Properties

Label 175.2.t
Level $175$
Weight $2$
Character orbit 175.t
Rep. character $\chi_{175}(4,\cdot)$
Character field $\Q(\zeta_{30})$
Dimension $144$
Newform subspaces $1$
Sturm bound $40$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.t (of order \(30\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 175 \)
Character field: \(\Q(\zeta_{30})\)
Newform subspaces: \( 1 \)
Sturm bound: \(40\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(175, [\chi])\).

Total New Old
Modular forms 176 176 0
Cusp forms 144 144 0
Eisenstein series 32 32 0

Trace form

\( 144 q - 5 q^{2} - 5 q^{3} - 19 q^{4} - 3 q^{5} - 12 q^{6} - 50 q^{8} - 17 q^{9} + O(q^{10}) \) \( 144 q - 5 q^{2} - 5 q^{3} - 19 q^{4} - 3 q^{5} - 12 q^{6} - 50 q^{8} - 17 q^{9} - q^{10} - 5 q^{12} - 20 q^{13} - 18 q^{14} + 12 q^{15} + 5 q^{16} + 5 q^{17} - 11 q^{19} - 24 q^{20} - 9 q^{21} - 60 q^{22} + 25 q^{23} + 50 q^{24} - 11 q^{25} - 60 q^{26} + 40 q^{27} - 24 q^{29} + 53 q^{30} + 15 q^{31} + 20 q^{33} - 20 q^{34} - 14 q^{35} + 16 q^{36} - 5 q^{37} - 20 q^{38} + 13 q^{39} + 7 q^{40} - 62 q^{41} + 40 q^{42} - 15 q^{44} - 41 q^{45} - 27 q^{46} - 5 q^{47} - 38 q^{49} + 54 q^{50} - 8 q^{51} - 130 q^{52} + 25 q^{53} - 29 q^{54} - 20 q^{55} + 32 q^{56} - 65 q^{58} - 39 q^{59} + 79 q^{60} + 7 q^{61} - 20 q^{62} - 45 q^{63} + 34 q^{64} - 13 q^{65} + 11 q^{66} + 25 q^{67} + 74 q^{69} + 85 q^{70} - 46 q^{71} + 60 q^{72} + 35 q^{73} + 6 q^{74} - 107 q^{75} + 180 q^{76} - 5 q^{77} + 10 q^{78} + 9 q^{79} + 88 q^{80} - 59 q^{81} + 90 q^{83} - 51 q^{84} - 6 q^{85} + 11 q^{86} - 5 q^{87} + 140 q^{88} - 42 q^{89} + 4 q^{90} + 22 q^{91} + 10 q^{92} + 5 q^{94} + 13 q^{95} + 53 q^{96} + 120 q^{97} - 180 q^{98} - 44 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(175, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
175.2.t.a 175.t 175.t $144$ $1.397$ None 175.2.t.a \(-5\) \(-5\) \(-3\) \(0\) $\mathrm{SU}(2)[C_{30}]$