | − | 0.538575i | 1.82105 | − | 0.810783i | −0.445317 | + | 2.19128i | 0.0387918 | − | 0.0281839i | 0.791023 | + | 2.52473i | 0.190909 | + | 0.262763i | 1.77483 | − | 1.97115i | −0.181859 | + | 0.00162719i |
4.12 | 0.172534 | + | 0.811707i | −0.515214 | − | 1.15719i | 1.19799 | − | 0.533380i | −1.94638 | − | 1.10073i | 0.850407 | − | 0.617857i | −0.234193 | − | 2.63537i | 1.61518 | + | 2.22310i | 0.933750 | − | 1.03703i | 0.557658 | − | 1.76980i |
4.13 | 0.208393 | + | 0.980411i | 0.782030 | + | 1.75647i | 0.909313 | − | 0.404852i | −0.701900 | − | 2.12305i | −1.55909 | + | 1.13275i | 1.25436 | + | 2.32950i | 1.76471 | + | 2.42891i | −0.466216 | + | 0.517785i | 1.93519 | − | 1.13058i |
4.14 | 0.327402 | + | 1.54030i | −0.263147 | − | 0.591039i | −0.438251 | + | 0.195122i | 2.12141 | + | 0.706829i | 0.824224 | − | 0.598834i | −2.63114 | + | 0.277644i | 1.40716 | + | 1.93679i | 1.72731 | − | 1.91837i | −0.394177 | + | 3.49904i |
4.15 | 0.417054 | + | 1.96208i | 0.502581 | + | 1.12882i | −1.84875 | + | 0.823117i | −0.364398 | + | 2.20618i | −2.00523 | + | 1.45688i | 1.38727 | − | 2.25288i | −0.0279546 | − | 0.0384762i | 0.985753 | − | 1.09479i | −4.48068 | + | 0.205115i |
4.16 | 0.436418 | + | 2.05318i | −0.881466 | − | 1.97981i | −2.19801 | + | 0.978618i | 1.11577 | − | 1.93779i | 3.68022 | − | 2.67383i | 2.59389 | + | 0.521300i | −0.500948 | − | 0.689496i | −1.13526 | + | 1.26083i | 4.46559 | + | 1.44520i |
4.17 | 0.516009 | + | 2.42763i | 1.10824 | + | 2.48915i | −3.80004 | + | 1.69189i | 0.782280 | − | 2.09476i | −5.47088 | + | 3.97483i | −0.792837 | − | 2.52417i | −3.15053 | − | 4.33633i | −2.96028 | + | 3.28772i | 5.48898 | + | 0.818170i |
4.18 | 0.537983 | + | 2.53101i | −0.0303653 | − | 0.0682015i | −4.28951 | + | 1.90981i | −2.22433 | + | 0.228782i | 0.156283 | − | 0.113546i | −0.537537 | + | 2.59057i | −4.09959 | − | 5.64260i | 2.00366 | − | 2.22529i | −1.77571 | − | 5.50673i |
9.1 | −1.02647 | − | 2.30548i | 0.763033 | + | 0.687038i | −2.92336 | + | 3.24672i | 1.22529 | + | 1.87047i | 0.800727 | − | 2.46438i | 2.48641 | − | 0.904292i | 5.68568 | + | 1.84739i | −0.203387 | − | 1.93510i | 3.05462 | − | 4.74486i |
9.2 | −0.885632 | − | 1.98916i | −1.52446 | − | 1.37263i | −1.83416 | + | 2.03704i | −0.250174 | + | 2.22203i | −1.38027 | + | 4.24804i | −1.40656 | + | 2.24089i | 1.53472 | + | 0.498662i | 0.126279 | + | 1.20147i | 4.64154 | − | 1.47026i |
See next 80 embeddings (of 144 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
25.e | even | 10 | 1 | inner |
175.t | even | 30 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 175.2.t.a | ✓ | 144 |
5.b | even | 2 | 1 | 875.2.u.a | 144 | ||
5.c | odd | 4 | 2 | 875.2.q.b | 288 | ||
7.c | even | 3 | 1 | inner | 175.2.t.a | ✓ | 144 |
25.d | even | 5 | 1 | 875.2.u.a | 144 | ||
25.e | even | 10 | 1 | inner | 175.2.t.a | ✓ | 144 |
25.f | odd | 20 | 2 | 875.2.q.b | 288 | ||
35.j | even | 6 | 1 | 875.2.u.a | 144 | ||
35.l | odd | 12 | 2 | 875.2.q.b | 288 | ||
175.q | even | 15 | 1 | 875.2.u.a | 144 | ||
175.t | even | 30 | 1 | inner | 175.2.t.a | ✓ | 144 |
175.w | odd | 60 | 2 | 875.2.q.b | 288 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
175.2.t.a | ✓ | 144 | 1.a | even | 1 | 1 | trivial |
175.2.t.a | ✓ | 144 | 7.c | even | 3 | 1 | inner |
175.2.t.a | ✓ | 144 | 25.e | even | 10 | 1 | inner |
175.2.t.a | ✓ | 144 | 175.t | even | 30 | 1 | inner |
875.2.q.b | 288 | 5.c | odd | 4 | 2 | ||
875.2.q.b | 288 | 25.f | odd | 20 | 2 | ||
875.2.q.b | 288 | 35.l | odd | 12 | 2 | ||
875.2.q.b | 288 | 175.w | odd | 60 | 2 | ||
875.2.u.a | 144 | 5.b | even | 2 | 1 | ||
875.2.u.a | 144 | 25.d | even | 5 | 1 | ||
875.2.u.a | 144 | 35.j | even | 6 | 1 | ||
875.2.u.a | 144 | 175.q | even | 15 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(175, [\chi])\).