Properties

Label 175.2.o.d
Level $175$
Weight $2$
Character orbit 175.o
Analytic conductor $1.397$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [175,2,Mod(68,175)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("175.68"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(175, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 10])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.o (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q - 8 q^{11} - 4 q^{16} - 28 q^{21} + 12 q^{26} - 36 q^{31} - 8 q^{36} - 8 q^{46} + 36 q^{51} - 60 q^{56} + 84 q^{61} + 168 q^{66} - 136 q^{71} - 20 q^{81} - 80 q^{86} + 20 q^{91} - 60 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
68.1 −0.647225 2.41547i −2.17663 0.583228i −3.68357 + 2.12671i 0 5.63509i −0.373780 + 2.61922i 3.98461 + 3.98461i 1.79951 + 1.03895i 0
68.2 −0.485585 1.81223i −0.463674 0.124241i −1.31633 + 0.759985i 0 0.900613i −1.92108 1.81919i −0.636830 0.636830i −2.39852 1.38479i 0
68.3 −0.286649 1.06979i 2.67889 + 0.717805i 0.669773 0.386694i 0 3.07160i −2.58258 0.574697i −2.17195 2.17195i 4.06311 + 2.34584i 0
68.4 0.286649 + 1.06979i −2.67889 0.717805i 0.669773 0.386694i 0 3.07160i 2.58258 + 0.574697i 2.17195 + 2.17195i 4.06311 + 2.34584i 0
68.5 0.485585 + 1.81223i 0.463674 + 0.124241i −1.31633 + 0.759985i 0 0.900613i 1.92108 + 1.81919i 0.636830 + 0.636830i −2.39852 1.38479i 0
68.6 0.647225 + 2.41547i 2.17663 + 0.583228i −3.68357 + 2.12671i 0 5.63509i 0.373780 2.61922i −3.98461 3.98461i 1.79951 + 1.03895i 0
82.1 −2.41547 + 0.647225i 0.583228 2.17663i 3.68357 2.12671i 0 5.63509i 2.61922 + 0.373780i −3.98461 + 3.98461i −1.79951 1.03895i 0
82.2 −1.81223 + 0.485585i 0.124241 0.463674i 1.31633 0.759985i 0 0.900613i −1.81919 + 1.92108i 0.636830 0.636830i 2.39852 + 1.38479i 0
82.3 −1.06979 + 0.286649i −0.717805 + 2.67889i −0.669773 + 0.386694i 0 3.07160i −0.574697 + 2.58258i 2.17195 2.17195i −4.06311 2.34584i 0
82.4 1.06979 0.286649i 0.717805 2.67889i −0.669773 + 0.386694i 0 3.07160i 0.574697 2.58258i −2.17195 + 2.17195i −4.06311 2.34584i 0
82.5 1.81223 0.485585i −0.124241 + 0.463674i 1.31633 0.759985i 0 0.900613i 1.81919 1.92108i −0.636830 + 0.636830i 2.39852 + 1.38479i 0
82.6 2.41547 0.647225i −0.583228 + 2.17663i 3.68357 2.12671i 0 5.63509i −2.61922 0.373780i 3.98461 3.98461i −1.79951 1.03895i 0
143.1 −2.41547 0.647225i 0.583228 + 2.17663i 3.68357 + 2.12671i 0 5.63509i 2.61922 0.373780i −3.98461 3.98461i −1.79951 + 1.03895i 0
143.2 −1.81223 0.485585i 0.124241 + 0.463674i 1.31633 + 0.759985i 0 0.900613i −1.81919 1.92108i 0.636830 + 0.636830i 2.39852 1.38479i 0
143.3 −1.06979 0.286649i −0.717805 2.67889i −0.669773 0.386694i 0 3.07160i −0.574697 2.58258i 2.17195 + 2.17195i −4.06311 + 2.34584i 0
143.4 1.06979 + 0.286649i 0.717805 + 2.67889i −0.669773 0.386694i 0 3.07160i 0.574697 + 2.58258i −2.17195 2.17195i −4.06311 + 2.34584i 0
143.5 1.81223 + 0.485585i −0.124241 0.463674i 1.31633 + 0.759985i 0 0.900613i 1.81919 + 1.92108i −0.636830 0.636830i 2.39852 1.38479i 0
143.6 2.41547 + 0.647225i −0.583228 2.17663i 3.68357 + 2.12671i 0 5.63509i −2.61922 + 0.373780i 3.98461 + 3.98461i −1.79951 + 1.03895i 0
157.1 −0.647225 + 2.41547i −2.17663 + 0.583228i −3.68357 2.12671i 0 5.63509i −0.373780 2.61922i 3.98461 3.98461i 1.79951 1.03895i 0
157.2 −0.485585 + 1.81223i −0.463674 + 0.124241i −1.31633 0.759985i 0 0.900613i −1.92108 + 1.81919i −0.636830 + 0.636830i −2.39852 + 1.38479i 0
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 68.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
5.c odd 4 2 inner
7.d odd 6 1 inner
35.i odd 6 1 inner
35.k even 12 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 175.2.o.d 24
5.b even 2 1 inner 175.2.o.d 24
5.c odd 4 2 inner 175.2.o.d 24
7.d odd 6 1 inner 175.2.o.d 24
35.i odd 6 1 inner 175.2.o.d 24
35.k even 12 2 inner 175.2.o.d 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
175.2.o.d 24 1.a even 1 1 trivial
175.2.o.d 24 5.b even 2 1 inner
175.2.o.d 24 5.c odd 4 2 inner
175.2.o.d 24 7.d odd 6 1 inner
175.2.o.d 24 35.i odd 6 1 inner
175.2.o.d 24 35.k even 12 2 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{24} - 53T_{2}^{20} + 2247T_{2}^{16} - 28328T_{2}^{12} + 277207T_{2}^{8} - 409698T_{2}^{4} + 531441 \) acting on \(S_{2}^{\mathrm{new}}(175, [\chi])\). Copy content Toggle raw display