Newspace parameters
| Level: | \( N \) | \(=\) | \( 175 = 5^{2} \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 175.o (of order \(12\), degree \(4\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(1.39738203537\) |
| Analytic rank: | \(0\) |
| Dimension: | \(24\) |
| Relative dimension: | \(6\) over \(\Q(\zeta_{12})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 68.1 | −0.647225 | − | 2.41547i | −2.17663 | − | 0.583228i | −3.68357 | + | 2.12671i | 0 | 5.63509i | −0.373780 | + | 2.61922i | 3.98461 | + | 3.98461i | 1.79951 | + | 1.03895i | 0 | ||||||
| 68.2 | −0.485585 | − | 1.81223i | −0.463674 | − | 0.124241i | −1.31633 | + | 0.759985i | 0 | 0.900613i | −1.92108 | − | 1.81919i | −0.636830 | − | 0.636830i | −2.39852 | − | 1.38479i | 0 | ||||||
| 68.3 | −0.286649 | − | 1.06979i | 2.67889 | + | 0.717805i | 0.669773 | − | 0.386694i | 0 | − | 3.07160i | −2.58258 | − | 0.574697i | −2.17195 | − | 2.17195i | 4.06311 | + | 2.34584i | 0 | |||||
| 68.4 | 0.286649 | + | 1.06979i | −2.67889 | − | 0.717805i | 0.669773 | − | 0.386694i | 0 | − | 3.07160i | 2.58258 | + | 0.574697i | 2.17195 | + | 2.17195i | 4.06311 | + | 2.34584i | 0 | |||||
| 68.5 | 0.485585 | + | 1.81223i | 0.463674 | + | 0.124241i | −1.31633 | + | 0.759985i | 0 | 0.900613i | 1.92108 | + | 1.81919i | 0.636830 | + | 0.636830i | −2.39852 | − | 1.38479i | 0 | ||||||
| 68.6 | 0.647225 | + | 2.41547i | 2.17663 | + | 0.583228i | −3.68357 | + | 2.12671i | 0 | 5.63509i | 0.373780 | − | 2.61922i | −3.98461 | − | 3.98461i | 1.79951 | + | 1.03895i | 0 | ||||||
| 82.1 | −2.41547 | + | 0.647225i | 0.583228 | − | 2.17663i | 3.68357 | − | 2.12671i | 0 | 5.63509i | 2.61922 | + | 0.373780i | −3.98461 | + | 3.98461i | −1.79951 | − | 1.03895i | 0 | ||||||
| 82.2 | −1.81223 | + | 0.485585i | 0.124241 | − | 0.463674i | 1.31633 | − | 0.759985i | 0 | 0.900613i | −1.81919 | + | 1.92108i | 0.636830 | − | 0.636830i | 2.39852 | + | 1.38479i | 0 | ||||||
| 82.3 | −1.06979 | + | 0.286649i | −0.717805 | + | 2.67889i | −0.669773 | + | 0.386694i | 0 | − | 3.07160i | −0.574697 | + | 2.58258i | 2.17195 | − | 2.17195i | −4.06311 | − | 2.34584i | 0 | |||||
| 82.4 | 1.06979 | − | 0.286649i | 0.717805 | − | 2.67889i | −0.669773 | + | 0.386694i | 0 | − | 3.07160i | 0.574697 | − | 2.58258i | −2.17195 | + | 2.17195i | −4.06311 | − | 2.34584i | 0 | |||||
| 82.5 | 1.81223 | − | 0.485585i | −0.124241 | + | 0.463674i | 1.31633 | − | 0.759985i | 0 | 0.900613i | 1.81919 | − | 1.92108i | −0.636830 | + | 0.636830i | 2.39852 | + | 1.38479i | 0 | ||||||
| 82.6 | 2.41547 | − | 0.647225i | −0.583228 | + | 2.17663i | 3.68357 | − | 2.12671i | 0 | 5.63509i | −2.61922 | − | 0.373780i | 3.98461 | − | 3.98461i | −1.79951 | − | 1.03895i | 0 | ||||||
| 143.1 | −2.41547 | − | 0.647225i | 0.583228 | + | 2.17663i | 3.68357 | + | 2.12671i | 0 | − | 5.63509i | 2.61922 | − | 0.373780i | −3.98461 | − | 3.98461i | −1.79951 | + | 1.03895i | 0 | |||||
| 143.2 | −1.81223 | − | 0.485585i | 0.124241 | + | 0.463674i | 1.31633 | + | 0.759985i | 0 | − | 0.900613i | −1.81919 | − | 1.92108i | 0.636830 | + | 0.636830i | 2.39852 | − | 1.38479i | 0 | |||||
| 143.3 | −1.06979 | − | 0.286649i | −0.717805 | − | 2.67889i | −0.669773 | − | 0.386694i | 0 | 3.07160i | −0.574697 | − | 2.58258i | 2.17195 | + | 2.17195i | −4.06311 | + | 2.34584i | 0 | ||||||
| 143.4 | 1.06979 | + | 0.286649i | 0.717805 | + | 2.67889i | −0.669773 | − | 0.386694i | 0 | 3.07160i | 0.574697 | + | 2.58258i | −2.17195 | − | 2.17195i | −4.06311 | + | 2.34584i | 0 | ||||||
| 143.5 | 1.81223 | + | 0.485585i | −0.124241 | − | 0.463674i | 1.31633 | + | 0.759985i | 0 | − | 0.900613i | 1.81919 | + | 1.92108i | −0.636830 | − | 0.636830i | 2.39852 | − | 1.38479i | 0 | |||||
| 143.6 | 2.41547 | + | 0.647225i | −0.583228 | − | 2.17663i | 3.68357 | + | 2.12671i | 0 | − | 5.63509i | −2.61922 | + | 0.373780i | 3.98461 | + | 3.98461i | −1.79951 | + | 1.03895i | 0 | |||||
| 157.1 | −0.647225 | + | 2.41547i | −2.17663 | + | 0.583228i | −3.68357 | − | 2.12671i | 0 | − | 5.63509i | −0.373780 | − | 2.61922i | 3.98461 | − | 3.98461i | 1.79951 | − | 1.03895i | 0 | |||||
| 157.2 | −0.485585 | + | 1.81223i | −0.463674 | + | 0.124241i | −1.31633 | − | 0.759985i | 0 | − | 0.900613i | −1.92108 | + | 1.81919i | −0.636830 | + | 0.636830i | −2.39852 | + | 1.38479i | 0 | |||||
| See all 24 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 5.b | even | 2 | 1 | inner |
| 5.c | odd | 4 | 2 | inner |
| 7.d | odd | 6 | 1 | inner |
| 35.i | odd | 6 | 1 | inner |
| 35.k | even | 12 | 2 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 175.2.o.d | ✓ | 24 |
| 5.b | even | 2 | 1 | inner | 175.2.o.d | ✓ | 24 |
| 5.c | odd | 4 | 2 | inner | 175.2.o.d | ✓ | 24 |
| 7.d | odd | 6 | 1 | inner | 175.2.o.d | ✓ | 24 |
| 35.i | odd | 6 | 1 | inner | 175.2.o.d | ✓ | 24 |
| 35.k | even | 12 | 2 | inner | 175.2.o.d | ✓ | 24 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 175.2.o.d | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
| 175.2.o.d | ✓ | 24 | 5.b | even | 2 | 1 | inner |
| 175.2.o.d | ✓ | 24 | 5.c | odd | 4 | 2 | inner |
| 175.2.o.d | ✓ | 24 | 7.d | odd | 6 | 1 | inner |
| 175.2.o.d | ✓ | 24 | 35.i | odd | 6 | 1 | inner |
| 175.2.o.d | ✓ | 24 | 35.k | even | 12 | 2 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{24} - 53T_{2}^{20} + 2247T_{2}^{16} - 28328T_{2}^{12} + 277207T_{2}^{8} - 409698T_{2}^{4} + 531441 \)
acting on \(S_{2}^{\mathrm{new}}(175, [\chi])\).